1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 21 #include "qemu/osdep.h" 22 #include "cpu.h" 23 #include "qemu/units.h" 24 #include "exec/cpu_ldst.h" 25 #include "exec/exec-all.h" 26 27 #undef DEBUG_REMAP 28 29 #include "exec/user/abitypes.h" 30 31 extern char **environ; 32 33 enum BSDType { 34 target_freebsd, 35 target_netbsd, 36 target_openbsd, 37 }; 38 extern enum BSDType bsd_type; 39 40 #include "exec/user/thunk.h" 41 #include "target_arch.h" 42 #include "syscall_defs.h" 43 #include "target_syscall.h" 44 #include "target_os_vmparam.h" 45 #include "target_os_signal.h" 46 #include "exec/gdbstub.h" 47 48 /* 49 * This struct is used to hold certain information about the image. Basically, 50 * it replicates in user space what would be certain task_struct fields in the 51 * kernel 52 */ 53 struct image_info { 54 abi_ulong load_bias; 55 abi_ulong load_addr; 56 abi_ulong start_code; 57 abi_ulong end_code; 58 abi_ulong start_data; 59 abi_ulong end_data; 60 abi_ulong start_brk; 61 abi_ulong brk; 62 abi_ulong start_mmap; 63 abi_ulong mmap; 64 abi_ulong rss; 65 abi_ulong start_stack; 66 abi_ulong entry; 67 abi_ulong code_offset; 68 abi_ulong data_offset; 69 abi_ulong arg_start; 70 abi_ulong arg_end; 71 uint32_t elf_flags; 72 }; 73 74 #define MAX_SIGQUEUE_SIZE 1024 75 76 struct sigqueue { 77 struct sigqueue *next; 78 }; 79 80 struct emulated_sigtable { 81 int pending; /* true if signal is pending */ 82 struct sigqueue *first; 83 /* in order to always have memory for the first signal, we put it here */ 84 struct sigqueue info; 85 }; 86 87 /* 88 * NOTE: we force a big alignment so that the stack stored after is aligned too 89 */ 90 typedef struct TaskState { 91 pid_t ts_tid; /* tid (or pid) of this task */ 92 93 struct TaskState *next; 94 struct bsd_binprm *bprm; 95 int used; /* non zero if used */ 96 struct image_info *info; 97 98 struct emulated_sigtable sigtab[TARGET_NSIG]; 99 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 100 struct sigqueue *first_free; /* first free siginfo queue entry */ 101 int signal_pending; /* non zero if a signal may be pending */ 102 103 uint8_t stack[]; 104 } __attribute__((aligned(16))) TaskState; 105 106 void init_task_state(TaskState *ts); 107 extern const char *qemu_uname_release; 108 109 /* 110 * TARGET_ARG_MAX defines the number of bytes allocated for arguments 111 * and envelope for the new program. 256k should suffice for a reasonable 112 * maxiumum env+arg in 32-bit environments, bump it up to 512k for !ILP32 113 * platforms. 114 */ 115 #if TARGET_ABI_BITS > 32 116 #define TARGET_ARG_MAX (512 * KiB) 117 #else 118 #define TARGET_ARG_MAX (256 * KiB) 119 #endif 120 #define MAX_ARG_PAGES (TARGET_ARG_MAX / TARGET_PAGE_SIZE) 121 122 /* 123 * This structure is used to hold the arguments that are 124 * used when loading binaries. 125 */ 126 struct bsd_binprm { 127 char buf[128]; 128 void *page[MAX_ARG_PAGES]; 129 abi_ulong p; 130 abi_ulong stringp; 131 int fd; 132 int e_uid, e_gid; 133 int argc, envc; 134 char **argv; 135 char **envp; 136 char *filename; /* (Given) Name of binary */ 137 char *fullpath; /* Full path of binary */ 138 int (*core_dump)(int, CPUArchState *); 139 }; 140 141 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 142 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 143 abi_ulong stringp); 144 int loader_exec(const char *filename, char **argv, char **envp, 145 struct target_pt_regs *regs, struct image_info *infop, 146 struct bsd_binprm *bprm); 147 148 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 149 struct image_info *info); 150 int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 151 struct image_info *info); 152 int is_target_elf_binary(int fd); 153 154 abi_long memcpy_to_target(abi_ulong dest, const void *src, 155 unsigned long len); 156 void target_set_brk(abi_ulong new_brk); 157 abi_long do_brk(abi_ulong new_brk); 158 void syscall_init(void); 159 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 160 abi_long arg2, abi_long arg3, abi_long arg4, 161 abi_long arg5, abi_long arg6, abi_long arg7, 162 abi_long arg8); 163 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 164 abi_long arg2, abi_long arg3, abi_long arg4, 165 abi_long arg5, abi_long arg6); 166 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 167 abi_long arg2, abi_long arg3, abi_long arg4, 168 abi_long