1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu-version.h" 21 #include <machine/trap.h> 22 23 #include "qapi/error.h" 24 #include "qemu.h" 25 #include "qemu/config-file.h" 26 #include "qemu/path.h" 27 #include "qemu/help_option.h" 28 /* For tb_lock */ 29 #include "cpu.h" 30 #include "exec/exec-all.h" 31 #include "tcg.h" 32 #include "qemu/timer.h" 33 #include "qemu/envlist.h" 34 #include "exec/log.h" 35 #include "trace/control.h" 36 #include "glib-compat.h" 37 38 int singlestep; 39 unsigned long mmap_min_addr; 40 unsigned long guest_base; 41 int have_guest_base; 42 unsigned long reserved_va; 43 44 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 45 const char *qemu_uname_release; 46 extern char **environ; 47 enum BSDType bsd_type; 48 49 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 50 we allocate a bigger stack. Need a better solution, for example 51 by remapping the process stack directly at the right place */ 52 unsigned long x86_stack_size = 512 * 1024; 53 54 void gemu_log(const char *fmt, ...) 55 { 56 va_list ap; 57 58 va_start(ap, fmt); 59 vfprintf(stderr, fmt, ap); 60 va_end(ap); 61 } 62 63 #if defined(TARGET_I386) 64 int cpu_get_pic_interrupt(CPUX86State *env) 65 { 66 return -1; 67 } 68 #endif 69 70 void fork_start(void) 71 { 72 } 73 74 void fork_end(int child) 75 { 76 if (child) { 77 gdbserver_fork(thread_cpu); 78 } 79 } 80 81 #ifdef TARGET_I386 82 /***********************************************************/ 83 /* CPUX86 core interface */ 84 85 uint64_t cpu_get_tsc(CPUX86State *env) 86 { 87 return cpu_get_host_ticks(); 88 } 89 90 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 91 int flags) 92 { 93 unsigned int e1, e2; 94 uint32_t *p; 95 e1 = (addr << 16) | (limit & 0xffff); 96 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 97 e2 |= flags; 98 p = ptr; 99 p[0] = tswap32(e1); 100 p[1] = tswap32(e2); 101 } 102 103 static uint64_t *idt_table; 104 #ifdef TARGET_X86_64 105 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 106 uint64_t addr, unsigned int sel) 107 { 108 uint32_t *p, e1, e2; 109 e1 = (addr & 0xffff) | (sel << 16); 110 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 111 p = ptr; 112 p[0] = tswap32(e1); 113 p[1] = tswap32(e2); 114 p[2] = tswap32(addr >> 32); 115 p[3] = 0; 116 } 117 /* only dpl matters as we do only user space emulation */ 118 static void set_idt(int n, unsigned int dpl) 119 { 120 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 121 } 122 #else 123 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 124 uint32_t addr, unsigned int sel) 125 { 126 uint32_t *p, e1, e2; 127 e1 = (addr & 0xffff) | (sel << 16); 128 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 129 p = ptr; 130 p[0] = tswap32(e1); 131 p[1] = tswap32(e2); 132 } 133 134 /* only dpl matters as we do only user space emulation */ 135 static void set_idt(int n, unsigned int dpl) 136 { 137 set_gate(idt_table + n, 0, dpl, 0, 0); 138 } 139 #endif 140 141 void cpu_loop(CPUX86State *env) 142 { 143 X86CPU *cpu = x86_env_get_cpu(env); 144 CPUState *cs = CPU(cpu); 145 int trapnr; 146 abi_ulong pc; 147 //target_siginfo_t info; 148 149 for(;;) { 150 cpu_exec_start(cs); 151 trapnr = cpu_exec(cs); 152 cpu_exec_end(cs); 153 process_queued_cpu_work(cs); 154 155 switch(trapnr) { 156 case 0x80: 157 /* syscall from int $0x80 */ 158 if (bsd_type == target_freebsd) { 159 abi_ulong params = (abi_ulong) env->regs[R_ESP] + 160 sizeof(int32_t); 161 int32_t syscall_nr = env->regs[R_EAX]; 162 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8; 163 164 if (syscall_nr == TARGET_FREEBSD_NR_syscall) { 165 get_user_s32(syscall_nr, params); 166 params += sizeof(int32_t); 167 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) { 