1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 21 #include "qemu/osdep.h" 22 #include "cpu.h" 23 #include "qemu/units.h" 24 #include "exec/cpu_ldst.h" 25 #include "exec/exec-all.h" 26 27 #undef DEBUG_REMAP 28 29 #include "exec/user/abitypes.h" 30 31 extern char **environ; 32 33 enum BSDType { 34 target_freebsd, 35 target_netbsd, 36 target_openbsd, 37 }; 38 extern enum BSDType bsd_type; 39 40 #include "exec/user/thunk.h" 41 #include "target_arch.h" 42 #include "syscall_defs.h" 43 #include "target_syscall.h" 44 #include "target_os_vmparam.h" 45 #include "target_os_signal.h" 46 #include "exec/gdbstub.h" 47 48 /* 49 * This struct is used to hold certain information about the image. Basically, 50 * it replicates in user space what would be certain task_struct fields in the 51 * kernel 52 */ 53 struct image_info { 54 abi_ulong load_bias; 55 abi_ulong load_addr; 56 abi_ulong start_code; 57 abi_ulong end_code; 58 abi_ulong start_data; 59 abi_ulong end_data; 60 abi_ulong start_brk; 61 abi_ulong brk; 62 abi_ulong start_mmap; 63 abi_ulong mmap; 64 abi_ulong rss; 65 abi_ulong start_stack; 66 abi_ulong entry; 67 abi_ulong code_offset; 68 abi_ulong data_offset; 69 abi_ulong arg_start; 70 abi_ulong arg_end; 71 uint32_t elf_flags; 72 }; 73 74 #define MAX_SIGQUEUE_SIZE 1024 75 76 struct sigqueue { 77 struct sigqueue *next; 78 }; 79 80 struct emulated_sigtable { 81 int pending; /* true if signal is pending */ 82 struct sigqueue *first; 83 /* in order to always have memory for the first signal, we put it here */ 84 struct sigqueue info; 85 }; 86 87 /* 88 * NOTE: we force a big alignment so that the stack stored after is aligned too 89 */ 90 typedef struct TaskState { 91 pid_t ts_tid; /* tid (or pid) of this task */ 92 93 struct TaskState *next; 94 struct bsd_binprm *bprm; 95 int used; /* non zero if used */ 96 struct image_info *info; 97 98 struct emulated_sigtable sigtab[TARGET_NSIG]; 99 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 100 struct sigqueue *first_free; /* first free siginfo queue entry */ 101 int signal_pending; /* non zero if a signal may be pending */ 102 103 uint8_t stack[]; 104 } __attribute__((aligned(16))) TaskState; 105 106 void init_task_state(TaskState *ts); 107 extern const char *qemu_uname_release; 108 extern unsigned long mmap_min_addr; 109 110 /* 111 * TARGET_ARG_MAX defines the number of bytes allocated for arguments 112 * and envelope for the new program. 256k should suffice for a reasonable 113 * maxiumum env+arg in 32-bit environments, bump it up to 512k for !ILP32 114 * platforms. 115 */ 116 #if TARGET_ABI_BITS > 32 117 #define TARGET_ARG_MAX (512 * KiB) 118 #else 119 #define TARGET_ARG_MAX (256 * KiB) 120 #endif 121 #define MAX_ARG_PAGES (TARGET_ARG_MAX / TARGET_PAGE_SIZE) 122 123 /* 124 * This structure is used to hold the arguments that are 125 * used when loading binaries. 126 */ 127 struct bsd_binprm { 128 char buf[128]; 129 void *page[MAX_ARG_PAGES]; 130 abi_ulong p; 131 abi_ulong stringp; 132 int fd; 133 int e_uid, e_gid; 134 int argc, envc; 135 char **argv; 136 char **envp; 137 char *filename; /* (Given) Name of binary */ 138 char *fullpath; /* Full path of binary */ 139 int (*core_dump)(int, CPUArchState *); 140 }; 141 142 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 143 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 144 abi_ulong stringp); 145 int loader_exec(const char *filename, char **argv, char **envp, 146 struct target_pt_regs *regs, struct image_info *infop, 147 struct bsd_binprm *bprm); 148 149 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 150 struct image_info *info); 151 int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 152 struct image_info *info); 153 int is_target_elf_binary(int fd); 154 155 abi_long memcpy_to_target(abi_ulong dest, const void *src, 156 unsigned long len); 157 void target_set_brk(abi_ulong new_brk); 158 abi_long do_brk(abi_ulong new_brk); 159 void syscall_init(void); 160 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 161 abi_long arg2, abi_long arg3, abi_long arg4, 162 abi_long arg5, abi_long arg6, abi_long arg7, 163 abi_long arg8); 164 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 165 abi_long arg2, abi_long arg3, abi_long arg4, 166 abi_long arg5, abi_long arg6); 167 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 168 