1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include <stdlib.h> 20 #include <stdio.h> 21 #include <stdarg.h> 22 #include <string.h> 23 #include <errno.h> 24 #include <unistd.h> 25 #include <machine/trap.h> 26 #include <sys/types.h> 27 #include <sys/mman.h> 28 29 #include "qemu.h" 30 #include "qemu-common.h" 31 /* For tb_lock */ 32 #include "cpu.h" 33 #include "tcg.h" 34 #include "qemu/timer.h" 35 #include "qemu/envlist.h" 36 37 int singlestep; 38 unsigned long mmap_min_addr; 39 unsigned long guest_base; 40 int have_guest_base; 41 unsigned long reserved_va; 42 43 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 44 const char *qemu_uname_release; 45 extern char **environ; 46 enum BSDType bsd_type; 47 48 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 49 we allocate a bigger stack. Need a better solution, for example 50 by remapping the process stack directly at the right place */ 51 unsigned long x86_stack_size = 512 * 1024; 52 53 void gemu_log(const char *fmt, ...) 54 { 55 va_list ap; 56 57 va_start(ap, fmt); 58 vfprintf(stderr, fmt, ap); 59 va_end(ap); 60 } 61 62 #if defined(TARGET_I386) 63 int cpu_get_pic_interrupt(CPUX86State *env) 64 { 65 return -1; 66 } 67 #endif 68 69 /* These are no-ops because we are not threadsafe. */ 70 static inline void cpu_exec_start(CPUArchState *env) 71 { 72 } 73 74 static inline void cpu_exec_end(CPUArchState *env) 75 { 76 } 77 78 static inline void start_exclusive(void) 79 { 80 } 81 82 static inline void end_exclusive(void) 83 { 84 } 85 86 void fork_start(void) 87 { 88 } 89 90 void fork_end(int child) 91 { 92 if (child) { 93 gdbserver_fork(thread_cpu); 94 } 95 } 96 97 void cpu_list_lock(void) 98 { 99 } 100 101 void cpu_list_unlock(void) 102 { 103 } 104 105 #ifdef TARGET_I386 106 /***********************************************************/ 107 /* CPUX86 core interface */ 108 109 uint64_t cpu_get_tsc(CPUX86State *env) 110 { 111 return cpu_get_host_ticks(); 112 } 113 114 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 115 int flags) 116 { 117 unsigned int e1, e2; 118 uint32_t *p; 119 e1 = (addr << 16) | (limit & 0xffff); 120 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 121 e2 |= flags; 122 p = ptr; 123 p[0] = tswap32(e1); 124 p[1] = tswap32(e2); 125 } 126 127 static uint64_t *idt_table; 128 #ifdef TARGET_X86_64 129 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 130 uint64_t addr, unsigned int sel) 131 { 132 uint32_t *p, e1, e2; 133 e1 = (addr & 0xffff) | (sel << 16); 134 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 135 p = ptr; 136 p[0] = tswap32(e1); 137 p[1] = tswap32(e2); 138 p[2] = tswap32(addr >> 32); 139 p[3] = 0; 140 } 141 /* only dpl matters as we do only user space emulation */ 142 static void set_idt(int n, unsigned int dpl) 143 { 144 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 145 } 146 #else 147 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 148 uint32_t addr, unsigned int sel) 149 { 150 uint32_t *p, e1, e2; 151 e1 = (addr & 0xffff) | (sel << 16); 152 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 153 p = ptr; 154 p[0] = tswap32(e1); 155 p[1] = tswap32(e2); 156 } 157 158 /* only dpl matters as we do only user space emulation */ 159 static void set_idt(int n, unsigned int dpl) 160 { 161 set_gate(idt_table + n, 0, dpl, 0, 0); 162 } 163 #endif 164 165 void cpu_loop(CPUX86State *env) 166 { 167 X86CPU *cpu = x86_env_get_cpu(env); 168 CPUState *cs = CPU(cpu); 169 int trapnr; 170 abi_ulong pc; 171 //target_siginfo_t info; 172 173 for(;;) { 174 trapnr = cpu_x86_exec(cs); 175 switch(trapnr) { 176 case 0x80: 177 /* syscall from int $0x80 */ 178 if (bsd_type == target_freebsd) { 179 abi_ulong params = (abi_ulong) env->regs[R_ESP] + 