xref: /openbmc/qemu/bsd-user/main.c (revision 6d0ceb80)
1 /*
2  *  qemu user main
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu-version.h"
21 #include <machine/trap.h>
22 
23 #include "qapi/error.h"
24 #include "qemu.h"
25 #include "qemu/config-file.h"
26 #include "qemu/path.h"
27 #include "qemu/help_option.h"
28 /* For tb_lock */
29 #include "cpu.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #include "qemu/timer.h"
33 #include "qemu/envlist.h"
34 #include "exec/log.h"
35 #include "trace/control.h"
36 #include "glib-compat.h"
37 
38 int singlestep;
39 unsigned long mmap_min_addr;
40 unsigned long guest_base;
41 int have_guest_base;
42 unsigned long reserved_va;
43 
44 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
45 const char *qemu_uname_release;
46 extern char **environ;
47 enum BSDType bsd_type;
48 
49 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
50    we allocate a bigger stack. Need a better solution, for example
51    by remapping the process stack directly at the right place */
52 unsigned long x86_stack_size = 512 * 1024;
53 
54 void gemu_log(const char *fmt, ...)
55 {
56     va_list ap;
57 
58     va_start(ap, fmt);
59     vfprintf(stderr, fmt, ap);
60     va_end(ap);
61 }
62 
63 #if defined(TARGET_I386)
64 int cpu_get_pic_interrupt(CPUX86State *env)
65 {
66     return -1;
67 }
68 #endif
69 
70 void fork_start(void)
71 {
72 }
73 
74 void fork_end(int child)
75 {
76     if (child) {
77         gdbserver_fork(thread_cpu);
78     }
79 }
80 
81 #ifdef TARGET_I386
82 /***********************************************************/
83 /* CPUX86 core interface */
84 
85 uint64_t cpu_get_tsc(CPUX86State *env)
86 {
87     return cpu_get_host_ticks();
88 }
89 
90 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
91                      int flags)
92 {
93     unsigned int e1, e2;
94     uint32_t *p;
95     e1 = (addr << 16) | (limit & 0xffff);
96     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
97     e2 |= flags;
98     p = ptr;
99     p[0] = tswap32(e1);
100     p[1] = tswap32(e2);
101 }
102 
103 static uint64_t *idt_table;
104 #ifdef TARGET_X86_64
105 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
106                        uint64_t addr, unsigned int sel)
107 {
108     uint32_t *p, e1, e2;
109     e1 = (addr & 0xffff) | (sel << 16);
110     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
111     p = ptr;
112     p[0] = tswap32(e1);
113     p[1] = tswap32(e2);
114     p[2] = tswap32(addr >> 32);
115     p[3] = 0;
116 }
117 /* only dpl matters as we do only user space emulation */
118 static void set_idt(int n, unsigned int dpl)
119 {
120     set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
121 }
122 #else
123 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
124                      uint32_t addr, unsigned int sel)
125 {
126     uint32_t *p, e1, e2;
127     e1 = (addr & 0xffff) | (sel << 16);
128     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
129     p = ptr;
130     p[0] = tswap32(e1);
131     p[1] = tswap32(e2);
132 }
133 
134 /* only dpl matters as we do only user space emulation */
135 static void set_idt(int n, unsigned int dpl)
136 {
137     set_gate(idt_table + n, 0, dpl, 0, 0);
138 }
139 #endif
140 
141 void cpu_loop(CPUX86State *env)
142 {
143     X86CPU *cpu = x86_env_get_cpu(env);
144     CPUState *cs = CPU(cpu);
145     int trapnr;
146     abi_ulong pc;
147     //target_siginfo_t info;
148 
149     for(;;) {
150         cpu_exec_start(cs);
151         trapnr = cpu_exec(cs);
152         cpu_exec_end(cs);
153         process_queued_cpu_work(cs);
154 
155         switch(trapnr) {
156         case 0x80:
157             /* syscall from int $0x80 */
158             if (bsd_type == target_freebsd) {
159                 abi_ulong params = (abi_ulong) env->regs[R_ESP] +
160                     sizeof(int32_t);
161                 int32_t syscall_nr = env->regs[R_EAX];
162                 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
163 
164                 if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
165                     get_user_s32(syscall_nr, params);
166                     params += sizeof(int32_t);
167                 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
168                     get_user_s32(syscall_nr, params);
169                     params += sizeof(int64_t);
170                 }
171                 get_user_s32(arg1, params);
172                 params += sizeof(int32_t);
173                 get_user_s32(arg2, params);
174                 params += sizeof(int32_t);
175                 get_user_s32(arg3, params);
176                 params += sizeof(int32_t);
177                 get_user_s32(arg4, params);
178                 params += sizeof(int32_t);
179                 get_user_s32(arg5, params);
180                 params += sizeof(int32_t);
181                 get_user_s32(arg6, params);
182                 params += sizeof(int32_t);
