1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu-version.h" 21 #include <machine/trap.h> 22 23 #include "qapi/error.h" 24 #include "qemu.h" 25 #include "qemu/config-file.h" 26 #include "qemu/path.h" 27 #include "qemu/help_option.h" 28 #include "cpu.h" 29 #include "exec/exec-all.h" 30 #include "tcg.h" 31 #include "qemu/timer.h" 32 #include "qemu/envlist.h" 33 #include "exec/log.h" 34 #include "trace/control.h" 35 #include "glib-compat.h" 36 37 int singlestep; 38 unsigned long mmap_min_addr; 39 unsigned long guest_base; 40 int have_guest_base; 41 unsigned long reserved_va; 42 43 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 44 const char *qemu_uname_release; 45 extern char **environ; 46 enum BSDType bsd_type; 47 48 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 49 we allocate a bigger stack. Need a better solution, for example 50 by remapping the process stack directly at the right place */ 51 unsigned long x86_stack_size = 512 * 1024; 52 53 void gemu_log(const char *fmt, ...) 54 { 55 va_list ap; 56 57 va_start(ap, fmt); 58 vfprintf(stderr, fmt, ap); 59 va_end(ap); 60 } 61 62 #if defined(TARGET_I386) 63 int cpu_get_pic_interrupt(CPUX86State *env) 64 { 65 return -1; 66 } 67 #endif 68 69 void fork_start(void) 70 { 71 } 72 73 void fork_end(int child) 74 { 75 if (child) { 76 gdbserver_fork(thread_cpu); 77 } 78 } 79 80 #ifdef TARGET_I386 81 /***********************************************************/ 82 /* CPUX86 core interface */ 83 84 uint64_t cpu_get_tsc(CPUX86State *env) 85 { 86 return cpu_get_host_ticks(); 87 } 88 89 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 90 int flags) 91 { 92 unsigned int e1, e2; 93 uint32_t *p; 94 e1 = (addr << 16) | (limit & 0xffff); 95 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 96 e2 |= flags; 97 p = ptr; 98 p[0] = tswap32(e1); 99 p[1] = tswap32(e2); 100 } 101 102 static uint64_t *idt_table; 103 #ifdef TARGET_X86_64 104 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 105 uint64_t addr, unsigned int sel) 106 { 107 uint32_t *p, e1, e2; 108 e1 = (addr & 0xffff) | (sel << 16); 109 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 110 p = ptr; 111 p[0] = tswap32(e1); 112 p[1] = tswap32(e2); 113 p[2] = tswap32(addr >> 32); 114 p[3] = 0; 115 } 116 /* only dpl matters as we do only user space emulation */ 117 static void set_idt(int n, unsigned int dpl) 118 { 119 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 120 } 121 #else 122 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 123 uint32_t addr, unsigned int sel) 124 { 125 uint32_t *p, e1, e2; 126 e1 = (addr & 0xffff) | (sel << 16); 127 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 128 p = ptr; 129 p[0] = tswap32(e1); 130 p[1] = tswap32(e2); 131 } 132 133 /* only dpl matters as we do only user space emulation */ 134 static void set_idt(int n, unsigned int dpl) 135 { 136 set_gate(idt_table + n, 0, dpl, 0, 0); 137 } 138 #endif 139 140 void cpu_loop(CPUX86State *env) 141 { 142 X86CPU *cpu = x86_env_get_cpu(env); 143 CPUState *cs = CPU(cpu); 144 int trapnr; 145 abi_ulong pc; 146 //target_siginfo_t info; 147 148 for(;;) { 149 cpu_exec_start(cs); 150 trapnr = cpu_exec(cs); 151 cpu_exec_end(cs); 152 process_queued_cpu_work(cs); 153 154 switch(trapnr) { 155 case 0x80: 156 /* syscall from int $0x80 */ 157 if (bsd_type == target_freebsd) { 158 abi_ulong params = (abi_ulong) env->regs[R_ESP] + 159 sizeof(int32_t); 160 int32_t syscall_nr = env->regs[R_EAX]; 161 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8; 162 163 if (syscall_nr == TARGET_FREEBSD_NR_syscall) { 164 get_user_s32(syscall_nr, params); 165 params += sizeof(int32_t); 166 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) { 167 