1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 #include <signal.h> 21 #include <string.h> 22 23 #include "cpu.h" 24 #include "exec/cpu_ldst.h" 25 26 #undef DEBUG_REMAP 27 #ifdef DEBUG_REMAP 28 #include <stdlib.h> 29 #endif /* DEBUG_REMAP */ 30 31 #include "exec/user/abitypes.h" 32 33 enum BSDType { 34 target_freebsd, 35 target_netbsd, 36 target_openbsd, 37 }; 38 extern enum BSDType bsd_type; 39 40 #include "syscall_defs.h" 41 #include "syscall.h" 42 #include "target_signal.h" 43 #include "exec/gdbstub.h" 44 45 #if defined(CONFIG_USE_NPTL) 46 #define THREAD __thread 47 #else 48 #define THREAD 49 #endif 50 51 /* This struct is used to hold certain information about the image. 52 * Basically, it replicates in user space what would be certain 53 * task_struct fields in the kernel 54 */ 55 struct image_info { 56 abi_ulong load_addr; 57 abi_ulong start_code; 58 abi_ulong end_code; 59 abi_ulong start_data; 60 abi_ulong end_data; 61 abi_ulong start_brk; 62 abi_ulong brk; 63 abi_ulong start_mmap; 64 abi_ulong mmap; 65 abi_ulong rss; 66 abi_ulong start_stack; 67 abi_ulong entry; 68 abi_ulong code_offset; 69 abi_ulong data_offset; 70 int personality; 71 }; 72 73 #define MAX_SIGQUEUE_SIZE 1024 74 75 struct sigqueue { 76 struct sigqueue *next; 77 //target_siginfo_t info; 78 }; 79 80 struct emulated_sigtable { 81 int pending; /* true if signal is pending */ 82 struct sigqueue *first; 83 struct sigqueue info; /* in order to always have memory for the 84 first signal, we put it here */ 85 }; 86 87 /* NOTE: we force a big alignment so that the stack stored after is 88 aligned too */ 89 typedef struct TaskState { 90 struct TaskState *next; 91 int used; /* non zero if used */ 92 struct image_info *info; 93 94 struct emulated_sigtable sigtab[TARGET_NSIG]; 95 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 96 struct sigqueue *first_free; /* first free siginfo queue entry */ 97 int signal_pending; /* non zero if a signal may be pending */ 98 99 uint8_t stack[0]; 100 } __attribute__((aligned(16))) TaskState; 101 102 void init_task_state(TaskState *ts); 103 extern const char *qemu_uname_release; 104 extern unsigned long mmap_min_addr; 105 106 /* ??? See if we can avoid exposing so much of the loader internals. */ 107 /* 108 * MAX_ARG_PAGES defines the number of pages allocated for arguments 109 * and envelope for the new program. 32 should suffice, this gives 110 * a maximum env+arg of 128kB w/4KB pages! 111 */ 112 #define MAX_ARG_PAGES 32 113 114 /* 115 * This structure is used to hold the arguments that are 116 * used when loading binaries. 117 */ 118 struct linux_binprm { 119 char buf[128]; 120 void *page[MAX_ARG_PAGES]; 121 abi_ulong p; 122 int fd; 123 int e_uid, e_gid; 124 int argc, envc; 125 char **argv; 126 char **envp; 127 char * filename; /* Name of binary */ 128 }; 129 130 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 131 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 132 abi_ulong stringp, int push_ptr); 133 int loader_exec(const char * filename, char ** argv, char ** envp, 134 struct target_pt_regs * regs, struct image_info *infop); 135 136 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 137 struct image_info * info); 138 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 139 struct image_info * info); 140 141 abi_long memcpy_to_target(abi_ulong dest, const void *src, 142 unsigned long len); 143 void target_set_brk(abi_ulong new_brk); 144 abi_long do_brk(abi_ulong new_brk); 145 void syscall_init(void); 146 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 147 abi_long arg2, abi_long arg3, abi_long arg4, 148 abi_long arg5, abi_long arg6, abi_long arg7, 149 abi_long arg8); 150 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 151 abi_long arg2, abi_long arg3, abi_long arg4, 152 abi_long arg5, abi_long arg6); 153 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 154 abi_long arg2, abi_long arg3, abi_long arg4, 155 abi_long arg5, abi_long arg6); 156 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 157 extern THREAD CPUState *thread_cpu; 158 void cpu_loop(CPUArchState *env); 159 char *target_strerror(int err); 160 int get_osversion(void); 