180 sizeof(int32_t); 181 int32_t syscall_nr = env->regs[R_EAX]; 182 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8; 183 184 if (syscall_nr == TARGET_FREEBSD_NR_syscall) { 185 get_user_s32(syscall_nr, params); 186 params += sizeof(int32_t); 187 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) { 188 get_user_s32(syscall_nr, params); 189 params += sizeof(int64_t); 190 } 191 get_user_s32(arg1, params); 192 params += sizeof(int32_t); 193 get_user_s32(arg2, params); 194 params += sizeof(int32_t); 195 get_user_s32(arg3, params); 196 params += sizeof(int32_t); 197 get_user_s32(arg4, params); 198 params += sizeof(int32_t); 199 get_user_s32(arg5, params); 200 params += sizeof(int32_t); 201 get_user_s32(arg6, params); 202 params += sizeof(int32_t); 203 get_user_s32(arg7, params); 204 params += sizeof(int32_t); 205 get_user_s32(arg8, params); 206 env->regs[R_EAX] = do_freebsd_syscall(env, 207 syscall_nr, 208 arg1, 209 arg2, 210 arg3, 211 arg4, 212 arg5, 213 arg6, 214 arg7, 215 arg8); 216 } else { //if (bsd_type == target_openbsd) 217 env->regs[R_EAX] = do_openbsd_syscall(env, 218 env->regs[R_EAX], 219 env->regs[R_EBX], 220 env->regs[R_ECX], 221 env->regs[R_EDX], 222 env->regs[R_ESI], 223 env->regs[R_EDI], 224 env->regs[R_EBP]); 225 } 226 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { 227 env->regs[R_EAX] = -env->regs[R_EAX]; 228 env->eflags |= CC_C; 229 } else { 230 env->eflags &= ~CC_C; 231 } 232 break; 233 #ifndef TARGET_ABI32 234 case EXCP_SYSCALL: 235 /* syscall from syscall instruction */ 236 if (bsd_type == target_freebsd) 237 env->regs[R_EAX] = do_freebsd_syscall(env, 238 env->regs[R_EAX], 239 env->regs[R_EDI], 240 env->regs[R_ESI], 241 env->regs[R_EDX], 242 env->regs[R_ECX], 243 env->regs[8], 244 env->regs[9], 0, 0); 245 else { //if (bsd_type == target_openbsd) 246 env->regs[R_EAX] = do_openbsd_syscall(env, 247 env->regs[R_EAX], 248 env->regs[R_EDI], 249 env->regs[R_ESI], 250 env->regs[R_EDX], 251 env->regs[10], 252 env->regs[8], 253 env->regs[9]); 254 } 255 env->eip = env->exception_next_eip; 256 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { 257 env->regs[R_EAX] = -env->regs[R_EAX]; 258 env->eflags |= CC_C; 259 } else { 260 env->eflags &= ~CC_C; 261 } 262 break; 263 #endif 264 #if 0 265 case EXCP0B_NOSEG: 266 case EXCP0C_STACK: 267 info.si_signo = SIGBUS; 268 info.si_errno = 0; 269 info.si_code = TARGET_SI_KERNEL; 270 info._sifields._sigfault._addr = 0; 271 queue_signal(env, info.si_signo, &info); 272 break; 273 case EXCP0D_GPF: 274 /* XXX: potential problem if ABI32 */ 275 #ifndef TARGET_X86_64 276 if (env->eflags & VM_MASK) { 277 handle_vm86_fault(env); 278 } else 279 #endif 280 { 281 info.si_signo = SIGSEGV; 282 info.si_errno = 0; 283 info.si_code = TARGET_SI_KERNEL; 284 info._sifields._sigfault._addr = 0; 285 queue_signal(env, info.si_signo, &info); 286 } 287 break; 288 case EXCP0E_PAGE: 289 info.si_signo = SIGSEGV; 290 info.si_errno = 0; 291 if (!(env->error_code & 1)) 292 info.si_code = TARGET_SEGV_MAPERR; 293 else 294 info.si_code = TARGET_SEGV_ACCERR; 295 info._sifields._sigfault._addr = env->cr[2]; 296 queue_signal(env, info.si_signo, &info); 297 break; 298 case EXCP00_DIVZ: 299 #ifndef TARGET_X86_64 300 if (env->eflags & VM_MASK) { 301 handle_vm86_trap(env, trapnr); 302 } else 303 #endif 304 { 305 /* division by zero */ 306 info.si_signo = SIGFPE; 307 info.si_errno = 0; 308 info.si_code = TARGET_FPE_INTDIV; 309 info._sifields._sigfault._addr = env->eip; 310 queue_signal(env, info.si_signo, &info); 311 } 312 break; 313 case EXCP01_DB: 314 case EXCP03_INT3: 315 #ifndef TARGET_X86_64 316 if (env->eflags & VM_MASK) { 317 handle_vm86_trap(env, trapnr); 318 } else 319 #endif 320 { 321 info.si_signo = SIGTRAP; 322 info.si_errno = 0; 323 if (trapnr == EXCP01_DB) { 324 info.si_code = TARGET_TRAP_BRKPT; 325 info._sifields._sigfault._addr = env->eip; 326 } else { 327 info.si_code = TARGET_SI_KERNEL; 328 info._sifields._sigfault._addr = 0; 329 } 330 queue_signal(env, info.si_signo, &info); 331 } 332 break; 333 case EXCP04_INTO: 334 case EXCP05_BOUND: 335 #ifndef TARGET_X86_64 336 if (env->eflags & VM_MASK) { 337 handle_vm86_trap(env, trapnr); 338 } else 339 #endif 340 { 341 info.si_signo = SIGSEGV; 342 info.si_errno = 0; 343 info.si_code = TARGET_SI_KERNEL; 344 info._sifields._sigfault._addr = 0; 345 queue_signal(env, info.si_signo, &info); 346 } 347 break; 348 case EXCP06_ILLOP: 349 info.si_signo = SIGILL; 350 info.si_errno = 0; 351 info.si_code = TARGET_ILL_ILLOPN; 352 info._sifields._sigfault._addr = env->eip; 353 queue_signal(env, info.si_signo, &info); 354 break; 355 #endif 356 case EXCP_INTERRUPT: 357 /* just indicate that signals should be handled asap */ 358 break; 359 #if 0 360 case EXCP_DEBUG: 361 { 362 int sig; 363 364 sig = gdb_handlesig (env, TARGET_SIGTRAP); 365 if (sig) 366 { 367 info.si_signo = sig; 368 info.si_errno = 0; 369 info.si_code = TARGET_TRAP_BRKPT; 370 queue_signal(env, info.si_signo, &info); 371 } 372 } 373 break; 374 #endif 375 default: 376 pc = env->segs[R_CS].base + env->eip; 377 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 378 (long)pc, trapnr); 379 abort(); 380 } 381 process_pending_signals(env); 382 } 383 } 384 #endif 385 386 #ifdef TARGET_SPARC 387 #define SPARC64_STACK_BIAS 2047 388 389 //#define DEBUG_WIN 390 /* WARNING: dealing with register windows _is_ complicated. More info 391 can be found at http://www.sics.se/~psm/sparcstack.html */ 392 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 393 { 394 index = (index + cwp * 16) % (16 * env->nwindows); 395 /* wrap handling : if cwp is on the last window, then we use the 396 registers 'after' the end */ 397 if (index < 8 && env->cwp == env->nwindows - 1) 398 index += 16 * env->nwindows; 399 return index; 400 } 401 402 /* save the register window 'cwp1' */ 403 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 404 { 405 unsigned int i; 406 abi_ulong sp_ptr; 407 408 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 409 #ifdef TARGET_SPARC64 410 if (sp_ptr & 3) 411 sp_ptr += SPARC64_STACK_BIAS; 412 #endif 413 #if defined(DEBUG_WIN) 414 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 415 sp_ptr, cwp1); 416 #endif 417 for(i = 0; i < 16; i++) { 418 /* FIXME - what to do if put_user() fails? */ 419 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 420 sp_ptr += sizeof(abi_ulong); 421 } 422 } 423 424 static void save_window(CPUSPARCState *env) 425 { 426 #ifndef TARGET_SPARC64 427 unsigned int new_wim; 428 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 429 ((1LL << env->nwindows) - 1); 430 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 431 env->wim = new_wim; 432 #else 433 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 434 env->cansave++; 435 env->canrestore--; 436 #endif 437 } 438 439 static void restore_window(CPUSPARCState *env) 440 { 441 #ifndef TARGET_SPARC64 442 unsigned int new_wim; 443 #endif 444 unsigned int i, cwp1; 445 abi_ulong sp_ptr; 446 447 #ifndef TARGET_SPARC64 448 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 449 ((1LL << env->nwindows) - 1); 450 #endif 451 452 /* restore the invalid window */ 453 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 454 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 455 #ifdef TARGET_SPARC64 456 if (sp_ptr & 3) 457 sp_ptr += SPARC64_STACK_BIAS; 458 #endif 459 #if defined(DEBUG_WIN) 460 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 