arg5, abi_long arg6); 169 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 170 extern __thread CPUState *thread_cpu; 171 void cpu_loop(CPUArchState *env); 172 char *target_strerror(int err); 173 int get_osversion(void); 174 void fork_start(void); 175 void fork_end(int child); 176 177 #include "qemu/log.h" 178 179 /* strace.c */ 180 struct syscallname { 181 int nr; 182 const char *name; 183 const char *format; 184 void (*call)(const struct syscallname *, 185 abi_long, abi_long, abi_long, 186 abi_long, abi_long, abi_long); 187 void (*result)(const struct syscallname *, abi_long); 188 }; 189 190 void 191 print_freebsd_syscall(int num, 192 abi_long arg1, abi_long arg2, abi_long arg3, 193 abi_long arg4, abi_long arg5, abi_long arg6); 194 void print_freebsd_syscall_ret(int num, abi_long ret); 195 void 196 print_netbsd_syscall(int num, 197 abi_long arg1, abi_long arg2, abi_long arg3, 198 abi_long arg4, abi_long arg5, abi_long arg6); 199 void print_netbsd_syscall_ret(int num, abi_long ret); 200 void 201 print_openbsd_syscall(int num, 202 abi_long arg1, abi_long arg2, abi_long arg3, 203 abi_long arg4, abi_long arg5, abi_long arg6); 204 void print_openbsd_syscall_ret(int num, abi_long ret); 205 extern int do_strace; 206 207 /* signal.c */ 208 void process_pending_signals(CPUArchState *cpu_env); 209 void signal_init(void); 210 long do_sigreturn(CPUArchState *env); 211 long do_rt_sigreturn(CPUArchState *env); 212 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 213 214 /* mmap.c */ 215 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 216 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 217 int flags, int fd, off_t offset); 218 int target_munmap(abi_ulong start, abi_ulong len); 219 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 220 abi_ulong new_size, unsigned long flags, 221 abi_ulong new_addr); 222 int target_msync(abi_ulong start, abi_ulong len, int flags); 223 extern unsigned long last_brk; 224 extern abi_ulong mmap_next_start; 225 abi_ulong mmap_find_vma(abi_ulong start, abi_ulong size); 226 void mmap_fork_start(void); 227 void mmap_fork_end(int child); 228 229 /* main.c */ 230 extern char qemu_proc_pathname[]; 231 extern unsigned long target_maxtsiz; 232 extern unsigned long target_dfldsiz; 233 extern unsigned long target_maxdsiz; 234 extern unsigned long target_dflssiz; 235 extern unsigned long target_maxssiz; 236 extern unsigned long target_sgrowsiz; 237 238 /* user access */ 239 240 #define VERIFY_READ PAGE_READ 241 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE) 242 243 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size) 244 { 245 return page_check_range((target_ulong)addr, size, type) == 0; 246 } 247 248 /* 249 * NOTE __get_user and __put_user use host pointers and don't check access. 250 * 251 * These are usually used to access struct data members once the struct has been 252 * locked - usually with lock_user_struct(). 253 */ 254 #define __put_user(x, hptr)\ 255 ({\ 256 int size = sizeof(*hptr);\ 257 switch (size) {\ 258 case 1:\ 259 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 260 break;\ 261 case 2:\ 262 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 263 break;\ 264 case 4:\ 265 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 266 break;\ 267 case 8:\ 268 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 269 break;\ 270 default:\ 271 abort();\ 272 } \ 273 0;\ 274 }) 275 276 #define __get_user(x, hptr) \ 277 ({\ 278 int size = sizeof(*hptr);\ 279 switch (size) {\ 280 case 1:\ 281 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 282 break;\ 283 case 2:\ 284 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 285 break;\ 286 case 4:\ 287 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 288 break;\ 289 case 8:\ 290 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 291 break;\ 292 default:\ 293 x = 0;\ 294 abort();\ 295 } \ 296 0;\ 297 }) 298 299 /* 300 * put_user()/get_user() take a guest address and check access 301 * 302 * These are usually used to access an atomic data type, such as an int, that 303 * has been passed by address. These internally perform locking and unlocking 304 * on the data type. 305 */ 306 #define put_user(x, gaddr, target_type) \ 307 ({ \ 308 abi_ulong __gaddr = (gaddr); \ 309 target_type *__hptr; \ 310 abi_long __ret; \ 311 __hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0); \ 