1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include <stdlib.h> 20 #include <stdio.h> 21 #include <stdarg.h> 22 #include <string.h> 23 #include <errno.h> 24 #include <unistd.h> 25 #include <machine/trap.h> 26 #include <sys/types.h> 27 #include <sys/mman.h> 28 29 #include "qemu.h" 30 #include "qemu-common.h" 31 /* For tb_lock */ 32 #include "cpu.h" 33 #include "tcg.h" 34 #include "qemu/timer.h" 35 #include "qemu/envlist.h" 36 #include "exec/log.h" 37 38 int singlestep; 39 unsigned long mmap_min_addr; 40 unsigned long guest_base; 41 int have_guest_base; 42 unsigned long reserved_va; 43 44 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 45 const char *qemu_uname_release; 46 extern char **environ; 47 enum BSDType bsd_type; 48 49 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 50 we allocate a bigger stack. Need a better solution, for example 51 by remapping the process stack directly at the right place */ 52 unsigned long x86_stack_size = 512 * 1024; 53 54 void gemu_log(const char *fmt, ...) 55 { 56 va_list ap; 57 58 va_start(ap, fmt); 59 vfprintf(stderr, fmt, ap); 60 va_end(ap); 61 } 62 63 #if defined(TARGET_I386) 64 int cpu_get_pic_interrupt(CPUX86State *env) 65 { 66 return -1; 67 } 68 #endif 69 70 /* These are no-ops because we are not threadsafe. */ 71 static inline void cpu_exec_start(CPUArchState *env) 72 { 73 } 74 75 static inline void cpu_exec_end(CPUArchState *env) 76 { 77 } 78 79 static inline void start_exclusive(void) 80 { 81 } 82 83 static inline void end_exclusive(void) 84 { 85 } 86 87 void fork_start(void) 88 { 89 } 90 91 void fork_end(int child) 92 { 93 if (child) { 94 gdbserver_fork(thread_cpu); 95 } 96 } 97 98 void cpu_list_lock(void) 99 { 100 } 101 102 void cpu_list_unlock(void) 103 { 104 } 105 106 #ifdef TARGET_I386 107 /***********************************************************/ 108 /* CPUX86 core interface */ 109 110 uint64_t cpu_get_tsc(CPUX86State *env) 111 { 112 return cpu_get_host_ticks(); 113 } 114 115 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 116 int flags) 117 { 118 unsigned int e1, e2; 119 uint32_t *p; 120 e1 = (addr << 16) | (limit & 0xffff); 121 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 122 e2 |= flags; 123 p = ptr; 124 p[0] = tswap32(e1); 125 p[1] = tswap32(e2); 126 } 127 128 static uint64_t *idt_table; 129 #ifdef TARGET_X86_64 130 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 131 uint64_t addr, unsigned int sel) 132 { 133 uint32_t *p, e1, e2; 134 e1 = (addr & 0xffff) | (sel << 16); 135 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 136 p = ptr; 137 p[0] = tswap32(e1); 138 p[1] = tswap32(e2); 139 p[2] = tswap32(addr >> 32); 140 p[3] = 0; 141 } 142 /* only dpl matters as we do only user space emulation */ 143 static void set_idt(int n, unsigned int dpl) 144 { 145 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 146 } 147 #else 148 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 149 uint32_t addr, unsigned int sel) 150 { 151 uint32_t *p, e1, e2; 152 e1 = (addr & 0xffff) | (sel << 16); 153 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 154 p = ptr; 155 p[0] = tswap32(e1); 156 p[1] = tswap32(e2); 157 } 158 159 /* only dpl matters as we do only user space emulation */ 160 static void set_idt(int n, unsigned int dpl) 161 { 162 set_gate(idt_table + n, 0, dpl, 0, 0); 163 } 164 #endif 165 166 void cpu_loop(CPUX86State *env) 167 { 168 X86CPU *cpu = x86_env_get_cpu(env); 169 CPUState *cs = CPU(cpu); 170 int trapnr; 171 abi_ulong pc; 172 //target_siginfo_t info; 173 174 for(;;) { 175 trapnr = cpu_x86_exec(cs); 176 switch(trapnr) { 177 case 0x80: 178 /* syscall from int $0x80 */ 179 if (bsd_type == target_freebsd) { 180 abi_ulong params = (abi_ulong) env->regs[R_ESP] + 181 sizeof(int32_t); 182 int32_t syscall_nr = env->regs[R_EAX]; 183 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8; 184 185 if (syscall_nr == TARGET_FREEBSD_NR_syscall) { 186 get_user_s32(syscall_nr, params); 187 params += sizeof(int32_t); 188 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) { 189 get_user_s32(syscall_nr, params); 190 params += sizeof(int64_t); 191 } 192 get_user_s32(arg1, params); 193 params += sizeof(int32_t); 194 get_user_s32(arg2, params); 195 params += sizeof(int32_t); 196 get_user_s32(arg3, params); 197 params += sizeof(int32_t); 198 get_user_s32(arg4, params); 199 params += sizeof(int32_t); 200 get_user_s32(arg5, params); 201 params += sizeof(int32_t); 202 get_user_s32(arg6, params); 203 params += sizeof(int32_t); 204 get_user_s32(arg7, params); 205 params += sizeof(int32_t); 206 get_user_s32(arg8, params); 207 env->regs[R_EAX] = do_freebsd_syscall(env, 208 syscall_nr, 209 arg1, 210 arg2, 211 arg3, 212 arg4, 213 arg5, 214 arg6, 215 arg7, 216 arg8); 217 } else { //if (bsd_type == target_openbsd) 218 env->regs[R_EAX] = do_openbsd_syscall(env, 219 env->regs[R_EAX], 220 env->regs[R_EBX], 221 env->regs[R_ECX], 222 env->regs[R_EDX], 223 env->regs[R_ESI], 224 env->regs[R_EDI], 225 env->regs[R_EBP]); 226 } 227 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { 228 env->regs[R_EAX] = -env->regs[R_EAX]; 229 env->eflags |= CC_C; 230 } else { 231 env->eflags &= ~CC_C; 232 } 233 break; 234 #ifndef TARGET_ABI32 235 case EXCP_SYSCALL: 236 /* syscall from syscall instruction */ 237 if (bsd_type == target_freebsd) 238 env->regs[R_EAX] = do_freebsd_syscall(env, 239 env->regs[R_EAX], 240 env->regs[R_EDI], 241 env->regs[R_ESI], 242 env->regs[R_EDX], 243 env->regs[R_ECX], 244 env->regs[8], 245 env->regs[9], 0, 0); 246 else { //if (bsd_type == target_openbsd) 247 env->regs[R_EAX] = do_openbsd_syscall(env, 248 env->regs[R_EAX], 249 env->regs[R_EDI], 250 env->regs[R_ESI], 251 env->regs[R_EDX], 252 env->regs[10], 253 env->regs[8], 254 env->regs[9]); 255 } 256 env->eip = env->exception_next_eip; 257 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { 258 env->regs[R_EAX] = -env->regs[R_EAX]; 259 env->eflags |= CC_C; 260 } else { 261 env->eflags &= ~CC_C; 262 } 263 break; 264 #endif 265 #if 0 266 case EXCP0B_NOSEG: 267 case EXCP0C_STACK: 268 info.si_signo = SIGBUS; 269 info.si_errno = 0; 270 info.si_code = TARGET_SI_KERNEL; 271 info._sifields._sigfault._addr = 0; 272 queue_signal(env, info.si_signo, &info); 273 break; 274 case EXCP0D_GPF: 275 /* XXX: potential problem if ABI32 */ 276 #ifndef TARGET_X86_64 277 if (env->eflags & VM_MASK) { 278 handle_vm86_fault(env); 279 } else 280 #endif 281 { 282 info.si_signo = SIGSEGV; 283 info.si_errno = 0; 284 info.si_code = TARGET_SI_KERNEL; 285 info._sifields._sigfault._addr = 0; 286 queue_signal(env, info.si_signo, &info); 287 } 288 break; 289 case EXCP0E_PAGE: 290 info.si_signo = SIGSEGV; 291 info.si_errno = 0; 292 if (!(env->error_code & 1)) 293 info.si_code = TARGET_SEGV_MAPERR; 294 else 295 info.si_code = TARGET_SEGV_ACCERR; 296 info._sifields._sigfault._addr = env->cr[2]; 297 queue_signal(env, info.si_signo, &info); 298 break; 299 case EXCP00_DIVZ: 300 #ifndef TARGET_X86_64 301 if (env->eflags & VM_MASK) { 302 handle_vm86_trap(env, trapnr); 303 } else 304 #endif 305 { 306 /* division by zero */ 307 info.si_signo = SIGFPE; 308 info.si_errno = 0; 309 info.si_code = TARGET_FPE_INTDIV; 310 info._sifields._sigfault._addr = env->eip; 311 queue_signal(env, info.si_signo, &info); 312 } 313 break; 314 case EXCP01_DB: 315 case EXCP03_INT3: 316 #ifndef TARGET_X86_64 317 if (env->eflags & VM_MASK) { 318 handle_vm86_trap(env, trapnr); 319 } else 320 #endif 