183                 get_user_s32(arg7, params);
184                 params += sizeof(int32_t);
185                 get_user_s32(arg8, params);
186                 env->regs[R_EAX] = do_freebsd_syscall(env,
187                                                       syscall_nr,
188                                                       arg1,
189                                                       arg2,
190                                                       arg3,
191                                                       arg4,
192                                                       arg5,
193                                                       arg6,
194                                                       arg7,
195                                                       arg8);
196             } else { //if (bsd_type == target_openbsd)
197                 env->regs[R_EAX] = do_openbsd_syscall(env,
198                                                       env->regs[R_EAX],
199                                                       env->regs[R_EBX],
200                                                       env->regs[R_ECX],
201                                                       env->regs[R_EDX],
202                                                       env->regs[R_ESI],
203                                                       env->regs[R_EDI],
204                                                       env->regs[R_EBP]);
205             }
206             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
207                 env->regs[R_EAX] = -env->regs[R_EAX];
208                 env->eflags |= CC_C;
209             } else {
210                 env->eflags &= ~CC_C;
211             }
212             break;
213 #ifndef TARGET_ABI32
214         case EXCP_SYSCALL:
215             /* syscall from syscall instruction */
216             if (bsd_type == target_freebsd)
217                 env->regs[R_EAX] = do_freebsd_syscall(env,
218                                                       env->regs[R_EAX],
219                                                       env->regs[R_EDI],
220                                                       env->regs[R_ESI],
221                                                       env->regs[R_EDX],
222                                                       env->regs[R_ECX],
223                                                       env->regs[8],
224                                                       env->regs[9], 0, 0);
225             else { //if (bsd_type == target_openbsd)
226                 env->regs[R_EAX] = do_openbsd_syscall(env,
227                                                       env->regs[R_EAX],
228                                                       env->regs[R_EDI],
229                                                       env->regs[R_ESI],
230                                                       env->regs[R_EDX],
231                                                       env->regs[10],
232                                                       env->regs[8],
233                                                       env->regs[9]);
234             }
235             env->eip = env->exception_next_eip;
236             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
237                 env->regs[R_EAX] = -env->regs[R_EAX];
238                 env->eflags |= CC_C;
239             } else {
240                 env->eflags &= ~CC_C;
241             }
242             break;
243 #endif
244 #if 0
245         case EXCP0B_NOSEG:
246         case EXCP0C_STACK:
247             info.si_signo = SIGBUS;
248             info.si_errno = 0;
249             info.si_code = TARGET_SI_KERNEL;
250             info._sifields._sigfault._addr = 0;
251             queue_signal(env, info.si_signo, &info);
252             break;
253         case EXCP0D_GPF:
254             /* XXX: potential problem if ABI32 */
255 #ifndef TARGET_X86_64
256             if (env->eflags & VM_MASK) {
257                 handle_vm86_fault(env);
258             } else
259 #endif
260             {
261                 info.si_signo = SIGSEGV;
262                 info.si_errno = 0;
263                 info.si_code = TARGET_SI_KERNEL;
264                 info._sifields._sigfault._addr = 0;
265                 queue_signal(env, info.si_signo, &info);
266             }
267             break;
268         case EXCP0E_PAGE:
269             info.si_signo = SIGSEGV;
270             info.si_errno = 0;
271             if (!(env->error_code & 1))
272                 info.si_code = TARGET_SEGV_MAPERR;
273             else
274                 info.si_code = TARGET_SEGV_ACCERR;
275             info._sifields._sigfault._addr = env->cr[2];
276             queue_signal(env, info.si_signo, &info);
277             break;
278         case EXCP00_DIVZ:
279 #ifndef TARGET_X86_64
280             if (env->eflags & VM_MASK) {
281                 handle_vm86_trap(env, trapnr);
