1 /* 2 * ELF loading code 3 * 4 * Copyright (c) 2013 Stacey D. Son 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 22 #include "qemu.h" 23 #include "disas/disas.h" 24 #include "qemu/path.h" 25 26 static abi_ulong target_auxents; /* Where the AUX entries are in target */ 27 static size_t target_auxents_sz; /* Size of AUX entries including AT_NULL */ 28 29 #include "target_arch_reg.h" 30 #include "target_os_elf.h" 31 #include "target_os_stack.h" 32 #include "target_os_thread.h" 33 #include "target_os_user.h" 34 35 abi_ulong target_stksiz; 36 abi_ulong target_stkbas; 37 38 static int elf_core_dump(int signr, CPUArchState *env); 39 static int load_elf_sections(const struct elfhdr *hdr, struct elf_phdr *phdr, 40 int fd, abi_ulong rbase, abi_ulong *baddrp); 41 42 static inline void memcpy_fromfs(void *to, const void *from, unsigned long n) 43 { 44 memcpy(to, from, n); 45 } 46 47 #ifdef BSWAP_NEEDED 48 static void bswap_ehdr(struct elfhdr *ehdr) 49 { 50 bswap16s(&ehdr->e_type); /* Object file type */ 51 bswap16s(&ehdr->e_machine); /* Architecture */ 52 bswap32s(&ehdr->e_version); /* Object file version */ 53 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 54 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 55 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 56 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 57 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 58 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 59 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 60 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 61 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 62 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 63 } 64 65 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 66 { 67 int i; 68 69 for (i = 0; i < phnum; i++, phdr++) { 70 bswap32s(&phdr->p_type); /* Segment type */ 71 bswap32s(&phdr->p_flags); /* Segment flags */ 72 bswaptls(&phdr->p_offset); /* Segment file offset */ 73 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 74 bswaptls(&phdr->p_paddr); /* Segment physical address */ 75 bswaptls(&phdr->p_filesz); /* Segment size in file */ 76 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 77 bswaptls(&phdr->p_align); /* Segment alignment */ 78 } 79 } 80 81 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 82 { 83 int i; 84 85 for (i = 0; i < shnum; i++, shdr++) { 86 bswap32s(&shdr->sh_name); 87 bswap32s(&shdr->sh_type); 88 bswaptls(&shdr->sh_flags); 89 bswaptls(&shdr->sh_addr); 90 bswaptls(&shdr->sh_offset); 91 bswaptls(&shdr->sh_size); 92 bswap32s(&shdr->sh_link); 93 bswap32s(&shdr->sh_info); 94 bswaptls(&shdr->sh_addralign); 95 bswaptls(&shdr->sh_entsize); 96 } 97 } 98 99 static void bswap_sym(struct elf_sym *sym) 100 { 101 bswap32s(&sym->st_name); 102 bswaptls(&sym->st_value); 103 bswaptls(&sym->st_size); 104 bswap16s(&sym->st_shndx); 105 } 106 107 static void bswap_note(struct elf_note *en) 108 { 109 bswap32s(&en->n_namesz); 110 bswap32s(&en->n_descsz); 111 bswap32s(&en->n_type); 112 } 113 114 #else /* ! BSWAP_NEEDED */ 115 116 static void bswap_ehdr(struct elfhdr *ehdr) { } 117 static void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 118 static void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 119 static void bswap_sym(struct elf_sym *sym) { } 120 static void bswap_note(struct elf_note *en) { } 121 122 #endif /* ! BSWAP_NEEDED */ 123 124 #include "elfcore.c" 125 126 /* 127 * 'copy_elf_strings()' copies argument/envelope strings from user 128 * memory to free pages in kernel mem. These are in a format ready 129 * to be put directly into the top of new user memory. 