1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 21 #include "qemu/osdep.h" 22 #include "cpu.h" 23 #include "qemu/units.h" 24 #include "exec/cpu_ldst.h" 25 #include "exec/exec-all.h" 26 27 #undef DEBUG_REMAP 28 29 #include "exec/user/abitypes.h" 30 31 extern char **environ; 32 33 enum BSDType { 34 target_freebsd, 35 target_netbsd, 36 target_openbsd, 37 }; 38 extern enum BSDType bsd_type; 39 40 #include "exec/user/thunk.h" 41 #include "target_arch.h" 42 #include "syscall_defs.h" 43 #include "target_syscall.h" 44 #include "target_os_vmparam.h" 45 #include "target_os_signal.h" 46 #include "exec/gdbstub.h" 47 48 /* 49 * This struct is used to hold certain information about the image. Basically, 50 * it replicates in user space what would be certain task_struct fields in the 51 * kernel 52 */ 53 struct image_info { 54 abi_ulong load_addr; 55 abi_ulong start_code; 56 abi_ulong end_code; 57 abi_ulong start_data; 58 abi_ulong end_data; 59 abi_ulong start_brk; 60 abi_ulong brk; 61 abi_ulong start_mmap; 62 abi_ulong mmap; 63 abi_ulong rss; 64 abi_ulong start_stack; 65 abi_ulong entry; 66 abi_ulong code_offset; 67 abi_ulong data_offset; 68 }; 69 70 #define MAX_SIGQUEUE_SIZE 1024 71 72 struct sigqueue { 73 struct sigqueue *next; 74 }; 75 76 struct emulated_sigtable { 77 int pending; /* true if signal is pending */ 78 struct sigqueue *first; 79 /* in order to always have memory for the first signal, we put it here */ 80 struct sigqueue info; 81 }; 82 83 /* 84 * NOTE: we force a big alignment so that the stack stored after is aligned too 85 */ 86 typedef struct TaskState { 87 pid_t ts_tid; /* tid (or pid) of this task */ 88 89 struct TaskState *next; 90 struct bsd_binprm *bprm; 91 int used; /* non zero if used */ 92 struct image_info *info; 93 94 struct emulated_sigtable sigtab[TARGET_NSIG]; 95 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 96 struct sigqueue *first_free; /* first free siginfo queue entry */ 97 int signal_pending; /* non zero if a signal may be pending */ 98 99 uint8_t stack[]; 100 } __attribute__((aligned(16))) TaskState; 101 102 void init_task_state(TaskState *ts); 103 extern const char *qemu_uname_release; 104 extern unsigned long mmap_min_addr; 105 106 /* 107 * TARGET_ARG_MAX defines the number of bytes allocated for arguments 108 * and envelope for the new program. 256k should suffice for a reasonable 109 * maxiumum env+arg in 32-bit environments, bump it up to 512k for !ILP32 110 * platforms. 111 */ 112 #if TARGET_ABI_BITS > 32 113 #define TARGET_ARG_MAX (512 * KiB) 114 #else 115 #define TARGET_ARG_MAX (256 * KiB) 116 #endif 117 #define MAX_ARG_PAGES (TARGET_ARG_MAX / TARGET_PAGE_SIZE) 118 119 /* 120 * This structure is used to hold the arguments that are 121 * used when loading binaries. 122 */ 123 struct bsd_binprm { 124 char buf[128]; 125 void *page[MAX_ARG_PAGES]; 126 abi_ulong p; 127 int fd; 128 int e_uid, e_gid; 129 int argc, envc; 130 char **argv; 131 char **envp; 132 char *filename; /* (Given) Name of binary */ 133 char *fullpath; /* Full path of binary */ 134 }; 135 136 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 137 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 138 abi_ulong stringp); 139 int loader_exec(const char *filename, char **argv, char **envp, 140 struct target_pt_regs *regs, struct image_info *infop, 141 struct bsd_binprm *bprm); 142 143 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 144 struct image_info *info); 145 int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 146 struct image_info *info); 147 148 abi_long memcpy_to_target(abi_ulong dest, const void *src, 149 unsigned long len); 150 void target_set_brk(abi_ulong new_brk); 151 abi_long do_brk(abi_ulong new_brk); 152 void syscall_init(void); 153 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 154 abi_long arg2, abi_long arg3, abi_long arg4, 155 abi_long arg5, abi_long arg6, abi_long arg7, 156 abi_long arg8); 157 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 158 abi_long arg2, abi_long arg3, abi_long arg4, 159 abi_long arg5, abi_long arg6); 160 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 161 abi_long arg2, abi_long arg3, abi_long arg4, 162 abi_long arg5, abi_long arg6); 163 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 