xref: /openbmc/qemu/bsd-user/main.c (revision 87776ab7)
1 /*
2  *  qemu user main
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include <machine/trap.h>
21 #include <sys/mman.h>
22 
23 #include "qemu.h"
24 #include "qemu/path.h"
25 #include "qemu/help_option.h"
26 /* For tb_lock */
27 #include "cpu.h"
28 #include "tcg.h"
29 #include "qemu/timer.h"
30 #include "qemu/envlist.h"
31 #include "exec/log.h"
32 
33 int singlestep;
34 unsigned long mmap_min_addr;
35 unsigned long guest_base;
36 int have_guest_base;
37 unsigned long reserved_va;
38 
39 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
40 const char *qemu_uname_release;
41 extern char **environ;
42 enum BSDType bsd_type;
43 
44 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
45    we allocate a bigger stack. Need a better solution, for example
46    by remapping the process stack directly at the right place */
47 unsigned long x86_stack_size = 512 * 1024;
48 
49 void gemu_log(const char *fmt, ...)
50 {
51     va_list ap;
52 
53     va_start(ap, fmt);
54     vfprintf(stderr, fmt, ap);
55     va_end(ap);
56 }
57 
58 #if defined(TARGET_I386)
59 int cpu_get_pic_interrupt(CPUX86State *env)
60 {
61     return -1;
62 }
63 #endif
64 
65 /* These are no-ops because we are not threadsafe.  */
66 static inline void cpu_exec_start(CPUArchState *env)
67 {
68 }
69 
70 static inline void cpu_exec_end(CPUArchState *env)
71 {
72 }
73 
74 static inline void start_exclusive(void)
75 {
76 }
77 
78 static inline void end_exclusive(void)
79 {
80 }
81 
82 void fork_start(void)
83 {
84 }
85 
86 void fork_end(int child)
87 {
88     if (child) {
89         gdbserver_fork(thread_cpu);
90     }
91 }
92 
93 void cpu_list_lock(void)
94 {
95 }
96 
97 void cpu_list_unlock(void)
98 {
99 }
100 
101 #ifdef TARGET_I386
102 /***********************************************************/
103 /* CPUX86 core interface */
104 
105 uint64_t cpu_get_tsc(CPUX86State *env)
106 {
107     return cpu_get_host_ticks();
108 }
109 
110 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
111                      int flags)
112 {
113     unsigned int e1, e2;
114     uint32_t *p;
115     e1 = (addr << 16) | (limit & 0xffff);
116     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
117     e2 |= flags;
118     p = ptr;
119     p[0] = tswap32(e1);
120     p[1] = tswap32(e2);
121 }
122 
123 static uint64_t *idt_table;
124 #ifdef TARGET_X86_64
125 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
126                        uint64_t addr, unsigned int sel)
127 {
128     uint32_t *p, e1, e2;
129     e1 = (addr & 0xffff) | (sel << 16);
130     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
131     p = ptr;
132     p[0] = tswap32(e1);
133     p[1] = tswap32(e2);
134     p[2] = tswap32(addr >> 32);
135     p[3] = 0;
136 }
137 /* only dpl matters as we do only user space emulation */
138 static void set_idt(int n, unsigned int dpl)
139 {
140     set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
141 }
142 #else
143 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
144                      uint32_t addr, unsigned int sel)
145 {
146     uint32_t *p, e1, e2;
147     e1 = (addr & 0xffff) | (sel << 16);
148     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
149     p = ptr;
150     p[0] = tswap32(e1);
151     p[1] = tswap32(e2);
152 }
153 
154 /* only dpl matters as we do only user space emulation */
155 static void set_idt(int n, unsigned int dpl)
156 {
157     set_gate(idt_table + n, 0, dpl, 0, 0);
158 }
159 #endif
160 
161 void cpu_loop(CPUX86State *env)
162 {
163     X86CPU *cpu = x86_env_get_cpu(env);
164     CPUState *cs = CPU(cpu);
165     int trapnr;
166     abi_ulong pc;
167     //target_siginfo_t info;
168 
169     for(;;) {
170         trapnr = cpu_x86_exec(cs);
171         switch(trapnr) {
172         case 0x80:
173             /* syscall from int $0x80 */
174             if (bsd_type == target_freebsd) {
175                 abi_ulong params = (abi_ulong) env->regs[R_ESP] +
176                     sizeof(int32_t);
177                 int32_t syscall_nr = env->regs[R_EAX];
178                 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
179 
180                 if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
181                     get_user_s32(syscall_nr, params);
182                     params += sizeof(int32_t);
183                 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
184                     get_user_s32(syscall_nr, params);
185                     params += sizeof(int64_t);
186                 }
187                 get_user_s32(arg1, params);
188                 params += sizeof(int32_t);
189                 get_user_s32(arg2, params);
190                 params += sizeof(int32_t);
191                 get_user_s32(arg3, params);
192                 params += sizeof(int32_t);
193                 get_user_s32(arg4, params);
