1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 21 #include "cpu.h" 22 #include "exec/cpu_ldst.h" 23 24 #undef DEBUG_REMAP 25 #ifdef DEBUG_REMAP 26 #endif /* DEBUG_REMAP */ 27 28 #include "exec/user/abitypes.h" 29 30 enum BSDType { 31 target_freebsd, 32 target_netbsd, 33 target_openbsd, 34 }; 35 extern enum BSDType bsd_type; 36 37 #include "syscall_defs.h" 38 #include "target_syscall.h" 39 #include "target_signal.h" 40 #include "exec/gdbstub.h" 41 42 #if defined(CONFIG_USE_NPTL) 43 #define THREAD __thread 44 #else 45 #define THREAD 46 #endif 47 48 /* This struct is used to hold certain information about the image. 49 * Basically, it replicates in user space what would be certain 50 * task_struct fields in the kernel 51 */ 52 struct image_info { 53 abi_ulong load_addr; 54 abi_ulong start_code; 55 abi_ulong end_code; 56 abi_ulong start_data; 57 abi_ulong end_data; 58 abi_ulong start_brk; 59 abi_ulong brk; 60 abi_ulong start_mmap; 61 abi_ulong mmap; 62 abi_ulong rss; 63 abi_ulong start_stack; 64 abi_ulong entry; 65 abi_ulong code_offset; 66 abi_ulong data_offset; 67 int personality; 68 }; 69 70 #define MAX_SIGQUEUE_SIZE 1024 71 72 struct sigqueue { 73 struct sigqueue *next; 74 //target_siginfo_t info; 75 }; 76 77 struct emulated_sigtable { 78 int pending; /* true if signal is pending */ 79 struct sigqueue *first; 80 struct sigqueue info; /* in order to always have memory for the 81 first signal, we put it here */ 82 }; 83 84 /* NOTE: we force a big alignment so that the stack stored after is 85 aligned too */ 86 typedef struct TaskState { 87 pid_t ts_tid; /* tid (or pid) of this task */ 88 89 struct TaskState *next; 90 int used; /* non zero if used */ 91 struct image_info *info; 92 93 struct emulated_sigtable sigtab[TARGET_NSIG]; 94 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 95 struct sigqueue *first_free; /* first free siginfo queue entry */ 96 int signal_pending; /* non zero if a signal may be pending */ 97 98 uint8_t stack[]; 99 } __attribute__((aligned(16))) TaskState; 100 101 void init_task_state(TaskState *ts); 102 extern const char *qemu_uname_release; 103 extern unsigned long mmap_min_addr; 104 105 /* ??? See if we can avoid exposing so much of the loader internals. */ 106 /* 107 * MAX_ARG_PAGES defines the number of pages allocated for arguments 108 * and envelope for the new program. 32 should suffice, this gives 109 * a maximum env+arg of 128kB w/4KB pages! 110 */ 111 #define MAX_ARG_PAGES 32 112 113 /* 114 * This structure is used to hold the arguments that are 115 * used when loading binaries. 116 */ 117 struct linux_binprm { 118 char buf[128]; 119 void *page[MAX_ARG_PAGES]; 120 abi_ulong p; 121 int fd; 122 int e_uid, e_gid; 123 int argc, envc; 124 char **argv; 125 char **envp; 126 char * filename; /* Name of binary */ 127 }; 128 129 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 130 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 131 abi_ulong stringp, int push_ptr); 132 int loader_exec(const char * filename, char ** argv, char ** envp, 133 struct target_pt_regs * regs, struct image_info *infop); 134 135 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 136 struct image_info * info); 137 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 138 struct image_info * info); 139 140 abi_long memcpy_to_target(abi_ulong dest, const void *src, 141 unsigned long len); 142 void target_set_brk(abi_ulong new_brk); 143 abi_long do_brk(abi_ulong new_brk); 144 void syscall_init(void); 145 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 146 abi_long arg2, abi_long arg3, abi_long arg4, 147 abi_long arg5, abi_long arg6, abi_long arg7, 148 abi_long arg8); 149 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 150 abi_long arg2, abi_long arg3, abi_long arg4, 151 abi_long arg5, abi_long arg6); 152 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 153 abi_long arg2, abi_long arg3, abi_long arg4, 154 abi_long arg5, abi_long arg6); 155 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 156 extern THREAD CPUState *thread_cpu; 157 void cpu_loop(CPUArchState *env); 158 char *target_strerror(int err); 159 int get_osversion(void); 160 void fork_start(void); 161 void fork_end(int child); 162 163 #include "qemu/log.h" 164 165 /* strace.c */ 166 struct syscallname { 167 int nr; 168 const char *name; 169 const char *format; 170 void (*call)(const struct syscallname *, 171 abi_long, abi_long, abi_long, 172 abi_long, abi_long, abi_long); 173 void (*result)(const struct syscallname *, abi_long); 174 }; 175 176 void 177 print_freebsd_syscall(int num, 178 abi_long arg1, abi_long arg2, abi_long arg3, 179 abi_long arg4, abi_long arg5, abi_long arg6); 180 void print_freebsd_syscall_ret(int num, abi_long ret); 181 void 182 print_netbsd_syscall(int num, 183 abi_long arg1, abi_long arg2, abi_long arg3, 184 abi_long arg4, abi_long arg5, abi_long arg6); 185 void print_netbsd_syscall_ret(int num, abi_long ret); 186 void 187 print_openbsd_syscall(int num, 188 abi_long arg1, abi_long arg2, abi_long arg3, 189 abi_long arg4, abi_long arg5, abi_long arg6); 190 void print_openbsd_syscall_ret(int num, abi_long ret); 191 extern int do_strace; 192 193 /* signal.c */ 194 void process_pending_signals(CPUArchState *cpu_env); 195 void signal_init(void); 196 //int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 197 //void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 198 //void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 199 long do_sigreturn(CPUArchState *env); 200 long do_rt_sigreturn(CPUArchState *env); 201 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 202 203 /* mmap.c */ 204 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 205 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 206 int flags, int fd, abi_ulong offset); 207 int target_munmap(abi_ulong start, abi_ulong len); 208 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 209 abi_ulong new_size, unsigned long flags, 210 abi_ulong new_addr); 211 int target_msync(abi_ulong start, abi_ulong len, int flags); 212 extern unsigned long last_brk; 213 void mmap_fork_start(void); 214 void mmap_fork_end(int child); 215 216 /* main.c */ 217 extern unsigned long x86_stack_size; 218 219 /* user access */ 220 221 #define VERIFY_READ PAGE_READ 222 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE) 223 224 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size) 225 { 226 return page_check_range((target_ulong)addr, size, type) == 0; 227 } 228 229 /* NOTE __get_user and __put_user use host pointers and don't check access. */ 230 /* These are usually used to access struct data members once the 231 * struct has been locked - usually with lock_user_struct(). 