1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 21 #include "cpu.h" 22 #include "exec/cpu_ldst.h" 23 24 #undef DEBUG_REMAP 25 #ifdef DEBUG_REMAP 26 #endif /* DEBUG_REMAP */ 27 28 #include "exec/user/abitypes.h" 29 30 enum BSDType { 31 target_freebsd, 32 target_netbsd, 33 target_openbsd, 34 }; 35 extern enum BSDType bsd_type; 36 37 #include "syscall_defs.h" 38 #include "syscall.h" 39 #include "target_signal.h" 40 #include "exec/gdbstub.h" 41 42 #if defined(CONFIG_USE_NPTL) 43 #define THREAD __thread 44 #else 45 #define THREAD 46 #endif 47 48 /* This struct is used to hold certain information about the image. 49 * Basically, it replicates in user space what would be certain 50 * task_struct fields in the kernel 51 */ 52 struct image_info { 53 abi_ulong load_addr; 54 abi_ulong start_code; 55 abi_ulong end_code; 56 abi_ulong start_data; 57 abi_ulong end_data; 58 abi_ulong start_brk; 59 abi_ulong brk; 60 abi_ulong start_mmap; 61 abi_ulong mmap; 62 abi_ulong rss; 63 abi_ulong start_stack; 64 abi_ulong entry; 65 abi_ulong code_offset; 66 abi_ulong data_offset; 67 int personality; 68 }; 69 70 #define MAX_SIGQUEUE_SIZE 1024 71 72 struct sigqueue { 73 struct sigqueue *next; 74 //target_siginfo_t info; 75 }; 76 77 struct emulated_sigtable { 78 int pending; /* true if signal is pending */ 79 struct sigqueue *first; 80 struct sigqueue info; /* in order to always have memory for the 81 first signal, we put it here */ 82 }; 83 84 /* NOTE: we force a big alignment so that the stack stored after is 85 aligned too */ 86 typedef struct TaskState { 87 struct TaskState *next; 88 int used; /* non zero if used */ 89 struct image_info *info; 90 91 struct emulated_sigtable sigtab[TARGET_NSIG]; 92 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 93 struct sigqueue *first_free; /* first free siginfo queue entry */ 94 int signal_pending; /* non zero if a signal may be pending */ 95 96 uint8_t stack[0]; 97 } __attribute__((aligned(16))) TaskState; 98 99 void init_task_state(TaskState *ts); 100 extern const char *qemu_uname_release; 101 extern unsigned long mmap_min_addr; 102 103 /* ??? See if we can avoid exposing so much of the loader internals. */ 104 /* 105 * MAX_ARG_PAGES defines the number of pages allocated for arguments 106 * and envelope for the new program. 32 should suffice, this gives 107 * a maximum env+arg of 128kB w/4KB pages! 108 */ 109 #define MAX_ARG_PAGES 32 110 111 /* 112 * This structure is used to hold the arguments that are 113 * used when loading binaries. 114 */ 115 struct linux_binprm { 116 char buf[128]; 117 void *page[MAX_ARG_PAGES]; 118 abi_ulong p; 119 int fd; 120 int e_uid, e_gid; 121 int argc, envc; 122 char **argv; 123 char **envp; 124 char * filename; /* Name of binary */ 125 }; 126 127 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 128 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 129 abi_ulong stringp, int push_ptr); 130 int loader_exec(const char * filename, char ** argv, char ** envp, 131 struct target_pt_regs * regs, struct image_info *infop); 132 133 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 134 struct image_info * info); 135 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 136 struct image_info * info); 137 138 abi_long memcpy_to_target(abi_ulong dest, const void *src, 139 unsigned long len); 140 void target_set_brk(abi_ulong new_brk); 141 abi_long do_brk(abi_ulong new_brk); 142 void syscall_init(void); 143 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 144 abi_long arg2, abi_long arg3, abi_long arg4, 145 abi_long arg5, abi_long arg6, abi_long arg7, 146 abi_long arg8); 147 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 148 abi_long arg2, abi_long arg3, abi_long arg4, 149 abi_long arg5, abi_long arg6); 150 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 151 abi_long arg2, abi_long arg3, abi_long arg4, 152 abi_long arg5, abi_long arg6); 153 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 154 extern THREAD CPUState *thread_cpu; 155 void cpu_loop(CPUArchState *env); 156 char *target_strerror(int err); 157 int get_osversion(void); 158 void fork_start(void); 159 void fork_end(int child); 160 161 #include "qemu/log.h" 162 163 /* strace.c */ 164 struct syscallname { 165 int nr; 166 const char *name; 167 const char *format; 168 void (*call)(const struct syscallname *, 169 abi_long, abi_long, abi_long, 170 abi_long, abi_long, abi_long); 171 void (*result)(const struct syscallname *, abi_long); 172 }; 173 174 void 175 print_freebsd_syscall(int num, 176 abi_long arg1, abi_long arg2, abi_long arg3, 177 abi_long arg4, abi_long arg5, abi_long arg6); 178 void print_freebsd_syscall_ret(int num, abi_long ret); 179 void 180 print_netbsd_syscall(int num, 181 abi_long arg1, abi_long arg2, abi_long arg3, 182 abi_long arg4, abi_long arg5, abi_long arg6); 183 void print_netbsd_syscall_ret(int num, abi_long ret); 184 void 185 print_openbsd_syscall(int num, 186 abi_long arg1, abi_long arg2, abi_long arg3, 187 abi_long arg4, abi_long arg5, abi_long arg6); 188 void print_openbsd_syscall_ret(int num, abi_long ret); 189 extern int do_strace; 190 191 /* signal.c */ 192 void process_pending_signals(CPUArchState *cpu_env); 193 void signal_init(void); 194 //int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 195 //void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 196 //void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 197 long do_sigreturn(CPUArchState *env); 198 long do_rt_sigreturn(CPUArchState *env); 199 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 200 201 /* mmap.c */ 202 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 203 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 204 int flags, int fd, abi_ulong offset); 205 int target_munmap(abi_ulong start, abi_ulong len); 206 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 207 abi_ulong new_size, unsigned long flags, 208 abi_ulong new_addr); 209 int target_msync(abi_ulong start, abi_ulong len, int flags); 210 extern unsigned long last_brk; 211 void cpu_list_lock(void); 212 void cpu_list_unlock(void); 213 #if defined(CONFIG_USE_NPTL) 214 void mmap_fork_start(void); 215 void mmap_fork_end(int child); 216 #endif 217 218 /* main.c */ 219 extern unsigned long x86_stack_size; 220 221 /* user access */ 222 223 #define VERIFY_READ 0 224 #define VERIFY_WRITE 1 /* implies read access */ 225 226 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 227 { 228 return page_check_range((target_ulong)addr, size, 229 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 230 } 231 232 /* NOTE __get_user and __put_user use host pointers and don't check access. */ 233 /* These are usually used to access struct data members once the 234 * struct has been locked - usually with lock_user_struct(). 