xref: /openbmc/qemu/bsd-user/main.c (revision d1fd31f8)
1 /*
2  *  qemu user main
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu-version.h"
21 #include <machine/trap.h>
22 
23 #include "qapi/error.h"
24 #include "qemu.h"
25 #include "qemu/config-file.h"
26 #include "qemu/path.h"
27 #include "qemu/help_option.h"
28 #include "cpu.h"
29 #include "exec/exec-all.h"
30 #include "tcg.h"
31 #include "qemu/timer.h"
32 #include "qemu/envlist.h"
33 #include "exec/log.h"
34 #include "trace/control.h"
35 
36 int singlestep;
37 unsigned long mmap_min_addr;
38 unsigned long guest_base;
39 int have_guest_base;
40 unsigned long reserved_va;
41 
42 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
43 const char *qemu_uname_release;
44 extern char **environ;
45 enum BSDType bsd_type;
46 
47 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
48    we allocate a bigger stack. Need a better solution, for example
49    by remapping the process stack directly at the right place */
50 unsigned long x86_stack_size = 512 * 1024;
51 
52 void gemu_log(const char *fmt, ...)
53 {
54     va_list ap;
55 
56     va_start(ap, fmt);
57     vfprintf(stderr, fmt, ap);
58     va_end(ap);
59 }
60 
61 #if defined(TARGET_I386)
62 int cpu_get_pic_interrupt(CPUX86State *env)
63 {
64     return -1;
65 }
66 #endif
67 
68 void fork_start(void)
69 {
70 }
71 
72 void fork_end(int child)
73 {
74     if (child) {
75         gdbserver_fork(thread_cpu);
76     }
77 }
78 
79 #ifdef TARGET_I386
80 /***********************************************************/
81 /* CPUX86 core interface */
82 
83 uint64_t cpu_get_tsc(CPUX86State *env)
84 {
85     return cpu_get_host_ticks();
86 }
87 
88 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
89                      int flags)
90 {
91     unsigned int e1, e2;
92     uint32_t *p;
93     e1 = (addr << 16) | (limit & 0xffff);
94     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
95     e2 |= flags;
96     p = ptr;
97     p[0] = tswap32(e1);
98     p[1] = tswap32(e2);
99 }
100 
101 static uint64_t *idt_table;
102 #ifdef TARGET_X86_64
103 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
104                        uint64_t addr, unsigned int sel)
105 {
106     uint32_t *p, e1, e2;
107     e1 = (addr & 0xffff) | (sel << 16);
108     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
109     p = ptr;
110     p[0] = tswap32(e1);
111     p[1] = tswap32(e2);
112     p[2] = tswap32(addr >> 32);
113     p[3] = 0;
114 }
115 /* only dpl matters as we do only user space emulation */
116 static void set_idt(int n, unsigned int dpl)
117 {
118     set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
119 }
120 #else
121 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
122                      uint32_t addr, unsigned int sel)
123 {
124     uint32_t *p, e1, e2;
125     e1 = (addr & 0xffff) | (sel << 16);
126     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
127     p = ptr;
128     p[0] = tswap32(e1);
129     p[1] = tswap32(e2);
130 }
131 
132 /* only dpl matters as we do only user space emulation */
133 static void set_idt(int n, unsigned int dpl)
134 {
135     set_gate(idt_table + n, 0, dpl, 0, 0);
136 }
137 #endif
138 
139 void cpu_loop(CPUX86State *env)
140 {
141     X86CPU *cpu = x86_env_get_cpu(env);
142     CPUState *cs = CPU(cpu);
143     int trapnr;
144     abi_ulong pc;
145     //target_siginfo_t info;
146 
147     for(;;) {
148         cpu_exec_start(cs);
149         trapnr = cpu_exec(cs);
150         cpu_exec_end(cs);
151         process_queued_cpu_work(cs);
152 
153         switch(trapnr) {
154         case 0x80:
155             /* syscall from int $0x80 */
156             if (bsd_type == target_freebsd) {
157                 abi_ulong params = (abi_ulong) env->regs[R_ESP] +
158                     sizeof(int32_t);
159                 int32_t syscall_nr = env->regs[R_EAX];
160                 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
161 
162                 if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
163                     get_user_s32(syscall_nr, params);
164                     params += sizeof(int32_t);
165                 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
166                     get_user_s32(syscall_nr, params);
167                     params += sizeof(int64_t);
168                 }
169                 get_user_s32(arg1, params);
170                 params += sizeof(int32_t);
171                 get_user_s32(arg2, params);
172                 params += sizeof(int32_t);
173                 get_user_s32(arg3, params);
174                 params += sizeof(int32_t);
175                 get_user_s32(arg4, params);
176                 params += sizeof(int32_t);
177                 get_user_s32(arg5, params);
178                 params += sizeof(int32_t);
179                 get_user_s32(arg6, params);
180                 params += sizeof(int32_t);