321 { 322 info.si_signo = SIGTRAP; 323 info.si_errno = 0; 324 if (trapnr == EXCP01_DB) { 325 info.si_code = TARGET_TRAP_BRKPT; 326 info._sifields._sigfault._addr = env->eip; 327 } else { 328 info.si_code = TARGET_SI_KERNEL; 329 info._sifields._sigfault._addr = 0; 330 } 331 queue_signal(env, info.si_signo, &info); 332 } 333 break; 334 case EXCP04_INTO: 335 case EXCP05_BOUND: 336 #ifndef TARGET_X86_64 337 if (env->eflags & VM_MASK) { 338 handle_vm86_trap(env, trapnr); 339 } else 340 #endif 341 { 342 info.si_signo = SIGSEGV; 343 info.si_errno = 0; 344 info.si_code = TARGET_SI_KERNEL; 345 info._sifields._sigfault._addr = 0; 346 queue_signal(env, info.si_signo, &info); 347 } 348 break; 349 case EXCP06_ILLOP: 350 info.si_signo = SIGILL; 351 info.si_errno = 0; 352 info.si_code = TARGET_ILL_ILLOPN; 353 info._sifields._sigfault._addr = env->eip; 354 queue_signal(env, info.si_signo, &info); 355 break; 356 #endif 357 case EXCP_INTERRUPT: 358 /* just indicate that signals should be handled asap */ 359 break; 360 #if 0 361 case EXCP_DEBUG: 362 { 363 int sig; 364 365 sig = gdb_handlesig (env, TARGET_SIGTRAP); 366 if (sig) 367 { 368 info.si_signo = sig; 369 info.si_errno = 0; 370 info.si_code = TARGET_TRAP_BRKPT; 371 queue_signal(env, info.si_signo, &info); 372 } 373 } 374 break; 375 #endif 376 default: 377 pc = env->segs[R_CS].base + env->eip; 378 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 379 (long)pc, trapnr); 380 abort(); 381 } 382 process_pending_signals(env); 383 } 384 } 385 #endif 386 387 #ifdef TARGET_SPARC 388 #define SPARC64_STACK_BIAS 2047 389 390 //#define DEBUG_WIN 391 /* WARNING: dealing with register windows _is_ complicated. More info 392 can be found at http://www.sics.se/~psm/sparcstack.html */ 393 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 394 { 395 index = (index + cwp * 16) % (16 * env->nwindows); 396 /* wrap handling : if cwp is on the last window, then we use the 397 registers 'after' the end */ 398 if (index < 8 && env->cwp == env->nwindows - 1) 399 index += 16 * env->nwindows; 400 return index; 401 } 402 403 /* save the register window 'cwp1' */ 404 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 405 { 406 unsigned int i; 407 abi_ulong sp_ptr; 408 409 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 410 #ifdef TARGET_SPARC64 411 if (sp_ptr & 3) 412 sp_ptr += SPARC64_STACK_BIAS; 413 #endif 414 #if defined(DEBUG_WIN) 415 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 416 sp_ptr, cwp1); 417 #endif 418 for(i = 0; i < 16; i++) { 419 /* FIXME - what to do if put_user() fails? */ 420 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 421 sp_ptr += sizeof(abi_ulong); 422 } 423 } 424 425 static void save_window(CPUSPARCState *env) 426 { 427 #ifndef TARGET_SPARC64 428 unsigned int new_wim; 429 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 430 ((1LL << env->nwindows) - 1); 431 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 432 env->wim = new_wim; 433 #else 434 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 435 env->cansave++; 436 env->canrestore--; 437 #endif 438 } 439 440 static void restore_window(CPUSPARCState *env) 441 { 442 #ifndef TARGET_SPARC64 443 unsigned int new_wim; 444 #endif 445 unsigned int i, cwp1; 446 abi_ulong sp_ptr; 447 448 #ifndef TARGET_SPARC64 449 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 450 ((1LL << env->nwindows) - 1); 451 #endif 452 453 /* restore the invalid window */ 454 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 455 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 456 #ifdef TARGET_SPARC64 457 if (sp_ptr & 3) 458 sp_ptr += SPARC64_STACK_BIAS; 459 #endif 460 #if defined(DEBUG_WIN) 461 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 