282             } else
283 #endif
284             {
285                 /* division by zero */
286                 info.si_signo = SIGFPE;
287                 info.si_errno = 0;
288                 info.si_code = TARGET_FPE_INTDIV;
289                 info._sifields._sigfault._addr = env->eip;
290                 queue_signal(env, info.si_signo, &info);
291             }
292             break;
293         case EXCP01_DB:
294         case EXCP03_INT3:
295 #ifndef TARGET_X86_64
296             if (env->eflags & VM_MASK) {
297                 handle_vm86_trap(env, trapnr);
298             } else
299 #endif
300             {
301                 info.si_signo = SIGTRAP;
302                 info.si_errno = 0;
303                 if (trapnr == EXCP01_DB) {
304                     info.si_code = TARGET_TRAP_BRKPT;
305                     info._sifields._sigfault._addr = env->eip;
306                 } else {
307                     info.si_code = TARGET_SI_KERNEL;
308                     info._sifields._sigfault._addr = 0;
309                 }
310                 queue_signal(env, info.si_signo, &info);
311             }
312             break;
313         case EXCP04_INTO:
314         case EXCP05_BOUND:
315 #ifndef TARGET_X86_64
316             if (env->eflags & VM_MASK) {
317                 handle_vm86_trap(env, trapnr);
318             } else
319 #endif
320             {
321                 info.si_signo = SIGSEGV;
322                 info.si_errno = 0;
323                 info.si_code = TARGET_SI_KERNEL;
324                 info._sifields._sigfault._addr = 0;
325                 queue_signal(env, info.si_signo, &info);
326             }
327             break;
328         case EXCP06_ILLOP:
329             info.si_signo = SIGILL;
330             info.si_errno = 0;
331             info.si_code = TARGET_ILL_ILLOPN;
332             info._sifields._sigfault._addr = env->eip;
333             queue_signal(env, info.si_signo, &info);
334             break;
335 #endif
336         case EXCP_INTERRUPT:
337             /* just indicate that signals should be handled asap */
338             break;
339 #if 0
340         case EXCP_DEBUG:
341             {
342                 int sig;
343 
344                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
345                 if (sig)
346                   {
347                     info.si_signo = sig;
348                     info.si_errno = 0;
349                     info.si_code = TARGET_TRAP_BRKPT;
350                     queue_signal(env, info.si_signo, &info);
351                   }
352             }
353             break;
354 #endif
355         default:
356             pc = env->segs[R_CS].base + env->eip;
357             fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
358                     (long)pc, trapnr);
359             abort();
360         }
361         process_pending_signals(env);
362     }
363 }
364 #endif
365 
366 #ifdef TARGET_SPARC
367 #define SPARC64_STACK_BIAS 2047
368 
369 //#define DEBUG_WIN
370 /* WARNING: dealing with register windows _is_ complicated. More info
371    can be found at http://www.sics.se/~psm/sparcstack.html */
372 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
373 {
374     index = (index + cwp * 16) % (16 * env->nwindows);
375     /* wrap handling : if cwp is on the last window, then we use the
376        registers 'after' the end */
377     if (index < 8 && env->cwp == env->nwindows - 1)
378         index += 16 * env->nwindows;
379     return index;
380 }
381 
382 /* save the register window 'cwp1' */
383 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
384 {
385     unsigned int i;
386     abi_ulong sp_ptr;
387 
388     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
389 #ifdef TARGET_SPARC64
390     if (sp_ptr & 3)
391         sp_ptr += SPARC64_STACK_BIAS;
392 #endif
393 #if defined(DEBUG_WIN)
394     printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
395            sp_ptr, cwp1);
396 #endif
397     for(i = 0; i < 16; i++) {
398         /* FIXME - what to do if put_user() fails? */
399         put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
400         sp_ptr += sizeof(abi_ulong);
401     }
402 }
403 
404 static void save_window(CPUSPARCState *env)
405 {
406 #ifndef TARGET_SPARC64
407     unsigned int new_wim;
408     new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
409         ((1LL << env->nwindows) - 1);
410     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
411     env->wim = new_wim;
412 #else
413     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
414     env->cansave++;
415     env->canrestore--;
416 #endif
417 }
418 
419 static void restore_window(CPUSPARCState *env)
420 {
421 #ifndef TARGET_SPARC64
422     unsigned int new_wim;
423 #endif
424     unsigned int i, cwp1;
425     abi_ulong sp_ptr;
426 
427 #ifndef TARGET_SPARC64
428     new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