194                 params += sizeof(int32_t);
195                 get_user_s32(arg5, params);
196                 params += sizeof(int32_t);
197                 get_user_s32(arg6, params);
198                 params += sizeof(int32_t);
199                 get_user_s32(arg7, params);
200                 params += sizeof(int32_t);
201                 get_user_s32(arg8, params);
202                 env->regs[R_EAX] = do_freebsd_syscall(env,
203                                                       syscall_nr,
204                                                       arg1,
205                                                       arg2,
206                                                       arg3,
207                                                       arg4,
208                                                       arg5,
209                                                       arg6,
210                                                       arg7,
211                                                       arg8);
212             } else { //if (bsd_type == target_openbsd)
213                 env->regs[R_EAX] = do_openbsd_syscall(env,
214                                                       env->regs[R_EAX],
215                                                       env->regs[R_EBX],
216                                                       env->regs[R_ECX],
217                                                       env->regs[R_EDX],
218                                                       env->regs[R_ESI],
219                                                       env->regs[R_EDI],
220                                                       env->regs[R_EBP]);
221             }
222             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
223                 env->regs[R_EAX] = -env->regs[R_EAX];
224                 env->eflags |= CC_C;
225             } else {
226                 env->eflags &= ~CC_C;
227             }
228             break;
229 #ifndef TARGET_ABI32
230         case EXCP_SYSCALL:
231             /* syscall from syscall instruction */
232             if (bsd_type == target_freebsd)
233                 env->regs[R_EAX] = do_freebsd_syscall(env,
234                                                       env->regs[R_EAX],
235                                                       env->regs[R_EDI],
236                                                       env->regs[R_ESI],
237                                                       env->regs[R_EDX],
238                                                       env->regs[R_ECX],
239                                                       env->regs[8],
240                                                       env->regs[9], 0, 0);
241             else { //if (bsd_type == target_openbsd)
242                 env->regs[R_EAX] = do_openbsd_syscall(env,
243                                                       env->regs[R_EAX],
244                                                       env->regs[R_EDI],
245                                                       env->regs[R_ESI],
246                                                       env->regs[R_EDX],
247                                                       env->regs[10],
248                                                       env->regs[8],
249                                                       env->regs[9]);
250             }
251             env->eip = env->exception_next_eip;
252             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
253                 env->regs[R_EAX] = -env->regs[R_EAX];
254                 env->eflags |= CC_C;
255             } else {
256                 env->eflags &= ~CC_C;
257             }
258             break;
259 #endif
260 #if 0
261         case EXCP0B_NOSEG:
262         case EXCP0C_STACK:
263             info.si_signo = SIGBUS;
264             info.si_errno = 0;
265             info.si_code = TARGET_SI_KERNEL;
266             info._sifields._sigfault._addr = 0;
267             queue_signal(env, info.si_signo, &info);
268             break;
269         case EXCP0D_GPF:
270             /* XXX: potential problem if ABI32 */
271 #ifndef TARGET_X86_64
272             if (env->eflags & VM_MASK) {
273                 handle_vm86_fault(env);
274             } else
275 #endif
276             {
277                 info.si_signo = SIGSEGV;
278                 info.si_errno = 0;
279                 info.si_code = TARGET_SI_KERNEL;
280                 info._sifields._sigfault._addr = 0;
281                 queue_signal(env, info.si_signo, &info);
282             }
283             break;
284         case EXCP0E_PAGE:
285             info.si_signo = SIGSEGV;
286             info.si_errno = 0;
287             if (!(env->error_code & 1))
288                 info.si_code = TARGET_SEGV_MAPERR;
289             else
290                 info.si_code = TARGET_SEGV_ACCERR;