461 sp_ptr, cwp1); 462 #endif 463 for(i = 0; i < 16; i++) { 464 /* FIXME - what to do if get_user() fails? */ 465 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 466 sp_ptr += sizeof(abi_ulong); 467 } 468 #ifdef TARGET_SPARC64 469 env->canrestore++; 470 if (env->cleanwin < env->nwindows - 1) 471 env->cleanwin++; 472 env->cansave--; 473 #else 474 env->wim = new_wim; 475 #endif 476 } 477 478 static void flush_windows(CPUSPARCState *env) 479 { 480 int offset, cwp1; 481 482 offset = 1; 483 for(;;) { 484 /* if restore would invoke restore_window(), then we can stop */ 485 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 486 #ifndef TARGET_SPARC64 487 if (env->wim & (1 << cwp1)) 488 break; 489 #else 490 if (env->canrestore == 0) 491 break; 492 env->cansave++; 493 env->canrestore--; 494 #endif 495 save_window_offset(env, cwp1); 496 offset++; 497 } 498 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 499 #ifndef TARGET_SPARC64 500 /* set wim so that restore will reload the registers */ 501 env->wim = 1 << cwp1; 502 #endif 503 #if defined(DEBUG_WIN) 504 printf("flush_windows: nb=%d\n", offset - 1); 505 #endif 506 } 507 508 void cpu_loop(CPUSPARCState *env) 509 { 510 CPUState *cs = CPU(sparc_env_get_cpu(env)); 511 int trapnr, ret, syscall_nr; 512 //target_siginfo_t info; 513 514 while (1) { 515 trapnr = cpu_sparc_exec(cs); 516 517 switch (trapnr) { 518 #ifndef TARGET_SPARC64 519 case 0x80: 520 #else 521 /* FreeBSD uses 0x141 for syscalls too */ 522 case 0x141: 523 if (bsd_type != target_freebsd) 524 goto badtrap; 525 case 0x100: 526 #endif 527 syscall_nr = env->gregs[1]; 528 if (bsd_type == target_freebsd) 529 ret = do_freebsd_syscall(env, syscall_nr, 530 env->regwptr[0], env->regwptr[1], 531 env->regwptr[2], env->regwptr[3], 532 env->regwptr[4], env->regwptr[5], 0, 0); 533 else if (bsd_type == target_netbsd) 534 ret = do_netbsd_syscall(env, syscall_nr, 535 env->regwptr[0], env->regwptr[1], 536 env->regwptr[2], env->regwptr[3], 537 env->regwptr[4], env->regwptr[5]); 538 else { //if (bsd_type == target_openbsd) 539 #if defined(TARGET_SPARC64) 540 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG | 541 TARGET_OPENBSD_SYSCALL_G2RFLAG); 542 #endif 543 ret = do_openbsd_syscall(env, syscall_nr, 544 env->regwptr[0], env->regwptr[1], 545 env->regwptr[2], env->regwptr[3], 546 env->regwptr[4], env->regwptr[5]); 547 } 548 if ((unsigned int)ret >= (unsigned int)(-515)) { 549 ret = -ret; 550 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 551 env->xcc |= PSR_CARRY; 552 #else 553 env->psr |= PSR_CARRY; 554 #endif 555 } else { 556 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 557 env->xcc &= ~PSR_CARRY; 558 #else 559 env->psr &= ~PSR_CARRY; 560 #endif 561 } 562 env->regwptr[0] = ret; 563 /* next instruction */ 564 #if defined(TARGET_SPARC64) 565 if (bsd_type == target_openbsd && 566 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) { 567 env->pc = env->gregs[2]; 568 env->npc = env->pc + 4; 569 } else if (bsd_type == target_openbsd && 570 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) { 571 env->pc = env->gregs[7]; 572 env->npc = env->pc + 4; 573 } else { 574 env->pc = env->npc; 575 env->npc = env->npc + 4; 576 } 577 #else 578 env->pc = env->npc; 579 env->npc = env->npc + 4; 580 #endif 581 break; 582 case 0x83: /* flush windows */ 583 #ifdef TARGET_ABI32 584 case 0x103: 585 #endif 586 flush_windows(env); 587 /* next instruction */ 588 env->pc = env->npc; 589 env->npc = env->npc + 4; 590 break; 591 #ifndef TARGET_SPARC64 592 case TT_WIN_OVF: /* window overflow */ 593 save_window(env); 594 break; 595 case TT_WIN_UNF: /* window underflow */ 596 restore_window(env); 597 break; 598 case TT_TFAULT: 599 case