181                 get_user_s32(arg7, params);
182                 params += sizeof(int32_t);
183                 get_user_s32(arg8, params);
184                 env->regs[R_EAX] = do_freebsd_syscall(env,
185                                                       syscall_nr,
186                                                       arg1,
187                                                       arg2,
188                                                       arg3,
189                                                       arg4,
190                                                       arg5,
191                                                       arg6,
192                                                       arg7,
193                                                       arg8);
194             } else { //if (bsd_type == target_openbsd)
195                 env->regs[R_EAX] = do_openbsd_syscall(env,
196                                                       env->regs[R_EAX],
197                                                       env->regs[R_EBX],
198                                                       env->regs[R_ECX],
199                                                       env->regs[R_EDX],
200                                                       env->regs[R_ESI],
201                                                       env->regs[R_EDI],
202                                                       env->regs[R_EBP]);
203             }
204             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
205                 env->regs[R_EAX] = -env->regs[R_EAX];
206                 env->eflags |= CC_C;
207             } else {
208                 env->eflags &= ~CC_C;
209             }
210             break;
211 #ifndef TARGET_ABI32
212         case EXCP_SYSCALL:
213             /* syscall from syscall instruction */
214             if (bsd_type == target_freebsd)
215                 env->regs[R_EAX] = do_freebsd_syscall(env,
216                                                       env->regs[R_EAX],
217                                                       env->regs[R_EDI],
218                                                       env->regs[R_ESI],
219                                                       env->regs[R_EDX],
220                                                       env->regs[R_ECX],
221                                                       env->regs[8],
222                                                       env->regs[9], 0, 0);
223             else { //if (bsd_type == target_openbsd)
224                 env->regs[R_EAX] = do_openbsd_syscall(env,
225                                                       env->regs[R_EAX],
226                                                       env->regs[R_EDI],
227                                                       env->regs[R_ESI],
228                                                       env->regs[R_EDX],
229                                                       env->regs[10],
230                                                       env->regs[8],
231                                                       env->regs[9]);
232             }
233             env->eip = env->exception_next_eip;
234             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
235                 env->regs[R_EAX] = -env->regs[R_EAX];
236                 env->eflags |= CC_C;
237             } else {
238                 env->eflags &= ~CC_C;
239             }
240             break;
241 #endif
242 #if 0
243         case EXCP0B_NOSEG:
244         case EXCP0C_STACK:
245             info.si_signo = SIGBUS;
246             info.si_errno = 0;
247             info.si_code = TARGET_SI_KERNEL;
248             info._sifields._sigfault._addr = 0;
249             queue_signal(env, info.si_signo, &info);
250             break;
251         case EXCP0D_GPF:
252             /* XXX: potential problem if ABI32 */
253 #ifndef TARGET_X86_64
254             if (env->eflags & VM_MASK) {
255                 handle_vm86_fault(env);
256             } else
257 #endif
258             {
259                 info.si_signo = SIGSEGV;
260                 info.si_errno = 0;
261                 info.si_code = TARGET_SI_KERNEL;
262                 info._sifields._sigfault._addr = 0;
263                 queue_signal(env, info.si_signo, &info);
264             }
265             break;
266         case EXCP0E_PAGE:
267             info.si_signo = SIGSEGV;
268             info.si_errno = 0;
269             if (!(env->error_code & 1))
270                 info.si_code = TARGET_SEGV_MAPERR;
271             else
272                 info.si_code = TARGET_SEGV_ACCERR;
273             info._sifields._sigfault._addr = env->cr[2];
274             queue_signal(env, info.si_signo, &info);
275             break;
276         case EXCP00_DIVZ:
277 #ifndef TARGET_X86_64
278             if (env->eflags & VM_MASK) {
279                 handle_vm86_trap(env, trapnr);