291             info._sifields._sigfault._addr = env->cr[2];
292             queue_signal(env, info.si_signo, &info);
293             break;
294         case EXCP00_DIVZ:
295 #ifndef TARGET_X86_64
296             if (env->eflags & VM_MASK) {
297                 handle_vm86_trap(env, trapnr);
298             } else
299 #endif
300             {
301                 /* division by zero */
302                 info.si_signo = SIGFPE;
303                 info.si_errno = 0;
304                 info.si_code = TARGET_FPE_INTDIV;
305                 info._sifields._sigfault._addr = env->eip;
306                 queue_signal(env, info.si_signo, &info);
307             }
308             break;
309         case EXCP01_DB:
310         case EXCP03_INT3:
311 #ifndef TARGET_X86_64
312             if (env->eflags & VM_MASK) {
313                 handle_vm86_trap(env, trapnr);
314             } else
315 #endif
316             {
317                 info.si_signo = SIGTRAP;
318                 info.si_errno = 0;
319                 if (trapnr == EXCP01_DB) {
320                     info.si_code = TARGET_TRAP_BRKPT;
321                     info._sifields._sigfault._addr = env->eip;
322                 } else {
323                     info.si_code = TARGET_SI_KERNEL;
324                     info._sifields._sigfault._addr = 0;
325                 }
326                 queue_signal(env, info.si_signo, &info);
327             }
328             break;
329         case EXCP04_INTO:
330         case EXCP05_BOUND:
331 #ifndef TARGET_X86_64
332             if (env->eflags & VM_MASK) {
333                 handle_vm86_trap(env, trapnr);
334             } else
335 #endif
336             {
337                 info.si_signo = SIGSEGV;
338                 info.si_errno = 0;
339                 info.si_code = TARGET_SI_KERNEL;
340                 info._sifields._sigfault._addr = 0;
341                 queue_signal(env, info.si_signo, &info);
342             }
343             break;
344         case EXCP06_ILLOP:
345             info.si_signo = SIGILL;
346             info.si_errno = 0;
347             info.si_code = TARGET_ILL_ILLOPN;
348             info._sifields._sigfault._addr = env->eip;
349             queue_signal(env, info.si_signo, &info);
350             break;
351 #endif
352         case EXCP_INTERRUPT:
353             /* just indicate that signals should be handled asap */
354             break;
355 #if 0
356         case EXCP_DEBUG:
357             {
358                 int sig;
359 
360                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
361                 if (sig)
362                   {
363                     info.si_signo = sig;
364                     info.si_errno = 0;
365                     info.si_code = TARGET_TRAP_BRKPT;
366                     queue_signal(env, info.si_signo, &info);
367                   }
368             }
369             break;
370 #endif
371         default:
372             pc = env->segs[R_CS].base + env->eip;
373             fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
374                     (long)pc, trapnr);
375             abort();
376         }
377         process_pending_signals(env);
378     }
379 }
380 #endif
381 
382 #ifdef TARGET_SPARC
383 #define SPARC64_STACK_BIAS 2047
384 
385 //#define DEBUG_WIN
386 /* WARNING: dealing with register windows _is_ complicated. More info
387    can be found at http://www.sics.se/~psm/sparcstack.html */
388 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
389 {
390     index = (index + cwp * 16) % (16 * env->nwindows);
391     /* wrap handling : if cwp is on the last window, then we use the
392        registers 'after' the end */
393     if (index < 8 && env->cwp == env->nwindows - 1)
394         index += 16 * env->nwindows;
395     return index;
396 }
397 
398 /* save the register window 'cwp1' */
399 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
400 {
401     unsigned int i;
402     abi_ulong sp_ptr;
403 
404     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
405 #ifdef TARGET_SPARC64
406     if (sp_ptr & 3)
407         sp_ptr += SPARC64_STACK_BIAS;
408 #endif
409 #if defined(DEBUG_WIN)
410     printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
411            sp_ptr, cwp1);
412 #endif
413     for(i = 0; i < 16; i++) {
414         /* FIXME - what to do if put_user() fails? */
415         put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
416         sp_ptr += sizeof(abi_ulong);
417     }
418 }
419 
420 static void save_window(CPUSPARCState *env)
421 {
422 #ifndef TARGET_SPARC64
423     unsigned int new_wim;
424     new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
425         ((1LL << env->nwindows) - 1);
426     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
427     env->wim = new_wim;
428 #else
429     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
430     env->cansave++;
431     env->canrestore--;