TT_DFAULT: 600 #if 0 601 { 602 info.si_signo = SIGSEGV; 603 info.si_errno = 0; 604 /* XXX: check env->error_code */ 605 info.si_code = TARGET_SEGV_MAPERR; 606 info._sifields._sigfault._addr = env->mmuregs[4]; 607 queue_signal(env, info.si_signo, &info); 608 } 609 #endif 610 break; 611 #else 612 case TT_SPILL: /* window overflow */ 613 save_window(env); 614 break; 615 case TT_FILL: /* window underflow */ 616 restore_window(env); 617 break; 618 case TT_TFAULT: 619 case TT_DFAULT: 620 #if 0 621 { 622 info.si_signo = SIGSEGV; 623 info.si_errno = 0; 624 /* XXX: check env->error_code */ 625 info.si_code = TARGET_SEGV_MAPERR; 626 if (trapnr == TT_DFAULT) 627 info._sifields._sigfault._addr = env->dmmuregs[4]; 628 else 629 info._sifields._sigfault._addr = env->tsptr->tpc; 630 //queue_signal(env, info.si_signo, &info); 631 } 632 #endif 633 break; 634 #endif 635 case EXCP_INTERRUPT: 636 /* just indicate that signals should be handled asap */ 637 break; 638 case EXCP_DEBUG: 639 { 640 int sig; 641 642 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 643 #if 0 644 if (sig) 645 { 646 info.si_signo = sig; 647 info.si_errno = 0; 648 info.si_code = TARGET_TRAP_BRKPT; 649 //queue_signal(env, info.si_signo, &info); 650 } 651 #endif 652 } 653 break; 654 default: 655 #ifdef TARGET_SPARC64 656 badtrap: 657 #endif 658 printf ("Unhandled trap: 0x%x\n", trapnr); 659 cpu_dump_state(cs, stderr, fprintf, 0); 660 exit (1); 661 } 662 process_pending_signals (env); 663 } 664 } 665 666 #endif 667 668 static void usage(void) 669 { 670 printf("qemu-" TARGET_NAME " version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n" 671 "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 672 "BSD CPU emulator (compiled for %s emulation)\n" 673 "\n" 674 "Standard options:\n" 675 "-h print this help\n" 676 "-g port wait gdb connection to port\n" 677 "-L path set the elf interpreter prefix (default=%s)\n" 678 "-s size set the stack size in bytes (default=%ld)\n" 679 "-cpu model select CPU (-cpu help for list)\n" 680 "-drop-ld-preload drop LD_PRELOAD for target process\n" 681 "-E var=value sets/modifies targets environment variable(s)\n" 682 "-U var unsets targets environment variable(s)\n" 683 "-B address set guest_base address to address\n" 684 "-bsd type select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n" 685 "\n" 686 "Debug options:\n" 687 "-d item1[,...] enable logging of specified items\n" 688 " (use '-d help' for a list of log items)\n" 689 "-D logfile write logs to 'logfile' (default stderr)\n" 690 "-p pagesize set the host page size to 'pagesize'\n" 691 "-singlestep always run in singlestep mode\n" 692 "-strace log system calls\n" 693 "\n" 694 "Environment variables:\n" 695 "QEMU_STRACE Print system calls and arguments similar to the\n" 696 " 'strace' program. Enable by setting to any value.\n" 697 "You can use -E and -U options to set/unset environment variables\n" 698 "for target process. It is possible to provide several variables\n" 699 "by repeating the option. For example:\n" 700 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 701 "Note that if you provide several changes to single variable\n" 702 "last change will stay in effect.