130 * 131 */ 132 static abi_ulong copy_elf_strings(int argc, char **argv, void **page, 133 abi_ulong p) 134 { 135 char *tmp, *tmp1, *pag = NULL; 136 int len, offset = 0; 137 138 if (!p) { 139 return 0; /* bullet-proofing */ 140 } 141 while (argc-- > 0) { 142 tmp = argv[argc]; 143 if (!tmp) { 144 fprintf(stderr, "VFS: argc is wrong"); 145 exit(-1); 146 } 147 tmp1 = tmp; 148 while (*tmp++) { 149 continue; 150 } 151 len = tmp - tmp1; 152 if (p < len) { /* this shouldn't happen - 128kB */ 153 return 0; 154 } 155 while (len) { 156 --p; --tmp; --len; 157 if (--offset < 0) { 158 offset = p % TARGET_PAGE_SIZE; 159 pag = page[p / TARGET_PAGE_SIZE]; 160 if (!pag) { 161 pag = g_try_malloc0(TARGET_PAGE_SIZE); 162 page[p / TARGET_PAGE_SIZE] = pag; 163 if (!pag) { 164 return 0; 165 } 166 } 167 } 168 if (len == 0 || offset == 0) { 169 *(pag + offset) = *tmp; 170 } else { 171 int bytes_to_copy = (len > offset) ? offset : len; 172 tmp -= bytes_to_copy; 173 p -= bytes_to_copy; 174 offset -= bytes_to_copy; 175 len -= bytes_to_copy; 176 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); 177 } 178 } 179 } 180 return p; 181 } 182 183 static void setup_arg_pages(struct bsd_binprm *bprm, struct image_info *info, 184 abi_ulong *stackp, abi_ulong *stringp) 185 { 186 abi_ulong stack_base, size; 187 abi_long addr; 188 189 /* 190 * Create enough stack to hold everything. If we don't use it for args, 191 * we'll use it for something else... 192 */ 193 size = target_dflssiz; 194 stack_base = TARGET_USRSTACK - size; 195 addr = target_mmap(stack_base , size + qemu_host_page_size, 196 PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); 197 if (addr == -1) { 198 perror("stk mmap"); 199 exit(-1); 200 } 201 /* we reserve one extra page at the top of the stack as guard */ 202 target_mprotect(addr + size, qemu_host_page_size, PROT_NONE); 203 204 target_stksiz = size; 205 target_stkbas = addr; 206 207 if (setup_initial_stack(bprm, stackp, stringp) != 0) { 208 perror("stk setup"); 209 exit(-1); 210 } 211 } 212 213 static void set_brk(abi_ulong start, abi_ulong end) 214 { 215 /* page-align the start and end addresses... */ 216 start = HOST_PAGE_ALIGN(start); 217 end = HOST_PAGE_ALIGN(end); 218 if (end <= start) { 219 return; 220 } 221 if (target_mmap(start, end - start, PROT_READ | PROT_WRITE | PROT_EXEC, 222 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { 223 perror("cannot mmap brk"); 224 exit(-1); 225 } 226 } 227 228 229 /* 230 * We need to explicitly zero any fractional pages after the data 231 * section (i.e. bss). This would contain the junk from the file that 232 * should not be in memory. 233 */ 234 static void padzero(abi_ulong elf_bss, abi_ulong last_bss) 235 { 236 abi_ulong nbyte; 237 238 if (elf_bss >= last_bss) { 239 return; 240 } 241 242 /* 243 * XXX: this is really a hack : if the real host page size is 244 * smaller than the target page size, some pages after the end 245 * of the file may not be mapped. A better fix would be to 246 * patch target_mmap(), but it is more complicated as the file 247 * size must be known. 