get_user_s32(syscall_nr, params); 168 params += sizeof(int64_t); 169 } 170 get_user_s32(arg1, params); 171 params += sizeof(int32_t); 172 get_user_s32(arg2, params); 173 params += sizeof(int32_t); 174 get_user_s32(arg3, params); 175 params += sizeof(int32_t); 176 get_user_s32(arg4, params); 177 params += sizeof(int32_t); 178 get_user_s32(arg5, params); 179 params += sizeof(int32_t); 180 get_user_s32(arg6, params); 181 params += sizeof(int32_t); 182 get_user_s32(arg7, params); 183 params += sizeof(int32_t); 184 get_user_s32(arg8, params); 185 env->regs[R_EAX] = do_freebsd_syscall(env, 186 syscall_nr, 187 arg1, 188 arg2, 189 arg3, 190 arg4, 191 arg5, 192 arg6, 193 arg7, 194 arg8); 195 } else { //if (bsd_type == target_openbsd) 196 env->regs[R_EAX] = do_openbsd_syscall(env, 197 env->regs[R_EAX], 198 env->regs[R_EBX], 199 env->regs[R_ECX], 200 env->regs[R_EDX], 201 env->regs[R_ESI], 202 env->regs[R_EDI], 203 env->regs[R_EBP]); 204 } 205 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { 206 env->regs[R_EAX] = -env->regs[R_EAX]; 207 env->eflags |= CC_C; 208 } else { 209 env->eflags &= ~CC_C; 210 } 211 break; 212 #ifndef TARGET_ABI32 213 case EXCP_SYSCALL: 214 /* syscall from syscall instruction */ 215 if (bsd_type == target_freebsd) 216 env->regs[R_EAX] = do_freebsd_syscall(env, 217 env->regs[R_EAX], 218 env->regs[R_EDI], 219 env->regs[R_ESI], 220 env->regs[R_EDX], 221 env->regs[R_ECX], 222 env->regs[8], 223 env->regs[9], 0, 0); 224 else { //if (bsd_type == target_openbsd) 225 env->regs[R_EAX] = do_openbsd_syscall(env, 226 env->regs[R_EAX], 227 env->regs[R_EDI], 228 env->regs[R_ESI], 229 env->regs[R_EDX], 230 env->regs[10], 231 env->regs[8], 232 env->regs[9]); 233 } 234 env->eip = env->exception_next_eip; 235 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { 236 env->regs[R_EAX] = -env->regs[R_EAX]; 237 env->eflags |= CC_C; 238 } else { 239 env->eflags &= ~CC_C; 240 } 241 break; 242 #endif 243 #if 0 244 case EXCP0B_NOSEG: 245 case EXCP0C_STACK: 246 info.si_signo = SIGBUS; 247 info.si_errno = 0; 248 info.si_code = TARGET_SI_KERNEL; 249 info._sifields._sigfault._addr = 0; 250 queue_signal(env, info.si_signo, &info); 251 break; 252 case EXCP0D_GPF: 253 /* XXX: potential problem if ABI32 */ 254 #ifndef TARGET_X86_64 255 if (env->eflags & VM_MASK) { 256 handle_vm86_fault(env); 257 } else 258 #endif 259 { 260 info.si_signo = SIGSEGV; 261 info.si_errno = 0; 262 info.si_code = TARGET_SI_KERNEL; 263 info._sifields._sigfault._addr = 0; 264 queue_signal(env, info.si_signo, &info); 265 } 266 break; 267 case EXCP0E_PAGE: 268 info.si_signo = SIGSEGV; 269 info.si_errno = 0; 270 if (!(env->error_code & 1)) 271 info.si_code = TARGET_SEGV_MAPERR; 272 else 273 info.si_code = TARGET_SEGV_ACCERR; 274 info._sifields._sigfault._addr = env->cr[2]; 275 queue_signal(env, info.si_signo, &info); 276 break; 277 case EXCP00_DIVZ: 278 #ifndef TARGET_X86_64 279 if (env->eflags & VM_MASK) { 280 handle_vm86_trap(env, trapnr); 281 } else 282 #endif 283 { 284 /* division by zero */ 285 info.si_signo = SIGFPE; 286 info.si_errno = 0; 287 info.si_code = TARGET_FPE_INTDIV; 288 info._sifields._sigfault._addr = env->eip; 289 queue_signal(env, info.si_signo, &info); 290 } 291 break; 292 case EXCP01_DB: 293 case EXCP03_INT3: 294 #ifndef TARGET_X86_64 295 if (env->eflags & VM_MASK) { 296 handle_vm86_trap(env, trapnr); 297 } else 298 #endif 299 { 300 info.si_signo = SIGTRAP; 301 info.si_errno = 0; 302 if (trapnr == EXCP01_DB) { 303 info.si_code = TARGET_TRAP_BRKPT; 304 info._sifields._sigfault._addr = env->eip; 305 } else { 306 info.si_code = TARGET_SI_KERNEL; 307 info._sifields._sigfault._addr = 0; 308 } 309 queue_signal(env, info.si_signo, &info); 310 } 311 break; 312 case EXCP04_INTO: 313 case