168 get_user_s32(syscall_nr, params); 169 params += sizeof(int64_t); 170 } 171 get_user_s32(arg1, params); 172 params += sizeof(int32_t); 173 get_user_s32(arg2, params); 174 params += sizeof(int32_t); 175 get_user_s32(arg3, params); 176 params += sizeof(int32_t); 177 get_user_s32(arg4, params); 178 params += sizeof(int32_t); 179 get_user_s32(arg5, params); 180 params += sizeof(int32_t); 181 get_user_s32(arg6, params); 182 params += sizeof(int32_t); 183 get_user_s32(arg7, params); 184 params += sizeof(int32_t); 185 get_user_s32(arg8, params); 186 env->regs[R_EAX] = do_freebsd_syscall(env, 187 syscall_nr, 188 arg1, 189 arg2, 190 arg3, 191 arg4, 192 arg5, 193 arg6, 194 arg7, 195 arg8); 196 } else { //if (bsd_type == target_openbsd) 197 env->regs[R_EAX] = do_openbsd_syscall(env, 198 env->regs[R_EAX], 199 env->regs[R_EBX], 200 env->regs[R_ECX], 201 env->regs[R_EDX], 202 env->regs[R_ESI], 203 env->regs[R_EDI], 204 env->regs[R_EBP]); 205 } 206 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { 207 env->regs[R_EAX] = -env->regs[R_EAX]; 208 env->eflags |= CC_C; 209 } else { 210 env->eflags &= ~CC_C; 211 } 212 break; 213 #ifndef TARGET_ABI32 214 case EXCP_SYSCALL: 215 /* syscall from syscall instruction */ 216 if (bsd_type == target_freebsd) 217 env->regs[R_EAX] = do_freebsd_syscall(env, 218 env->regs[R_EAX], 219 env->regs[R_EDI], 220 env->regs[R_ESI], 221 env->regs[R_EDX], 222 env->regs[R_ECX], 223 env->regs[8], 224 env->regs[9], 0, 0); 225 else { //if (bsd_type == target_openbsd) 226 env->regs[R_EAX] = do_openbsd_syscall(env, 227 env->regs[R_EAX], 228 env->regs[R_EDI], 229 env->regs[R_ESI], 230 env->regs[R_EDX], 231 env->regs[10], 232 env->regs[8], 233 env->regs[9]); 234 } 235 env->eip = env->exception_next_eip; 236 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { 237 env->regs[R_EAX] = -env->regs[R_EAX]; 238 env->eflags |= CC_C; 239 } else { 240 env->eflags &= ~CC_C; 241 } 242 break; 243 #endif 244 #if 0 245 case EXCP0B_NOSEG: 246 case EXCP0C_STACK: 247 info.si_signo = SIGBUS; 248 info.si_errno = 0; 249 info.si_code = TARGET_SI_KERNEL; 250 info._sifields._sigfault._addr = 0; 251 queue_signal(env, info.si_signo, &info); 252 break; 253 case EXCP0D_GPF: 254 /* XXX: potential problem if ABI32 */ 255 #ifndef TARGET_X86_64 256 if (env->eflags & VM_MASK) { 257 handle_vm86_fault(env); 258 } else 259 #endif 260 { 261 info.si_signo = SIGSEGV; 262 info.si_errno = 0; 263 info.si_code = TARGET_SI_KERNEL; 264 info._sifields._sigfault._addr = 0; 265 queue_signal(env, info.si_signo, &info); 266 } 267 break; 268 case EXCP0E_PAGE: 269 info.si_signo = SIGSEGV; 270 info.si_errno = 0; 271 if (!(env->error_code & 1)) 272 info.si_code = TARGET_SEGV_MAPERR; 273 else 274 info.si_code = TARGET_SEGV_ACCERR; 275 info._sifields._sigfault._addr = env->cr[2]; 276 queue_signal(env, info.si_signo, &info); 277 break; 278 case EXCP00_DIVZ: 279 #ifndef TARGET_X86_64 280 if (env->eflags & VM_MASK) { 281 handle_vm86_trap(env, trapnr); 282 } else 283 #endif 284 { 285 /* division by zero */ 286 info.si_signo = SIGFPE; 287 info.si_errno = 0; 288 info.si_code = TARGET_FPE_INTDIV; 289 info._sifields._sigfault._addr = env->eip; 290 queue_signal(env, info.si_signo, &info); 291 } 292 break; 293 case EXCP01_DB: 294 case EXCP03_INT3: 295 #ifndef TARGET_X86_64 296 if (env->eflags & VM_MASK) { 297 handle_vm86_trap(env, trapnr); 298 } else 299 #endif 300 { 301 info.si_signo = SIGTRAP; 302 info.si_errno = 0; 303 if (trapnr == EXCP01_DB) { 304 info.si_code = TARGET_TRAP_BRKPT; 305 info._sifields._sigfault._addr = env->eip; 306 } else { 307 info.si_code = TARGET_SI_KERNEL; 308 info._sifields._sigfault._addr = 0; 309 } 310 queue_signal(env, info.si_signo, &info); 311 } 312 break; 313 case