\n" 703 , 704 TARGET_NAME, 705 interp_prefix, 706 x86_stack_size); 707 exit(1); 708 } 709 710 THREAD CPUState *thread_cpu; 711 712 /* Assumes contents are already zeroed. */ 713 void init_task_state(TaskState *ts) 714 { 715 int i; 716 717 ts->used = 1; 718 ts->first_free = ts->sigqueue_table; 719 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { 720 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; 721 } 722 ts->sigqueue_table[i].next = NULL; 723 } 724 725 int main(int argc, char **argv) 726 { 727 const char *filename; 728 const char *cpu_model; 729 const char *log_file = NULL; 730 const char *log_mask = NULL; 731 struct target_pt_regs regs1, *regs = ®s1; 732 struct image_info info1, *info = &info1; 733 TaskState ts1, *ts = &ts1; 734 CPUArchState *env; 735 CPUState *cpu; 736 int optind; 737 const char *r; 738 int gdbstub_port = 0; 739 char **target_environ, **wrk; 740 envlist_t *envlist = NULL; 741 bsd_type = target_openbsd; 742 743 if (argc <= 1) 744 usage(); 745 746 module_call_init(MODULE_INIT_QOM); 747 748 if ((envlist = envlist_create()) == NULL) { 749 (void) fprintf(stderr, "Unable to allocate envlist\n"); 750 exit(1); 751 } 752 753 /* add current environment into the list */ 754 for (wrk = environ; *wrk != NULL; wrk++) { 755 (void) envlist_setenv(envlist, *wrk); 756 } 757 758 cpu_model = NULL; 759 #if defined(cpudef_setup) 760 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */ 761 #endif 762 763 optind = 1; 764 for(;;) { 765 if (optind >= argc) 766 break; 767 r = argv[optind]; 768 if (r[0] != '-') 769 break; 770 optind++; 771 r++; 772 if (!strcmp(r, "-")) { 773 break; 774 } else if (!strcmp(r, "d")) { 775 if (optind >= argc) { 776 break; 777 } 778 log_mask = argv[optind++]; 779 } else if (!strcmp(r, "D")) { 780 if (optind >= argc) { 781 break; 782 } 783 log_file = argv[optind++]; 784 } else if (!strcmp(r, "E")) { 785 r = argv[optind++]; 786 if (envlist_setenv(envlist, r) != 0) 787 usage(); 788 } else if (!strcmp(r, "ignore-environment")) { 789 envlist_free(envlist); 790 if ((envlist = envlist_create()) == NULL) { 791 (void) fprintf(stderr, "Unable to allocate envlist\n"); 792 exit(1); 793 } 794 } else if (!strcmp(r, "U")) { 795 r = argv[optind++]; 796 if (envlist_unsetenv(envlist, r) != 0) 797 usage(); 798 } else if (!strcmp(r, "s")) { 799 r = argv[optind++]; 800 x86_stack_size = strtol(r, (char **)&r, 0); 801 if (x86_stack_size <= 0) 802 usage(); 803 if (*r == 'M') 804 x86_stack_size *= 1024 * 1024; 805 else if (*r == 'k' || *r == 'K') 806 x86_stack_size *= 1024; 807 } else if (!strcmp(r, "L")) { 808 interp_prefix = argv[optind++]; 809 } else if (!strcmp(r, "p")) { 810 qemu_host_page_size = atoi(argv[optind++]); 811 if (qemu_host_page_size == 0 || 812 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 813 fprintf(stderr, "page size must be a power of two\n"); 814 exit(1); 815 } 816 } else if (!strcmp(r, "g")) { 817 gdbstub_port = atoi(argv[optind++]); 818 } else if (!strcmp(r, "r")) { 819 qemu_uname_release = argv[optind++]; 820 } else if (!strcmp(r, "cpu")) { 821 cpu_model = argv[optind++]; 822 if (is_help_option(cpu_model)) { 823 /* XXX: implement xxx_cpu_list for targets that still miss it */ 824 #if defined(cpu_list) 825 cpu_list(stdout, &fprintf); 826 #endif 827 exit(1); 828 } 829 } else if (!strcmp(r, "B")) { 830 guest_base = strtol(argv[optind++], NULL, 0); 831 have_guest_base = 1; 832 } else if (!strcmp(r, "drop-ld-preload")) { 833 (void) envlist_unsetenv(envlist, "LD_PRELOAD"); 834 } else if (!strcmp(r, "bsd")) { 835 if (!strcasecmp(argv[optind], "freebsd")) { 836 bsd_type = target_freebsd; 837 } else if (!strcasecmp(argv[optind], "netbsd")) { 838 bsd_type = target_netbsd; 839 } else if (!strcasecmp(argv[optind], "openbsd")) { 840 bsd_type = target_openbsd; 841 } else { 842 usage(); 843 } 844 optind++; 845 } else if (!strcmp(r, "singlestep")) { 846 singlestep = 1; 847 } else if (!strcmp(r, "strace")) { 848 do_strace = 1; 849 } else 850 { 851 usage(); 852 } 853 } 854 855 /* init debug */ 856 qemu_set_log_filename(log_file); 857 if (log_mask) { 858 int mask; 859 860 mask = qemu_str_to_log_mask(log_mask); 861 if (!mask) { 862 qemu_print_log_usage(stdout); 863 exit(1); 864 } 865 qemu_set_log(mask); 866 } 867 