EXCP05_BOUND: 314 #ifndef TARGET_X86_64 315 if (env->eflags & VM_MASK) { 316 handle_vm86_trap(env, trapnr); 317 } else 318 #endif 319 { 320 info.si_signo = SIGSEGV; 321 info.si_errno = 0; 322 info.si_code = TARGET_SI_KERNEL; 323 info._sifields._sigfault._addr = 0; 324 queue_signal(env, info.si_signo, &info); 325 } 326 break; 327 case EXCP06_ILLOP: 328 info.si_signo = SIGILL; 329 info.si_errno = 0; 330 info.si_code = TARGET_ILL_ILLOPN; 331 info._sifields._sigfault._addr = env->eip; 332 queue_signal(env, info.si_signo, &info); 333 break; 334 #endif 335 case EXCP_INTERRUPT: 336 /* just indicate that signals should be handled asap */ 337 break; 338 #if 0 339 case EXCP_DEBUG: 340 { 341 int sig; 342 343 sig = gdb_handlesig (env, TARGET_SIGTRAP); 344 if (sig) 345 { 346 info.si_signo = sig; 347 info.si_errno = 0; 348 info.si_code = TARGET_TRAP_BRKPT; 349 queue_signal(env, info.si_signo, &info); 350 } 351 } 352 break; 353 #endif 354 default: 355 pc = env->segs[R_CS].base + env->eip; 356 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 357 (long)pc, trapnr); 358 abort(); 359 } 360 process_pending_signals(env); 361 } 362 } 363 #endif 364 365 #ifdef TARGET_SPARC 366 #define SPARC64_STACK_BIAS 2047 367 368 //#define DEBUG_WIN 369 /* WARNING: dealing with register windows _is_ complicated. More info 370 can be found at http://www.sics.se/~psm/sparcstack.html */ 371 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 372 { 373 index = (index + cwp * 16) % (16 * env->nwindows); 374 /* wrap handling : if cwp is on the last window, then we use the 375 registers 'after' the end */ 376 if (index < 8 && env->cwp == env->nwindows - 1) 377 index += 16 * env->nwindows; 378 return index; 379 } 380 381 /* save the register window 'cwp1' */ 382 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 383 { 384 unsigned int i; 385 abi_ulong sp_ptr; 386 387 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 388 #ifdef TARGET_SPARC64 389 if (sp_ptr & 3) 390 sp_ptr += SPARC64_STACK_BIAS; 391 #endif 392 #if defined(DEBUG_WIN) 393 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 394 sp_ptr, cwp1); 395 #endif 396 for(i = 0; i < 16; i++) { 397 /* FIXME - what to do if put_user() fails? */ 398 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 399 sp_ptr += sizeof(abi_ulong); 400 } 401 } 402 403 static void save_window(CPUSPARCState *env) 404 { 405 #ifndef TARGET_SPARC64 406 unsigned int new_wim; 407 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 408 ((1LL << env->nwindows) - 1); 409 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 410 env->wim = new_wim; 411 #else 412 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 413 env->cansave++; 414 env->canrestore--; 415 #endif 416 } 417 418 static void restore_window(CPUSPARCState *env) 419 { 420 #ifndef TARGET_SPARC64 421 unsigned int new_wim; 422 #endif 423 unsigned int i, cwp1; 424 abi_ulong sp_ptr; 425 426 #ifndef TARGET_SPARC64 427 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 428 ((1LL << env->nwindows) - 1); 429 #endif 430 431 /* restore the invalid window */ 432 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 433 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 434 #ifdef TARGET_SPARC64 435 if (sp_ptr & 3) 436 sp_ptr += SPARC64_STACK_BIAS; 437 #endif 438 #if defined(DEBUG_WIN) 439 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 440 sp_ptr, cwp1); 441 #endif 442 for(i = 0; i < 16; i++) { 443 /* FIXME - what to do if get_user() fails? */ 444 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 445 sp_ptr += sizeof(abi_ulong); 446 } 447 #ifdef TARGET_SPARC64 448 env->canrestore++; 449 if (env->cleanwin < env->nwindows - 1) 450 env->cleanwin++; 451 env->cansave--; 452 #else 453 