EXCP04_INTO: 314 case EXCP05_BOUND: 315 #ifndef TARGET_X86_64 316 if (env->eflags & VM_MASK) { 317 handle_vm86_trap(env, trapnr); 318 } else 319 #endif 320 { 321 info.si_signo = SIGSEGV; 322 info.si_errno = 0; 323 info.si_code = TARGET_SI_KERNEL; 324 info._sifields._sigfault._addr = 0; 325 queue_signal(env, info.si_signo, &info); 326 } 327 break; 328 case EXCP06_ILLOP: 329 info.si_signo = SIGILL; 330 info.si_errno = 0; 331 info.si_code = TARGET_ILL_ILLOPN; 332 info._sifields._sigfault._addr = env->eip; 333 queue_signal(env, info.si_signo, &info); 334 break; 335 #endif 336 case EXCP_INTERRUPT: 337 /* just indicate that signals should be handled asap */ 338 break; 339 #if 0 340 case EXCP_DEBUG: 341 { 342 int sig; 343 344 sig = gdb_handlesig (env, TARGET_SIGTRAP); 345 if (sig) 346 { 347 info.si_signo = sig; 348 info.si_errno = 0; 349 info.si_code = TARGET_TRAP_BRKPT; 350 queue_signal(env, info.si_signo, &info); 351 } 352 } 353 break; 354 #endif 355 default: 356 pc = env->segs[R_CS].base + env->eip; 357 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 358 (long)pc, trapnr); 359 abort(); 360 } 361 process_pending_signals(env); 362 } 363 } 364 #endif 365 366 #ifdef TARGET_SPARC 367 #define SPARC64_STACK_BIAS 2047 368 369 //#define DEBUG_WIN 370 /* WARNING: dealing with register windows _is_ complicated. More info 371 can be found at http://www.sics.se/~psm/sparcstack.html */ 372 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 373 { 374 index = (index + cwp * 16) % (16 * env->nwindows); 375 /* wrap handling : if cwp is on the last window, then we use the 376 registers 'after' the end */ 377 if (index < 8 && env->cwp == env->nwindows - 1) 378 index += 16 * env->nwindows; 379 return index; 380 } 381 382 /* save the register window 'cwp1' */ 383 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 384 { 385 unsigned int i; 386 abi_ulong sp_ptr; 387 388 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 389 #ifdef TARGET_SPARC64 390 if (sp_ptr & 3) 391 sp_ptr += SPARC64_STACK_BIAS; 392 #endif 393 #if defined(DEBUG_WIN) 394 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 395 sp_ptr, cwp1); 396 #endif 397 for(i = 0; i < 16; i++) { 398 /* FIXME - what to do if put_user() fails? */ 399 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 400 sp_ptr += sizeof(abi_ulong); 401 } 402 } 403 404 static void save_window(CPUSPARCState *env) 405 { 406 #ifndef TARGET_SPARC64 407 unsigned int new_wim; 408 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 409 ((1LL << env->nwindows) - 1); 410 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 411 env->wim = new_wim; 412 #else 413 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 414 env->cansave++; 415 env->canrestore--; 416 #endif 417 } 418 419 static void restore_window(CPUSPARCState *env) 420 { 421 #ifndef TARGET_SPARC64 422 unsigned int new_wim; 423 #endif 424 unsigned int i, cwp1; 425 abi_ulong sp_ptr; 426 427 #ifndef TARGET_SPARC64 428 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 429 ((1LL << env->nwindows) - 1); 430 #endif 431 432 /* restore the invalid window */ 433 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 434 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 435 #ifdef TARGET_SPARC64 436 if (sp_ptr & 3) 437 sp_ptr += SPARC64_STACK_BIAS; 438 #endif 439 #if defined(DEBUG_WIN) 440 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 441 sp_ptr, cwp1); 442 #endif 443 for(i = 0; i < 16; i++) { 444 /* FIXME - what to do if get_user() fails? */ 445 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 446 sp_ptr += sizeof(abi_ulong); 447 } 448 #ifdef TARGET_SPARC64 449 env->canrestore++; 450 if (env->cleanwin < env->nwindows - 1) 451 env->cleanwin++; 452 