1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "exec/cpu_ldst.h" 24 25 #undef DEBUG_REMAP 26 #ifdef DEBUG_REMAP 27 #endif /* DEBUG_REMAP */ 28 29 #include "exec/user/abitypes.h" 30 31 enum BSDType { 32 target_freebsd, 33 target_netbsd, 34 target_openbsd, 35 }; 36 extern enum BSDType bsd_type; 37 38 #include "syscall_defs.h" 39 #include "target_syscall.h" 40 #include "target_signal.h" 41 #include "exec/gdbstub.h" 42 43 #if defined(CONFIG_USE_NPTL) 44 #define THREAD __thread 45 #else 46 #define THREAD 47 #endif 48 49 /* This struct is used to hold certain information about the image. 50 * Basically, it replicates in user space what would be certain 51 * task_struct fields in the kernel 52 */ 53 struct image_info { 54 abi_ulong load_addr; 55 abi_ulong start_code; 56 abi_ulong end_code; 57 abi_ulong start_data; 58 abi_ulong end_data; 59 abi_ulong start_brk; 60 abi_ulong brk; 61 abi_ulong start_mmap; 62 abi_ulong mmap; 63 abi_ulong rss; 64 abi_ulong start_stack; 65 abi_ulong entry; 66 abi_ulong code_offset; 67 abi_ulong data_offset; 68 int personality; 69 }; 70 71 #define MAX_SIGQUEUE_SIZE 1024 72 73 struct sigqueue { 74 struct sigqueue *next; 75 //target_siginfo_t info; 76 }; 77 78 struct emulated_sigtable { 79 int pending; /* true if signal is pending */ 80 struct sigqueue *first; 81 struct sigqueue info; /* in order to always have memory for the 82 first signal, we put it here */ 83 }; 84 85 /* NOTE: we force a big alignment so that the stack stored after is 86 aligned too */ 87 typedef struct TaskState { 88 struct TaskState *next; 89 int used; /* non zero if used */ 90 struct image_info *info; 91 92 struct emulated_sigtable sigtab[TARGET_NSIG]; 93 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 94 struct sigqueue *first_free; /* first free siginfo queue entry */ 95 int signal_pending; /* non zero if a signal may be pending */ 96 97 uint8_t stack[0]; 98 } __attribute__((aligned(16))) TaskState; 99 100 void init_task_state(TaskState *ts); 101 extern const char *qemu_uname_release; 102 extern unsigned long mmap_min_addr; 103 104 /* ??? See if we can avoid exposing so much of the loader internals. */ 105 /* 106 * MAX_ARG_PAGES defines the number of pages allocated for arguments 107 * and envelope for the new program. 32 should suffice, this gives 108 * a maximum env+arg of 128kB w/4KB pages! 109 */ 110 #define MAX_ARG_PAGES 32 111 112 /* 113 * This structure is used to hold the arguments that are 114 * used when loading binaries. 115 */ 116 struct linux_binprm { 117 char buf[128]; 118 void *page[MAX_ARG_PAGES]; 119 abi_ulong p; 120 int fd; 121 int e_uid, e_gid; 122 int argc, envc; 123 char **argv; 124 char **envp; 125 char * filename; /* Name of binary */ 126 }; 127 128 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 129 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 130 abi_ulong stringp, int push_ptr); 131 int loader_exec(const char * filename, char ** argv, char ** envp, 132 struct target_pt_regs * regs, struct image_info *infop); 133 134 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 135 struct image_info * info); 136 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 137 struct image_info * info); 138 139 abi_long memcpy_to_target(abi_ulong dest, const void *src, 140 unsigned long len); 141 void target_set_brk(abi_ulong new_brk); 142 abi_long do_brk(abi_ulong new_brk); 143 void syscall_init(void); 144 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 145 abi_long arg2, abi_long arg3, abi_long arg4, 146 abi_long arg5, abi_long arg6, abi_long arg7, 147 abi_long arg8); 148 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 149 abi_long arg2, abi_long arg3, abi_long arg4, 150 abi_long arg5, abi_long arg6); 151 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 152 abi_long arg2, abi_long arg3, abi_long arg4, 153 abi_long arg5, abi_long arg6); 154 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 155 extern THREAD CPUState *thread_cpu; 156 void cpu_loop(CPUArchState *env); 157 char *target_strerror(int err); 158 int get_osversion(void); 159 void fork_start(void); 160 void fork_end(int child); 161 162 #include "qemu/log.h" 163 164 /* strace.c */ 165 struct syscallname { 166 int nr; 167 const char *name; 168 const char *format; 169 void (*call)(const struct syscallname *, 170 abi_long, abi_long, abi_long, 171 abi_long, abi_long, abi_long); 172 void (*result)(const struct syscallname *, abi_long); 173 }; 174 175 void 176 print_freebsd_syscall(int num, 177 abi_long arg1, abi_long arg2, abi_long arg3, 178 abi_long arg4, abi_long arg5, abi_long arg6); 179 void print_freebsd_syscall_ret(int num, abi_long ret); 180 void 181 print_netbsd_syscall(int num, 182 abi_long arg1, abi_long arg2, abi_long arg3, 183 abi_long arg4, abi_long arg5, abi_long arg6); 184 void print_netbsd_syscall_ret(int num, abi_long ret); 185 void 186 print_openbsd_syscall(int num, 187 abi_long arg1, abi_long arg2, abi_long arg3, 188 abi_long arg4, abi_long arg5, abi_long arg6); 189 void print_openbsd_syscall_ret(int num, abi_long ret); 190 extern int do_strace; 191 192 /* signal.c */ 193 void process_pending_signals(CPUArchState *cpu_env); 194 void signal_init(void); 195 //int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 196 //void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 197 //void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 198 long do_sigreturn(CPUArchState *env); 199 long do_rt_sigreturn(CPUArchState *env); 200 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 201 202 /* mmap.c */ 203 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 204 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 205 int flags, int fd, abi_ulong offset); 206 int target_munmap(abi_ulong start, abi_ulong len); 207 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 208 abi_ulong new_size, unsigned long flags, 209 abi_ulong new_addr); 210 int target_msync(abi_ulong start, abi_ulong len, int flags); 211 extern unsigned long last_brk; 212 void cpu_list_lock(void); 213 void cpu_list_unlock(void); 214 #if defined(CONFIG_USE_NPTL) 215 void mmap_fork_start(void); 216 void mmap_fork_end(int child); 217 #endif 218 219 /* main.c */ 220 extern unsigned long x86_stack_size; 221 222 /* user access */ 223 224 #define VERIFY_READ 0 225 #define VERIFY_WRITE 1 /* implies read access */ 226 227 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 228 { 229 return page_check_range((target_ulong)addr, size, 230 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 231 } 232 233 /* NOTE __get_user and __put_user use host pointers and don't check access. */ 234 /* These are usually used to access struct data members once the 235 * struct has been locked - usually with lock_user_struct(). 