429         ((1LL << env->nwindows) - 1);
430 #endif
431 
432     /* restore the invalid window */
433     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
434     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
435 #ifdef TARGET_SPARC64
436     if (sp_ptr & 3)
437         sp_ptr += SPARC64_STACK_BIAS;
438 #endif
439 #if defined(DEBUG_WIN)
440     printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
441            sp_ptr, cwp1);
442 #endif
443     for(i = 0; i < 16; i++) {
444         /* FIXME - what to do if get_user() fails? */
445         get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
446         sp_ptr += sizeof(abi_ulong);
447     }
448 #ifdef TARGET_SPARC64
449     env->canrestore++;
450     if (env->cleanwin < env->nwindows - 1)
451         env->cleanwin++;
452     env->cansave--;
453 #else
454     env->wim = new_wim;
455 #endif
456 }
457 
458 static void flush_windows(CPUSPARCState *env)
459 {
460     int offset, cwp1;
461 
462     offset = 1;
463     for(;;) {
464         /* if restore would invoke restore_window(), then we can stop */
465         cwp1 = cpu_cwp_inc(env, env->cwp + offset);
466 #ifndef TARGET_SPARC64
467         if (env->wim & (1 << cwp1))
468             break;
469 #else
470         if (env->canrestore == 0)
471             break;
472         env->cansave++;
473         env->canrestore--;
474 #endif
475         save_window_offset(env, cwp1);
476         offset++;
477     }
478     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
479 #ifndef TARGET_SPARC64
480     /* set wim so that restore will reload the registers */
481     env->wim = 1 << cwp1;
482 #endif
483 #if defined(DEBUG_WIN)
484     printf("flush_windows: nb=%d\n", offset - 1);
485 #endif
486 }
487 
488 void cpu_loop(CPUSPARCState *env)
489 {
490     CPUState *cs = CPU(sparc_env_get_cpu(env));
491     int trapnr, ret, syscall_nr;
492     //target_siginfo_t info;
493 
494     while (1) {
495         cpu_exec_start(cs);
496         trapnr = cpu_exec(cs);
497         cpu_exec_end(cs);
498         process_queued_cpu_work(cs);
499 
500         switch (trapnr) {
501 #ifndef TARGET_SPARC64
502         case 0x80:
503 #else
504         /* FreeBSD uses 0x141 for syscalls too */
505         case 0x141:
506             if (bsd_type != target_freebsd)
507                 goto badtrap;
508         case 0x100:
509 #endif
510             syscall_nr = env->gregs[1];
511             if (bsd_type == target_freebsd)
512                 ret = do_freebsd_syscall(env, syscall_nr,
513                                          env->regwptr[0], env->regwptr[1],
514                                          env->regwptr[2], env->regwptr[3],
515                                          env->regwptr[4], env->regwptr[5], 0, 0);
516             else if (bsd_type == target_netbsd)
517                 ret = do_netbsd_syscall(env, syscall_nr,
518                                         env->regwptr[0], env->regwptr[1],
519                                         env->regwptr[2], env->regwptr[3],
520                                         env->regwptr[4], env->regwptr[5]);
521             else { //if (bsd_type == target_openbsd)
522 #if defined(TARGET_SPARC64)
523                 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
524                                 TARGET_OPENBSD_SYSCALL_G2RFLAG);
525 #endif
526                 ret = do_openbsd_syscall(env, syscall_nr,
527                                          env->regwptr[0], env->regwptr[1],
528                                          env->regwptr[2], env->regwptr[3],
529                                          env->regwptr[4], env->regwptr[5]);
530             }
531             if ((unsigned int)ret >= (unsigned int)(-515)) {
532                 ret = -ret;
533 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
534                 env->xcc |= PSR_CARRY;
535 #else
536                 env->psr |= PSR_CARRY;
537 #endif
538             } else {
539 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
540                 env->xcc &= ~PSR_CARRY;
541 #else
542                 env->psr &= ~PSR_CARRY;
543 #endif
544             }
545             env->regwptr[0] = ret;
546             /* next instruction */
547 #if defined(TARGET_SPARC64)
548             if (bsd_type == target_openbsd &&
549                 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
550                 env->pc = env->gregs[2];
551                 env->npc = env->pc + 4;
552             } else if (bsd_type == target_openbsd &&
553                        env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
554                 env->pc = env->gregs[7];
555                 env->npc = env->pc + 4;
556             } else {
557                 env->pc = env->npc;
558                 env->npc = env->npc + 4;
559             }
560 #else
561             env->pc = env->npc;
562             env->npc = env->npc + 4;
563 #endif
564             break;