462 sp_ptr, cwp1); 463 #endif 464 for(i = 0; i < 16; i++) { 465 /* FIXME - what to do if get_user() fails? */ 466 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 467 sp_ptr += sizeof(abi_ulong); 468 } 469 #ifdef TARGET_SPARC64 470 env->canrestore++; 471 if (env->cleanwin < env->nwindows - 1) 472 env->cleanwin++; 473 env->cansave--; 474 #else 475 env->wim = new_wim; 476 #endif 477 } 478 479 static void flush_windows(CPUSPARCState *env) 480 { 481 int offset, cwp1; 482 483 offset = 1; 484 for(;;) { 485 /* if restore would invoke restore_window(), then we can stop */ 486 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 487 #ifndef TARGET_SPARC64 488 if (env->wim & (1 << cwp1)) 489 break; 490 #else 491 if (env->canrestore == 0) 492 break; 493 env->cansave++; 494 env->canrestore--; 495 #endif 496 save_window_offset(env, cwp1); 497 offset++; 498 } 499 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 500 #ifndef TARGET_SPARC64 501 /* set wim so that restore will reload the registers */ 502 env->wim = 1 << cwp1; 503 #endif 504 #if defined(DEBUG_WIN) 505 printf("flush_windows: nb=%d\n", offset - 1); 506 #endif 507 } 508 509 void cpu_loop(CPUSPARCState *env) 510 { 511 CPUState *cs = CPU(sparc_env_get_cpu(env)); 512 int trapnr, ret, syscall_nr; 513 //target_siginfo_t info; 514 515 while (1) { 516 trapnr = cpu_sparc_exec(cs); 517 518 switch (trapnr) { 519 #ifndef TARGET_SPARC64 520 case 0x80: 521 #else 522 /* FreeBSD uses 0x141 for syscalls too */ 523 case 0x141: 524 if (bsd_type != target_freebsd) 525 goto badtrap; 526 case 0x100: 527 #endif 528 syscall_nr = env->gregs[1]; 529 if (bsd_type == target_freebsd) 530 ret = do_freebsd_syscall(env, syscall_nr, 531 env->regwptr[0], env->regwptr[1], 532 env->regwptr[2], env->regwptr[3], 533 env->regwptr[4], env->regwptr[5], 0, 0); 534 else if (bsd_type == target_netbsd) 535 ret = do_netbsd_syscall(env, syscall_nr, 536 env->regwptr[0], env->regwptr[1], 537 env->regwptr[2], env->regwptr[3], 538 env->regwptr[4], env->regwptr[5]); 539 else { //if (bsd_type == target_openbsd) 540 #if defined(TARGET_SPARC64) 541 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG | 542 TARGET_OPENBSD_SYSCALL_G2RFLAG); 543 #endif 544 ret = do_openbsd_syscall(env, syscall_nr, 545 env->regwptr[0], env->regwptr[1], 546 env->regwptr[2], env->regwptr[3], 547 env->regwptr[4], env->regwptr[5]); 548 } 549 if ((unsigned int)ret >= (unsigned int)(-515)) { 550 ret = -ret; 551 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 552 env->xcc |= PSR_CARRY; 553 #else 554 env->psr |= PSR_CARRY; 555 #endif 556 } else { 557 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 558 env->xcc &= ~PSR_CARRY; 559 #else 560 env->psr &= ~PSR_CARRY; 561 #endif 562 } 563 env->regwptr[0] = ret; 564 /* next instruction */ 565 #if defined(TARGET_SPARC64) 566 if (bsd_type == target_openbsd && 567 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) { 568 env->pc = env->gregs[2]; 569 env->npc = env->pc + 4; 570 } else if (bsd_type == target_openbsd && 571 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) { 572 env->pc = env->gregs[7]; 573 env->npc = env->pc + 4; 574 } else { 575 env->pc = env->npc; 576 env->npc = env->npc + 4; 577 } 578 #else 579 env->pc = env->npc; 580 env->npc = env->npc + 4; 581 #endif 582 break; 583 case 0x83: /* flush windows */ 584 #ifdef TARGET_ABI32 585 case 0x103: 586 #endif 587 flush_windows(env); 588 /* next instruction */ 589 env->pc = env->npc; 590 env->npc = env->npc + 4; 591 break; 592 #ifndef TARGET_SPARC64 593 case TT_WIN_OVF: /* window overflow */ 594 save_window(env); 595 break; 596 case TT_WIN_UNF: /* window underflow */ 597 restore_window(env); 598 break; 599 case TT_TFAULT: 