env->wim = new_wim; 454 #endif 455 } 456 457 static void flush_windows(CPUSPARCState *env) 458 { 459 int offset, cwp1; 460 461 offset = 1; 462 for(;;) { 463 /* if restore would invoke restore_window(), then we can stop */ 464 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 465 #ifndef TARGET_SPARC64 466 if (env->wim & (1 << cwp1)) 467 break; 468 #else 469 if (env->canrestore == 0) 470 break; 471 env->cansave++; 472 env->canrestore--; 473 #endif 474 save_window_offset(env, cwp1); 475 offset++; 476 } 477 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 478 #ifndef TARGET_SPARC64 479 /* set wim so that restore will reload the registers */ 480 env->wim = 1 << cwp1; 481 #endif 482 #if defined(DEBUG_WIN) 483 printf("flush_windows: nb=%d\n", offset - 1); 484 #endif 485 } 486 487 void cpu_loop(CPUSPARCState *env) 488 { 489 CPUState *cs = CPU(sparc_env_get_cpu(env)); 490 int trapnr, ret, syscall_nr; 491 //target_siginfo_t info; 492 493 while (1) { 494 cpu_exec_start(cs); 495 trapnr = cpu_exec(cs); 496 cpu_exec_end(cs); 497 process_queued_cpu_work(cs); 498 499 switch (trapnr) { 500 #ifndef TARGET_SPARC64 501 case 0x80: 502 #else 503 /* FreeBSD uses 0x141 for syscalls too */ 504 case 0x141: 505 if (bsd_type != target_freebsd) 506 goto badtrap; 507 case 0x100: 508 #endif 509 syscall_nr = env->gregs[1]; 510 if (bsd_type == target_freebsd) 511 ret = do_freebsd_syscall(env, syscall_nr, 512 env->regwptr[0], env->regwptr[1], 513 env->regwptr[2], env->regwptr[3], 514 env->regwptr[4], env->regwptr[5], 0, 0); 515 else if (bsd_type == target_netbsd) 516 ret = do_netbsd_syscall(env, syscall_nr, 517 env->regwptr[0], env->regwptr[1], 518 env->regwptr[2], env->regwptr[3], 519 env->regwptr[4], env->regwptr[5]); 520 else { //if (bsd_type == target_openbsd) 521 #if defined(TARGET_SPARC64) 522 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG | 523 TARGET_OPENBSD_SYSCALL_G2RFLAG); 524 #endif 525 ret = do_openbsd_syscall(env, syscall_nr, 526 env->regwptr[0], env->regwptr[1], 527 env->regwptr[2], env->regwptr[3], 528 env->regwptr[4], env->regwptr[5]); 529 } 530 if ((unsigned int)ret >= (unsigned int)(-515)) { 531 ret = -ret; 532 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 533 env->xcc |= PSR_CARRY; 534 #else 535 env->psr |= PSR_CARRY; 536 #endif 537 } else { 538 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 539 env->xcc &= ~PSR_CARRY; 540 #else 541 env->psr &= ~PSR_CARRY; 542 #endif 543 } 544 env->regwptr[0] = ret; 545 /* next instruction */ 546 #if defined(TARGET_SPARC64) 547 if (bsd_type == target_openbsd && 548 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) { 549 env->pc = env->gregs[2]; 550 env->npc = env->pc + 4; 551 } else if (bsd_type == target_openbsd && 552 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) { 553 env->pc = env->gregs[7]; 554 env->npc = env->pc + 4; 555 } else { 556 env->pc = env->npc; 557 env->npc = env->npc + 4; 558 } 559 #else 560 env->pc = env->npc; 561 env->npc = env->npc + 4; 562 #endif 563 break; 564 case 0x83: /* flush windows */ 565 #ifdef TARGET_ABI32 566 case 0x103: 567 #endif 568 flush_windows(env); 569 /* next instruction */ 570 env->pc = env->npc; 571 env->npc = env->npc + 4; 572 break; 573 #ifndef TARGET_SPARC64 574 case TT_WIN_OVF: /* window overflow */ 575 save_window(env); 576 break; 577 case TT_WIN_UNF: /* window underflow */ 578 restore_window(env); 579 break; 580 case TT_TFAULT: 581 case TT_DFAULT: 582 #if 0 583 { 584 info.si_signo = SIGSEGV; 585 info.si_errno = 0; 586 /* XXX: check env->error_code */ 587 info.si_code = TARGET_SEGV_MAPERR; 588 info._sifields._sigfault._addr = env->mmuregs[4]; 589 queue_signal(env, info.si_signo, &info); 590 } 591 #endif 592 break; 593 #else 594 case TT_SPILL: /* window overflow */ 595 save_window(env); 596 break; 597 case TT_FILL: /* window underflow */ 598 restore_window(env); 599 break; 600 case TT_TFAULT: 601 case TT_DFAULT: 602 #if 0 603 { 604 info.si_signo = SIGSEGV; 605 info.si_errno = 0; 606 /* XXX: check env->error_code */ 607 info.si_code = TARGET_SEGV_MAPERR; 608 if (trapnr == TT_DFAULT) 609 info._sifields._sigfault._addr = env->dmmuregs[4]; 610 else 611 info._sifields._sigfault._addr = env->tsptr->tpc; 612 //queue_signal(env, info.si_signo, &info); 613 } 614 #endif 615 break; 616 #endif 617 case EXCP_INTERRUPT: 618 /* just indicate that signals should be handled asap */ 619 break; 620 case EXCP_DEBUG: 621 { 622 #if 0 623 int sig = 624 #endif 625 gdb_handlesig(cs, TARGET_SIGTRAP); 626 #if 0 627 if (sig) 628 { 629 info.si_signo = sig; 630 info.si_errno = 0; 631 info.si_code = TARGET_TRAP_BRKPT; 632 //queue_signal(env, info.si_signo, &info); 633 } 634 #endif 635 } 636 break; 637 default: 638 #ifdef TARGET_SPARC64 639 badtrap: 640 #endif 641 printf ("Unhandled trap: 0x%x\n", trapnr); 642 cpu_dump_state(cs, stderr, fprintf, 0); 643 exit (1); 644 } 645 process_pending_signals (env); 646 } 647 } 648 649 #endif 650 651 static void usage(void) 652 { 653 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 654 "\n" QEMU_COPYRIGHT "\n" 655 "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 656 "BSD CPU emulator (compiled for %s emulation)\n" 657 "\n" 658 "Standard options:\n" 659 "-h print this help\n" 660 "-g port wait gdb connection to port\n" 661 "-L path set the elf interpreter prefix (default=%s)\n" 662 "-s size set the stack size in bytes (default=%ld)\n" 663 "-cpu model select CPU (-cpu help for list)\n" 664 "-drop-ld-preload drop LD_PRELOAD for target process\n" 665 "-E var=value sets/modifies targets environment variable(s)\n" 666 "-U var unsets targets environment variable(s)\n" 667 "-B address set guest_base address to address\n" 668 "-bsd type select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n" 669 "\n" 670 "Debug options:\n" 671 "-d item1[,...] enable logging of specified items\n" 672 " (use '-d help' for a list of log items)\n" 673 "-D logfile write logs to 'logfile' (default stderr)\n" 674 "-p pagesize set the host page size to 'pagesize'\n" 675 "-singlestep always run in singlestep mode\n" 676 "-strace log system calls\n" 677 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n" 678 " specify tracing options\n" 679 "\n" 680 "Environment variables:\n" 681 "QEMU_STRACE Print system calls and arguments similar to the\n" 682 " 'strace' program. Enable by setting to any value.\n" 683 "You can use -E and -U options to set/unset environment variables\n" 684 "for target process. It is possible to provide several variables\n" 685 "by repeating the option. For example:\n" 686 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 687 "Note that if you provide several changes to single variable\n" 688 "last change will stay in effect.\n" 689 "\n" 690 QEMU_HELP_BOTTOM "\n" 691 , 692 TARGET_NAME, 693 interp_prefix, 694 x86_stack_size); 695 exit(1); 696 } 697 698 THREAD CPUState *thread_cpu; 699 700 bool qemu_cpu_is_self(CPUState *cpu) 701 { 702 return thread_cpu == cpu; 703 } 704 705 void qemu_cpu_kick(CPUState *cpu) 706 { 707 cpu_exit(cpu); 708 } 709 710 /* Assumes contents are already zeroed. */ 711 void init_task_state(TaskState *ts) 712 { 713 int i; 714 715 ts->used = 1; 716 ts->first_free = ts->sigqueue_table; 717 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { 718 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; 719 } 720 ts->sigqueue_table[i].next = NULL; 721 } 722 723 int main(int argc, char **argv) 724 { 725 const char *filename; 726 const char *cpu_model; 