161 void fork_start(void); 162 void fork_end(int child); 163 164 #include "qemu/log.h" 165 166 /* strace.c */ 167 struct syscallname { 168 int nr; 169 const char *name; 170 const char *format; 171 void (*call)(const struct syscallname *, 172 abi_long, abi_long, abi_long, 173 abi_long, abi_long, abi_long); 174 void (*result)(const struct syscallname *, abi_long); 175 }; 176 177 void 178 print_freebsd_syscall(int num, 179 abi_long arg1, abi_long arg2, abi_long arg3, 180 abi_long arg4, abi_long arg5, abi_long arg6); 181 void print_freebsd_syscall_ret(int num, abi_long ret); 182 void 183 print_netbsd_syscall(int num, 184 abi_long arg1, abi_long arg2, abi_long arg3, 185 abi_long arg4, abi_long arg5, abi_long arg6); 186 void print_netbsd_syscall_ret(int num, abi_long ret); 187 void 188 print_openbsd_syscall(int num, 189 abi_long arg1, abi_long arg2, abi_long arg3, 190 abi_long arg4, abi_long arg5, abi_long arg6); 191 void print_openbsd_syscall_ret(int num, abi_long ret); 192 extern int do_strace; 193 194 /* signal.c */ 195 void process_pending_signals(CPUArchState *cpu_env); 196 void signal_init(void); 197 //int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 198 //void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 199 //void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 200 long do_sigreturn(CPUArchState *env); 201 long do_rt_sigreturn(CPUArchState *env); 202 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 203 204 /* mmap.c */ 205 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 206 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 207 int flags, int fd, abi_ulong offset); 208 int target_munmap(abi_ulong start, abi_ulong len); 209 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 210 abi_ulong new_size, unsigned long flags, 211 abi_ulong new_addr); 212 int target_msync(abi_ulong start, abi_ulong len, int flags); 213 extern unsigned long last_brk; 214 void cpu_list_lock(void); 215 void cpu_list_unlock(void); 216 #if defined(CONFIG_USE_NPTL) 217 void mmap_fork_start(void); 218 void mmap_fork_end(int child); 219 #endif 220 221 /* main.c */ 222 extern unsigned long x86_stack_size; 223 224 /* user access */ 225 226 #define VERIFY_READ 0 227 #define VERIFY_WRITE 1 /* implies read access */ 228 229 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 230 { 231 return page_check_range((target_ulong)addr, size, 232 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 233 } 234 235 /* NOTE __get_user and __put_user use host pointers and don't check access. */ 236 /* These are usually used to access struct data members once the 237 * struct has been locked - usually with lock_user_struct(). 238 */ 239 #define __put_user(x, hptr)\ 240 ({\ 241 int size = sizeof(*hptr);\ 242 switch(size) {\ 243 case 1:\ 244 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 245 break;\ 246 case 2:\ 247 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 248 break;\ 249 case 4:\ 250 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 251 break;\ 252 case 8:\ 253 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 254 break;\ 255 default:\ 256 abort();\ 257 }\ 258 0;\ 259 }) 260 261 #define __get_user(x, hptr) \ 262 ({\ 263 int size = sizeof(*hptr);\ 264 switch(size) {\ 265 case 1:\ 266 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 267 break;\ 268 case 2:\ 269 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 270 break;\ 271 case 4:\ 272 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 273 break;\ 274 case 8:\ 275 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 276 break;\ 277 default:\ 278 /* avoid warning */\ 279 x = 0;\ 280 abort();\ 281 }\ 282 0;\ 283 }) 284 285 /* put_user()/get_user() take a guest address and check access */ 286 /* These are usually used to access an atomic data type, such as an int, 287 * that has been passed by address. These internally perform locking 288 * and unlocking on the data type. 289 */ 290 #define put_user(x, gaddr, target_type) \ 291 ({ \ 292 abi_ulong __gaddr = (gaddr); \ 293 target_type *__hptr; \ 294 abi_long __ret; \ 295 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 296 __ret = __put_user((x), __hptr); \ 297 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 298 } else \ 299 __ret = -TARGET_EFAULT; \ 300 __ret; \ 301 }) 302 303 #define get_user(x, gaddr, target_type) \ 304 ({ \ 305 abi_ulong __gaddr = (gaddr); \ 306 target_type *__hptr; \ 307 abi_long __ret; \ 308 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 309 __ret = __get_user((x), __hptr); \ 310 unlock_user(__hptr, __gaddr, 0); \ 311 } else { \ 312 /* avoid warning */ \ 313 (x) = 0; \ 314 __ret = -TARGET_EFAULT; \ 315 } \ 316 __ret; \ 317 }) 318 319 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 320 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 321 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 322 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 323 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 324 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 325 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 326 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 327 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 328 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 329 330 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 331 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 332 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 333 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 334 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 335 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 336 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 337 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 338 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 339 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 340 341 /* copy_from_user() and copy_to_user() are usually used to copy data 342 * buffers between the target and host. These internally perform 343 * locking/unlocking of the memory. 344 */ 345 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 346 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 347 348 /* Functions for accessing guest memory. The tget and tput functions 349 read/write single values, byteswapping as necessary. The lock_user function 350 gets a pointer to a contiguous area of guest memory, but does not perform 351 any byteswapping. lock_user may return either a pointer to the guest 352 memory, or a temporary buffer. */ 353 354 /* Lock an area of guest memory into the host. If copy is true then the 355 host area will have the same contents as the guest. */ 356 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 357 { 358 if (!access_ok(type, guest_addr, len)) 359 return NULL; 360 #ifdef DEBUG_REMAP 361 { 362 void *addr; 363 addr = malloc(len); 364 if (copy) 365 memcpy(addr, g2h(guest_addr), len); 366 else 367 memset(addr, 0, len); 368 return addr; 369 } 370 #else 371 return g2h(guest_addr); 372 #endif 373 } 374 375 /* Unlock an area of guest memory. The first LEN bytes must be 376 flushed back to guest memory. host_ptr = NULL is explicitly 377 allowed and does nothing. */ 378 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 379 long len) 380 { 381 382 #ifdef DEBUG_REMAP 383 if (!host_ptr) 384 return; 385 if (host_ptr == g2h(guest_addr)) 386 return; 387 if (len > 0) 388 memcpy(g2h(guest_addr), host_ptr, len); 389 free(host_ptr); 390 #endif 391 } 392 393 /* Return the length of a string in target memory or -TARGET_EFAULT if 394 access error. */ 395 abi_long target_strlen(abi_ulong gaddr); 396 397 /* Like lock_user but for null terminated strings. */ 398 static inline void *lock_user_string(abi_ulong guest_addr) 399 { 400 abi_long len; 401 len = target_strlen(guest_addr); 402 if (len < 0) 403 return NULL; 404 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 405 } 406 407 /* Helper macros for locking/unlocking a target struct. */ 408 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 409 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 410 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 411 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 412 413 #if defined(CONFIG_USE_NPTL) 414 #include <pthread.h> 415 #endif 416 417 #endif /* QEMU_H */ 418