xref: /openbmc/qemu/bsd-user/qemu.h (revision 587adaca)
1 /*
2  *  qemu bsd user mode definition
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 #ifndef QEMU_H
18 #define QEMU_H
19 
20 
21 #include "cpu.h"
22 #include "exec/cpu_ldst.h"
23 
24 #undef DEBUG_REMAP
25 #ifdef DEBUG_REMAP
26 #endif /* DEBUG_REMAP */
27 
28 #include "exec/user/abitypes.h"
29 
30 extern char **environ;
31 
32 enum BSDType {
33     target_freebsd,
34     target_netbsd,
35     target_openbsd,
36 };
37 extern enum BSDType bsd_type;
38 
39 #include "syscall_defs.h"
40 #include "target_syscall.h"
41 #include "exec/gdbstub.h"
42 
43 #if defined(CONFIG_USE_NPTL)
44 #define THREAD __thread
45 #else
46 #define THREAD
47 #endif
48 
49 /*
50  * This struct is used to hold certain information about the image.  Basically,
51  * it replicates in user space what would be certain task_struct fields in the
52  * kernel
53  */
54 struct image_info {
55     abi_ulong load_addr;
56     abi_ulong start_code;
57     abi_ulong end_code;
58     abi_ulong start_data;
59     abi_ulong end_data;
60     abi_ulong start_brk;
61     abi_ulong brk;
62     abi_ulong start_mmap;
63     abi_ulong mmap;
64     abi_ulong rss;
65     abi_ulong start_stack;
66     abi_ulong entry;
67     abi_ulong code_offset;
68     abi_ulong data_offset;
69     int       personality;
70 };
71 
72 #define MAX_SIGQUEUE_SIZE 1024
73 
74 struct sigqueue {
75     struct sigqueue *next;
76 };
77 
78 struct emulated_sigtable {
79     int pending; /* true if signal is pending */
80     struct sigqueue *first;
81     /* in order to always have memory for the first signal, we put it here */
82     struct sigqueue info;
83 };
84 
85 /*
86  * NOTE: we force a big alignment so that the stack stored after is aligned too
87  */
88 typedef struct TaskState {
89     pid_t ts_tid;     /* tid (or pid) of this task */
90 
91     struct TaskState *next;
92     int used; /* non zero if used */
93     struct image_info *info;
94 
95     struct emulated_sigtable sigtab[TARGET_NSIG];
96     struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
97     struct sigqueue *first_free; /* first free siginfo queue entry */
98     int signal_pending; /* non zero if a signal may be pending */
99 
100     uint8_t stack[];
101 } __attribute__((aligned(16))) TaskState;
102 
103 void init_task_state(TaskState *ts);
104 extern const char *qemu_uname_release;
105 extern unsigned long mmap_min_addr;
106 
107 /*
108  * MAX_ARG_PAGES defines the number of pages allocated for arguments
109  * and envelope for the new program. 32 should suffice, this gives
110  * a maximum env+arg of 128kB w/4KB pages!
111  */
112 #define MAX_ARG_PAGES 32
113 
114 /*
115  * This structure is used to hold the arguments that are
116  * used when loading binaries.