env->cansave--; 453 #else 454 env->wim = new_wim; 455 #endif 456 } 457 458 static void flush_windows(CPUSPARCState *env) 459 { 460 int offset, cwp1; 461 462 offset = 1; 463 for(;;) { 464 /* if restore would invoke restore_window(), then we can stop */ 465 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 466 #ifndef TARGET_SPARC64 467 if (env->wim & (1 << cwp1)) 468 break; 469 #else 470 if (env->canrestore == 0) 471 break; 472 env->cansave++; 473 env->canrestore--; 474 #endif 475 save_window_offset(env, cwp1); 476 offset++; 477 } 478 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 479 #ifndef TARGET_SPARC64 480 /* set wim so that restore will reload the registers */ 481 env->wim = 1 << cwp1; 482 #endif 483 #if defined(DEBUG_WIN) 484 printf("flush_windows: nb=%d\n", offset - 1); 485 #endif 486 } 487 488 void cpu_loop(CPUSPARCState *env) 489 { 490 CPUState *cs = CPU(sparc_env_get_cpu(env)); 491 int trapnr, ret, syscall_nr; 492 //target_siginfo_t info; 493 494 while (1) { 495 cpu_exec_start(cs); 496 trapnr = cpu_exec(cs); 497 cpu_exec_end(cs); 498 process_queued_cpu_work(cs); 499 500 switch (trapnr) { 501 #ifndef TARGET_SPARC64 502 case 0x80: 503 #else 504 /* FreeBSD uses 0x141 for syscalls too */ 505 case 0x141: 506 if (bsd_type != target_freebsd) 507 goto badtrap; 508 case 0x100: 509 #endif 510 syscall_nr = env->gregs[1]; 511 if (bsd_type == target_freebsd) 512 ret = do_freebsd_syscall(env, syscall_nr, 513 env->regwptr[0], env->regwptr[1], 514 env->regwptr[2], env->regwptr[3], 515 env->regwptr[4], env->regwptr[5], 0, 0); 516 else if (bsd_type == target_netbsd) 517 ret = do_netbsd_syscall(env, syscall_nr, 518 env->regwptr[0], env->regwptr[1], 519 env->regwptr[2], env->regwptr[3], 520 env->regwptr[4], env->regwptr[5]); 521 else { //if (bsd_type == target_openbsd) 522 #if defined(TARGET_SPARC64) 523 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG | 524 TARGET_OPENBSD_SYSCALL_G2RFLAG); 525 #endif 526 ret = do_openbsd_syscall(env, syscall_nr, 527 env->regwptr[0], env->regwptr[1], 528 env->regwptr[2], env->regwptr[3], 529 env->regwptr[4], env->regwptr[5]); 530 } 531 if ((unsigned int)ret >= (unsigned int)(-515)) { 532 ret = -ret; 533 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 534 env->xcc |= PSR_CARRY; 535 #else 536 env->psr |= PSR_CARRY; 537 #endif 538 } else { 539 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 540 env->xcc &= ~PSR_CARRY; 541 #else 542 env->psr &= ~PSR_CARRY; 543 #endif 544 } 545 env->regwptr[0] = ret; 546 /* next instruction */ 547 #if defined(TARGET_SPARC64) 548 if (bsd_type == target_openbsd && 549 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) { 550 env->pc = env->gregs[2]; 551 env->npc = env->pc + 4; 552 } else if (bsd_type == target_openbsd && 553 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) { 554 env->pc = env->gregs[7]; 555 env->npc = env->pc + 4; 556 } else { 557 env->pc = env->npc; 558 env->npc = env->npc + 4; 559 } 560 #else 561 env->pc = env->npc; 562 env->npc = env->npc + 4; 563 #endif 564 break; 565 case 0x83: /* flush windows */ 566 #ifdef TARGET_ABI32 567 case 0x103: 568 #endif 569 flush_windows(env); 570 /* next instruction */ 571 env->pc = env->npc; 572 env->npc = env->npc + 4; 573 break; 574 #ifndef TARGET_SPARC64 575 case TT_WIN_OVF: /* window overflow */ 576 save_window(env); 577 break; 578 case TT_WIN_UNF: /* window underflow */ 579 restore_window(env); 580 break; 581 case TT_TFAULT: 582 case TT_DFAULT: 583 #if 0 584 { 585 info.si_signo = SIGSEGV; 586 info.si_errno = 0; 587 /* XXX: check env->error_code */ 588 info.si_code = TARGET_SEGV_MAPERR; 589 info._sifields._sigfault._addr = env->mmuregs[4]; 590 queue_signal(env, info.si_signo, &info); 591 } 592 #endif 593 