432 #endif
433 }
434 
435 static void restore_window(CPUSPARCState *env)
436 {
437 #ifndef TARGET_SPARC64
438     unsigned int new_wim;
439 #endif
440     unsigned int i, cwp1;
441     abi_ulong sp_ptr;
442 
443 #ifndef TARGET_SPARC64
444     new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
445         ((1LL << env->nwindows) - 1);
446 #endif
447 
448     /* restore the invalid window */
449     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
450     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
451 #ifdef TARGET_SPARC64
452     if (sp_ptr & 3)
453         sp_ptr += SPARC64_STACK_BIAS;
454 #endif
455 #if defined(DEBUG_WIN)
456     printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
457            sp_ptr, cwp1);
458 #endif
459     for(i = 0; i < 16; i++) {
460         /* FIXME - what to do if get_user() fails? */
461         get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
462         sp_ptr += sizeof(abi_ulong);
463     }
464 #ifdef TARGET_SPARC64
465     env->canrestore++;
466     if (env->cleanwin < env->nwindows - 1)
467         env->cleanwin++;
468     env->cansave--;
469 #else
470     env->wim = new_wim;
471 #endif
472 }
473 
474 static void flush_windows(CPUSPARCState *env)
475 {
476     int offset, cwp1;
477 
478     offset = 1;
479     for(;;) {
480         /* if restore would invoke restore_window(), then we can stop */
481         cwp1 = cpu_cwp_inc(env, env->cwp + offset);
482 #ifndef TARGET_SPARC64
483         if (env->wim & (1 << cwp1))
484             break;
485 #else
486         if (env->canrestore == 0)
487             break;
488         env->cansave++;
489         env->canrestore--;
490 #endif
491         save_window_offset(env, cwp1);
492         offset++;
493     }
494     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
495 #ifndef TARGET_SPARC64
496     /* set wim so that restore will reload the registers */
497     env->wim = 1 << cwp1;
498 #endif
499 #if defined(DEBUG_WIN)
500     printf("flush_windows: nb=%d\n", offset - 1);
501 #endif
502 }
503 
504 void cpu_loop(CPUSPARCState *env)
505 {
506     CPUState *cs = CPU(sparc_env_get_cpu(env));
507     int trapnr, ret, syscall_nr;
508     //target_siginfo_t info;
509 
510     while (1) {
511         trapnr = cpu_sparc_exec(cs);
512 
513         switch (trapnr) {
514 #ifndef TARGET_SPARC64
515         case 0x80:
516 #else
517         /* FreeBSD uses 0x141 for syscalls too */
518         case 0x141:
519             if (bsd_type != target_freebsd)
520                 goto badtrap;
521         case 0x100:
522 #endif
523             syscall_nr = env->gregs[1];
524             if (bsd_type == target_freebsd)
525                 ret = do_freebsd_syscall(env, syscall_nr,
526                                          env->regwptr[0], env->regwptr[1],
527                                          env->regwptr[2], env->regwptr[3],
528                                          env->regwptr[4], env->regwptr[5], 0, 0);
529             else if (bsd_type == target_netbsd)
530                 ret = do_netbsd_syscall(env, syscall_nr,
531                                         env->regwptr[0], env->regwptr[1],
532                                         env->regwptr[2], env->regwptr[3],
533                                         env->regwptr[4], env->regwptr[5]);
534             else { //if (bsd_type == target_openbsd)
535 #if defined(TARGET_SPARC64)
536                 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
537                                 TARGET_OPENBSD_SYSCALL_G2RFLAG);
538 #endif
539                 ret = do_openbsd_syscall(env, syscall_nr,
540                                          env->regwptr[0], env->regwptr[1],
541                                          env->regwptr[2], env->regwptr[3],
542                                          env->regwptr[4], env->regwptr[5]);
543             }
544             if ((unsigned int)ret >= (unsigned int)(-515)) {
545                 ret = -ret;
546 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
547                 env->xcc |= PSR_CARRY;
548 #else
549                 env->psr |= PSR_CARRY;
550 #endif
551             } else {
552 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
553                 env->xcc &= ~PSR_CARRY;
554 #else
555                 env->psr &= ~PSR_CARRY;
556 #endif
557             }
558             env->regwptr[0] = ret;
559             /* next instruction */
560 #if defined(TARGET_SPARC64)
561             if (bsd_type == target_openbsd &&
562                 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
563                 env->pc = env->gregs[2];
564                 env->npc = env->pc + 4;
565             } else if (bsd_type == target_openbsd &&
566                        env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
567                 env->pc = env->gregs[7];
568                 env->npc = env->pc + 4;