117  */
118 struct bsd_binprm {
119         char buf[128];
120         void *page[MAX_ARG_PAGES];
121         abi_ulong p;
122         int fd;
123         int e_uid, e_gid;
124         int argc, envc;
125         char **argv;
126         char **envp;
127         char *filename;         /* Name of binary */
128 };
129 
130 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
131 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
132                               abi_ulong stringp, int push_ptr);
133 int loader_exec(const char *filename, char **argv, char **envp,
134              struct target_pt_regs *regs, struct image_info *infop);
135 
136 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
137                     struct image_info *info);
138 int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
139                     struct image_info *info);
140 
141 abi_long memcpy_to_target(abi_ulong dest, const void *src,
142                           unsigned long len);
143 void target_set_brk(abi_ulong new_brk);
144 abi_long do_brk(abi_ulong new_brk);
145 void syscall_init(void);
146 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
147                             abi_long arg2, abi_long arg3, abi_long arg4,
148                             abi_long arg5, abi_long arg6, abi_long arg7,
149                             abi_long arg8);
150 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1,
151                            abi_long arg2, abi_long arg3, abi_long arg4,
152                            abi_long arg5, abi_long arg6);
153 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1,
154                             abi_long arg2, abi_long arg3, abi_long arg4,
155                             abi_long arg5, abi_long arg6);
156 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
157 extern THREAD CPUState *thread_cpu;
158 void cpu_loop(CPUArchState *env);
159 char *target_strerror(int err);
160 int get_osversion(void);
161 void fork_start(void);
162 void fork_end(int child);
163 
164 #include "qemu/log.h"
165 
166 /* strace.c */
167 struct syscallname {
168     int nr;
169     const char *name;
170     const char *format;
171     void (*call)(const struct syscallname *,
172                  abi_long, abi_long, abi_long,
173                  abi_long, abi_long, abi_long);
174     void (*result)(const struct syscallname *, abi_long);
175 };
176 
177 void
178 print_freebsd_syscall(int num,
179                       abi_long arg1, abi_long arg2, abi_long arg3,
180                       abi_long arg4, abi_long arg5, abi_long arg6);
181 void print_freebsd_syscall_ret(int num, abi_long ret);
182 void
183 print_netbsd_syscall(int num,
184                      abi_long arg1, abi_long arg2, abi_long arg3,
185                      abi_long arg4, abi_long arg5, abi_long arg6);
186 void print_netbsd_syscall_ret(int num, abi_long ret);
187 void
188 print_openbsd_syscall(int num,
189                       abi_long arg1, abi_long arg2, abi_long arg3,
190                       abi_long arg4, abi_long arg5, abi_long arg6);
191 void print_openbsd_syscall_ret(int num, abi_long ret);
192 extern int do_strace;
193 
194 /* signal.c */
195 void process_pending_signals(CPUArchState *cpu_env);
196 void signal_init(void);
197 long do_sigreturn(CPUArchState *env);
198 long do_rt_sigreturn(CPUArchState *env);
199 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
200 
201 /* mmap.c */
202 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
203 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
204                      int flags, int fd, abi_ulong offset);
205 int target_munmap(abi_ulong start, abi_ulong len);
206 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
207                        abi_ulong new_size, unsigned long flags,
208                        abi_ulong new_addr);
209 int target_msync(abi_ulong start, abi_ulong len, int flags);
210 extern unsigned long last_brk;
211 void mmap_fork_start(void);
212 void mmap_fork_end(int child);
213 
214 /* main.c */
215 extern unsigned long x86_stack_size;
216 
217 /* user access */
218 
219 #define VERIFY_READ  PAGE_READ
220 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE)
221 
222 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size)
223 {
224     return page_check_range((target_ulong)addr, size, type) == 0;
225 }
226 
227 /*
228  * NOTE __get_user and __put_user use host pointers and don't check access.
229  *
230  * These are usually used to access struct data members once the struct has been
231  * locked - usually with lock_user_struct().
232  */
233 #define __put_user(x, hptr)\
234 ({\
235     int size = sizeof(*hptr);\
236     switch (size) {\
237     case 1:\
238         *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
239         break;\
240     case 2:\
241         *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
242         break;\
243     case 4:\
244         *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
245         break;\
246     case 8:\
247         *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
248         break;\
249     default:\
250         abort();\
251     } \
252     0;\
253 })
254 
255 #define __get_user(x, hptr) \
256 ({\
257     int size = sizeof(*hptr);\
258     switch (size) {\
259     case 1:\
260         x = (typeof(*hptr))*(uint8_t *)(hptr);\
261         break;\
262     case 2:\
263         x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
264         break;\
265     case 4:\
266         x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
267         break;\
268     case 8:\
269         x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
270         break;\
271     default:\
272         x = 0;\
273         abort();\
274     } \
275     0;\
276 })
277 
278 /*
279  * put_user()/get_user() take a guest address and check access
280  *
281  * These are usually used to access an atomic data type, such as an int, that
282  * has been passed by address.  These internally perform locking and unlocking
283  * on the data type.