break; 594 #else 595 case TT_SPILL: /* window overflow */ 596 save_window(env); 597 break; 598 case TT_FILL: /* window underflow */ 599 restore_window(env); 600 break; 601 case TT_TFAULT: 602 case TT_DFAULT: 603 #if 0 604 { 605 info.si_signo = SIGSEGV; 606 info.si_errno = 0; 607 /* XXX: check env->error_code */ 608 info.si_code = TARGET_SEGV_MAPERR; 609 if (trapnr == TT_DFAULT) 610 info._sifields._sigfault._addr = env->dmmuregs[4]; 611 else 612 info._sifields._sigfault._addr = env->tsptr->tpc; 613 //queue_signal(env, info.si_signo, &info); 614 } 615 #endif 616 break; 617 #endif 618 case EXCP_INTERRUPT: 619 /* just indicate that signals should be handled asap */ 620 break; 621 case EXCP_DEBUG: 622 { 623 int sig; 624 625 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 626 #if 0 627 if (sig) 628 { 629 info.si_signo = sig; 630 info.si_errno = 0; 631 info.si_code = TARGET_TRAP_BRKPT; 632 //queue_signal(env, info.si_signo, &info); 633 } 634 #endif 635 } 636 break; 637 default: 638 #ifdef TARGET_SPARC64 639 badtrap: 640 #endif 641 printf ("Unhandled trap: 0x%x\n", trapnr); 642 cpu_dump_state(cs, stderr, fprintf, 0); 643 exit (1); 644 } 645 process_pending_signals (env); 646 } 647 } 648 649 #endif 650 651 static void usage(void) 652 { 653 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 654 "\n" QEMU_COPYRIGHT "\n" 655 "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 656 "BSD CPU emulator (compiled for %s emulation)\n" 657 "\n" 658 "Standard options:\n" 659 "-h print this help\n" 660 "-g port wait gdb connection to port\n" 661 "-L path set the elf interpreter prefix (default=%s)\n" 662 "-s size set the stack size in bytes (default=%ld)\n" 663 "-cpu model select CPU (-cpu help for list)\n" 664 "-drop-ld-preload drop LD_PRELOAD for target process\n" 665 "-E var=value sets/modifies targets environment variable(s)\n" 666 "-U var unsets targets environment variable(s)\n" 667 "-B address set guest_base address to address\n" 668 "-bsd type select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n" 669 "\n" 670 "Debug options:\n" 671 "-d item1[,...] enable logging of specified items\n" 672 " (use '-d help' for a list of log items)\n" 673 "-D logfile write logs to 'logfile' (default stderr)\n" 674 "-p pagesize set the host page size to 'pagesize'\n" 675 "-singlestep always run in singlestep mode\n" 676 "-strace log system calls\n" 677 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n" 678 " specify tracing options\n" 679 "\n" 680 "Environment variables:\n" 681 "QEMU_STRACE Print system calls and arguments similar to the\n" 682 " 'strace' program. Enable by setting to any value.\n" 683 "You can use -E and -U options to set/unset environment variables\n" 684 "for target process. It is possible to provide several variables\n" 685 "by repeating the option. For example:\n" 686 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 687 "Note that if you provide several changes to single variable\n" 688 "last change will stay in effect.\n" 689 , 690 TARGET_NAME, 691 interp_prefix, 692 x86_stack_size); 693 exit(1); 694 } 695 696 THREAD CPUState *thread_cpu; 697 698 bool qemu_cpu_is_self(CPUState *cpu) 699 { 700 return thread_cpu == cpu; 701 } 702 703 void qemu_cpu_kick(CPUState *cpu) 704 { 705 cpu_exit(cpu); 706 } 707 708 /* Assumes contents are already zeroed. */ 709 void init_task_state(TaskState *ts) 710 { 711 int i; 712 713 ts->used = 1; 714 ts->first_free = ts->sigqueue_table; 715 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { 716 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; 717 } 718 ts->sigqueue_table[i].next = NULL; 719 } 720 721 int main(int argc, char **argv) 722 { 723 const char *filename; 724 const char *cpu_model; 725 