600 case TT_DFAULT: 601 #if 0 602 { 603 info.si_signo = SIGSEGV; 604 info.si_errno = 0; 605 /* XXX: check env->error_code */ 606 info.si_code = TARGET_SEGV_MAPERR; 607 info._sifields._sigfault._addr = env->mmuregs[4]; 608 queue_signal(env, info.si_signo, &info); 609 } 610 #endif 611 break; 612 #else 613 case TT_SPILL: /* window overflow */ 614 save_window(env); 615 break; 616 case TT_FILL: /* window underflow */ 617 restore_window(env); 618 break; 619 case TT_TFAULT: 620 case TT_DFAULT: 621 #if 0 622 { 623 info.si_signo = SIGSEGV; 624 info.si_errno = 0; 625 /* XXX: check env->error_code */ 626 info.si_code = TARGET_SEGV_MAPERR; 627 if (trapnr == TT_DFAULT) 628 info._sifields._sigfault._addr = env->dmmuregs[4]; 629 else 630 info._sifields._sigfault._addr = env->tsptr->tpc; 631 //queue_signal(env, info.si_signo, &info); 632 } 633 #endif 634 break; 635 #endif 636 case EXCP_INTERRUPT: 637 /* just indicate that signals should be handled asap */ 638 break; 639 case EXCP_DEBUG: 640 { 641 int sig; 642 643 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 644 #if 0 645 if (sig) 646 { 647 info.si_signo = sig; 648 info.si_errno = 0; 649 info.si_code = TARGET_TRAP_BRKPT; 650 //queue_signal(env, info.si_signo, &info); 651 } 652 #endif 653 } 654 break; 655 default: 656 #ifdef TARGET_SPARC64 657 badtrap: 658 #endif 659 printf ("Unhandled trap: 0x%x\n", trapnr); 660 cpu_dump_state(cs, stderr, fprintf, 0); 661 exit (1); 662 } 663 process_pending_signals (env); 664 } 665 } 666 667 #endif 668 669 static void usage(void) 670 { 671 printf("qemu-" TARGET_NAME " version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n" 672 "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 673 "BSD CPU emulator (compiled for %s emulation)\n" 674 "\n" 675 "Standard options:\n" 676 "-h print this help\n" 677 "-g port wait gdb connection to port\n" 678 "-L path set the elf interpreter prefix (default=%s)\n" 679 "-s size set the stack size in bytes (default=%ld)\n" 680 "-cpu model select CPU (-cpu help for list)\n" 681 "-drop-ld-preload drop LD_PRELOAD for target process\n" 682 "-E var=value sets/modifies targets environment variable(s)\n" 683 "-U var unsets targets environment variable(s)\n" 684 "-B address set guest_base address to address\n" 685 "-bsd type select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n" 686 "\n" 687 "Debug options:\n" 688 "-d item1[,...] enable logging of specified items\n" 689 " (use '-d help' for a list of log items)\n" 690 "-D logfile write logs to 'logfile' (default stderr)\n" 691 "-p pagesize set the host page size to 'pagesize'\n" 692 "-singlestep always run in singlestep mode\n" 693 "-strace log system calls\n" 694 "\n" 695 "Environment variables:\n" 696 "QEMU_STRACE Print system calls and arguments similar to the\n" 697 " 'strace' program. Enable by setting to any value.\n" 698 "You can use -E and -U options to set/unset environment variables\n" 699 "for target process. It is possible to provide several variables\n" 700 "by repeating the option. For example:\n" 701 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 702 "Note that if you provide several changes to single variable\n" 703 "last change will stay in effect.