248 */ 249 if (qemu_real_host_page_size() < qemu_host_page_size) { 250 abi_ulong end_addr, end_addr1; 251 end_addr1 = REAL_HOST_PAGE_ALIGN(elf_bss); 252 end_addr = HOST_PAGE_ALIGN(elf_bss); 253 if (end_addr1 < end_addr) { 254 mmap((void *)g2h_untagged(end_addr1), end_addr - end_addr1, 255 PROT_READ | PROT_WRITE | PROT_EXEC, 256 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0); 257 } 258 } 259 260 nbyte = elf_bss & (qemu_host_page_size - 1); 261 if (nbyte) { 262 nbyte = qemu_host_page_size - nbyte; 263 do { 264 /* FIXME - what to do if put_user() fails? */ 265 put_user_u8(0, elf_bss); 266 elf_bss++; 267 } while (--nbyte); 268 } 269 } 270 271 static abi_ulong load_elf_interp(struct elfhdr *interp_elf_ex, 272 int interpreter_fd, 273 abi_ulong *interp_load_addr) 274 { 275 struct elf_phdr *elf_phdata = NULL; 276 abi_ulong rbase; 277 int retval; 278 abi_ulong baddr, error; 279 280 error = 0; 281 282 bswap_ehdr(interp_elf_ex); 283 /* First of all, some simple consistency checks */ 284 if ((interp_elf_ex->e_type != ET_EXEC && interp_elf_ex->e_type != ET_DYN) || 285 !elf_check_arch(interp_elf_ex->e_machine)) { 286 return ~((abi_ulong)0UL); 287 } 288 289 290 /* Now read in all of the header information */ 291 if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE) { 292 return ~(abi_ulong)0UL; 293 } 294 295 elf_phdata = (struct elf_phdr *) malloc(sizeof(struct elf_phdr) * 296 interp_elf_ex->e_phnum); 297 298 if (!elf_phdata) { 299 return ~((abi_ulong)0UL); 300 } 301 302 /* 303 * If the size of this structure has changed, then punt, since 304 * we will be doing the wrong thing. 305 */ 306 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) { 307 free(elf_phdata); 308 return ~((abi_ulong)0UL); 309 } 310 311 retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET); 312 if (retval >= 0) { 313 retval = read(interpreter_fd, (char *) elf_phdata, 314 sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); 315 } 316 if (retval < 0) { 317 perror("load_elf_interp"); 318 exit(-1); 319 free(elf_phdata); 320 return retval; 321 } 322 bswap_phdr(elf_phdata, interp_elf_ex->e_phnum); 323 324 rbase = 0; 325 if (interp_elf_ex->e_type == ET_DYN) { 326 /* 327 * In order to avoid hardcoding the interpreter load 328 * address in qemu, we allocate a big enough memory zone. 329 */ 330 rbase = target_mmap(0, INTERP_MAP_SIZE, PROT_NONE, 331 MAP_PRIVATE | MAP_ANON, -1, 0); 332 if (rbase == -1) { 333 perror("mmap"); 334 exit(-1); 335 } 336 } 337 338 error = load_elf_sections(interp_elf_ex, elf_phdata, interpreter_fd, rbase, 339 &baddr); 340 if (error != 0) { 341 perror("load_elf_sections"); 342 exit(-1); 343 } 344 345 /* Now use mmap to map the library into memory. */ 346 close(interpreter_fd); 347 free(elf_phdata); 348 349 *interp_load_addr = baddr; 350 return ((abi_ulong) interp_elf_ex->e_entry) + rbase; 351 } 352 353 static int symfind(const void *s0, const void *s1) 354 { 355 struct elf_sym *sym = (struct elf_sym *)s1; 356 __typeof(sym->st_value) addr = *(uint64_t *)s0; 357 int result = 0; 358 359 if (addr < sym->st_value) { 360 result = -1; 361 } else if (addr >= sym->st_value + sym->st_size) { 362 result = 1; 363 } 364 return result; 365 } 366 367 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) 368 { 369 #if ELF_CLASS == ELFCLASS32 370 struct elf_sym *syms = s->disas_symtab.elf32; 371 #else 372 struct elf_sym *syms = s->disas_symtab.elf64; 373 #endif 374 375 /* binary search */ 376 struct elf_sym *sym; 377 378 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 379 if (sym != NULL) { 380 return s->disas_strtab + sym->st_name; 381 } 382 383 return ""; 384 } 385 386 /* FIXME: This should use elf_ops.h.inc */ 387 static int symcmp(const void *s0, const void *s1) 388 { 389 struct elf_sym *sym0 = (struct elf_sym *)s0; 390 struct elf_sym *sym1 = (struct elf_sym *)s1; 391 return (sym0->st_value < sym1->st_value) ? -1 : 392 ((sym0->st_value > sym1->st_value) ? 