565         case 0x83: /* flush windows */
566 #ifdef TARGET_ABI32
567         case 0x103:
568 #endif
569             flush_windows(env);
570             /* next instruction */
571             env->pc = env->npc;
572             env->npc = env->npc + 4;
573             break;
574 #ifndef TARGET_SPARC64
575         case TT_WIN_OVF: /* window overflow */
576             save_window(env);
577             break;
578         case TT_WIN_UNF: /* window underflow */
579             restore_window(env);
580             break;
581         case TT_TFAULT:
582         case TT_DFAULT:
583 #if 0
584             {
585                 info.si_signo = SIGSEGV;
586                 info.si_errno = 0;
587                 /* XXX: check env->error_code */
588                 info.si_code = TARGET_SEGV_MAPERR;
589                 info._sifields._sigfault._addr = env->mmuregs[4];
590                 queue_signal(env, info.si_signo, &info);
591             }
592 #endif
593             break;
594 #else
595         case TT_SPILL: /* window overflow */
596             save_window(env);
597             break;
598         case TT_FILL: /* window underflow */
599             restore_window(env);
600             break;
601         case TT_TFAULT:
602         case TT_DFAULT:
603 #if 0
604             {
605                 info.si_signo = SIGSEGV;
606                 info.si_errno = 0;
607                 /* XXX: check env->error_code */
608                 info.si_code = TARGET_SEGV_MAPERR;
609                 if (trapnr == TT_DFAULT)
610                     info._sifields._sigfault._addr = env->dmmuregs[4];
611                 else
612                     info._sifields._sigfault._addr = env->tsptr->tpc;
613                 //queue_signal(env, info.si_signo, &info);
614             }
615 #endif
616             break;
617 #endif
618         case EXCP_INTERRUPT:
619             /* just indicate that signals should be handled asap */
620             break;
621         case EXCP_DEBUG:
622             {
623                 int sig;
624 
625                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
626 #if 0
627                 if (sig)
628                   {
629                     info.si_signo = sig;
630                     info.si_errno = 0;
631                     info.si_code = TARGET_TRAP_BRKPT;
632                     //queue_signal(env, info.si_signo, &info);
633                   }
634 #endif
635             }
636             break;
637         default:
638 #ifdef TARGET_SPARC64
639         badtrap:
640 #endif
641             printf ("Unhandled trap: 0x%x\n", trapnr);
642             cpu_dump_state(cs, stderr, fprintf, 0);
643             exit (1);
644         }
645         process_pending_signals (env);
646     }
647 }
648 
649 #endif
650 
651 static void usage(void)
652 {
653     printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
654            ", " QEMU_COPYRIGHT "\n"
655            "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
656            "BSD CPU emulator (compiled for %s emulation)\n"
657            "\n"
658            "Standard options:\n"
659            "-h                print this help\n"
660            "-g port           wait gdb connection to port\n"
661            "-L path           set the elf interpreter prefix (default=%s)\n"
662            "-s size           set the stack size in bytes (default=%ld)\n"
663            "-cpu model        select CPU (-cpu help for list)\n"
664            "-drop-ld-preload  drop LD_PRELOAD for target process\n"
665            "-E var=value      sets/modifies targets environment variable(s)\n"
666            "-U var            unsets targets environment variable(s)\n"
667            "-B address        set guest_base address to address\n"
668            "-bsd type         select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
669            "\n"
670            "Debug options:\n"
671            "-d item1[,...]    enable logging of specified items\n"
672            "                  (use '-d help' for a list of log items)\n"
673            "-D logfile        write logs to 'logfile' (default stderr)\n"
674            "-p pagesize       set the host page size to 'pagesize'\n"
675            "-singlestep       always run in singlestep mode\n"
676            "-strace           log system calls\n"
677            "-trace            [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
678            "                  specify tracing options\n"
679            "\n"
680            "Environment variables:\n"
681            "QEMU_STRACE       Print system calls and arguments similar to the\n"
682            "                  'strace' program.  Enable by setting to any value.\n"
683            "You can use -E and -U options to set/unset environment variables\n"
684            "for target process.  It is possible to provide several variables\n"
685            "by repeating the option.  For example:\n"