const char *log_file = NULL; 726 const char *log_mask = NULL; 727 struct target_pt_regs regs1, *regs = ®s1; 728 struct image_info info1, *info = &info1; 729 TaskState ts1, *ts = &ts1; 730 CPUArchState *env; 731 CPUState *cpu; 732 int optind; 733 const char *r; 734 int gdbstub_port = 0; 735 char **target_environ, **wrk; 736 envlist_t *envlist = NULL; 737 char *trace_file = NULL; 738 bsd_type = target_openbsd; 739 740 if (argc <= 1) 741 usage(); 742 743 module_call_init(MODULE_INIT_TRACE); 744 qemu_init_cpu_list(); 745 module_call_init(MODULE_INIT_QOM); 746 747 envlist = envlist_create(); 748 749 /* add current environment into the list */ 750 for (wrk = environ; *wrk != NULL; wrk++) { 751 (void) envlist_setenv(envlist, *wrk); 752 } 753 754 cpu_model = NULL; 755 756 qemu_add_opts(&qemu_trace_opts); 757 758 optind = 1; 759 for (;;) { 760 if (optind >= argc) 761 break; 762 r = argv[optind]; 763 if (r[0] != '-') 764 break; 765 optind++; 766 r++; 767 if (!strcmp(r, "-")) { 768 break; 769 } else if (!strcmp(r, "d")) { 770 if (optind >= argc) { 771 break; 772 } 773 log_mask = argv[optind++]; 774 } else if (!strcmp(r, "D")) { 775 if (optind >= argc) { 776 break; 777 } 778 log_file = argv[optind++]; 779 } else if (!strcmp(r, "E")) { 780 r = argv[optind++]; 781 if (envlist_setenv(envlist, r) != 0) 782 usage(); 783 } else if (!strcmp(r, "ignore-environment")) { 784 envlist_free(envlist); 785 envlist = envlist_create(); 786 } else if (!strcmp(r, "U")) { 787 r = argv[optind++]; 788 if (envlist_unsetenv(envlist, r) != 0) 789 usage(); 790 } else if (!strcmp(r, "s")) { 791 r = argv[optind++]; 792 x86_stack_size = strtol(r, (char **)&r, 0); 793 if (x86_stack_size <= 0) 794 usage(); 795 if (*r == 'M') 796 x86_stack_size *= 1024 * 1024; 797 else if (*r == 'k' || *r == 'K') 798 x86_stack_size *= 1024; 799 } else if (!strcmp(r, "L")) { 800 interp_prefix = argv[optind++]; 801 } else if (!strcmp(r, "p")) { 802 qemu_host_page_size = atoi(argv[optind++]); 803 if (qemu_host_page_size == 0 || 804 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 805 fprintf(stderr, "page size must be a power of two\n"); 806 exit(1); 807 } 808 } else if (!strcmp(r, "g")) { 809 gdbstub_port = atoi(argv[optind++]); 810 } else if (!strcmp(r, "r")) { 811 qemu_uname_release = argv[optind++]; 812 } else if (!strcmp(r, "cpu")) { 813 cpu_model = argv[optind++]; 814 if (is_help_option(cpu_model)) { 815 /* XXX: implement xxx_cpu_list for targets that still miss it */ 816 #if defined(cpu_list) 817 cpu_list(stdout, &fprintf); 818 #endif 819 exit(1); 820 } 821 } else if (!strcmp(r, "B")) { 822 guest_base = strtol(argv[optind++], NULL, 0); 823 have_guest_base = 1; 824 } else if (!strcmp(r, "drop-ld-preload")) { 825 (void) envlist_unsetenv(envlist, "LD_PRELOAD"); 826 } else if (!strcmp(r, "bsd")) { 827 if (!strcasecmp(argv[optind], "freebsd")) { 828 bsd_type = target_freebsd; 829 } else if (!strcasecmp(argv[optind], "netbsd")) { 830 bsd_type = target_netbsd; 831 } else if (!strcasecmp(argv[optind], "openbsd")) { 832 bsd_type = target_openbsd; 833 } else { 834 usage(); 835 } 836 optind++; 837 } else if (!strcmp(r, "singlestep")) { 838 singlestep = 1; 839 } else if (!strcmp(r, "strace")) { 840 do_strace = 1; 841 } else if (!strcmp(r, "trace")) { 842 g_free(trace_file); 843 trace_file = trace_opt_parse(optarg); 844 } else { 845 usage(); 846 } 847 } 848 849 /* init debug */ 850 qemu_log_needs_buffers(); 851 qemu_set_log_filename(log_file, &error_fatal); 852 if (log_mask) { 853 int mask; 854 855 mask = qemu_str_to_log_mask(log_mask); 856 if (!mask) { 857 qemu_print_log_usage(stdout); 858 exit(1); 859 } 860 qemu_set_log(mask); 861 } 862 863 if (optind >= argc) { 864 usage(); 865 } 866 filename = argv[optind]; 