1 : 0); 393 } 394 395 /* Best attempt to load symbols from this ELF object. */ 396 static void load_symbols(struct elfhdr *hdr, int fd) 397 { 398 unsigned int i, nsyms; 399 struct elf_shdr sechdr, symtab, strtab; 400 char *strings; 401 struct syminfo *s; 402 struct elf_sym *syms, *new_syms; 403 404 lseek(fd, hdr->e_shoff, SEEK_SET); 405 for (i = 0; i < hdr->e_shnum; i++) { 406 if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr)) { 407 return; 408 } 409 bswap_shdr(&sechdr, 1); 410 if (sechdr.sh_type == SHT_SYMTAB) { 411 symtab = sechdr; 412 lseek(fd, hdr->e_shoff + sizeof(sechdr) * sechdr.sh_link, 413 SEEK_SET); 414 if (read(fd, &strtab, sizeof(strtab)) != sizeof(strtab)) { 415 return; 416 } 417 bswap_shdr(&strtab, 1); 418 goto found; 419 } 420 } 421 return; /* Shouldn't happen... */ 422 423 found: 424 /* Now know where the strtab and symtab are. Snarf them. */ 425 s = malloc(sizeof(*s)); 426 syms = malloc(symtab.sh_size); 427 if (!syms) { 428 free(s); 429 return; 430 } 431 s->disas_strtab = strings = malloc(strtab.sh_size); 432 if (!s->disas_strtab) { 433 free(s); 434 free(syms); 435 return; 436 } 437 438 lseek(fd, symtab.sh_offset, SEEK_SET); 439 if (read(fd, syms, symtab.sh_size) != symtab.sh_size) { 440 free(s); 441 free(syms); 442 free(strings); 443 return; 444 } 445 446 nsyms = symtab.sh_size / sizeof(struct elf_sym); 447 448 i = 0; 449 while (i < nsyms) { 450 bswap_sym(syms + i); 451 /* Throw away entries which we do not need. */ 452 if (syms[i].st_shndx == SHN_UNDEF || 453 syms[i].st_shndx >= SHN_LORESERVE || 454 ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 455 nsyms--; 456 if (i < nsyms) { 457 syms[i] = syms[nsyms]; 458 } 459 continue; 460 } 461 #if defined(TARGET_ARM) || defined(TARGET_MIPS) 462 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 463 syms[i].st_value &= ~(target_ulong)1; 464 #endif 465 i++; 466 } 467 468 /* 469 * Attempt to free the storage associated with the local symbols 470 * that we threw away. Whether or not this has any effect on the 471 * memory allocation depends on the malloc implementation and how 472 * many symbols we managed to discard. 473 */ 474 new_syms = realloc(syms, nsyms * sizeof(*syms)); 475 if (new_syms == NULL) { 476 free(s); 477 free(syms); 478 free(strings); 479 return; 480 } 481 syms = new_syms; 482 483 qsort(syms, nsyms, sizeof(*syms), symcmp); 484 485 lseek(fd, strtab.sh_offset, SEEK_SET); 486 if (read(fd, strings, strtab.sh_size) != strtab.sh_size) { 487 free(s); 488 free(syms); 489 free(strings); 490 return; 491 } 492 s->disas_num_syms = nsyms; 493 #if ELF_CLASS == ELFCLASS32 494 s->disas_symtab.elf32 = syms; 495 s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx; 496 #else 497 s->disas_symtab.elf64 = syms; 498 s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx; 499 #endif 500 s->next = syminfos; 501 syminfos = s; 502 } 503 504 /* Check the elf header and see if this a target elf binary. */ 505 int is_target_elf_binary(int fd) 506 { 507 uint8_t buf[128]; 508 struct elfhdr elf_ex; 509 510 if (lseek(fd, 0L, SEEK_SET) < 0) { 511 return 0; 512 } 513 if (read(fd, buf, sizeof(buf)) < 0) { 514 return 0; 515 } 516 517 elf_ex = *((struct elfhdr *)buf); 518 bswap_ehdr(&elf_ex); 519 520 if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) || 