312 if (__hptr) { \ 313 __ret = __put_user((x), __hptr); \ 314 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 315 } else \ 316 __ret = -TARGET_EFAULT; \ 317 __ret; \ 318 }) 319 320 #define get_user(x, gaddr, target_type) \ 321 ({ \ 322 abi_ulong __gaddr = (gaddr); \ 323 target_type *__hptr; \ 324 abi_long __ret; \ 325 __hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1); \ 326 if (__hptr) { \ 327 __ret = __get_user((x), __hptr); \ 328 unlock_user(__hptr, __gaddr, 0); \ 329 } else { \ 330 (x) = 0; \ 331 __ret = -TARGET_EFAULT; \ 332 } \ 333 __ret; \ 334 }) 335 336 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 337 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 338 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 339 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 340 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 341 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 342 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 343 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 344 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 345 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 346 347 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 348 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 349 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 350 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 351 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 352 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 353 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 354 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 355 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 356 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 357 358 /* 359 * copy_from_user() and copy_to_user() are usually used to copy data 360 * buffers between the target and host. These internally perform 361 * locking/unlocking of the memory. 362 */ 363 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 364 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 365 366 /* 367 * Functions for accessing guest memory. The tget and tput functions 368 * read/write single values, byteswapping as necessary. The lock_user function 369 * gets a pointer to a contiguous area of guest memory, but does not perform 370 * any byteswapping. lock_user may return either a pointer to the guest 371 * memory, or a temporary buffer. 372 */ 373 374 /* 375 * Lock an area of guest memory into the host. If copy is true then the 376 * host area will have the same contents as the guest. 377 */ 378 static inline void *lock_user(int type, abi_ulong guest_addr, long len, 379 int copy) 380 { 381 if (!access_ok(type, guest_addr, len)) { 382 return NULL; 383 } 384 #ifdef DEBUG_REMAP 385 { 386 void *addr; 387 addr = g_malloc(len); 388 if (copy) { 389 memcpy(addr, g2h_untagged(guest_addr), len); 390 } else { 391 memset(addr, 0, len); 392 } 393 return addr; 394 } 395 #else 396 return g2h_untagged(guest_addr); 397 #endif 398 } 399 400 /* 401 * Unlock an area of guest memory. The first LEN bytes must be flushed back to 402 * guest memory. host_ptr = NULL is explicitly allowed and does nothing. 403 */ 404 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 405 long len) 406 { 407 408 #ifdef DEBUG_REMAP 409 if (!host_ptr) { 410 return; 411 } 412 if (host_ptr == g2h_untagged(guest_addr)) { 413 return; 414 } 415 if (len > 0) { 416 memcpy(g2h_untagged(guest_addr), host_ptr, len); 417 } 418 g_free(host_ptr); 419 #endif 420 } 421 422 /* 423 * Return the length of a string in target memory or -TARGET_EFAULT if access 424 * error. 425 */ 426 abi_long target_strlen(abi_ulong gaddr); 427 428 /* Like lock_user but for null terminated strings. */ 429 static inline void *lock_user_string(abi_ulong guest_addr) 430 { 431 abi_long len; 432 len = target_strlen(guest_addr); 433 if (len < 0) { 434 return NULL; 435 } 436 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 437 } 438 439 /* Helper macros for locking/unlocking a target struct. */ 440 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 441 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 442 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 443 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 444 445 #include <pthread.h> 446 447 #endif /* QEMU_H */ 448