867 868 if (!trace_init_backends()) { 869 exit(1); 870 } 871 trace_init_file(trace_file); 872 873 /* Zero out regs */ 874 memset(regs, 0, sizeof(struct target_pt_regs)); 875 876 /* Zero out image_info */ 877 memset(info, 0, sizeof(struct image_info)); 878 879 /* Scan interp_prefix dir for replacement files. */ 880 init_paths(interp_prefix); 881 882 if (cpu_model == NULL) { 883 #if defined(TARGET_I386) 884 #ifdef TARGET_X86_64 885 cpu_model = "qemu64"; 886 #else 887 cpu_model = "qemu32"; 888 #endif 889 #elif defined(TARGET_SPARC) 890 #ifdef TARGET_SPARC64 891 cpu_model = "TI UltraSparc II"; 892 #else 893 cpu_model = "Fujitsu MB86904"; 894 #endif 895 #else 896 cpu_model = "any"; 897 #endif 898 } 899 tcg_exec_init(0); 900 /* NOTE: we need to init the CPU at this stage to get 901 qemu_host_page_size */ 902 cpu = cpu_init(cpu_model); 903 if (!cpu) { 904 fprintf(stderr, "Unable to find CPU definition\n"); 905 exit(1); 906 } 907 env = cpu->env_ptr; 908 #if defined(TARGET_SPARC) || defined(TARGET_PPC) 909 cpu_reset(cpu); 910 #endif 911 thread_cpu = cpu; 912 913 if (getenv("QEMU_STRACE")) { 914 do_strace = 1; 915 } 916 917 target_environ = envlist_to_environ(envlist, NULL); 918 envlist_free(envlist); 919 920 /* 921 * Now that page sizes are configured in cpu_init() we can do 922 * proper page alignment for guest_base. 923 */ 924 guest_base = HOST_PAGE_ALIGN(guest_base); 925 926 /* 927 * Read in mmap_min_addr kernel parameter. This value is used 928 * When loading the ELF image to determine whether guest_base 929 * is needed. 930 * 931 * When user has explicitly set the quest base, we skip this 932 * test. 933 */ 934 if (!have_guest_base) { 935 FILE *fp; 936 937 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 938 unsigned long tmp; 939 if (fscanf(fp, "%lu", &tmp) == 1) { 940 mmap_min_addr = tmp; 941 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); 942 } 943 fclose(fp); 944 } 945 } 946 947 if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) { 948 printf("Error loading %s\n", filename); 949 _exit(1); 950 } 951 952 for (wrk = target_environ; *wrk; wrk++) { 953 g_free(*wrk); 954 } 955 956 g_free(target_environ); 957 958 if (qemu_loglevel_mask(CPU_LOG_PAGE)) { 959 qemu_log("guest_base 0x%lx\n", guest_base); 960 log_page_dump(); 961 962 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 963 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 964 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 965 info->start_code); 966 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 967 info->start_data); 968 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 969 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 970 info->start_stack); 971 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 972 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 973 } 974 975 target_set_brk(info->brk); 976 syscall_init(); 977 signal_init(); 978 979 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 980 generating the prologue until now so that the prologue can take 981 the real value of GUEST_BASE into account. */ 982 tcg_prologue_init(&tcg_ctx); 983 984 /* build Task State */ 985 memset(ts, 0, sizeof(TaskState)); 986 init_task_state(ts); 987 ts->info = info; 988 cpu->opaque = ts; 989 990 #if defined(TARGET_I386) 991 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 992 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 993 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 994 env->cr[4] |= CR4_OSFXSR_MASK; 995 env->hflags |= HF_OSFXSR_MASK; 996 } 997 #ifndef TARGET_ABI32 998 /* enable 64 bit mode if possible */ 999 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 1000 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 