abi_long arg2, abi_long arg3, abi_long arg4, 169 abi_long arg5, abi_long arg6); 170 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 171 extern __thread CPUState *thread_cpu; 172 void cpu_loop(CPUArchState *env); 173 char *target_strerror(int err); 174 int get_osversion(void); 175 void fork_start(void); 176 void fork_end(int child); 177 178 #include "qemu/log.h" 179 180 /* strace.c */ 181 struct syscallname { 182 int nr; 183 const char *name; 184 const char *format; 185 void (*call)(const struct syscallname *, 186 abi_long, abi_long, abi_long, 187 abi_long, abi_long, abi_long); 188 void (*result)(const struct syscallname *, abi_long); 189 }; 190 191 void 192 print_freebsd_syscall(int num, 193 abi_long arg1, abi_long arg2, abi_long arg3, 194 abi_long arg4, abi_long arg5, abi_long arg6); 195 void print_freebsd_syscall_ret(int num, abi_long ret); 196 void 197 print_netbsd_syscall(int num, 198 abi_long arg1, abi_long arg2, abi_long arg3, 199 abi_long arg4, abi_long arg5, abi_long arg6); 200 void print_netbsd_syscall_ret(int num, abi_long ret); 201 void 202 print_openbsd_syscall(int num, 203 abi_long arg1, abi_long arg2, abi_long arg3, 204 abi_long arg4, abi_long arg5, abi_long arg6); 205 void print_openbsd_syscall_ret(int num, abi_long ret); 206 extern int do_strace; 207 208 /* signal.c */ 209 void process_pending_signals(CPUArchState *cpu_env); 210 void signal_init(void); 211 long do_sigreturn(CPUArchState *env); 212 long do_rt_sigreturn(CPUArchState *env); 213 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 214 215 /* mmap.c */ 216 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 217 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 218 int flags, int fd, abi_ulong offset); 219 int target_munmap(abi_ulong start, abi_ulong len); 220 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 221 abi_ulong new_size, unsigned long flags, 222 abi_ulong new_addr); 223 int target_msync(abi_ulong start, abi_ulong len, int flags); 224 extern unsigned long last_brk; 225 void mmap_fork_start(void); 226 void mmap_fork_end(int child); 227 228 /* main.c */ 229 extern char qemu_proc_pathname[]; 230 extern unsigned long target_maxtsiz; 231 extern unsigned long target_dfldsiz; 232 extern unsigned long target_maxdsiz; 233 extern unsigned long target_dflssiz; 234 extern unsigned long target_maxssiz; 235 extern unsigned long target_sgrowsiz; 236 237 /* user access */ 238 239 #define VERIFY_READ PAGE_READ 240 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE) 241 242 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size) 243 { 244 return page_check_range((target_ulong)addr, size, type) == 0; 245 } 246 247 /* 248 * NOTE __get_user and __put_user use host pointers and don't check access. 249 * 250 * These are usually used to access struct data members once the struct has been 251 * locked - usually with lock_user_struct(). 252 */ 253 #define __put_user(x, hptr)\ 254 ({\ 255 int size = sizeof(*hptr);\ 256 switch (size) {\ 257 case 1:\ 258 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 259 break;\ 260 case 2:\ 261 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 262 break;\ 263 case 4:\ 264 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 265 break;\ 266 case 8:\ 267 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 268 break;\ 269 default:\ 270 abort();\ 271 } \ 272 0;\ 273 }) 274 275 #define __get_user(x, hptr) \ 276 ({\ 277 int size = sizeof(*hptr);\ 278 switch (size) {\ 279 case 1:\ 280 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 281 break;\ 282 case 2:\ 283 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 284 break;\ 285 case 4:\ 286 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 287 break;\ 288 case 8:\ 289 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 290 break;\ 291 default:\ 292 x = 0;\ 293 abort();\ 294 } \ 295 0;\ 296 }) 297 298 /* 299 * put_user()/get_user() take a guest address and check access 300 * 301 * These are usually used to access an atomic data type, such as an int, that 302 * has been passed by address. These internally perform locking and unlocking 303 * on the data type. 304 */ 305 #define put_user(x, gaddr, target_type) \ 306 ({ \ 307 abi_ulong __gaddr = (gaddr); \ 308 target_type *__hptr; \ 309 abi_long __ret; \ 310 __hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0); \ 