280             } else
281 #endif
282             {
283                 /* division by zero */
284                 info.si_signo = SIGFPE;
285                 info.si_errno = 0;
286                 info.si_code = TARGET_FPE_INTDIV;
287                 info._sifields._sigfault._addr = env->eip;
288                 queue_signal(env, info.si_signo, &info);
289             }
290             break;
291         case EXCP01_DB:
292         case EXCP03_INT3:
293 #ifndef TARGET_X86_64
294             if (env->eflags & VM_MASK) {
295                 handle_vm86_trap(env, trapnr);
296             } else
297 #endif
298             {
299                 info.si_signo = SIGTRAP;
300                 info.si_errno = 0;
301                 if (trapnr == EXCP01_DB) {
302                     info.si_code = TARGET_TRAP_BRKPT;
303                     info._sifields._sigfault._addr = env->eip;
304                 } else {
305                     info.si_code = TARGET_SI_KERNEL;
306                     info._sifields._sigfault._addr = 0;
307                 }
308                 queue_signal(env, info.si_signo, &info);
309             }
310             break;
311         case EXCP04_INTO:
312         case EXCP05_BOUND:
313 #ifndef TARGET_X86_64
314             if (env->eflags & VM_MASK) {
315                 handle_vm86_trap(env, trapnr);
316             } else
317 #endif
318             {
319                 info.si_signo = SIGSEGV;
320                 info.si_errno = 0;
321                 info.si_code = TARGET_SI_KERNEL;
322                 info._sifields._sigfault._addr = 0;
323                 queue_signal(env, info.si_signo, &info);
324             }
325             break;
326         case EXCP06_ILLOP:
327             info.si_signo = SIGILL;
328             info.si_errno = 0;
329             info.si_code = TARGET_ILL_ILLOPN;
330             info._sifields._sigfault._addr = env->eip;
331             queue_signal(env, info.si_signo, &info);
332             break;
333 #endif
334         case EXCP_INTERRUPT:
335             /* just indicate that signals should be handled asap */
336             break;
337 #if 0
338         case EXCP_DEBUG:
339             {
340                 int sig;
341 
342                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
343                 if (sig)
344                   {
345                     info.si_signo = sig;
346                     info.si_errno = 0;
347                     info.si_code = TARGET_TRAP_BRKPT;
348                     queue_signal(env, info.si_signo, &info);
349                   }
350             }
351             break;
352 #endif
353         default:
354             pc = env->segs[R_CS].base + env->eip;
355             fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
356                     (long)pc, trapnr);
357             abort();
358         }
359         process_pending_signals(env);
360     }
361 }
362 #endif
363 
364 #ifdef TARGET_SPARC
365 #define SPARC64_STACK_BIAS 2047
366 
367 //#define DEBUG_WIN
368 /* WARNING: dealing with register windows _is_ complicated. More info
369    can be found at http://www.sics.se/~psm/sparcstack.html */
370 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
371 {
372     index = (index + cwp * 16) % (16 * env->nwindows);
373     /* wrap handling : if cwp is on the last window, then we use the
374        registers 'after' the end */
375     if (index < 8 && env->cwp == env->nwindows - 1)
376         index += 16 * env->nwindows;
377     return index;
378 }
379 
380 /* save the register window 'cwp1' */
381 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
382 {
383     unsigned int i;
384     abi_ulong sp_ptr;
385 
386     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
387 #ifdef TARGET_SPARC64
388     if (sp_ptr & 3)
389         sp_ptr += SPARC64_STACK_BIAS;
390 #endif
391 #if defined(DEBUG_WIN)
392     printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
393            sp_ptr, cwp1);
394 #endif
395     for(i = 0; i < 16; i++) {
396         /* FIXME - what to do if put_user() fails? */
397         put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
398         sp_ptr += sizeof(abi_ulong);
399     }
400 }
401 
402 static void save_window(CPUSPARCState *env)
403 {
404 #ifndef TARGET_SPARC64
405     unsigned int new_wim;
406     new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
407         ((1LL << env->nwindows) - 1);
408     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
409     env->wim = new_wim;
410 #else
411     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
412     env->cansave++;
413     env->canrestore--;
414 #endif
415 }
416 
417 static void restore_window(CPUSPARCState *env)
418 {
419 #ifndef TARGET_SPARC64
420     unsigned int new_wim;
421 #endif
422     unsigned int i, cwp1;
423     abi_ulong sp_ptr;
424 
425 #ifndef TARGET_SPARC64
426     new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