\n" 704 , 705 TARGET_NAME, 706 interp_prefix, 707 x86_stack_size); 708 exit(1); 709 } 710 711 THREAD CPUState *thread_cpu; 712 713 /* Assumes contents are already zeroed. */ 714 void init_task_state(TaskState *ts) 715 { 716 int i; 717 718 ts->used = 1; 719 ts->first_free = ts->sigqueue_table; 720 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { 721 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; 722 } 723 ts->sigqueue_table[i].next = NULL; 724 } 725 726 int main(int argc, char **argv) 727 { 728 const char *filename; 729 const char *cpu_model; 730 const char *log_file = NULL; 731 const char *log_mask = NULL; 732 struct target_pt_regs regs1, *regs = ®s1; 733 struct image_info info1, *info = &info1; 734 TaskState ts1, *ts = &ts1; 735 CPUArchState *env; 736 CPUState *cpu; 737 int optind; 738 const char *r; 739 int gdbstub_port = 0; 740 char **target_environ, **wrk; 741 envlist_t *envlist = NULL; 742 bsd_type = target_openbsd; 743 744 if (argc <= 1) 745 usage(); 746 747 module_call_init(MODULE_INIT_QOM); 748 749 if ((envlist = envlist_create()) == NULL) { 750 (void) fprintf(stderr, "Unable to allocate envlist\n"); 751 exit(1); 752 } 753 754 /* add current environment into the list */ 755 for (wrk = environ; *wrk != NULL; wrk++) { 756 (void) envlist_setenv(envlist, *wrk); 757 } 758 759 cpu_model = NULL; 760 #if defined(cpudef_setup) 761 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */ 762 #endif 763 764 optind = 1; 765 for(;;) { 766 if (optind >= argc) 767 break; 768 r = argv[optind]; 769 if (r[0] != '-') 770 break; 771 optind++; 772 r++; 773 if (!strcmp(r, "-")) { 774 break; 775 } else if (!strcmp(r, "d")) { 776 if (optind >= argc) { 777 break; 778 } 779 log_mask = argv[optind++]; 780 } else if (!strcmp(r, "D")) { 781 if (optind >= argc) { 782 break; 783 } 784 log_file = argv[optind++]; 785 } else if (!strcmp(r, "E")) { 786 r = argv[optind++]; 787 if (envlist_setenv(envlist, r) != 0) 788 usage(); 789 } else if (!strcmp(r, "ignore-environment")) { 790 envlist_free(envlist); 791 if ((envlist = envlist_create()) == NULL) { 792 (void) fprintf(stderr, "Unable to allocate envlist\n"); 793 exit(1); 794 } 795 } else if (!strcmp(r, "U")) { 796 r = argv[optind++]; 797 if (envlist_unsetenv(envlist, r) != 0) 798 usage(); 799 } else if (!strcmp(r, "s")) { 800 r = argv[optind++]; 801 x86_stack_size = strtol(r, (char **)&r, 0); 802 if (x86_stack_size <= 0) 803 usage(); 804 if (*r == 'M') 805 x86_stack_size *= 1024 * 1024; 806 else if (*r == 'k' || *r == 'K') 807 x86_stack_size *= 1024; 808 } else if (!strcmp(r, "L")) { 809 interp_prefix = argv[optind++]; 810 } else if (!strcmp(r, "p")) { 811 qemu_host_page_size = atoi(argv[optind++]); 812 if (qemu_host_page_size == 0 || 813 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 814 fprintf(stderr, "page size must be a power of two\n"); 815 exit(1); 816 } 817 } else if (!strcmp(r, "g")) { 818 gdbstub_port = atoi(argv[optind++]); 819 } else if (!strcmp(r, "r")) { 820 qemu_uname_release = argv[optind++]; 821 } else if (!strcmp(r, "cpu")) { 822 cpu_model = argv[optind++]; 823 if (is_help_option(cpu_model)) { 824 /* XXX: implement xxx_cpu_list for targets that still miss it */ 825 #if defined(cpu_list) 826 cpu_list(stdout, &fprintf); 827 #endif 828 exit(1); 829 } 830 } else if (!strcmp(r, "B")) { 831 guest_base = strtol(argv[optind++], NULL, 0); 832 have_guest_base = 1; 833 } else if (!strcmp(r, "drop-ld-preload")) { 834 (void) envlist_unsetenv(envlist, "LD_PRELOAD"); 835 } else if (!strcmp(r, "bsd")) { 836 if (!strcasecmp(argv[optind], "freebsd")) { 837 bsd_type = target_freebsd; 838 } else if (!strcasecmp(argv[optind], "netbsd")) { 839 bsd_type = target_netbsd; 840 } else if (!strcasecmp(argv[optind], "openbsd")) { 841 bsd_type = target_openbsd; 842 } else { 843 usage(); 844 } 845 optind++; 846 } else if (!strcmp(r, "singlestep")) { 847 singlestep = 1; 848 } else if (!strcmp(r, "strace")) { 849 do_strace = 1; 850 } else 851 { 852 usage(); 853 } 854 } 855 856 /* init debug */ 857 qemu_set_log_filename(log_file); 858 if (log_mask) { 859 int mask; 860 861 mask = qemu_str_to_log_mask(log_mask); 862 if (!mask) { 863 qemu_print_log_usage(stdout); 864 exit(1); 865 } 866 qemu_set_log(mask); 867 } 868 869 if (optind >= argc) { 870 usage(); 871 } 872 filename = argv[optind]; 873 874 /* Zero out regs */ 875 memset(regs, 0, sizeof(struct target_pt_regs)); 876 877 /* Zero out image_info */ 878 memset(info, 0, sizeof(struct image_info)); 879 880 /* Scan interp_prefix dir for replacement files. */ 881 init_paths(interp_prefix); 882 883 if (cpu_model == NULL) { 884 #if defined(TARGET_I386) 885 #ifdef TARGET_X86_64 886 cpu_model = "qemu64"; 887 #else 888 cpu_model = "qemu32"; 889 #endif 890 #elif defined(TARGET_SPARC) 891 #ifdef TARGET_SPARC64 892 cpu_model = "TI UltraSparc II"; 893 #else 894 cpu_model = "Fujitsu MB86904"; 895 #endif 896 #else 897 cpu_model = "any"; 898 #endif 899 } 900 tcg_exec_init(0); 901 /* NOTE: we need to init the CPU at this stage to get 902 qemu_host_page_size */ 903 cpu = cpu_init(cpu_model); 904 if (!cpu) { 905 fprintf(stderr, "Unable to find CPU definition\n"); 906 exit(1); 907 } 908 env = cpu->env_ptr; 909 #if defined(TARGET_SPARC) || defined(TARGET_PPC) 910 cpu_reset(cpu); 911 #endif 912 thread_cpu = cpu; 913 914 if (getenv("QEMU_STRACE")) { 915 do_strace = 1; 916 } 917 918 target_environ = envlist_to_environ(envlist, NULL); 919 envlist_free(envlist); 920 921 /* 922 * Now that page sizes are configured in cpu_init() we can do 923 * proper page alignment for guest_base. 924 */ 925 guest_base = HOST_PAGE_ALIGN(guest_base); 926 927 /* 928 * Read in mmap_min_addr kernel parameter. This value is used 929 * When loading the ELF image to determine whether guest_base 930 * is needed. 931 * 932 * When user has explicitly set the quest base, we skip this 933 * test. 934 */ 935 if (!have_guest_base) { 936 FILE *fp; 937 938 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 939 unsigned long tmp; 940 if (fscanf(fp, "%lu", &tmp) == 1) { 941 mmap_min_addr = tmp; 942 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); 943 } 944 fclose(fp); 945 } 946 } 947 948 if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) { 949 printf("Error loading %s\n", filename); 950 _exit(1); 951 } 952 953 for (wrk = target_environ; *wrk; wrk++) { 954 free(*wrk); 955 } 956 957 free(target_environ); 958 959 if (qemu_loglevel_mask(CPU_LOG_PAGE)) { 960 qemu_log("guest_base 0x%lx\n", guest_base); 961 log_page_dump(); 962 963 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 964 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 965 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 966 info->start_code); 967 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 968 info->start_data); 969 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 970 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 971 info->start_stack); 972 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 973 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 974 } 975 976 target_set_brk(info->brk); 977 syscall_init(); 978 signal_init(); 979 980 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 981 generating the prologue until now so that the prologue can take 982 the real value of GUEST_BASE into account. */ 983 tcg_prologue_init(&tcg_ctx); 984 985 /* build Task State */ 986 memset(ts, 0, sizeof(TaskState)); 987 init_task_state(ts); 988 ts->info = info; 989 cpu->opaque = ts; 990 991 #if defined(TARGET_I386) 992 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 993 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 994 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 995 env->cr[4] |= CR4_OSFXSR_MASK; 996 env->hflags |= HF_OSFXSR_MASK; 997 } 998 #ifndef TARGET_ABI32 999 /* enable 64 bit mode if possible */ 1000 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 1001 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 1002 