727 const char *log_file = NULL; 728 const char *log_mask = NULL; 729 struct target_pt_regs regs1, *regs = ®s1; 730 struct image_info info1, *info = &info1; 731 TaskState ts1, *ts = &ts1; 732 CPUArchState *env; 733 CPUState *cpu; 734 int optind; 735 const char *r; 736 int gdbstub_port = 0; 737 char **target_environ, **wrk; 738 envlist_t *envlist = NULL; 739 char *trace_file = NULL; 740 bsd_type = target_openbsd; 741 742 if (argc <= 1) 743 usage(); 744 745 module_call_init(MODULE_INIT_TRACE); 746 qemu_init_cpu_list(); 747 module_call_init(MODULE_INIT_QOM); 748 749 envlist = envlist_create(); 750 751 /* add current environment into the list */ 752 for (wrk = environ; *wrk != NULL; wrk++) { 753 (void) envlist_setenv(envlist, *wrk); 754 } 755 756 cpu_model = NULL; 757 758 qemu_add_opts(&qemu_trace_opts); 759 760 optind = 1; 761 for (;;) { 762 if (optind >= argc) 763 break; 764 r = argv[optind]; 765 if (r[0] != '-') 766 break; 767 optind++; 768 r++; 769 if (!strcmp(r, "-")) { 770 break; 771 } else if (!strcmp(r, "d")) { 772 if (optind >= argc) { 773 break; 774 } 775 log_mask = argv[optind++]; 776 } else if (!strcmp(r, "D")) { 777 if (optind >= argc) { 778 break; 779 } 780 log_file = argv[optind++]; 781 } else if (!strcmp(r, "E")) { 782 r = argv[optind++]; 783 if (envlist_setenv(envlist, r) != 0) 784 usage(); 785 } else if (!strcmp(r, "ignore-environment")) { 786 envlist_free(envlist); 787 envlist = envlist_create(); 788 } else if (!strcmp(r, "U")) { 789 r = argv[optind++]; 790 if (envlist_unsetenv(envlist, r) != 0) 791 usage(); 792 } else if (!strcmp(r, "s")) { 793 r = argv[optind++]; 794 x86_stack_size = strtol(r, (char **)&r, 0); 795 if (x86_stack_size <= 0) 796 usage(); 797 if (*r == 'M') 798 x86_stack_size *= 1024 * 1024; 799 else if (*r == 'k' || *r == 'K') 800 x86_stack_size *= 1024; 801 } else if (!strcmp(r, "L")) { 802 interp_prefix = argv[optind++]; 803 } else if (!strcmp(r, "p")) { 804 qemu_host_page_size = atoi(argv[optind++]); 805 if (qemu_host_page_size == 0 || 806 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 807 fprintf(stderr, "page size must be a power of two\n"); 808 exit(1); 809 } 810 } else if (!strcmp(r, "g")) { 811 gdbstub_port = atoi(argv[optind++]); 812 } else if (!strcmp(r, "r")) { 813 qemu_uname_release = argv[optind++]; 814 } else if (!strcmp(r, "cpu")) { 815 cpu_model = argv[optind++]; 816 if (is_help_option(cpu_model)) { 817 /* XXX: implement xxx_cpu_list for targets that still miss it */ 818 #if defined(cpu_list) 819 cpu_list(stdout, &fprintf); 820 #endif 821 exit(1); 822 } 823 } else if (!strcmp(r, "B")) { 824 guest_base = strtol(argv[optind++], NULL, 0); 825 have_guest_base = 1; 826 } else if (!strcmp(r, "drop-ld-preload")) { 827 (void) envlist_unsetenv(envlist, "LD_PRELOAD"); 828 } else if (!strcmp(r, "bsd")) { 829 if (!strcasecmp(argv[optind], "freebsd")) { 830 bsd_type = target_freebsd; 831 } else if (!strcasecmp(argv[optind], "netbsd")) { 832 bsd_type = target_netbsd; 833 } else if (!strcasecmp(argv[optind], "openbsd")) { 834 bsd_type = target_openbsd; 835 } else { 836 usage(); 837 } 838 optind++; 839 } else if (!strcmp(r, "singlestep")) { 840 singlestep = 1; 841 } else if (!strcmp(r, "strace")) { 842 do_strace = 1; 843 } else if (!strcmp(r, "trace")) { 844 g_free(trace_file); 845 trace_file = trace_opt_parse(optarg); 846 } else { 847 usage(); 848 } 849 } 850 851 /* init debug */ 852 qemu_log_needs_buffers(); 853 qemu_set_log_filename(log_file, &error_fatal); 854 if (log_mask) { 855 int mask; 856 857 mask = qemu_str_to_log_mask(log_mask); 858 if (!mask) { 859 qemu_print_log_usage(stdout); 860 exit(1); 861 } 862 qemu_set_log(mask); 863 } 864 865 if (optind >= argc) { 866 usage(); 867 } 868 filename = argv[optind]; 869 870 if (!trace_init_backends()) { 871 exit(1); 872 } 873 trace_init_file(trace_file); 874 875 /* Zero out regs */ 876 memset(regs, 0, sizeof(struct target_pt_regs)); 877 878 /* Zero out image_info */ 879 memset(info, 0, sizeof(struct image_info)); 880 881 /* Scan interp_prefix dir for replacement files. */ 882 init_paths(interp_prefix); 883 884 if (cpu_model == NULL) { 885 #if defined(TARGET_I386) 886 #ifdef TARGET_X86_64 887 cpu_model = "qemu64"; 888 #else 889 cpu_model = "qemu32"; 890 #endif 891 #elif defined(TARGET_SPARC) 892 #ifdef TARGET_SPARC64 893 cpu_model = "TI UltraSparc II"; 894 #else 895 cpu_model = "Fujitsu MB86904"; 896 #endif 897 #else 898 cpu_model = "any"; 899 #endif 900 } 901 tcg_exec_init(0); 902 /* NOTE: we need to init the CPU at this stage to get 903 qemu_host_page_size */ 904 cpu = cpu_init(cpu_model); 905 if (!cpu) { 906 fprintf(stderr, "Unable to find CPU definition\n"); 907 exit(1); 908 } 909 env = cpu->env_ptr; 910 #if defined(TARGET_SPARC) || defined(TARGET_PPC) 911 cpu_reset(cpu); 912 #endif 913 thread_cpu = cpu; 914 915 if (getenv("QEMU_STRACE")) { 916 do_strace = 1; 917 } 918 919 target_environ = envlist_to_environ(envlist, NULL); 920 envlist_free(envlist); 921 922 /* 923 * Now that page sizes are configured in cpu_init() we can do 924 * proper page alignment for guest_base. 925 */ 926 guest_base = HOST_PAGE_ALIGN(guest_base); 927 928 /* 929 * Read in mmap_min_addr kernel parameter. This value is used 930 * When loading the ELF image to determine whether guest_base 931 * is needed. 932 * 933 * When user has explicitly set the quest base, we skip this 934 * test. 935 */ 936 if (!have_guest_base) { 937 FILE *fp; 938 939 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 940 unsigned long tmp; 941 if (fscanf(fp, "%lu", &tmp) == 1) { 942 mmap_min_addr = tmp; 943 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); 944 } 945 fclose(fp); 946 } 947 } 948 949 if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) { 950 printf("Error loading %s\n", filename); 951 _exit(1); 952 } 953 954 for (wrk = target_environ; *wrk; wrk++) { 955 g_free(*wrk); 956 } 957 958 g_free(target_environ); 959 960 if (qemu_loglevel_mask(CPU_LOG_PAGE)) { 961 qemu_log("guest_base 0x%lx\n", guest_base); 962 log_page_dump(); 963 964 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 965 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 966 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 967 info->start_code); 968 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 969 info->start_data); 970 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 971 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 972 info->start_stack); 973 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 974 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 975 } 976 977 target_set_brk(info->brk); 978 syscall_init(); 979 signal_init(); 980 981 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 982 generating the prologue until now so that the prologue can take 983 the real value of GUEST_BASE into account. */ 984 tcg_prologue_init(&tcg_ctx); 985 986 /* build Task State */ 987 memset(ts, 0, sizeof(TaskState)); 988 init_task_state(ts); 989 ts->info = info; 990 cpu->opaque = ts; 991 992 #if defined(TARGET_I386) 993 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 994 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 995 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 996 env->cr[4] |= CR4_OSFXSR_MASK; 997 env->hflags |= HF_OSFXSR_MASK; 998 } 999 #ifndef TARGET_ABI32 1000 /* enable 64 bit mode if possible */ 1001 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 1002 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 