569             } else {
570                 env->pc = env->npc;
571                 env->npc = env->npc + 4;
572             }
573 #else
574             env->pc = env->npc;
575             env->npc = env->npc + 4;
576 #endif
577             break;
578         case 0x83: /* flush windows */
579 #ifdef TARGET_ABI32
580         case 0x103:
581 #endif
582             flush_windows(env);
583             /* next instruction */
584             env->pc = env->npc;
585             env->npc = env->npc + 4;
586             break;
587 #ifndef TARGET_SPARC64
588         case TT_WIN_OVF: /* window overflow */
589             save_window(env);
590             break;
591         case TT_WIN_UNF: /* window underflow */
592             restore_window(env);
593             break;
594         case TT_TFAULT:
595         case TT_DFAULT:
596 #if 0
597             {
598                 info.si_signo = SIGSEGV;
599                 info.si_errno = 0;
600                 /* XXX: check env->error_code */
601                 info.si_code = TARGET_SEGV_MAPERR;
602                 info._sifields._sigfault._addr = env->mmuregs[4];
603                 queue_signal(env, info.si_signo, &info);
604             }
605 #endif
606             break;
607 #else
608         case TT_SPILL: /* window overflow */
609             save_window(env);
610             break;
611         case TT_FILL: /* window underflow */
612             restore_window(env);
613             break;
614         case TT_TFAULT:
615         case TT_DFAULT:
616 #if 0
617             {
618                 info.si_signo = SIGSEGV;
619                 info.si_errno = 0;
620                 /* XXX: check env->error_code */
621                 info.si_code = TARGET_SEGV_MAPERR;
622                 if (trapnr == TT_DFAULT)
623                     info._sifields._sigfault._addr = env->dmmuregs[4];
624                 else
625                     info._sifields._sigfault._addr = env->tsptr->tpc;
626                 //queue_signal(env, info.si_signo, &info);
627             }
628 #endif
629             break;
630 #endif
631         case EXCP_INTERRUPT:
632             /* just indicate that signals should be handled asap */
633             break;
634         case EXCP_DEBUG:
635             {
636                 int sig;
637 
638                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
639 #if 0
640                 if (sig)
641                   {
642                     info.si_signo = sig;
643                     info.si_errno = 0;
644                     info.si_code = TARGET_TRAP_BRKPT;
645                     //queue_signal(env, info.si_signo, &info);
646                   }
647 #endif
648             }
649             break;
650         default:
651 #ifdef TARGET_SPARC64
652         badtrap:
653 #endif
654             printf ("Unhandled trap: 0x%x\n", trapnr);
655             cpu_dump_state(cs, stderr, fprintf, 0);
656             exit (1);
657         }
658         process_pending_signals (env);
659     }
660 }
661 
662 #endif
663 
664 static void usage(void)
665 {
666     printf("qemu-" TARGET_NAME " version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
667            "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
668            "BSD CPU emulator (compiled for %s emulation)\n"
669            "\n"
670            "Standard options:\n"
671            "-h                print this help\n"
672            "-g port           wait gdb connection to port\n"
673            "-L path           set the elf interpreter prefix (default=%s)\n"
674            "-s size           set the stack size in bytes (default=%ld)\n"
675            "-cpu model        select CPU (-cpu help for list)\n"
676            "-drop-ld-preload  drop LD_PRELOAD for target process\n"
677            "-E var=value      sets/modifies targets environment variable(s)\n"
678            "-U var            unsets targets environment variable(s)\n"
679            "-B address        set guest_base address to address\n"
680            "-bsd type         select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
681            "\n"
682            "Debug options:\n"
683            "-d item1[,...]    enable logging of specified items\n"
684            "                  (use '-d help' for a list of log items)\n"
685            "-D logfile        write logs to 'logfile' (default stderr)\n"
686            "-p pagesize       set the host page size to 'pagesize'\n"
687            "-singlestep       always run in singlestep mode\n"
688            "-strace           log system calls\n"
689            "\n"
690            "Environment variables:\n"
691            "QEMU_STRACE       Print system calls and arguments similar to the\n"
692            "                  'strace' program.  Enable by setting to any value.\n"
693            "You can use -E and -U options to set/unset environment variables\n"
