1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 #include "cpu.h" 21 #include "qemu/units.h" 22 #include "exec/cpu_ldst.h" 23 #include "exec/exec-all.h" 24 25 #undef DEBUG_REMAP 26 27 #include "exec/user/abitypes.h" 28 29 extern char **environ; 30 31 #include "exec/user/thunk.h" 32 #include "target_arch.h" 33 #include "syscall_defs.h" 34 #include "target_syscall.h" 35 #include "target_os_vmparam.h" 36 #include "target_os_signal.h" 37 #include "target.h" 38 #include "exec/gdbstub.h" 39 #include "qemu/clang-tsa.h" 40 41 #include "qemu-os.h" 42 /* 43 * This struct is used to hold certain information about the image. Basically, 44 * it replicates in user space what would be certain task_struct fields in the 45 * kernel 46 */ 47 struct image_info { 48 abi_ulong load_bias; 49 abi_ulong load_addr; 50 abi_ulong start_code; 51 abi_ulong end_code; 52 abi_ulong start_data; 53 abi_ulong end_data; 54 abi_ulong brk; 55 abi_ulong rss; 56 abi_ulong start_stack; 57 abi_ulong entry; 58 abi_ulong code_offset; 59 abi_ulong data_offset; 60 abi_ulong arg_start; 61 abi_ulong arg_end; 62 uint32_t elf_flags; 63 }; 64 65 struct emulated_sigtable { 66 int pending; /* true if signal is pending */ 67 target_siginfo_t info; 68 }; 69 70 /* 71 * NOTE: we force a big alignment so that the stack stored after is aligned too 72 */ 73 typedef struct TaskState { 74 pid_t ts_tid; /* tid (or pid) of this task */ 75 76 struct TaskState *next; 77 struct bsd_binprm *bprm; 78 struct image_info *info; 79 80 struct emulated_sigtable sync_signal; 81 /* 82 * TODO: Since we block all signals while returning to the main CPU 83 * loop, this needn't be an array 84 */ 85 struct emulated_sigtable sigtab[TARGET_NSIG]; 86 /* 87 * Nonzero if process_pending_signals() needs to do something (either 88 * handle a pending signal or unblock signals). 89 * This flag is written from a signal handler so should be accessed via 90 * the qatomic_read() and qatomic_set() functions. (It is not accessed 91 * from multiple threads.) 92 */ 93 int signal_pending; 94 /* True if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 95 bool in_sigsuspend; 96 /* 97 * This thread's signal mask, as requested by the guest program. 98 * The actual signal mask of this thread may differ: 99 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 100 * + sometimes we block all signals to avoid races 101 */ 102 sigset_t signal_mask; 103 /* 104 * The signal mask imposed by a guest sigsuspend syscall, if we are 105 * currently in the middle of such a syscall 106 */ 107 sigset_t sigsuspend_mask; 108 109 /* This thread's sigaltstack, if it has one */ 110 struct target_sigaltstack sigaltstack_used; 111 } __attribute__((aligned(16))) TaskState; 112 113 void stop_all_tasks(void); 114 extern const char *qemu_uname_release; 115 116 /* 117 * TARGET_ARG_MAX defines the number of bytes allocated for arguments 118 * and envelope for the new program. 256k should suffice for a reasonable 119 * maxiumum env+arg in 32-bit environments, bump it up to 512k for !ILP32 120 * platforms. 121 */ 122 #if TARGET_ABI_BITS > 32 123 #define TARGET_ARG_MAX (512 * KiB) 124 #else 125 #define TARGET_ARG_MAX (256 * KiB) 126 #endif 127 #define MAX_ARG_PAGES (TARGET_ARG_MAX / TARGET_PAGE_SIZE) 128 129 /* 130 * This structure is used to hold the arguments that are 131 * used when loading binaries. 132 */ 133 struct bsd_binprm { 134 char buf[128]; 135 void *page[MAX_ARG_PAGES]; 136 abi_ulong p; 137 abi_ulong stringp; 138 int fd; 139 int e_uid, e_gid; 140 int argc, envc; 141 char **argv; 142 char **envp; 143 char *filename; /* (Given) Name of binary */ 144 char *fullpath; /* Full path of binary */ 145 int (*core_dump)(int, CPUArchState *); 146 }; 147 148 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 149 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 150 abi_ulong stringp); 151 int loader_exec(const char *filename, char **argv, char **envp, 152 struct target_pt_regs *regs, struct image_info *infop, 153 struct bsd_binprm *bprm); 154 155 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 156 struct image_info *info); 157 int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 158 struct image_info *info); 159 int is_target_elf_binary(int fd); 160 161 abi_long memcpy_to_target(abi_ulong dest, const void *src, 162 unsigned long len); 163 void target_set_brk(abi_ulong new_brk); 164 abi_long do_brk(abi_ulong new_brk); 165 void syscall_init(void); 166 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 167 abi_long arg2, abi_long arg3, abi_long arg4, 168 abi_long arg5, abi_long arg6, abi_long arg7, 169 abi_long arg8); 170 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 171 abi_long arg2, abi_long arg3, abi_long arg4, 172 abi_long arg5, abi_long arg6); 173 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 174 abi_long arg2, abi_long arg3, abi_long arg4, 175 abi_long arg5, abi_long arg6); 176 void gemu_log(const char *fmt, ...) G_GNUC_PRINTF(1, 