235 */ 236 #define __put_user(x, hptr)\ 237 ({\ 238 int size = sizeof(*hptr);\ 239 switch(size) {\ 240 case 1:\ 241 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 242 break;\ 243 case 2:\ 244 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 245 break;\ 246 case 4:\ 247 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 248 break;\ 249 case 8:\ 250 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 251 break;\ 252 default:\ 253 abort();\ 254 }\ 255 0;\ 256 }) 257 258 #define __get_user(x, hptr) \ 259 ({\ 260 int size = sizeof(*hptr);\ 261 switch(size) {\ 262 case 1:\ 263 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 264 break;\ 265 case 2:\ 266 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 267 break;\ 268 case 4:\ 269 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 270 break;\ 271 case 8:\ 272 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 273 break;\ 274 default:\ 275 /* avoid warning */\ 276 x = 0;\ 277 abort();\ 278 }\ 279 0;\ 280 }) 281 282 /* put_user()/get_user() take a guest address and check access */ 283 /* These are usually used to access an atomic data type, such as an int, 284 * that has been passed by address. These internally perform locking 285 * and unlocking on the data type. 286 */ 287 #define put_user(x, gaddr, target_type) \ 288 ({ \ 289 abi_ulong __gaddr = (gaddr); \ 290 target_type *__hptr; \ 291 abi_long __ret; \ 292 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 293 __ret = __put_user((x), __hptr); \ 294 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 295 } else \ 296 __ret = -TARGET_EFAULT; \ 297 __ret; \ 298 }) 299 300 #define get_user(x, gaddr, target_type) \ 301 ({ \ 302 abi_ulong __gaddr = (gaddr); \ 303 target_type *__hptr; \ 304 abi_long __ret; \ 305 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 306 __ret = __get_user((x), __hptr); \ 307 unlock_user(__hptr, __gaddr, 0); \ 308 } else { \ 309 /* avoid warning */ \ 310 (x) = 0; \ 311 __ret = -TARGET_EFAULT; \ 312 } \ 313 __ret; \ 314 }) 315 316 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 317 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 318 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 319 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 320 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 321 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 322 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 323 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 324 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 325 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 326 327 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 328 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 329 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 330 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 331 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 332 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 333 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 334 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 335 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 336 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 337 338 /* copy_from_user() and copy_to_user() are usually used to copy data 339 * buffers between the target and host. These internally perform 340 * locking/unlocking of the memory. 341 */ 342 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 343 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 344 345 /* Functions for accessing guest memory. The tget and tput functions 346 read/write single values, byteswapping as necessary. The lock_user function 347 gets a pointer to a contiguous area of guest memory, but does not perform 348 any byteswapping. lock_user may return either a pointer to the guest 349 memory, or a temporary buffer. */ 350 351 /* Lock an area of guest memory into the host. If copy is true then the 352 host area will have the same contents as the guest. */ 353 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 354 { 355 if (!access_ok(type, guest_addr, len)) 356 return NULL; 357 #ifdef DEBUG_REMAP 358 { 359 void *addr; 360 addr = malloc(len); 361 if (copy) 362 memcpy(addr, g2h(guest_addr), len); 363 else 364 memset(addr, 0, len); 365 return addr; 366 } 367 #else 368 return g2h(guest_addr); 369 #endif 370 } 371 372 /* Unlock an area of guest memory. The first LEN bytes must be 373 flushed back to guest memory. host_ptr = NULL is explicitly 374 allowed and does nothing. */ 375 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 376 long len) 377 { 378 379 #ifdef DEBUG_REMAP 380 if (!host_ptr) 381 return; 382 if (host_ptr == g2h(guest_addr)) 383 return; 384 if (len > 0) 385 memcpy(g2h(guest_addr), host_ptr, len); 386 free(host_ptr); 387 #endif 388 } 389 390 /* Return the length of a string in target memory or -TARGET_EFAULT if 391 access error. */ 392 abi_long target_strlen(abi_ulong gaddr); 393 394 /* Like lock_user but for null terminated strings. */ 395 static inline void *lock_user_string(abi_ulong guest_addr) 396 { 397 abi_long len; 398 len = target_strlen(guest_addr); 399 if (len < 0) 400 return NULL; 401 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 402 } 403 404 /* Helper macros for locking/unlocking a target struct. */ 405 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 406 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 407 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 408 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 409 410 #if defined(CONFIG_USE_NPTL) 411 #include <pthread.h> 412 #endif 413 414 #endif /* QEMU_H */ 415