284  */
285 #define put_user(x, gaddr, target_type)                                 \
286 ({                                                                      \
287     abi_ulong __gaddr = (gaddr);                                        \
288     target_type *__hptr;                                                \
289     abi_long __ret;                                                     \
290     __hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0);  \
291     if (__hptr) {                                                       \
292         __ret = __put_user((x), __hptr);                                \
293         unlock_user(__hptr, __gaddr, sizeof(target_type));              \
294     } else                                                              \
295         __ret = -TARGET_EFAULT;                                         \
296     __ret;                                                              \
297 })
298 
299 #define get_user(x, gaddr, target_type)                                 \
300 ({                                                                      \
301     abi_ulong __gaddr = (gaddr);                                        \
302     target_type *__hptr;                                                \
303     abi_long __ret;                                                     \
304     __hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1);   \
305     if (__hptr) {                                                       \
306         __ret = __get_user((x), __hptr);                                \
307         unlock_user(__hptr, __gaddr, 0);                                \
308     } else {                                                            \
309         (x) = 0;                                                        \
310         __ret = -TARGET_EFAULT;                                         \
311     }                                                                   \
312     __ret;                                                              \
313 })
314 
315 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
316 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
317 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
318 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
319 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
320 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
321 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
322 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
323 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
324 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
325 
326 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
327 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
328 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
329 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
330 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
331 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
332 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
333 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
334 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
335 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
336 
337 /*
338  * copy_from_user() and copy_to_user() are usually used to copy data
339  * buffers between the target and host.  These internally perform
340  * locking/unlocking of the memory.
341  */
342 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
343 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
344 
345 /*
346  * Functions for accessing guest memory.  The tget and tput functions
347  * read/write single values, byteswapping as necessary.  The lock_user function
348  * gets a pointer to a contiguous area of guest memory, but does not perform
349  * any byteswapping.  lock_user may return either a pointer to the guest
350  * memory, or a temporary buffer.
351  */
352 
353 /*
354  * Lock an area of guest memory into the host.  If copy is true then the
355  * host area will have the same contents as the guest.
356  */
357 static inline void *lock_user(int type, abi_ulong guest_addr, long len,
358                               int copy)
359 {
360     if (!access_ok(type, guest_addr, len)) {
361         return NULL;
362     }
363 #ifdef DEBUG_REMAP
364     {
365         void *addr;
366         addr = g_malloc(len);
367         if (copy) {
368             memcpy(addr, g2h_untagged(guest_addr), len);
369         } else {
370             memset(addr, 0, len);
371         }
372         return addr;
373     }
374 #else
375     return g2h_untagged(guest_addr);
376 #endif
377 }
378 
379 /*
380  * Unlock an area of guest memory.  The first LEN bytes must be flushed back to
381  * guest memory. host_ptr = NULL is explicitly allowed and does nothing.
382  */
383 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
384                                long len)
385 {
386 
387 #ifdef DEBUG_REMAP
388     if (!host_ptr) {
389         return;
390     }
391     if (host_ptr == g2h_untagged(guest_addr)) {
392         return;
393     }
394     if (len > 0) {
395         memcpy(g2h_untagged(guest_addr), host_ptr, len);
396     }
397     g_free(host_ptr);
398 #endif
399 }
400 
401 /*
402  * Return the length of a string in target memory or -TARGET_EFAULT if access
403  * error.
404  */
405 abi_long target_strlen(abi_ulong gaddr);
406 
407 /* Like lock_user but for null terminated strings.  */
408 static inline void *lock_user_string(abi_ulong guest_addr)
409 {
410     abi_long len;
411     len = target_strlen(guest_addr);
412     if (len < 0) {
413         return NULL;
414     }
415     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
416 }
417 
418 /* Helper macros for locking/unlocking a target struct.  */
419 #define lock_user_struct(type, host_ptr, guest_addr, copy)      \
420     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
421 #define unlock_user_struct(host_ptr, guest_addr, copy)          \
422     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
423 
424 #if defined(CONFIG_USE_NPTL)
425 #include <pthread.h>
426 #endif
427 
428 #endif /* QEMU_H */
429