427         ((1LL << env->nwindows) - 1);
428 #endif
429 
430     /* restore the invalid window */
431     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
432     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
433 #ifdef TARGET_SPARC64
434     if (sp_ptr & 3)
435         sp_ptr += SPARC64_STACK_BIAS;
436 #endif
437 #if defined(DEBUG_WIN)
438     printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
439            sp_ptr, cwp1);
440 #endif
441     for(i = 0; i < 16; i++) {
442         /* FIXME - what to do if get_user() fails? */
443         get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
444         sp_ptr += sizeof(abi_ulong);
445     }
446 #ifdef TARGET_SPARC64
447     env->canrestore++;
448     if (env->cleanwin < env->nwindows - 1)
449         env->cleanwin++;
450     env->cansave--;
451 #else
452     env->wim = new_wim;
453 #endif
454 }
455 
456 static void flush_windows(CPUSPARCState *env)
457 {
458     int offset, cwp1;
459 
460     offset = 1;
461     for(;;) {
462         /* if restore would invoke restore_window(), then we can stop */
463         cwp1 = cpu_cwp_inc(env, env->cwp + offset);
464 #ifndef TARGET_SPARC64
465         if (env->wim & (1 << cwp1))
466             break;
467 #else
468         if (env->canrestore == 0)
469             break;
470         env->cansave++;
471         env->canrestore--;
472 #endif
473         save_window_offset(env, cwp1);
474         offset++;
475     }
476     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
477 #ifndef TARGET_SPARC64
478     /* set wim so that restore will reload the registers */
479     env->wim = 1 << cwp1;
480 #endif
481 #if defined(DEBUG_WIN)
482     printf("flush_windows: nb=%d\n", offset - 1);
483 #endif
484 }
485 
486 void cpu_loop(CPUSPARCState *env)
487 {
488     CPUState *cs = CPU(sparc_env_get_cpu(env));
489     int trapnr, ret, syscall_nr;
490     //target_siginfo_t info;
491 
492     while (1) {
493         cpu_exec_start(cs);
494         trapnr = cpu_exec(cs);
495         cpu_exec_end(cs);
496         process_queued_cpu_work(cs);
497 
498         switch (trapnr) {
499 #ifndef TARGET_SPARC64
500         case 0x80:
501 #else
502         /* FreeBSD uses 0x141 for syscalls too */
503         case 0x141:
504             if (bsd_type != target_freebsd)
505                 goto badtrap;
506         case 0x100:
507 #endif
508             syscall_nr = env->gregs[1];
509             if (bsd_type == target_freebsd)
510                 ret = do_freebsd_syscall(env, syscall_nr,
511                                          env->regwptr[0], env->regwptr[1],
512                                          env->regwptr[2], env->regwptr[3],
513                                          env->regwptr[4], env->regwptr[5], 0, 0);
514             else if (bsd_type == target_netbsd)
515                 ret = do_netbsd_syscall(env, syscall_nr,
516                                         env->regwptr[0], env->regwptr[1],
517                                         env->regwptr[2], env->regwptr[3],
518                                         env->regwptr[4], env->regwptr[5]);
519             else { //if (bsd_type == target_openbsd)
520 #if defined(TARGET_SPARC64)
521                 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
522                                 TARGET_OPENBSD_SYSCALL_G2RFLAG);
523 #endif
524                 ret = do_openbsd_syscall(env, syscall_nr,
525                                          env->regwptr[0], env->regwptr[1],
526                                          env->regwptr[2], env->regwptr[3],
527                                          env->regwptr[4], env->regwptr[5]);
528             }
529             if ((unsigned int)ret >= (unsigned int)(-515)) {
530                 ret = -ret;
531 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
532                 env->xcc |= PSR_CARRY;
533 #else
534                 env->psr |= PSR_CARRY;
535 #endif
536             } else {
537 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
538                 env->xcc &= ~PSR_CARRY;
539 #else
540                 env->psr &= ~PSR_CARRY;
541 #endif
542             }
543             env->regwptr[0] = ret;
544             /* next instruction */
545 #if defined(TARGET_SPARC64)
546             if (bsd_type == target_openbsd &&
547                 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
548                 env->pc = env->gregs[2];
549                 env->npc = env->pc + 4;
550             } else if (bsd_type == target_openbsd &&
551                        env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
552                 env->pc = env->gregs[7];
553                 env->npc = env->pc + 4;
554             } else {
555                 env->pc = env->npc;
556                 env->npc = env->npc + 4;
557             }
558 #else
559             env->pc = env->npc;
560             env->npc = env->npc + 4;
561 #endif