311 if (__hptr) { \ 312 __ret = __put_user((x), __hptr); \ 313 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 314 } else \ 315 __ret = -TARGET_EFAULT; \ 316 __ret; \ 317 }) 318 319 #define get_user(x, gaddr, target_type) \ 320 ({ \ 321 abi_ulong __gaddr = (gaddr); \ 322 target_type *__hptr; \ 323 abi_long __ret; \ 324 __hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1); \ 325 if (__hptr) { \ 326 __ret = __get_user((x), __hptr); \ 327 unlock_user(__hptr, __gaddr, 0); \ 328 } else { \ 329 (x) = 0; \ 330 __ret = -TARGET_EFAULT; \ 331 } \ 332 __ret; \ 333 }) 334 335 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 336 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 337 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 338 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 339 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 340 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 341 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 342 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 343 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 344 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 345 346 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 347 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 348 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 349 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 350 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 351 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 352 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 353 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 354 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 355 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 356 357 /* 358 * copy_from_user() and copy_to_user() are usually used to copy data 359 * buffers between the target and host. These internally perform 360 * locking/unlocking of the memory. 361 */ 362 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 363 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 364 365 /* 366 * Functions for accessing guest memory. The tget and tput functions 367 * read/write single values, byteswapping as necessary. The lock_user function 368 * gets a pointer to a contiguous area of guest memory, but does not perform 369 * any byteswapping. lock_user may return either a pointer to the guest 370 * memory, or a temporary buffer. 371 */ 372 373 /* 374 * Lock an area of guest memory into the host. If copy is true then the 375 * host area will have the same contents as the guest. 376 */ 377 static inline void *lock_user(int type, abi_ulong guest_addr, long len, 378 int copy) 379 { 380 if (!access_ok(type, guest_addr, len)) { 381 return NULL; 382 } 383 #ifdef DEBUG_REMAP 384 { 385 void *addr; 386 addr = g_malloc(len); 387 if (copy) { 388 memcpy(addr, g2h_untagged(guest_addr), len); 389 } else { 390 memset(addr, 0, len); 391 } 392 return addr; 393 } 394 #else 395 return g2h_untagged(guest_addr); 396 #endif 397 } 398 399 /* 400 * Unlock an area of guest memory. The first LEN bytes must be flushed back to 401 * guest memory. host_ptr = NULL is explicitly allowed and does nothing. 402 */ 403 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 404 long len) 405 { 406 407 #ifdef DEBUG_REMAP 408 if (!host_ptr) { 409 return; 410 } 411 if (host_ptr == g2h_untagged(guest_addr)) { 412 return; 413 } 414 if (len > 0) { 415 memcpy(g2h_untagged(guest_addr), host_ptr, len); 416 } 417 g_free(host_ptr); 418 #endif 419 } 420 421 /* 422 * Return the length of a string in target memory or -TARGET_EFAULT if access 423 * error. 424 */ 425 abi_long target_strlen(abi_ulong gaddr); 426 427 /* Like lock_user but for null terminated strings. */ 428 static inline void *lock_user_string(abi_ulong guest_addr) 429 { 430 abi_long len; 431 len = target_strlen(guest_addr); 432 if (len < 0) { 433 return NULL; 434 } 435 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 436 } 437 438 /* Helper macros for locking/unlocking a target struct. */ 439 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 440 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 441 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 442 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 443 444 #include <pthread.h> 445 446 #endif /* QEMU_H */ 447