694            "for target process.  It is possible to provide several variables\n"
695            "by repeating the option.  For example:\n"
696            "    -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
697            "Note that if you provide several changes to single variable\n"
698            "last change will stay in effect.\n"
699            ,
700            TARGET_NAME,
701            interp_prefix,
702            x86_stack_size);
703     exit(1);
704 }
705 
706 THREAD CPUState *thread_cpu;
707 
708 /* Assumes contents are already zeroed.  */
709 void init_task_state(TaskState *ts)
710 {
711     int i;
712 
713     ts->used = 1;
714     ts->first_free = ts->sigqueue_table;
715     for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
716         ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
717     }
718     ts->sigqueue_table[i].next = NULL;
719 }
720 
721 int main(int argc, char **argv)
722 {
723     const char *filename;
724     const char *cpu_model;
725     const char *log_file = NULL;
726     const char *log_mask = NULL;
727     struct target_pt_regs regs1, *regs = &regs1;
728     struct image_info info1, *info = &info1;
729     TaskState ts1, *ts = &ts1;
730     CPUArchState *env;
731     CPUState *cpu;
732     int optind;
733     const char *r;
734     int gdbstub_port = 0;
735     char **target_environ, **wrk;
736     envlist_t *envlist = NULL;
737     bsd_type = target_openbsd;
738 
739     if (argc <= 1)
740         usage();
741 
742     module_call_init(MODULE_INIT_QOM);
743 
744     if ((envlist = envlist_create()) == NULL) {
745         (void) fprintf(stderr, "Unable to allocate envlist\n");
746         exit(1);
747     }
748 
749     /* add current environment into the list */
750     for (wrk = environ; *wrk != NULL; wrk++) {
751         (void) envlist_setenv(envlist, *wrk);
752     }
753 
754     cpu_model = NULL;
755 #if defined(cpudef_setup)
756     cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
757 #endif
758 
759     optind = 1;
760     for(;;) {
761         if (optind >= argc)
762             break;
763         r = argv[optind];
764         if (r[0] != '-')
765             break;
766         optind++;
767         r++;
768         if (!strcmp(r, "-")) {
769             break;
770         } else if (!strcmp(r, "d")) {
771             if (optind >= argc) {
772                 break;
773             }
774             log_mask = argv[optind++];
775         } else if (!strcmp(r, "D")) {
776             if (optind >= argc) {
777                 break;
778             }
779             log_file = argv[optind++];
780         } else if (!strcmp(r, "E")) {
781             r = argv[optind++];
782             if (envlist_setenv(envlist, r) != 0)
783                 usage();
784         } else if (!strcmp(r, "ignore-environment")) {
785             envlist_free(envlist);
786             if ((envlist = envlist_create()) == NULL) {
787                 (void) fprintf(stderr, "Unable to allocate envlist\n");
788                 exit(1);
789             }
790         } else if (!strcmp(r, "U")) {
791             r = argv[optind++];
792             if (envlist_unsetenv(envlist, r) != 0)
793                 usage();
794         } else if (!strcmp(r, "s")) {
795             r = argv[optind++];
796             x86_stack_size = strtol(r, (char **)&r, 0);
797             if (x86_stack_size <= 0)
798                 usage();
799             if (*r == 'M')
800                 x86_stack_size *= 1024 * 1024;
801             else if (*r == 'k' || *r == 'K')
802                 x86_stack_size *= 1024;
803         } else if (!strcmp(r, "L")) {
804             interp_prefix = argv[optind++];
805         } else if (!strcmp(r, "p")) {
806             qemu_host_page_size = atoi(argv[optind++]);
807             if (qemu_host_page_size == 0 ||
808                 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
809                 fprintf(stderr, "page size must be a power of two\n");
810                 exit(1);
811             }
812         } else if (!strcmp(r, "g")) {
813             gdbstub_port = atoi(argv[optind++]);
814         } else if (!strcmp(r, "r")) {
815             qemu_uname_release = argv[optind++];
816         } else if (!strcmp(r, "cpu")) {
817             cpu_model = argv[optind++];
818             if (is_help_option(cpu_model)) {
819 /* XXX: implement xxx_cpu_list for targets that still miss it */
820 #if defined(cpu_list)
821                     cpu_list(stdout, &fprintf);
822 #endif
823                 exit(1);
824             }
825         } else if (!strcmp(r, "B")) {
826            guest_base = strtol(argv[optind++], NULL, 0);
827            have_guest_base = 1;
828         } else if (!strcmp(r, "drop-ld-preload")) {
829             (void) envlist_unsetenv(envlist, "LD_PRELOAD");
830         } else if (!strcmp(r, "bsd")) {
831             if (!strcasecmp(argv[optind], "freebsd")) {