562             break;
563         case 0x83: /* flush windows */
564 #ifdef TARGET_ABI32
565         case 0x103:
566 #endif
567             flush_windows(env);
568             /* next instruction */
569             env->pc = env->npc;
570             env->npc = env->npc + 4;
571             break;
572 #ifndef TARGET_SPARC64
573         case TT_WIN_OVF: /* window overflow */
574             save_window(env);
575             break;
576         case TT_WIN_UNF: /* window underflow */
577             restore_window(env);
578             break;
579         case TT_TFAULT:
580         case TT_DFAULT:
581 #if 0
582             {
583                 info.si_signo = SIGSEGV;
584                 info.si_errno = 0;
585                 /* XXX: check env->error_code */
586                 info.si_code = TARGET_SEGV_MAPERR;
587                 info._sifields._sigfault._addr = env->mmuregs[4];
588                 queue_signal(env, info.si_signo, &info);
589             }
590 #endif
591             break;
592 #else
593         case TT_SPILL: /* window overflow */
594             save_window(env);
595             break;
596         case TT_FILL: /* window underflow */
597             restore_window(env);
598             break;
599         case TT_TFAULT:
600         case TT_DFAULT:
601 #if 0
602             {
603                 info.si_signo = SIGSEGV;
604                 info.si_errno = 0;
605                 /* XXX: check env->error_code */
606                 info.si_code = TARGET_SEGV_MAPERR;
607                 if (trapnr == TT_DFAULT)
608                     info._sifields._sigfault._addr = env->dmmuregs[4];
609                 else
610                     info._sifields._sigfault._addr = env->tsptr->tpc;
611                 //queue_signal(env, info.si_signo, &info);
612             }
613 #endif
614             break;
615 #endif
616         case EXCP_INTERRUPT:
617             /* just indicate that signals should be handled asap */
618             break;
619         case EXCP_DEBUG:
620             {
621 #if 0
622                 int sig =
623 #endif
624                 gdb_handlesig(cs, TARGET_SIGTRAP);
625 #if 0
626                 if (sig)
627                   {
628                     info.si_signo = sig;
629                     info.si_errno = 0;
630                     info.si_code = TARGET_TRAP_BRKPT;
631                     //queue_signal(env, info.si_signo, &info);
632                   }
633 #endif
634             }
635             break;
636         default:
637 #ifdef TARGET_SPARC64
638         badtrap:
639 #endif
640             printf ("Unhandled trap: 0x%x\n", trapnr);
641             cpu_dump_state(cs, stderr, fprintf, 0);
642             exit (1);
643         }
644         process_pending_signals (env);
645     }
646 }
647 
648 #endif
649 
650 static void usage(void)
651 {
652     printf("qemu-" TARGET_NAME " version " QEMU_FULL_VERSION
653            "\n" QEMU_COPYRIGHT "\n"
654            "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
655            "BSD CPU emulator (compiled for %s emulation)\n"
656            "\n"
657            "Standard options:\n"
658            "-h                print this help\n"
659            "-g port           wait gdb connection to port\n"
660            "-L path           set the elf interpreter prefix (default=%s)\n"
661            "-s size           set the stack size in bytes (default=%ld)\n"
662            "-cpu model        select CPU (-cpu help for list)\n"
663            "-drop-ld-preload  drop LD_PRELOAD for target process\n"
664            "-E var=value      sets/modifies targets environment variable(s)\n"
665            "-U var            unsets targets environment variable(s)\n"
666            "-B address        set guest_base address to address\n"
667            "-bsd type         select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
668            "\n"
669            "Debug options:\n"
670            "-d item1[,...]    enable logging of specified items\n"
671            "                  (use '-d help' for a list of log items)\n"
672            "-D logfile        write logs to 'logfile' (default stderr)\n"
673            "-p pagesize       set the host page size to 'pagesize'\n"
674            "-singlestep       always run in singlestep mode\n"
675            "-strace           log system calls\n"
676            "-trace            [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
677            "                  specify tracing options\n"
678            "\n"
679            "Environment variables:\n"
680            "QEMU_STRACE       Print system calls and arguments similar to the\n"
681            "                  'strace' program.  Enable by setting to any value.\n"
682            "You can use -E and -U options to set/unset environment variables\n"
683            "for target process.  It is possible to provide several variables\n"
684            "by repeating the option.  For example:\n"