686            "    -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
687            "Note that if you provide several changes to single variable\n"
688            "last change will stay in effect.\n"
689            ,
690            TARGET_NAME,
691            interp_prefix,
692            x86_stack_size);
693     exit(1);
694 }
695 
696 THREAD CPUState *thread_cpu;
697 
698 /* Assumes contents are already zeroed.  */
699 void init_task_state(TaskState *ts)
700 {
701     int i;
702 
703     ts->used = 1;
704     ts->first_free = ts->sigqueue_table;
705     for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
706         ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
707     }
708     ts->sigqueue_table[i].next = NULL;
709 }
710 
711 int main(int argc, char **argv)
712 {
713     const char *filename;
714     const char *cpu_model;
715     const char *log_file = NULL;
716     const char *log_mask = NULL;
717     struct target_pt_regs regs1, *regs = &regs1;
718     struct image_info info1, *info = &info1;
719     TaskState ts1, *ts = &ts1;
720     CPUArchState *env;
721     CPUState *cpu;
722     int optind;
723     const char *r;
724     int gdbstub_port = 0;
725     char **target_environ, **wrk;
726     envlist_t *envlist = NULL;
727     char *trace_file = NULL;
728     bsd_type = target_openbsd;
729 
730     if (argc <= 1)
731         usage();
732 
733     qemu_init_cpu_list();
734     module_call_init(MODULE_INIT_QOM);
735 
736     if ((envlist = envlist_create()) == NULL) {
737         (void) fprintf(stderr, "Unable to allocate envlist\n");
738         exit(1);
739     }
740 
741     /* add current environment into the list */
742     for (wrk = environ; *wrk != NULL; wrk++) {
743         (void) envlist_setenv(envlist, *wrk);
744     }
745 
746     cpu_model = NULL;
747 
748     qemu_add_opts(&qemu_trace_opts);
749 
750     optind = 1;
751     for (;;) {
752         if (optind >= argc)
753             break;
754         r = argv[optind];
755         if (r[0] != '-')
756             break;
757         optind++;
758         r++;
759         if (!strcmp(r, "-")) {
760             break;
761         } else if (!strcmp(r, "d")) {
762             if (optind >= argc) {
763                 break;
764             }
765             log_mask = argv[optind++];
766         } else if (!strcmp(r, "D")) {
767             if (optind >= argc) {
768                 break;
769             }
770             log_file = argv[optind++];
771         } else if (!strcmp(r, "E")) {
772             r = argv[optind++];
773             if (envlist_setenv(envlist, r) != 0)
774                 usage();
775         } else if (!strcmp(r, "ignore-environment")) {
776             envlist_free(envlist);
777             if ((envlist = envlist_create()) == NULL) {
778                 (void) fprintf(stderr, "Unable to allocate envlist\n");
779                 exit(1);
780             }
781         } else if (!strcmp(r, "U")) {
782             r = argv[optind++];
783             if (envlist_unsetenv(envlist, r) != 0)
784                 usage();
785         } else if (!strcmp(r, "s")) {
786             r = argv[optind++];
787             x86_stack_size = strtol(r, (char **)&r, 0);
788             if (x86_stack_size <= 0)
789                 usage();
790             if (*r == 'M')
791                 x86_stack_size *= 1024 * 1024;
792             else if (*r == 'k' || *r == 'K')
793                 x86_stack_size *= 1024;
794         } else if (!strcmp(r, "L")) {
795             interp_prefix = argv[optind++];
796         } else if (!strcmp(r, "p")) {
797             qemu_host_page_size = atoi(argv[optind++]);
798             if (qemu_host_page_size == 0 ||
799                 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
800                 fprintf(stderr, "page size must be a power of two\n");
801                 exit(1);
802             }
803         } else if (!strcmp(r, "g")) {
804             gdbstub_port = atoi(argv[optind++]);
805         } else if (!strcmp(r, "r")) {
806             qemu_uname_release = argv[optind++];
807         } else if (!strcmp(r, "cpu")) {
808             cpu_model = argv[optind++];
809             if (is_help_option(cpu_model)) {
810 /* XXX: implement xxx_cpu_list for targets that still miss it */
811 #if defined(cpu_list)
812                     cpu_list(stdout, &fprintf);
813 #endif
814                 exit(1);
815             }
816         } else if (!strcmp(r, "B")) {
817            guest_base = strtol(argv[optind++], NULL, 0);
818            have_guest_base = 1;
819         } else if (!strcmp(r, "drop-ld-preload")) {
820             (void) envlist_unsetenv(envlist, "LD_PRELOAD");
821         } else if (!strcmp(r, "bsd")) {
822             if (!strcasecmp(argv[optind], "freebsd")) {
823                 bsd_type = target_freebsd;
824             } else if (!strcasecmp(argv[optind], "netbsd")) {
825                 bsd_type = target_netbsd;