832                 bsd_type = target_freebsd;
833             } else if (!strcasecmp(argv[optind], "netbsd")) {
834                 bsd_type = target_netbsd;
835             } else if (!strcasecmp(argv[optind], "openbsd")) {
836                 bsd_type = target_openbsd;
837             } else {
838                 usage();
839             }
840             optind++;
841         } else if (!strcmp(r, "singlestep")) {
842             singlestep = 1;
843         } else if (!strcmp(r, "strace")) {
844             do_strace = 1;
845         } else
846         {
847             usage();
848         }
849     }
850 
851     /* init debug */
852     qemu_log_needs_buffers();
853     qemu_set_log_filename(log_file);
854     if (log_mask) {
855         int mask;
856 
857         mask = qemu_str_to_log_mask(log_mask);
858         if (!mask) {
859             qemu_print_log_usage(stdout);
860             exit(1);
861         }
862         qemu_set_log(mask);
863     }
864 
865     if (optind >= argc) {
866         usage();
867     }
868     filename = argv[optind];
869 
870     /* Zero out regs */
871     memset(regs, 0, sizeof(struct target_pt_regs));
872 
873     /* Zero out image_info */
874     memset(info, 0, sizeof(struct image_info));
875 
876     /* Scan interp_prefix dir for replacement files. */
877     init_paths(interp_prefix);
878 
879     if (cpu_model == NULL) {
880 #if defined(TARGET_I386)
881 #ifdef TARGET_X86_64
882         cpu_model = "qemu64";
883 #else
884         cpu_model = "qemu32";
885 #endif
886 #elif defined(TARGET_SPARC)
887 #ifdef TARGET_SPARC64
888         cpu_model = "TI UltraSparc II";
889 #else
890         cpu_model = "Fujitsu MB86904";
891 #endif
892 #else
893         cpu_model = "any";
894 #endif
895     }
896     tcg_exec_init(0);
897     /* NOTE: we need to init the CPU at this stage to get
898        qemu_host_page_size */
899     cpu = cpu_init(cpu_model);
900     if (!cpu) {
901         fprintf(stderr, "Unable to find CPU definition\n");
902         exit(1);
903     }
904     env = cpu->env_ptr;
905 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
906     cpu_reset(cpu);
907 #endif
908     thread_cpu = cpu;
909 
910     if (getenv("QEMU_STRACE")) {
911         do_strace = 1;
912     }
913 
914     target_environ = envlist_to_environ(envlist, NULL);
915     envlist_free(envlist);
916 
917     /*
918      * Now that page sizes are configured in cpu_init() we can do
919      * proper page alignment for guest_base.
920      */
921     guest_base = HOST_PAGE_ALIGN(guest_base);
922 
923     /*
924      * Read in mmap_min_addr kernel parameter.  This value is used
925      * When loading the ELF image to determine whether guest_base
926      * is needed.
927      *
928      * When user has explicitly set the quest base, we skip this
929      * test.
930      */
931     if (!have_guest_base) {
932         FILE *fp;
933 
934         if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
935             unsigned long tmp;
936             if (fscanf(fp, "%lu", &tmp) == 1) {
937                 mmap_min_addr = tmp;
938                 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
939             }
940             fclose(fp);
941         }
942     }
943 
944     if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
945         printf("Error loading %s\n", filename);
946         _exit(1);
947     }
948 
949     for (wrk = target_environ; *wrk; wrk++) {
950         free(*wrk);
951     }
952 
953     free(target_environ);
954 
955     if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
956         qemu_log("guest_base  0x%lx\n", guest_base);
957         log_page_dump();
958 
959         qemu_log("start_brk   0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
960         qemu_log("end_code    0x" TARGET_ABI_FMT_lx "\n", info->end_code);
961         qemu_log("start_code  0x" TARGET_ABI_FMT_lx "\n",
962                  info->start_code);
963         qemu_log("start_data  0x" TARGET_ABI_FMT_lx "\n",
964                  info->start_data);
965         qemu_log("end_data    0x" TARGET_ABI_FMT_lx "\n", info->end_data);
966         qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
967                  info->start_stack);
968         qemu_log("brk         0x" TARGET_ABI_FMT_lx "\n", info->brk);
969         qemu_log("entry       0x" TARGET_ABI_FMT_lx "\n", info->entry);
970     }
971 
972     target_set_brk(info->brk);
973     syscall_init();
974     signal_init();
975 
976     /* Now that we've loaded the binary, GUEST_BASE is fixed.  Delay
977        generating the prologue until now so that the prologue can take
978        the real value of GUEST_BASE into account.  */
979     tcg_prologue_init(&tcg_ctx);
980 
981     /* build Task State */
982     memset(ts, 0, sizeof(TaskState));
983     init_task_state(ts);
984     ts->info = info;
985     cpu->opaque = ts;