164 extern __thread CPUState *thread_cpu; 165 void cpu_loop(CPUArchState *env); 166 char *target_strerror(int err); 167 int get_osversion(void); 168 void fork_start(void); 169 void fork_end(int child); 170 171 #include "qemu/log.h" 172 173 /* strace.c */ 174 struct syscallname { 175 int nr; 176 const char *name; 177 const char *format; 178 void (*call)(const struct syscallname *, 179 abi_long, abi_long, abi_long, 180 abi_long, abi_long, abi_long); 181 void (*result)(const struct syscallname *, abi_long); 182 }; 183 184 void 185 print_freebsd_syscall(int num, 186 abi_long arg1, abi_long arg2, abi_long arg3, 187 abi_long arg4, abi_long arg5, abi_long arg6); 188 void print_freebsd_syscall_ret(int num, abi_long ret); 189 void 190 print_netbsd_syscall(int num, 191 abi_long arg1, abi_long arg2, abi_long arg3, 192 abi_long arg4, abi_long arg5, abi_long arg6); 193 void print_netbsd_syscall_ret(int num, abi_long ret); 194 void 195 print_openbsd_syscall(int num, 196 abi_long arg1, abi_long arg2, abi_long arg3, 197 abi_long arg4, abi_long arg5, abi_long arg6); 198 void print_openbsd_syscall_ret(int num, abi_long ret); 199 extern int do_strace; 200 201 /* signal.c */ 202 void process_pending_signals(CPUArchState *cpu_env); 203 void signal_init(void); 204 long do_sigreturn(CPUArchState *env); 205 long do_rt_sigreturn(CPUArchState *env); 206 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 207 208 /* mmap.c */ 209 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 210 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 211 int flags, int fd, abi_ulong offset); 212 int target_munmap(abi_ulong start, abi_ulong len); 213 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 214 abi_ulong new_size, unsigned long flags, 215 abi_ulong new_addr); 216 int target_msync(abi_ulong start, abi_ulong len, int flags); 217 extern unsigned long last_brk; 218 void mmap_fork_start(void); 219 void mmap_fork_end(int child); 220 221 /* main.c */ 222 extern char qemu_proc_pathname[]; 223 extern unsigned long target_maxtsiz; 224 extern unsigned long target_dfldsiz; 225 extern unsigned long target_maxdsiz; 226 extern unsigned long target_dflssiz; 227 extern unsigned long target_maxssiz; 228 extern unsigned long target_sgrowsiz; 229 230 /* user access */ 231 232 #define VERIFY_READ PAGE_READ 233 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE) 234 235 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size) 236 { 237 return page_check_range((target_ulong)addr, size, type) == 0; 238 } 239 240 /* 241 * NOTE __get_user and __put_user use host pointers and don't check access. 242 * 243 * These are usually used to access struct data members once the struct has been 244 * locked - usually with lock_user_struct(). 245 */ 246 #define __put_user(x, hptr)\ 247 ({\ 248 int size = sizeof(*hptr);\ 249 switch (size) {\ 250 case 1:\ 251 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 252 break;\ 253 case 2:\ 254 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 255 break;\ 256 case 4:\ 257 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 258 break;\ 259 case 8:\ 260 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 261 break;\ 262 default:\ 263 abort();\ 264 } \ 265 0;\ 266 }) 267 268 #define __get_user(x, hptr) \ 269 ({\ 270 int size = sizeof(*hptr);\ 271 switch (size) {\ 272 case 1:\ 273 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 274 break;\ 275 case 2:\ 276 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 277 break;\ 278 case 4:\ 279 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 280 break;\ 281 case 8:\ 282 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 283 break;\ 284 default:\ 285 x = 0;\ 286 abort();\ 287 } \ 288 0;\ 289 }) 290 291 /* 292 * put_user()/get_user() take a guest address and check access 293 * 294 * These are usually used to access an atomic data type, such as an int, that 295 * has been passed by address. These internally perform locking and unlocking 296 * on the data type. 297 */ 298 #define put_user(x, gaddr, target_type) \ 299 ({ \ 300 abi_ulong __gaddr = (gaddr); \ 301 target_type *__hptr; \ 302 abi_long __ret; \ 303 __hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0); \ 304 if (__hptr) { \ 305 __ret = __put_user((x), __hptr); \ 