868 if (optind >= argc) { 869 usage(); 870 } 871 filename = argv[optind]; 872 873 /* Zero out regs */ 874 memset(regs, 0, sizeof(struct target_pt_regs)); 875 876 /* Zero out image_info */ 877 memset(info, 0, sizeof(struct image_info)); 878 879 /* Scan interp_prefix dir for replacement files. */ 880 init_paths(interp_prefix); 881 882 if (cpu_model == NULL) { 883 #if defined(TARGET_I386) 884 #ifdef TARGET_X86_64 885 cpu_model = "qemu64"; 886 #else 887 cpu_model = "qemu32"; 888 #endif 889 #elif defined(TARGET_SPARC) 890 #ifdef TARGET_SPARC64 891 cpu_model = "TI UltraSparc II"; 892 #else 893 cpu_model = "Fujitsu MB86904"; 894 #endif 895 #else 896 cpu_model = "any"; 897 #endif 898 } 899 tcg_exec_init(0); 900 /* NOTE: we need to init the CPU at this stage to get 901 qemu_host_page_size */ 902 cpu = cpu_init(cpu_model); 903 if (!cpu) { 904 fprintf(stderr, "Unable to find CPU definition\n"); 905 exit(1); 906 } 907 env = cpu->env_ptr; 908 #if defined(TARGET_SPARC) || defined(TARGET_PPC) 909 cpu_reset(cpu); 910 #endif 911 thread_cpu = cpu; 912 913 if (getenv("QEMU_STRACE")) { 914 do_strace = 1; 915 } 916 917 target_environ = envlist_to_environ(envlist, NULL); 918 envlist_free(envlist); 919 920 /* 921 * Now that page sizes are configured in cpu_init() we can do 922 * proper page alignment for guest_base. 923 */ 924 guest_base = HOST_PAGE_ALIGN(guest_base); 925 926 /* 927 * Read in mmap_min_addr kernel parameter. This value is used 928 * When loading the ELF image to determine whether guest_base 929 * is needed. 930 * 931 * When user has explicitly set the quest base, we skip this 932 * test. 933 */ 934 if (!have_guest_base) { 935 FILE *fp; 936 937 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 938 unsigned long tmp; 939 if (fscanf(fp, "%lu", &tmp) == 1) { 940 mmap_min_addr = tmp; 941 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); 942 } 943 fclose(fp); 944 } 945 } 946 947 if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) { 948 printf("Error loading %s\n", filename); 949 _exit(1); 950 } 951 952 for (wrk = target_environ; *wrk; wrk++) { 953 free(*wrk); 954 } 955 956 free(target_environ); 957 958 if (qemu_loglevel_mask(CPU_LOG_PAGE)) { 959 qemu_log("guest_base 0x%lx\n", guest_base); 960 log_page_dump(); 961 962 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 963 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 964 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 965 info->start_code); 966 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 967 info->start_data); 968 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 969 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 970 info->start_stack); 971 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 972 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 973 } 974 975 target_set_brk(info->brk); 976 syscall_init(); 977 signal_init(); 978 979 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 980 generating the prologue until now so that the prologue can take 981 the real value of GUEST_BASE into account. */ 982 tcg_prologue_init(&tcg_ctx); 983 984 /* build Task State */ 985 memset(ts, 0, sizeof(TaskState)); 986 init_task_state(ts); 987 ts->info = info; 988 cpu->opaque = ts; 989 990 #if defined(TARGET_I386) 991 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 992 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 993 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 994 env->cr[4] |= CR4_OSFXSR_MASK; 995 env->hflags |= HF_OSFXSR_MASK; 996 } 997 #ifndef TARGET_ABI32 998 /* enable 64 bit mode if possible */ 999 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 1000 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 1001 exit(1); 