236 */ 237 #define __put_user(x, hptr)\ 238 ({\ 239 int size = sizeof(*hptr);\ 240 switch(size) {\ 241 case 1:\ 242 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 243 break;\ 244 case 2:\ 245 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 246 break;\ 247 case 4:\ 248 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 249 break;\ 250 case 8:\ 251 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 252 break;\ 253 default:\ 254 abort();\ 255 }\ 256 0;\ 257 }) 258 259 #define __get_user(x, hptr) \ 260 ({\ 261 int size = sizeof(*hptr);\ 262 switch(size) {\ 263 case 1:\ 264 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 265 break;\ 266 case 2:\ 267 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 268 break;\ 269 case 4:\ 270 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 271 break;\ 272 case 8:\ 273 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 274 break;\ 275 default:\ 276 /* avoid warning */\ 277 x = 0;\ 278 abort();\ 279 }\ 280 0;\ 281 }) 282 283 /* put_user()/get_user() take a guest address and check access */ 284 /* These are usually used to access an atomic data type, such as an int, 285 * that has been passed by address. These internally perform locking 286 * and unlocking on the data type. 287 */ 288 #define put_user(x, gaddr, target_type) \ 289 ({ \ 290 abi_ulong __gaddr = (gaddr); \ 291 target_type *__hptr; \ 292 abi_long __ret; \ 293 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 294 __ret = __put_user((x), __hptr); \ 295 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 296 } else \ 297 __ret = -TARGET_EFAULT; \ 298 __ret; \ 299 }) 300 301 #define get_user(x, gaddr, target_type) \ 302 ({ \ 303 abi_ulong __gaddr = (gaddr); \ 304 target_type *__hptr; \ 305 abi_long __ret; \ 306 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 307 __ret = __get_user((x), __hptr); \ 308 unlock_user(__hptr, __gaddr, 0); \ 309 } else { \ 310 /* avoid warning */ \ 311 (x) = 0; \ 312 __ret = -TARGET_EFAULT; \ 313 } \ 314 __ret; \ 315 }) 316 317 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 318 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 319 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 320 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 321 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 322 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 323 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 324 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 325 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 326 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 327 328 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 329 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 330 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 331 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 332 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 333 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 334 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 335 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 336 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 337 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 338 339 /* copy_from_user() and copy_to_user() are usually used to copy data 340 * buffers between the target and host. These internally perform 341 * locking/unlocking of the memory. 342 */ 343 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 344 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 345 346 /* Functions for accessing guest memory. The tget and tput functions 347 read/write single values, byteswapping as necessary. The lock_user function 348 gets a pointer to a contiguous area of guest memory, but does not perform 349 any byteswapping. lock_user may return either a pointer to the guest 350 memory, or a temporary buffer. */ 351 352 /* Lock an area of guest memory into the host. If copy is true then the 353 host area will have the same contents as the guest. */ 354 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 355 { 356 if (!access_ok(type, guest_addr, len)) 357 return NULL; 358 #ifdef DEBUG_REMAP 359 { 360 void *addr; 361 addr = malloc(len); 362 if (copy) 363 memcpy(addr, g2h(guest_addr), len); 364 else 365 memset(addr, 0, len); 366 return addr; 367 } 368 #else 369 return g2h(guest_addr); 370 #endif 371 } 372 373 /* Unlock an area of guest memory. The first LEN bytes must be 374 flushed back to guest memory. host_ptr = NULL is explicitly 375 allowed and does nothing. */ 376 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 377 long len) 378 { 379 380 #ifdef DEBUG_REMAP 381 if (!host_ptr) 382 return; 383 if (host_ptr == g2h(guest_addr)) 384 return; 385 if (len > 0) 386 memcpy(g2h(guest_addr), host_ptr, len); 387 free(host_ptr); 388 #endif 389 } 390 391 /* Return the length of a string in target memory or -TARGET_EFAULT if 392 access error. */ 393 abi_long target_strlen(abi_ulong gaddr); 394 395 /* Like lock_user but for null terminated strings. */ 396 static inline void *lock_user_string(abi_ulong guest_addr) 397 { 398 abi_long len; 399 len = target_strlen(guest_addr); 400 if (len < 0) 401 return NULL; 402 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 403 } 404 405 /* Helper macros for locking/unlocking a target struct. */ 406 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 407 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 408 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 409 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 410 411 #if defined(CONFIG_USE_NPTL) 412 #include <pthread.h> 413 #endif 414 415 #endif /* QEMU_H */ 416