685            "    -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
686            "Note that if you provide several changes to single variable\n"
687            "last change will stay in effect.\n"
688            "\n"
689            QEMU_HELP_BOTTOM "\n"
690            ,
691            TARGET_NAME,
692            interp_prefix,
693            x86_stack_size);
694     exit(1);
695 }
696 
697 THREAD CPUState *thread_cpu;
698 
699 bool qemu_cpu_is_self(CPUState *cpu)
700 {
701     return thread_cpu == cpu;
702 }
703 
704 void qemu_cpu_kick(CPUState *cpu)
705 {
706     cpu_exit(cpu);
707 }
708 
709 /* Assumes contents are already zeroed.  */
710 void init_task_state(TaskState *ts)
711 {
712     int i;
713 
714     ts->used = 1;
715     ts->first_free = ts->sigqueue_table;
716     for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
717         ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
718     }
719     ts->sigqueue_table[i].next = NULL;
720 }
721 
722 int main(int argc, char **argv)
723 {
724     const char *filename;
725     const char *cpu_model;
726     const char *log_file = NULL;
727     const char *log_mask = NULL;
728     struct target_pt_regs regs1, *regs = &regs1;
729     struct image_info info1, *info = &info1;
730     TaskState ts1, *ts = &ts1;
731     CPUArchState *env;
732     CPUState *cpu;
733     int optind;
734     const char *r;
735     int gdbstub_port = 0;
736     char **target_environ, **wrk;
737     envlist_t *envlist = NULL;
738     char *trace_file = NULL;
739     bsd_type = target_openbsd;
740 
741     if (argc <= 1)
742         usage();
743 
744     module_call_init(MODULE_INIT_TRACE);
745     qemu_init_cpu_list();
746     module_call_init(MODULE_INIT_QOM);
747 
748     envlist = envlist_create();
749 
750     /* add current environment into the list */
751     for (wrk = environ; *wrk != NULL; wrk++) {
752         (void) envlist_setenv(envlist, *wrk);
753     }
754 
755     cpu_model = NULL;
756 
757     qemu_add_opts(&qemu_trace_opts);
758 
759     optind = 1;
760     for (;;) {
761         if (optind >= argc)
762             break;
763         r = argv[optind];
764         if (r[0] != '-')
765             break;
766         optind++;
767         r++;
768         if (!strcmp(r, "-")) {
769             break;
770         } else if (!strcmp(r, "d")) {
771             if (optind >= argc) {
772                 break;
773             }
774             log_mask = argv[optind++];
775         } else if (!strcmp(r, "D")) {
776             if (optind >= argc) {
777                 break;
778             }
779             log_file = argv[optind++];
780         } else if (!strcmp(r, "E")) {
781             r = argv[optind++];
782             if (envlist_setenv(envlist, r) != 0)
783                 usage();
784         } else if (!strcmp(r, "ignore-environment")) {
785             envlist_free(envlist);
786             envlist = envlist_create();
787         } else if (!strcmp(r, "U")) {
788             r = argv[optind++];
789             if (envlist_unsetenv(envlist, r) != 0)
790                 usage();
791         } else if (!strcmp(r, "s")) {
792             r = argv[optind++];
793             x86_stack_size = strtol(r, (char **)&r, 0);
794             if (x86_stack_size <= 0)
795                 usage();
796             if (*r == 'M')
797                 x86_stack_size *= 1024 * 1024;
798             else if (*r == 'k' || *r == 'K')
799                 x86_stack_size *= 1024;
800         } else if (!strcmp(r, "L")) {
801             interp_prefix = argv[optind++];
802         } else if (!strcmp(r, "p")) {
803             qemu_host_page_size = atoi(argv[optind++]);
804             if (qemu_host_page_size == 0 ||
805                 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
806                 fprintf(stderr, "page size must be a power of two\n");
807                 exit(1);
808             }
809         } else if (!strcmp(r, "g")) {
810             gdbstub_port = atoi(argv[optind++]);
811         } else if (!strcmp(r, "r")) {
812             qemu_uname_release = argv[optind++];
813         } else if (!strcmp(r, "cpu")) {
814             cpu_model = argv[optind++];
815             if (is_help_option(cpu_model)) {
816 /* XXX: implement xxx_cpu_list for targets that still miss it */
817 #if defined(cpu_list)
818                     cpu_list(stdout, &fprintf);
819 #endif
820                 exit(1);
821             }
822         } else if (!strcmp(r, "B")) {
823            guest_base = strtol(argv[optind++], NULL, 0);
824            have_guest_base = 1;
825         } else if (!strcmp(r, "drop-ld-preload")) {
826             (void) envlist_unsetenv(envlist, "LD_PRELOAD");
827         } else if (!strcmp(r, "bsd")) {
828             if (!strcasecmp(argv[optind], "freebsd")) {
829                 bsd_type = target_freebsd;
830             } else if (!strcasecmp(argv[optind], "netbsd")) {