1003 exit(1); 1004 } 1005 env->cr[4] |= CR4_PAE_MASK; 1006 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 1007 env->hflags |= HF_LMA_MASK; 1008 #endif 1009 1010 /* flags setup : we activate the IRQs by default as in user mode */ 1011 env->eflags |= IF_MASK; 1012 1013 /* linux register setup */ 1014 #ifndef TARGET_ABI32 1015 env->regs[R_EAX] = regs->rax; 1016 env->regs[R_EBX] = regs->rbx; 1017 env->regs[R_ECX] = regs->rcx; 1018 env->regs[R_EDX] = regs->rdx; 1019 env->regs[R_ESI] = regs->rsi; 1020 env->regs[R_EDI] = regs->rdi; 1021 env->regs[R_EBP] = regs->rbp; 1022 env->regs[R_ESP] = regs->rsp; 1023 env->eip = regs->rip; 1024 #else 1025 env->regs[R_EAX] = regs->eax; 1026 env->regs[R_EBX] = regs->ebx; 1027 env->regs[R_ECX] = regs->ecx; 1028 env->regs[R_EDX] = regs->edx; 1029 env->regs[R_ESI] = regs->esi; 1030 env->regs[R_EDI] = regs->edi; 1031 env->regs[R_EBP] = regs->ebp; 1032 env->regs[R_ESP] = regs->esp; 1033 env->eip = regs->eip; 1034 #endif 1035 1036 /* linux interrupt setup */ 1037 #ifndef TARGET_ABI32 1038 env->idt.limit = 511; 1039 #else 1040 env->idt.limit = 255; 1041 #endif 1042 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 1043 PROT_READ|PROT_WRITE, 1044 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 1045 idt_table = g2h(env->idt.base); 1046 set_idt(0, 0); 1047 set_idt(1, 0); 1048 set_idt(2, 0); 1049 set_idt(3, 3); 1050 set_idt(4, 3); 1051 set_idt(5, 0); 1052 set_idt(6, 0); 1053 set_idt(7, 0); 1054 set_idt(8, 0); 1055 set_idt(9, 0); 1056 set_idt(10, 0); 1057 set_idt(11, 0); 1058 set_idt(12, 0); 1059 set_idt(13, 0); 1060 set_idt(14, 0); 1061 set_idt(15, 0); 1062 set_idt(16, 0); 1063 set_idt(17, 0); 1064 set_idt(18, 0); 1065 set_idt(19, 0); 1066 set_idt(0x80, 3); 1067 1068 /* linux segment setup */ 1069 { 1070 uint64_t *gdt_table; 1071 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 1072 PROT_READ|PROT_WRITE, 1073 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 1074 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 1075 gdt_table = g2h(env->gdt.base); 1076 #ifdef TARGET_ABI32 1077 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 1078 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1079 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 1080 #else 1081 /* 64 bit code segment */ 1082 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 1083 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1084 DESC_L_MASK | 1085 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 1086 #endif 1087 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 1088 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1089 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 1090 } 1091 1092 cpu_x86_load_seg(env, R_CS, __USER_CS); 1093 cpu_x86_load_seg(env, R_SS, __USER_DS); 1094 #ifdef TARGET_ABI32 1095 cpu_x86_load_seg(env, R_DS, __USER_DS); 1096 cpu_x86_load_seg(env, R_ES, __USER_DS); 1097 cpu_x86_load_seg(env, R_FS, __USER_DS); 1098 cpu_x86_load_seg(env, R_GS, __USER_DS); 1099 /* This hack makes Wine work... */ 1100 env->segs[R_FS].selector = 0; 1101 #else 1102 cpu_x86_load_seg(env, R_DS, 0); 1103 cpu_x86_load_seg(env, R_ES, 0); 1104 cpu_x86_load_seg(env, R_FS, 0); 1105 cpu_x86_load_seg(env, R_GS, 0); 1106 #endif 1107 #elif defined(TARGET_SPARC) 1108 { 1109 int i; 1110 env->pc = regs->pc; 1111 env->npc = regs->npc; 1112 env->y = regs->y; 1113 for(i = 0; i < 8; i++) 1114 env->gregs[i] = regs->u_regs[i]; 1115 for(i = 0; i < 8; i++) 1116 env->regwptr[i] = regs->u_regs[i + 8]; 1117 } 1118 #else 1119 #error unsupported target CPU 1120 #endif 1121 1122 if (gdbstub_port) { 1123 gdbserver_start (gdbstub_port); 1124 gdb_handlesig(cpu, 0); 1125 } 1126 cpu_loop(env); 1127 /* never exits */ 1128 return 0; 1129 } 1130