826             } else if (!strcasecmp(argv[optind], "openbsd")) {
827                 bsd_type = target_openbsd;
828             } else {
829                 usage();
830             }
831             optind++;
832         } else if (!strcmp(r, "singlestep")) {
833             singlestep = 1;
834         } else if (!strcmp(r, "strace")) {
835             do_strace = 1;
836         } else if (!strcmp(r, "trace")) {
837             g_free(trace_file);
838             trace_file = trace_opt_parse(optarg);
839         } else {
840             usage();
841         }
842     }
843 
844     /* init debug */
845     qemu_log_needs_buffers();
846     qemu_set_log_filename(log_file, &error_fatal);
847     if (log_mask) {
848         int mask;
849 
850         mask = qemu_str_to_log_mask(log_mask);
851         if (!mask) {
852             qemu_print_log_usage(stdout);
853             exit(1);
854         }
855         qemu_set_log(mask);
856     }
857 
858     if (optind >= argc) {
859         usage();
860     }
861     filename = argv[optind];
862 
863     if (!trace_init_backends()) {
864         exit(1);
865     }
866     trace_init_file(trace_file);
867 
868     /* Zero out regs */
869     memset(regs, 0, sizeof(struct target_pt_regs));
870 
871     /* Zero out image_info */
872     memset(info, 0, sizeof(struct image_info));
873 
874     /* Scan interp_prefix dir for replacement files. */
875     init_paths(interp_prefix);
876 
877     if (cpu_model == NULL) {
878 #if defined(TARGET_I386)
879 #ifdef TARGET_X86_64
880         cpu_model = "qemu64";
881 #else
882         cpu_model = "qemu32";
883 #endif
884 #elif defined(TARGET_SPARC)
885 #ifdef TARGET_SPARC64
886         cpu_model = "TI UltraSparc II";
887 #else
888         cpu_model = "Fujitsu MB86904";
889 #endif
890 #else
891         cpu_model = "any";
892 #endif
893     }
894     tcg_exec_init(0);
895     /* NOTE: we need to init the CPU at this stage to get
896        qemu_host_page_size */
897     cpu = cpu_init(cpu_model);
898     if (!cpu) {
899         fprintf(stderr, "Unable to find CPU definition\n");
900         exit(1);
901     }
902     env = cpu->env_ptr;
903 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
904     cpu_reset(cpu);
905 #endif
906     thread_cpu = cpu;
907 
908     if (getenv("QEMU_STRACE")) {
909         do_strace = 1;
910     }
911 
912     target_environ = envlist_to_environ(envlist, NULL);
913     envlist_free(envlist);
914 
915     /*
916      * Now that page sizes are configured in cpu_init() we can do
917      * proper page alignment for guest_base.
918      */
919     guest_base = HOST_PAGE_ALIGN(guest_base);
920 
921     /*
922      * Read in mmap_min_addr kernel parameter.  This value is used
923      * When loading the ELF image to determine whether guest_base
924      * is needed.
925      *
926      * When user has explicitly set the quest base, we skip this
927      * test.
928      */
929     if (!have_guest_base) {
930         FILE *fp;
931 
932         if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
933             unsigned long tmp;
934             if (fscanf(fp, "%lu", &tmp) == 1) {
935                 mmap_min_addr = tmp;
936                 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
937             }
938             fclose(fp);
939         }
940     }
941 
942     if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
943         printf("Error loading %s\n", filename);
944         _exit(1);
945     }
946 
947     for (wrk = target_environ; *wrk; wrk++) {
948         free(*wrk);
949     }
950 
951     free(target_environ);
952 
953     if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
954         qemu_log("guest_base  0x%lx\n", guest_base);
955         log_page_dump();
956 
957         qemu_log("start_brk   0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
958         qemu_log("end_code    0x" TARGET_ABI_FMT_lx "\n", info->end_code);
959         qemu_log("start_code  0x" TARGET_ABI_FMT_lx "\n",
960                  info->start_code);
961         qemu_log("start_data  0x" TARGET_ABI_FMT_lx "\n",
962                  info->start_data);
963         qemu_log("end_data    0x" TARGET_ABI_FMT_lx "\n", info->end_data);
964         qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
965                  info->start_stack);
966         qemu_log("brk         0x" TARGET_ABI_FMT_lx "\n", info->brk);
967         qemu_log("entry       0x" TARGET_ABI_FMT_lx "\n", info->entry);
968     }
969 
970     target_set_brk(info->brk);
971     syscall_init();
972     signal_init();
973 
974     /* Now that we've loaded the binary, GUEST_BASE is fixed.  Delay
975        generating the prologue until now so that the prologue can take
976        the real value of GUEST_BASE into account.  */
977     tcg_prologue_init(&tcg_ctx);
978 
979     /* build Task State */
980     memset(ts, 0, sizeof(TaskState));
981     init_task_state(ts);
982     ts->info = info;