831                 bsd_type = target_netbsd;
832             } else if (!strcasecmp(argv[optind], "openbsd")) {
833                 bsd_type = target_openbsd;
834             } else {
835                 usage();
836             }
837             optind++;
838         } else if (!strcmp(r, "singlestep")) {
839             singlestep = 1;
840         } else if (!strcmp(r, "strace")) {
841             do_strace = 1;
842         } else if (!strcmp(r, "trace")) {
843             g_free(trace_file);
844             trace_file = trace_opt_parse(optarg);
845         } else {
846             usage();
847         }
848     }
849 
850     /* init debug */
851     qemu_log_needs_buffers();
852     qemu_set_log_filename(log_file, &error_fatal);
853     if (log_mask) {
854         int mask;
855 
856         mask = qemu_str_to_log_mask(log_mask);
857         if (!mask) {
858             qemu_print_log_usage(stdout);
859             exit(1);
860         }
861         qemu_set_log(mask);
862     }
863 
864     if (optind >= argc) {
865         usage();
866     }
867     filename = argv[optind];
868 
869     if (!trace_init_backends()) {
870         exit(1);
871     }
872     trace_init_file(trace_file);
873 
874     /* Zero out regs */
875     memset(regs, 0, sizeof(struct target_pt_regs));
876 
877     /* Zero out image_info */
878     memset(info, 0, sizeof(struct image_info));
879 
880     /* Scan interp_prefix dir for replacement files. */
881     init_paths(interp_prefix);
882 
883     if (cpu_model == NULL) {
884 #if defined(TARGET_I386)
885 #ifdef TARGET_X86_64
886         cpu_model = "qemu64";
887 #else
888         cpu_model = "qemu32";
889 #endif
890 #elif defined(TARGET_SPARC)
891 #ifdef TARGET_SPARC64
892         cpu_model = "TI UltraSparc II";
893 #else
894         cpu_model = "Fujitsu MB86904";
895 #endif
896 #else
897         cpu_model = "any";
898 #endif
899     }
900     tcg_exec_init(0);
901     /* NOTE: we need to init the CPU at this stage to get
902        qemu_host_page_size */
903     cpu = cpu_init(cpu_model);
904     env = cpu->env_ptr;
905 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
906     cpu_reset(cpu);
907 #endif
908     thread_cpu = cpu;
909 
910     if (getenv("QEMU_STRACE")) {
911         do_strace = 1;
912     }
913 
914     target_environ = envlist_to_environ(envlist, NULL);
915     envlist_free(envlist);
916 
917     /*
918      * Now that page sizes are configured in cpu_init() we can do
919      * proper page alignment for guest_base.
920      */
921     guest_base = HOST_PAGE_ALIGN(guest_base);
922 
923     /*
924      * Read in mmap_min_addr kernel parameter.  This value is used
925      * When loading the ELF image to determine whether guest_base
926      * is needed.
927      *
928      * When user has explicitly set the quest base, we skip this
929      * test.
930      */
931     if (!have_guest_base) {
932         FILE *fp;
933 
934         if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
935             unsigned long tmp;
936             if (fscanf(fp, "%lu", &tmp) == 1) {
937                 mmap_min_addr = tmp;
938                 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
939             }
940             fclose(fp);
941         }
942     }
943 
944     if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
945         printf("Error loading %s\n", filename);
946         _exit(1);
947     }
948 
949     for (wrk = target_environ; *wrk; wrk++) {
950         g_free(*wrk);
951     }
952 
953     g_free(target_environ);
954 
955     if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
956         qemu_log("guest_base  0x%lx\n", guest_base);
957         log_page_dump();
958 
959         qemu_log("start_brk   0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
960         qemu_log("end_code    0x" TARGET_ABI_FMT_lx "\n", info->end_code);
961         qemu_log("start_code  0x" TARGET_ABI_FMT_lx "\n",
962                  info->start_code);
963         qemu_log("start_data  0x" TARGET_ABI_FMT_lx "\n",
964                  info->start_data);
965         qemu_log("end_data    0x" TARGET_ABI_FMT_lx "\n", info->end_data);
966         qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
967                  info->start_stack);
968         qemu_log("brk         0x" TARGET_ABI_FMT_lx "\n", info->brk);
969         qemu_log("entry       0x" TARGET_ABI_FMT_lx "\n", info->entry);
970     }
971 
972     target_set_brk(info->brk);
973     syscall_init();
974     signal_init();
975 
976     /* Now that we've loaded the binary, GUEST_BASE is fixed.  Delay
977        generating the prologue until now so that the prologue can take
978        the real value of GUEST_BASE into account.  */
979     tcg_prologue_init(tcg_ctx);
980     tcg_region_init();
981 
982     /* build Task State */
983     memset(ts, 0, sizeof(TaskState));
984     init_task_state(ts);
985     ts->info = info;