306 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 307 } else \ 308 __ret = -TARGET_EFAULT; \ 309 __ret; \ 310 }) 311 312 #define get_user(x, gaddr, target_type) \ 313 ({ \ 314 abi_ulong __gaddr = (gaddr); \ 315 target_type *__hptr; \ 316 abi_long __ret; \ 317 __hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1); \ 318 if (__hptr) { \ 319 __ret = __get_user((x), __hptr); \ 320 unlock_user(__hptr, __gaddr, 0); \ 321 } else { \ 322 (x) = 0; \ 323 __ret = -TARGET_EFAULT; \ 324 } \ 325 __ret; \ 326 }) 327 328 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 329 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 330 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 331 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 332 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 333 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 334 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 335 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 336 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 337 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 338 339 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 340 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 341 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 342 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 343 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 344 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 345 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 346 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 347 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 348 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 349 350 /* 351 * copy_from_user() and copy_to_user() are usually used to copy data 352 * buffers between the target and host. These internally perform 353 * locking/unlocking of the memory. 354 */ 355 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 356 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 357 358 /* 359 * Functions for accessing guest memory. The tget and tput functions 360 * read/write single values, byteswapping as necessary. The lock_user function 361 * gets a pointer to a contiguous area of guest memory, but does not perform 362 * any byteswapping. lock_user may return either a pointer to the guest 363 * memory, or a temporary buffer. 364 */ 365 366 /* 367 * Lock an area of guest memory into the host. If copy is true then the 368 * host area will have the same contents as the guest. 369 */ 370 static inline void *lock_user(int type, abi_ulong guest_addr, long len, 371 int copy) 372 { 373 if (!access_ok(type, guest_addr, len)) { 374 return NULL; 375 } 376 #ifdef DEBUG_REMAP 377 { 378 void *addr; 379 addr = g_malloc(len); 380 if (copy) { 381 memcpy(addr, g2h_untagged(guest_addr), len); 382 } else { 383 memset(addr, 0, len); 384 } 385 return addr; 386 } 387 #else 388 return g2h_untagged(guest_addr); 389 #endif 390 } 391 392 /* 393 * Unlock an area of guest memory. The first LEN bytes must be flushed back to 394 * guest memory. host_ptr = NULL is explicitly allowed and does nothing. 395 */ 396 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 397 long len) 398 { 399 400 #ifdef DEBUG_REMAP 401 if (!host_ptr) { 402 return; 403 } 404 if (host_ptr == g2h_untagged(guest_addr)) { 405 return; 406 } 407 if (len > 0) { 408 memcpy(g2h_untagged(guest_addr), host_ptr, len); 409 } 410 g_free(host_ptr); 411 #endif 412 } 413 414 /* 415 * Return the length of a string in target memory or -TARGET_EFAULT if access 416 * error. 417 */ 418 abi_long target_strlen(abi_ulong gaddr); 419 420 /* Like lock_user but for null terminated strings. */ 421 static inline void *lock_user_string(abi_ulong guest_addr) 422 { 423 abi_long len; 424 len = target_strlen(guest_addr); 425 if (len < 0) { 426 return NULL; 427 } 428 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 429 } 430 431 /* Helper macros for locking/unlocking a target struct. */ 432 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 433 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 434 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 435 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 436 437 #include <pthread.h> 438 439 #endif /* QEMU_H */ 440