983     cpu->opaque = ts;
984 
985 #if defined(TARGET_I386)
986     env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
987     env->hflags |= HF_PE_MASK | HF_CPL_MASK;
988     if (env->features[FEAT_1_EDX] & CPUID_SSE) {
989         env->cr[4] |= CR4_OSFXSR_MASK;
990         env->hflags |= HF_OSFXSR_MASK;
991     }
992 #ifndef TARGET_ABI32
993     /* enable 64 bit mode if possible */
994     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
995         fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
996         exit(1);
997     }
998     env->cr[4] |= CR4_PAE_MASK;
999     env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
1000     env->hflags |= HF_LMA_MASK;
1001 #endif
1002 
1003     /* flags setup : we activate the IRQs by default as in user mode */
1004     env->eflags |= IF_MASK;
1005 
1006     /* linux register setup */
1007 #ifndef TARGET_ABI32
1008     env->regs[R_EAX] = regs->rax;
1009     env->regs[R_EBX] = regs->rbx;
1010     env->regs[R_ECX] = regs->rcx;
1011     env->regs[R_EDX] = regs->rdx;
1012     env->regs[R_ESI] = regs->rsi;
1013     env->regs[R_EDI] = regs->rdi;
1014     env->regs[R_EBP] = regs->rbp;
1015     env->regs[R_ESP] = regs->rsp;
1016     env->eip = regs->rip;
1017 #else
1018     env->regs[R_EAX] = regs->eax;
1019     env->regs[R_EBX] = regs->ebx;
1020     env->regs[R_ECX] = regs->ecx;
1021     env->regs[R_EDX] = regs->edx;
1022     env->regs[R_ESI] = regs->esi;
1023     env->regs[R_EDI] = regs->edi;
1024     env->regs[R_EBP] = regs->ebp;
1025     env->regs[R_ESP] = regs->esp;
1026     env->eip = regs->eip;
1027 #endif
1028 
1029     /* linux interrupt setup */
1030 #ifndef TARGET_ABI32
1031     env->idt.limit = 511;
1032 #else
1033     env->idt.limit = 255;
1034 #endif
1035     env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
1036                                 PROT_READ|PROT_WRITE,
1037                                 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1038     idt_table = g2h(env->idt.base);
1039     set_idt(0, 0);
1040     set_idt(1, 0);
1041     set_idt(2, 0);
1042     set_idt(3, 3);
1043     set_idt(4, 3);
1044     set_idt(5, 0);
1045     set_idt(6, 0);
1046     set_idt(7, 0);
1047     set_idt(8, 0);
1048     set_idt(9, 0);
1049     set_idt(10, 0);
1050     set_idt(11, 0);
1051     set_idt(12, 0);
1052     set_idt(13, 0);
1053     set_idt(14, 0);
1054     set_idt(15, 0);
1055     set_idt(16, 0);
1056     set_idt(17, 0);
1057     set_idt(18, 0);
1058     set_idt(19, 0);
1059     set_idt(0x80, 3);
1060 
1061     /* linux segment setup */
1062     {
1063         uint64_t *gdt_table;
1064         env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
1065                                     PROT_READ|PROT_WRITE,
1066                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1067         env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
1068         gdt_table = g2h(env->gdt.base);
1069 #ifdef TARGET_ABI32
1070         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1071                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1072                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1073 #else
1074         /* 64 bit code segment */
1075         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1076                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1077                  DESC_L_MASK |
1078                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1079 #endif
1080         write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
1081                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1082                  (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
1083     }
1084 
1085     cpu_x86_load_seg(env, R_CS, __USER_CS);
1086     cpu_x86_load_seg(env, R_SS, __USER_DS);
1087 #ifdef TARGET_ABI32
1088     cpu_x86_load_seg(env, R_DS, __USER_DS);
1089     cpu_x86_load_seg(env, R_ES, __USER_DS);
1090     cpu_x86_load_seg(env, R_FS, __USER_DS);
1091     cpu_x86_load_seg(env, R_GS, __USER_DS);
1092     /* This hack makes Wine work... */
1093     env->segs[R_FS].selector = 0;
1094 #else
1095     cpu_x86_load_seg(env, R_DS, 0);
1096     cpu_x86_load_seg(env, R_ES, 0);
1097     cpu_x86_load_seg(env, R_FS, 0);
1098     cpu_x86_load_seg(env, R_GS, 0);
1099 #endif
1100 #elif defined(TARGET_SPARC)
1101     {
1102         int i;
1103         env->pc = regs->pc;
1104         env->npc = regs->npc;
1105         env->y = regs->y;
1106         for(i = 0; i < 8; i++)
1107             env->gregs[i] = regs->u_regs[i];
1108         for(i = 0; i < 8; i++)
1109             env->regwptr[i] = regs->u_regs[i + 8];
1110     }
1111 #else
1112 #error unsupported target CPU
1113 #endif
1114 
1115     if (gdbstub_port) {
1116         gdbserver_start (gdbstub_port);
1117         gdb_handlesig(cpu, 0);
1118     }
1119     trace_init_vcpu_events();
1120     cpu_loop(env);
1121     /* never exits */
1122     return 0;
1123 }
1124