1001 exit(1); 1002 } 1003 env->cr[4] |= CR4_PAE_MASK; 1004 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 1005 env->hflags |= HF_LMA_MASK; 1006 #endif 1007 1008 /* flags setup : we activate the IRQs by default as in user mode */ 1009 env->eflags |= IF_MASK; 1010 1011 /* linux register setup */ 1012 #ifndef TARGET_ABI32 1013 env->regs[R_EAX] = regs->rax; 1014 env->regs[R_EBX] = regs->rbx; 1015 env->regs[R_ECX] = regs->rcx; 1016 env->regs[R_EDX] = regs->rdx; 1017 env->regs[R_ESI] = regs->rsi; 1018 env->regs[R_EDI] = regs->rdi; 1019 env->regs[R_EBP] = regs->rbp; 1020 env->regs[R_ESP] = regs->rsp; 1021 env->eip = regs->rip; 1022 #else 1023 env->regs[R_EAX] = regs->eax; 1024 env->regs[R_EBX] = regs->ebx; 1025 env->regs[R_ECX] = regs->ecx; 1026 env->regs[R_EDX] = regs->edx; 1027 env->regs[R_ESI] = regs->esi; 1028 env->regs[R_EDI] = regs->edi; 1029 env->regs[R_EBP] = regs->ebp; 1030 env->regs[R_ESP] = regs->esp; 1031 env->eip = regs->eip; 1032 #endif 1033 1034 /* linux interrupt setup */ 1035 #ifndef TARGET_ABI32 1036 env->idt.limit = 511; 1037 #else 1038 env->idt.limit = 255; 1039 #endif 1040 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 1041 PROT_READ|PROT_WRITE, 1042 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 1043 idt_table = g2h(env->idt.base); 1044 set_idt(0, 0); 1045 set_idt(1, 0); 1046 set_idt(2, 0); 1047 set_idt(3, 3); 1048 set_idt(4, 3); 1049 set_idt(5, 0); 1050 set_idt(6, 0); 1051 set_idt(7, 0); 1052 set_idt(8, 0); 1053 set_idt(9, 0); 1054 set_idt(10, 0); 1055 set_idt(11, 0); 1056 set_idt(12, 0); 1057 set_idt(13, 0); 1058 set_idt(14, 0); 1059 set_idt(15, 0); 1060 set_idt(16, 0); 1061 set_idt(17, 0); 1062 set_idt(18, 0); 1063 set_idt(19, 0); 1064 set_idt(0x80, 3); 1065 1066 /* linux segment setup */ 1067 { 1068 uint64_t *gdt_table; 1069 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 1070 PROT_READ|PROT_WRITE, 1071 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 1072 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 1073 gdt_table = g2h(env->gdt.base); 1074 #ifdef TARGET_ABI32 1075 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 1076 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1077 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 1078 #else 1079 /* 64 bit code segment */ 1080 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 1081 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1082 DESC_L_MASK | 1083 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 1084 #endif 1085 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 1086 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 1087 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 1088 } 1089 1090 cpu_x86_load_seg(env, R_CS, __USER_CS); 1091 cpu_x86_load_seg(env, R_SS, __USER_DS); 1092 #ifdef TARGET_ABI32 1093 cpu_x86_load_seg(env, R_DS, __USER_DS); 1094 cpu_x86_load_seg(env, R_ES, __USER_DS); 1095 cpu_x86_load_seg(env, R_FS, __USER_DS); 1096 cpu_x86_load_seg(env, R_GS, __USER_DS); 1097 /* This hack makes Wine work... */ 1098 env->segs[R_FS].selector = 0; 1099 #else 1100 cpu_x86_load_seg(env, R_DS, 0); 1101 cpu_x86_load_seg(env, R_ES, 0); 1102 cpu_x86_load_seg(env, R_FS, 0); 1103 cpu_x86_load_seg(env, R_GS, 0); 1104 #endif 1105 #elif defined(TARGET_SPARC) 1106 { 1107 int i; 1108 env->pc = regs->pc; 1109 env->npc = regs->npc; 1110 env->y = regs->y; 1111 for(i = 0; i < 8; i++) 1112 env->gregs[i] = regs->u_regs[i]; 1113 for(i = 0; i < 8; i++) 1114 env->regwptr[i] = regs->u_regs[i + 8]; 1115 } 1116 #else 1117 #error unsupported target CPU 1118 #endif 1119 1120 if (gdbstub_port) { 1121 gdbserver_start (gdbstub_port); 1122 gdb_handlesig(cpu, 0); 1123 } 1124 cpu_loop(env); 1125 /* never exits */ 1126 return 0; 1127 } 1128