232 */ 233 #define __put_user(x, hptr)\ 234 ({\ 235 int size = sizeof(*hptr);\ 236 switch (size) {\ 237 case 1:\ 238 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 239 break;\ 240 case 2:\ 241 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 242 break;\ 243 case 4:\ 244 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 245 break;\ 246 case 8:\ 247 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 248 break;\ 249 default:\ 250 abort();\ 251 }\ 252 0;\ 253 }) 254 255 #define __get_user(x, hptr) \ 256 ({\ 257 int size = sizeof(*hptr);\ 258 switch (size) {\ 259 case 1:\ 260 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 261 break;\ 262 case 2:\ 263 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 264 break;\ 265 case 4:\ 266 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 267 break;\ 268 case 8:\ 269 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 270 break;\ 271 default:\ 272 /* avoid warning */\ 273 x = 0;\ 274 abort();\ 275 }\ 276 0;\ 277 }) 278 279 /* put_user()/get_user() take a guest address and check access */ 280 /* These are usually used to access an atomic data type, such as an int, 281 * that has been passed by address. These internally perform locking 282 * and unlocking on the data type. 283 */ 284 #define put_user(x, gaddr, target_type) \ 285 ({ \ 286 abi_ulong __gaddr = (gaddr); \ 287 target_type *__hptr; \ 288 abi_long __ret; \ 289 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 290 __ret = __put_user((x), __hptr); \ 291 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 292 } else \ 293 __ret = -TARGET_EFAULT; \ 294 __ret; \ 295 }) 296 297 #define get_user(x, gaddr, target_type) \ 298 ({ \ 299 abi_ulong __gaddr = (gaddr); \ 300 target_type *__hptr; \ 301 abi_long __ret; \ 302 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 303 __ret = __get_user((x), __hptr); \ 304 unlock_user(__hptr, __gaddr, 0); \ 305 } else { \ 306 /* avoid warning */ \ 307 (x) = 0; \ 308 __ret = -TARGET_EFAULT; \ 309 } \ 310 __ret; \ 311 }) 312 313 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 314 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 315 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 316 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 317 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 318 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 319 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 320 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 321 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 322 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 323 324 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 325 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 326 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 327 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 328 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 329 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 330 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 331 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 332 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 333 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 334 335 /* copy_from_user() and copy_to_user() are usually used to copy data 336 * buffers between the target and host. These internally perform 337 * locking/unlocking of the memory. 338 */ 339 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 340 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 341 342 /* Functions for accessing guest memory. The tget and tput functions 343 read/write single values, byteswapping as necessary. The lock_user function 344 gets a pointer to a contiguous area of guest memory, but does not perform 345 any byteswapping. lock_user may return either a pointer to the guest 346 memory, or a temporary buffer. */ 347 348 /* Lock an area of guest memory into the host. If copy is true then the 349 host area will have the same contents as the guest. */ 350 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 351 { 352 if (!access_ok(type, guest_addr, len)) 353 return NULL; 354 #ifdef DEBUG_REMAP 355 { 356 void *addr; 357 addr = g_malloc(len); 358 if (copy) 359 memcpy(addr, g2h_untagged(guest_addr), len); 360 else 361 memset(addr, 0, len); 362 return addr; 363 } 364 #else 365 return g2h_untagged(guest_addr); 366 #endif 367 } 368 369 /* Unlock an area of guest memory. The first LEN bytes must be 370 flushed back to guest memory. host_ptr = NULL is explicitly 371 allowed and does nothing. */ 372 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 373 long len) 374 { 375 376 #ifdef DEBUG_REMAP 377 if (!host_ptr) 378 return; 379 if (host_ptr == g2h_untagged(guest_addr)) 380 return; 381 if (len > 0) 382 memcpy(g2h_untagged(guest_addr), host_ptr, len); 383 g_free(host_ptr); 384 #endif 385 } 386 387 /* Return the length of a string in target memory or -TARGET_EFAULT if 388 access error. */ 389 abi_long target_strlen(abi_ulong gaddr); 390 391 /* Like lock_user but for null terminated strings. */ 392 static inline void *lock_user_string(abi_ulong guest_addr) 393 { 394 abi_long len; 395 len = target_strlen(guest_addr); 396 if (len < 0) 397 return NULL; 398 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 399 } 400 401 /* Helper macros for locking/unlocking a target struct. */ 402 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 403 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 404 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 405 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 406 407 #if defined(CONFIG_USE_NPTL) 408 #include <pthread.h> 409 #endif 410 411 #endif /* QEMU_H */ 412