exit(1); 1003 } 1004 env->cr[4] |= CR4_PAE_MASK; 1005 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 1006 env->hflags |= HF_LMA_MASK; 1007 #endif 1008 1009 /* flags setup : we activate the IRQs by default as in user mode */ 1010 env->eflags |= IF_MASK; 1011 1012 /* linux register setup */ 1013 #ifndef TARGET_ABI32 1014 env->regs[R_EAX] = regs->rax; 1015 env->regs[R_EBX] = regs->rbx; 1016 env->regs[R_ECX] = regs->rcx; 1017 env->regs[R_EDX] = regs->rdx; 1018 env->regs[R_ESI] = regs->rsi; 1019 env->regs[R_EDI] = regs->rdi; 1020 env->regs[R_EBP] = regs->rbp; 1021 env->regs[R_ESP] = regs->rsp; 1022 env->eip = regs->rip; 1023 #else 1024 env->regs[R_EAX] = regs->eax; 1025 env->regs[R_EBX] = regs->ebx; 1026 env->regs[R_ECX] = regs->ecx; 1027 env->regs[R_EDX] = regs->edx; 1028 env->regs[R_ESI] = regs->esi; 1029 env->regs[R_EDI] = regs->edi; 1030 env->regs[R_EBP] = regs->ebp; 1031 env->regs[R_ESP] = regs->esp; 1032 env->eip = regs->eip; 1033 #endif 1034 1035 /* linux interrupt setup */ 1036 #ifndef TARGET_ABI32 1037 env->idt.limit = 511; 1038 #else 1039 env->idt.limit = 255; 1040 #endif 1041 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 1042 PROT_READ|PROT_WRITE, 1043 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 1044 idt_table = g2h(env->idt.base); 1045 set_idt(0, 0); 1046 set_idt(1, 0); 1047 set_idt(2, 0); 1048 set_idt(3, 3); 1049 set_idt(4, 3); 1050 set_idt(5, 0); 1051 set_idt(6, 0); 1052 set_idt(7, 0); 1053 set_idt(8, 0); 1054 set_idt(9, 0); 1055 set_idt(10, 0); 1056 set_idt(11, 0); 1057 set_idt(12, 0); 1058 set_idt(13, 0); 1059 set_idt(14, 0); 1060 set_idt(15, 0); 1061 set_idt(16, 0); 1062 set_idt(17, 0); 1063 set_idt(18, 0); 1064 set_idt(19, 0); 1065 set_idt(0x80, 3); 1066 1067 /* linux segment setup */ 1068 { 1069 uint64_t *gdt_table; 1070 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 1071 PROT_READ|PROT_WRITE, 1072 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 1073 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 1074 gdt_table = g2h(env->gdt.base); 1075 #ifdef TARGET_ABI32 1076 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 1077 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1078 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 1079 #else 1080 /* 64 bit code segment */ 1081 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 1082 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1083 DESC_L_MASK | 1084 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 1085 #endif 1086 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 1087 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1088 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 1089 } 1090 1091 cpu_x86_load_seg(env, R_CS, __USER_CS); 1092 cpu_x86_load_seg(env, R_SS, __USER_DS); 1093 #ifdef TARGET_ABI32 1094 cpu_x86_load_seg(env, R_DS, __USER_DS); 1095 cpu_x86_load_seg(env, R_ES, __USER_DS); 1096 cpu_x86_load_seg(env, R_FS, __USER_DS); 1097 cpu_x86_load_seg(env, R_GS, __USER_DS); 1098 /* This hack makes Wine work... */ 1099 env->segs[R_FS].selector = 0; 1100 #else 1101 cpu_x86_load_seg(env, R_DS, 0); 1102 cpu_x86_load_seg(env, R_ES, 0); 1103 cpu_x86_load_seg(env, R_FS, 0); 1104 cpu_x86_load_seg(env, R_GS, 0); 1105 #endif 1106 #elif defined(TARGET_SPARC) 1107 { 1108 int i; 1109 env->pc = regs->pc; 1110 env->npc = regs->npc; 1111 env->y = regs->y; 1112 for(i = 0; i < 8; i++) 1113 env->gregs[i] = regs->u_regs[i]; 1114 for(i = 0; i < 8; i++) 1115 env->regwptr[i] = regs->u_regs[i + 8]; 1116 } 1117 #else 1118 #error unsupported target CPU 1119 #endif 1120 1121 if (gdbstub_port) { 1122 gdbserver_start (gdbstub_port); 1123 gdb_handlesig(cpu, 0); 1124 } 1125 cpu_loop(env); 1126 /* never exits */ 1127 return 0; 1128 } 1129