1002 } 1003 env->cr[4] |= CR4_PAE_MASK; 1004 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 1005 env->hflags |= HF_LMA_MASK; 1006 #endif 1007 1008 /* flags setup : we activate the IRQs by default as in user mode */ 1009 env->eflags |= IF_MASK; 1010 1011 /* linux register setup */ 1012 #ifndef TARGET_ABI32 1013 env->regs[R_EAX] = regs->rax; 1014 env->regs[R_EBX] = regs->rbx; 1015 env->regs[R_ECX] = regs->rcx; 1016 env->regs[R_EDX] = regs->rdx; 1017 env->regs[R_ESI] = regs->rsi; 1018 env->regs[R_EDI] = regs->rdi; 1019 env->regs[R_EBP] = regs->rbp; 1020 env->regs[R_ESP] = regs->rsp; 1021 env->eip = regs->rip; 1022 #else 1023 env->regs[R_EAX] = regs->eax; 1024 env->regs[R_EBX] = regs->ebx; 1025 env->regs[R_ECX] = regs->ecx; 1026 env->regs[R_EDX] = regs->edx; 1027 env->regs[R_ESI] = regs->esi; 1028 env->regs[R_EDI] = regs->edi; 1029 env->regs[R_EBP] = regs->ebp; 1030 env->regs[R_ESP] = regs->esp; 1031 env->eip = regs->eip; 1032 #endif 1033 1034 /* linux interrupt setup */ 1035 #ifndef TARGET_ABI32 1036 env->idt.limit = 511; 1037 #else 1038 env->idt.limit = 255; 1039 #endif 1040 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 1041 PROT_READ|PROT_WRITE, 1042 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 1043 idt_table = g2h(env->idt.base); 1044 set_idt(0, 0); 1045 set_idt(1, 0); 1046 set_idt(2, 0); 1047 set_idt(3, 3); 1048 set_idt(4, 3); 1049 set_idt(5, 0); 1050 set_idt(6, 0); 1051 set_idt(7, 0); 1052 set_idt(8, 0); 1053 set_idt(9, 0); 1054 set_idt(10, 0); 1055 set_idt(11, 0); 1056 set_idt(12, 0); 1057 set_idt(13, 0); 1058 set_idt(14, 0); 1059 set_idt(15, 0); 1060 set_idt(16, 0); 1061 set_idt(17, 0); 1062 set_idt(18, 0); 1063 set_idt(19, 0); 1064 set_idt(0x80, 3); 1065 1066 /* linux segment setup */ 1067 { 1068 uint64_t *gdt_table; 1069 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 1070 PROT_READ|PROT_WRITE, 1071 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 1072 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 1073 gdt_table = g2h(env->gdt.base); 1074 #ifdef TARGET_ABI32 1075 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 1076 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1077 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 1078 #else 1079 /* 64 bit code segment */ 1080 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 1081 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1082 DESC_L_MASK | 1083 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 1084 #endif 1085 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 1086 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1087 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 1088 } 1089 1090 cpu_x86_load_seg(env, R_CS, __USER_CS); 1091 cpu_x86_load_seg(env, R_SS, __USER_DS); 1092 #ifdef TARGET_ABI32 1093 cpu_x86_load_seg(env, R_DS, __USER_DS); 1094 cpu_x86_load_seg(env, R_ES, __USER_DS); 1095 cpu_x86_load_seg(env, R_FS, __USER_DS); 1096 cpu_x86_load_seg(env, R_GS, __USER_DS); 1097 /* This hack makes Wine work... */ 1098 env->segs[R_FS].selector = 0; 1099 #else 1100 cpu_x86_load_seg(env, R_DS, 0); 1101 cpu_x86_load_seg(env, R_ES, 0); 1102 cpu_x86_load_seg(env, R_FS, 0); 1103 cpu_x86_load_seg(env, R_GS, 0); 1104 #endif 1105 #elif defined(TARGET_SPARC) 1106 { 1107 int i; 1108 env->pc = regs->pc; 1109 env->npc = regs->npc; 1110 env->y = regs->y; 1111 for(i = 0; i < 8; i++) 1112 env->gregs[i] = regs->u_regs[i]; 1113 for(i = 0; i < 8; i++) 1114 env->regwptr[i] = regs->u_regs[i + 8]; 1115 } 1116 #else 1117 #error unsupported target CPU 1118 #endif 1119 1120 if (gdbstub_port) { 1121 gdbserver_start (gdbstub_port); 1122 gdb_handlesig(cpu, 0); 1123 } 1124 cpu_loop(env); 1125 /* never exits */ 1126 return 0; 1127 } 1128