986 
987 #if defined(TARGET_I386)
988     env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
989     env->hflags |= HF_PE_MASK | HF_CPL_MASK;
990     if (env->features[FEAT_1_EDX] & CPUID_SSE) {
991         env->cr[4] |= CR4_OSFXSR_MASK;
992         env->hflags |= HF_OSFXSR_MASK;
993     }
994 #ifndef TARGET_ABI32
995     /* enable 64 bit mode if possible */
996     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
997         fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
998         exit(1);
999     }
1000     env->cr[4] |= CR4_PAE_MASK;
1001     env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
1002     env->hflags |= HF_LMA_MASK;
1003 #endif
1004 
1005     /* flags setup : we activate the IRQs by default as in user mode */
1006     env->eflags |= IF_MASK;
1007 
1008     /* linux register setup */
1009 #ifndef TARGET_ABI32
1010     env->regs[R_EAX] = regs->rax;
1011     env->regs[R_EBX] = regs->rbx;
1012     env->regs[R_ECX] = regs->rcx;
1013     env->regs[R_EDX] = regs->rdx;
1014     env->regs[R_ESI] = regs->rsi;
1015     env->regs[R_EDI] = regs->rdi;
1016     env->regs[R_EBP] = regs->rbp;
1017     env->regs[R_ESP] = regs->rsp;
1018     env->eip = regs->rip;
1019 #else
1020     env->regs[R_EAX] = regs->eax;
1021     env->regs[R_EBX] = regs->ebx;
1022     env->regs[R_ECX] = regs->ecx;
1023     env->regs[R_EDX] = regs->edx;
1024     env->regs[R_ESI] = regs->esi;
1025     env->regs[R_EDI] = regs->edi;
1026     env->regs[R_EBP] = regs->ebp;
1027     env->regs[R_ESP] = regs->esp;
1028     env->eip = regs->eip;
1029 #endif
1030 
1031     /* linux interrupt setup */
1032 #ifndef TARGET_ABI32
1033     env->idt.limit = 511;
1034 #else
1035     env->idt.limit = 255;
1036 #endif
1037     env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
1038                                 PROT_READ|PROT_WRITE,
1039                                 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1040     idt_table = g2h(env->idt.base);
1041     set_idt(0, 0);
1042     set_idt(1, 0);
1043     set_idt(2, 0);
1044     set_idt(3, 3);
1045     set_idt(4, 3);
1046     set_idt(5, 0);
1047     set_idt(6, 0);
1048     set_idt(7, 0);
1049     set_idt(8, 0);
1050     set_idt(9, 0);
1051     set_idt(10, 0);
1052     set_idt(11, 0);
1053     set_idt(12, 0);
1054     set_idt(13, 0);
1055     set_idt(14, 0);
1056     set_idt(15, 0);
1057     set_idt(16, 0);
1058     set_idt(17, 0);
1059     set_idt(18, 0);
1060     set_idt(19, 0);
1061     set_idt(0x80, 3);
1062 
1063     /* linux segment setup */
1064     {
1065         uint64_t *gdt_table;
1066         env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
1067                                     PROT_READ|PROT_WRITE,
1068                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1069         env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
1070         gdt_table = g2h(env->gdt.base);
1071 #ifdef TARGET_ABI32
1072         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1073                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1074                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1075 #else
1076         /* 64 bit code segment */
1077         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1078                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1079                  DESC_L_MASK |
1080                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1081 #endif
1082         write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
1083                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1084                  (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
1085     }
1086 
1087     cpu_x86_load_seg(env, R_CS, __USER_CS);
1088     cpu_x86_load_seg(env, R_SS, __USER_DS);
1089 #ifdef TARGET_ABI32
1090     cpu_x86_load_seg(env, R_DS, __USER_DS);
1091     cpu_x86_load_seg(env, R_ES, __USER_DS);
1092     cpu_x86_load_seg(env, R_FS, __USER_DS);
1093     cpu_x86_load_seg(env, R_GS, __USER_DS);
1094     /* This hack makes Wine work... */
1095     env->segs[R_FS].selector = 0;
1096 #else
1097     cpu_x86_load_seg(env, R_DS, 0);
1098     cpu_x86_load_seg(env, R_ES, 0);
1099     cpu_x86_load_seg(env, R_FS, 0);
1100     cpu_x86_load_seg(env, R_GS, 0);
1101 #endif
1102 #elif defined(TARGET_SPARC)
1103     {
1104         int i;
1105         env->pc = regs->pc;
1106         env->npc = regs->npc;
1107         env->y = regs->y;
1108         for(i = 0; i < 8; i++)
1109             env->gregs[i] = regs->u_regs[i];
1110         for(i = 0; i < 8; i++)
1111             env->regwptr[i] = regs->u_regs[i + 8];
1112     }
1113 #else
1114 #error unsupported target CPU
1115 #endif
1116 
1117     if (gdbstub_port) {
1118         gdbserver_start (gdbstub_port);
1119         gdb_handlesig(cpu, 0);
1120     }
1121     cpu_loop(env);
1122     /* never exits */
1123     return 0;
1124 }
1125