986     cpu->opaque = ts;
987 
988 #if defined(TARGET_I386)
989     env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
990     env->hflags |= HF_PE_MASK | HF_CPL_MASK;
991     if (env->features[FEAT_1_EDX] & CPUID_SSE) {
992         env->cr[4] |= CR4_OSFXSR_MASK;
993         env->hflags |= HF_OSFXSR_MASK;
994     }
995 #ifndef TARGET_ABI32
996     /* enable 64 bit mode if possible */
997     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
998         fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
999         exit(1);
1000     }
1001     env->cr[4] |= CR4_PAE_MASK;
1002     env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
1003     env->hflags |= HF_LMA_MASK;
1004 #endif
1005 
1006     /* flags setup : we activate the IRQs by default as in user mode */
1007     env->eflags |= IF_MASK;
1008 
1009     /* linux register setup */
1010 #ifndef TARGET_ABI32
1011     env->regs[R_EAX] = regs->rax;
1012     env->regs[R_EBX] = regs->rbx;
1013     env->regs[R_ECX] = regs->rcx;
1014     env->regs[R_EDX] = regs->rdx;
1015     env->regs[R_ESI] = regs->rsi;
1016     env->regs[R_EDI] = regs->rdi;
1017     env->regs[R_EBP] = regs->rbp;
1018     env->regs[R_ESP] = regs->rsp;
1019     env->eip = regs->rip;
1020 #else
1021     env->regs[R_EAX] = regs->eax;
1022     env->regs[R_EBX] = regs->ebx;
1023     env->regs[R_ECX] = regs->ecx;
1024     env->regs[R_EDX] = regs->edx;
1025     env->regs[R_ESI] = regs->esi;
1026     env->regs[R_EDI] = regs->edi;
1027     env->regs[R_EBP] = regs->ebp;
1028     env->regs[R_ESP] = regs->esp;
1029     env->eip = regs->eip;
1030 #endif
1031 
1032     /* linux interrupt setup */
1033 #ifndef TARGET_ABI32
1034     env->idt.limit = 511;
1035 #else
1036     env->idt.limit = 255;
1037 #endif
1038     env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
1039                                 PROT_READ|PROT_WRITE,
1040                                 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1041     idt_table = g2h(env->idt.base);
1042     set_idt(0, 0);
1043     set_idt(1, 0);
1044     set_idt(2, 0);
1045     set_idt(3, 3);
1046     set_idt(4, 3);
1047     set_idt(5, 0);
1048     set_idt(6, 0);
1049     set_idt(7, 0);
1050     set_idt(8, 0);
1051     set_idt(9, 0);
1052     set_idt(10, 0);
1053     set_idt(11, 0);
1054     set_idt(12, 0);
1055     set_idt(13, 0);
1056     set_idt(14, 0);
1057     set_idt(15, 0);
1058     set_idt(16, 0);
1059     set_idt(17, 0);
1060     set_idt(18, 0);
1061     set_idt(19, 0);
1062     set_idt(0x80, 3);
1063 
1064     /* linux segment setup */
1065     {
1066         uint64_t *gdt_table;
1067         env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
1068                                     PROT_READ|PROT_WRITE,
1069                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1070         env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
1071         gdt_table = g2h(env->gdt.base);
1072 #ifdef TARGET_ABI32
1073         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1074                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1075                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1076 #else
1077         /* 64 bit code segment */
1078         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1079                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1080                  DESC_L_MASK |
1081                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1082 #endif
1083         write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
1084                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1085                  (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
1086     }
1087 
1088     cpu_x86_load_seg(env, R_CS, __USER_CS);
1089     cpu_x86_load_seg(env, R_SS, __USER_DS);
1090 #ifdef TARGET_ABI32
1091     cpu_x86_load_seg(env, R_DS, __USER_DS);
1092     cpu_x86_load_seg(env, R_ES, __USER_DS);
1093     cpu_x86_load_seg(env, R_FS, __USER_DS);
1094     cpu_x86_load_seg(env, R_GS, __USER_DS);
1095     /* This hack makes Wine work... */
1096     env->segs[R_FS].selector = 0;
1097 #else
1098     cpu_x86_load_seg(env, R_DS, 0);
1099     cpu_x86_load_seg(env, R_ES, 0);
1100     cpu_x86_load_seg(env, R_FS, 0);
1101     cpu_x86_load_seg(env, R_GS, 0);
1102 #endif
1103 #elif defined(TARGET_SPARC)
1104     {
1105         int i;
1106         env->pc = regs->pc;
1107         env->npc = regs->npc;
1108         env->y = regs->y;
1109         for(i = 0; i < 8; i++)
1110             env->gregs[i] = regs->u_regs[i];
1111         for(i = 0; i < 8; i++)
1112             env->regwptr[i] = regs->u_regs[i + 8];
1113     }
1114 #else
1115 #error unsupported target CPU
1116 #endif
1117 
1118     if (gdbstub_port) {
1119         gdbserver_start (gdbstub_port);
1120         gdb_handlesig(cpu, 0);
1121     }
1122     cpu_loop(env);
1123     /* never exits */
1124     return 0;
1125 }
1126