2); 177 extern __thread CPUState *thread_cpu; 178 void cpu_loop(CPUArchState *env); 179 char *target_strerror(int err); 180 int get_osversion(void); 181 void fork_start(void); 182 void fork_end(int child); 183 184 #include "qemu/log.h" 185 186 /* strace.c */ 187 struct syscallname { 188 int nr; 189 const char *name; 190 const char *format; 191 void (*call)(const struct syscallname *, 192 abi_long, abi_long, abi_long, 193 abi_long, abi_long, abi_long); 194 void (*result)(const struct syscallname *, abi_long); 195 }; 196 197 void 198 print_freebsd_syscall(int num, 199 abi_long arg1, abi_long arg2, abi_long arg3, 200 abi_long arg4, abi_long arg5, abi_long arg6); 201 void print_freebsd_syscall_ret(int num, abi_long ret); 202 void 203 print_netbsd_syscall(int num, 204 abi_long arg1, abi_long arg2, abi_long arg3, 205 abi_long arg4, abi_long arg5, abi_long arg6); 206 void print_netbsd_syscall_ret(int num, abi_long ret); 207 void 208 print_openbsd_syscall(int num, 209 abi_long arg1, abi_long arg2, abi_long arg3, 210 abi_long arg4, abi_long arg5, abi_long arg6); 211 void print_openbsd_syscall_ret(int num, abi_long ret); 212 /** 213 * print_taken_signal: 214 * @target_signum: target signal being taken 215 * @tinfo: target_siginfo_t which will be passed to the guest for the signal 216 * 217 * Print strace output indicating that this signal is being taken by the guest, 218 * in a format similar to: 219 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- 220 */ 221 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); 222 extern int do_strace; 223 224 /* mmap.c */ 225 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 226 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 227 int flags, int fd, off_t offset); 228 int target_munmap(abi_ulong start, abi_ulong len); 229 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 230 abi_ulong new_size, unsigned long flags, 231 abi_ulong new_addr); 232 int target_msync(abi_ulong start, abi_ulong len, int flags); 233 extern abi_ulong mmap_next_start; 234 abi_ulong mmap_find_vma(abi_ulong start, abi_ulong size); 235 void TSA_NO_TSA mmap_fork_start(void); 236 void TSA_NO_TSA mmap_fork_end(int child); 237 238 /* main.c */ 239 extern char qemu_proc_pathname[]; 240 extern unsigned long target_maxtsiz; 241 extern unsigned long target_dfldsiz; 242 extern unsigned long target_maxdsiz; 243 extern unsigned long target_dflssiz; 244 extern unsigned long target_maxssiz; 245 extern unsigned long target_sgrowsiz; 246 247 /* os-syscall.c */ 248 abi_long get_errno(abi_long ret); 249 bool is_error(abi_long ret); 250 int host_to_target_errno(int err); 251 252 /* os-sys.c */ 253 abi_long do_freebsd_sysctl(CPUArchState *env, abi_ulong namep, int32_t namelen, 254 abi_ulong oldp, abi_ulong oldlenp, abi_ulong newp, abi_ulong newlen); 255 abi_long do_freebsd_sysctlbyname(CPUArchState *env, abi_ulong namep, 256 int32_t namelen, abi_ulong oldp, abi_ulong oldlenp, abi_ulong newp, 257 abi_ulong newlen); 258 abi_long do_freebsd_sysarch(void *cpu_env, abi_long arg1, abi_long arg2); 259 260 /* user access */ 261 262 #define VERIFY_READ PAGE_READ 263 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE) 264 265 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size) 266 { 267 return page_check_range((target_ulong)addr, size, type); 268 } 269 270 /* 271 * NOTE __get_user and __put_user use host pointers and don't check access. 272 * 273 * These are usually used to access struct data members once the struct has been 274 * locked - usually with lock_user_struct(). 275 */ 276 #define __put_user_e(x, hptr, e) \ 277 do { \ 278 PRAGMA_DISABLE_PACKED_WARNING; \ 279 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 280 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 281 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 282 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 283 ((hptr), (x)), (void)0); \ 284 PRAGMA_REENABLE_PACKED_WARNING; \ 285 } while (0) 286 287 #define __get_user_e(x, hptr, e) \ 288 do { \ 289 PRAGMA_DISABLE_PACKED_WARNING; \ 290 ((x) = (typeof(*hptr))( \ 291 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 292 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 293 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 294 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 295 (hptr)), (void)0); \ 296 PRAGMA_REENABLE_PACKED_WARNING; \ 297 } while (0) 298 299 300 #if TARGET_BIG_ENDIAN 301 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 302 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 303 #else 304 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 305 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 306 #endif 307 308 /* 309 * put_user()/get_user() take a guest address and check access 310 * 311 * These are usually used to access an atomic data type, such as an int, that 312 * has been passed by address. These internally perform locking and unlocking 313 * on the data type. 314 */ 315 #define put_user(x, gaddr, target_type) \ 316 ({ \ 317 abi_ulong __gaddr = (gaddr); \ 318 target_type *__hptr; \ 319 abi_long __ret = 0; \ 320 __hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0); \ 321 if (__hptr) { \ 322 __put_user((x), __hptr); \ 323 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 324 } else \ 325 __ret = -TARGET_EFAULT; \ 326 __ret; \ 327 }) 328 329 #define get_user(x, gaddr, target_type) \ 330 ({ \ 331 abi_ulong __gaddr = (gaddr); \ 332 target_type *__hptr; \ 333 abi_long __ret = 0; \ 334 __hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1); \ 335 if (__hptr) { \ 336 __get_user((x), __hptr); \ 337 unlock_user(__hptr, __gaddr, 0); \ 338 } else { \ 339 (x) = 0; \ 340 __ret = -TARGET_EFAULT; \ 341 } \ 342 __ret; \ 343 }) 344 345 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 346 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 347 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 348 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 349 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 350 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 351 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 352 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 353 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 354 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 355 356 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 357 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 358 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 359 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 360 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 361 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 362 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 363 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 364 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 365 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 366 367 /* 368 * copy_from_user() and copy_to_user() are usually used to copy data 369 * buffers between the target and host. These internally perform 370 * locking/unlocking of the memory. 371 */ 372 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 373 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 374 375 /* 376 * Functions for accessing guest memory. The tget and tput functions 377 * read/write single values, byteswapping as necessary. The lock_user function 378 * gets a pointer to a contiguous area of guest memory, but does not perform 379 * any byteswapping. lock_user may return either a pointer to the guest 380 * memory, or a temporary buffer. 381 */ 382 383 /* 384 * Lock an area of guest memory into the host. If copy is true then the 385 * host area will have the same contents as the guest. 386 */ 387 static inline void *lock_user(int type, abi_ulong guest_addr, long len, 388 int copy) 389 { 390 if (!access_ok(type, guest_addr, len)) { 391 return NULL; 392 } 393 #ifdef DEBUG_REMAP 394 { 395 void *addr; 396 addr = g_malloc(len); 397 if (copy) { 398 memcpy(addr, g2h_untagged(guest_addr), len); 399 } else { 400 memset(addr, 0, len); 401 } 402 return addr; 403 } 404 #else 405 return g2h_untagged(guest_addr); 406 #endif 407 } 408 409 /* 410 * Unlock an area of guest memory. The first LEN bytes must be flushed back to 411 * guest memory. host_ptr = NULL is explicitly allowed and does nothing. 412 */ 413 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 414 long len) 415 { 416 417 #ifdef DEBUG_REMAP 418 if (!host_ptr) { 419 return; 420 } 421 if (host_ptr == g2h_untagged(guest_addr)) { 422 return; 423 } 424 if (len > 0) { 425 memcpy(g2h_untagged(guest_addr), host_ptr, len); 426 } 427 g_free(host_ptr); 428 #endif 429 } 430 431 /* 432 * Return the length of a string in target memory or -TARGET_EFAULT if access 433 * error. 434 */ 435 abi_long target_strlen(abi_ulong gaddr); 436 437 /* Like lock_user but for null terminated strings. */ 438 static inline void *lock_user_string(abi_ulong guest_addr) 439 { 440 abi_long len; 441 len = target_strlen(guest_addr); 442 if (len < 0) { 443 return NULL; 444 } 445 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 446 } 447 448 /* Helper macros for locking/unlocking a target struct. */ 449 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 450 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 451 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 452 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 453 454 static inline uint64_t target_arg64(uint32_t word0, uint32_t word1) 455 { 456 #if TARGET_ABI_BITS == 32 457 #if TARGET_BIG_ENDIAN 458 return ((uint64_t)word0 << 32) | word1; 459 #else 460 return ((uint64_t)word1 << 32) | word0; 461 #endif 462 #else /* TARGET_ABI_BITS != 32 */ 463 return word0; 464 #endif /* TARGET_ABI_BITS != 32 */ 465 } 466 467 #include <pthread.h> 468 469 #include "user/safe-syscall.h" 470 471 #endif /* QEMU_H */ 472