521 (!elf_check_arch(elf_ex.e_machine))) { 522 return 0; 523 } else { 524 return 1; 525 } 526 } 527 528 static int 529 load_elf_sections(const struct elfhdr *hdr, struct elf_phdr *phdr, int fd, 530 abi_ulong rbase, abi_ulong *baddrp) 531 { 532 struct elf_phdr *elf_ppnt; 533 abi_ulong baddr; 534 int i; 535 bool first; 536 537 /* 538 * Now we do a little grungy work by mmaping the ELF image into 539 * the correct location in memory. At this point, we assume that 540 * the image should be loaded at fixed address, not at a variable 541 * address. 542 */ 543 first = true; 544 for (i = 0, elf_ppnt = phdr; i < hdr->e_phnum; i++, elf_ppnt++) { 545 int elf_prot = 0; 546 abi_ulong error; 547 548 /* XXX Skip memsz == 0. */ 549 if (elf_ppnt->p_type != PT_LOAD) { 550 continue; 551 } 552 553 if (elf_ppnt->p_flags & PF_R) { 554 elf_prot |= PROT_READ; 555 } 556 if (elf_ppnt->p_flags & PF_W) { 557 elf_prot |= PROT_WRITE; 558 } 559 if (elf_ppnt->p_flags & PF_X) { 560 elf_prot |= PROT_EXEC; 561 } 562 563 error = target_mmap(TARGET_ELF_PAGESTART(rbase + elf_ppnt->p_vaddr), 564 (elf_ppnt->p_filesz + 565 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)), 566 elf_prot, 567 (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE), 568 fd, 569 (elf_ppnt->p_offset - 570 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr))); 571 if (error == -1) { 572 perror("mmap"); 573 exit(-1); 574 } else if (elf_ppnt->p_memsz != elf_ppnt->p_filesz) { 575 abi_ulong start_bss, end_bss; 576 577 start_bss = rbase + elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 578 end_bss = rbase + elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 579 580 /* 581 * Calling set_brk effectively mmaps the pages that we need for the 582 * bss and break sections. 583 */ 584 set_brk(start_bss, end_bss); 585 padzero(start_bss, end_bss); 586 } 587 588 if (first) { 589 baddr = TARGET_ELF_PAGESTART(rbase + elf_ppnt->p_vaddr); 590 first = false; 591 } 592 } 593 594 if (baddrp != NULL) { 595 *baddrp = baddr; 596 } 597 return 0; 598 } 599 600 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 601 struct image_info *info) 602 { 603 struct elfhdr elf_ex; 604 struct elfhdr interp_elf_ex; 605 int interpreter_fd = -1; /* avoid warning */ 606 abi_ulong load_addr; 607 int i; 608 struct elf_phdr *elf_ppnt; 609 struct elf_phdr *elf_phdata; 610 abi_ulong elf_brk; 611 int error, retval; 612 char *elf_interpreter; 613 abi_ulong baddr, elf_entry, et_dyn_addr, interp_load_addr = 0; 614 abi_ulong reloc_func_desc = 0; 615 616 load_addr = 0; 617 elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */ 618 bswap_ehdr(&elf_ex); 619 620 /* First of all, some simple consistency checks */ 621 if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) || 622 (!elf_check_arch(elf_ex.e_machine))) { 623 return -ENOEXEC; 624 } 625 626 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); 627 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, bprm->page, bprm->p); 628 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, bprm->page, bprm->p); 629 if (!bprm->p) { 630 retval = -E2BIG; 631 } 632 633 /* Now read in all of the header information */ 634 elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize * elf_ex.e_phnum); 635 if (elf_phdata == NULL) { 636 return -ENOMEM; 637 } 638 639 retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET); 640 if (retval > 0) { 641 retval = read(bprm->fd, (char *)elf_phdata, 642 elf_ex.e_phentsize * elf_ex.e_phnum); 643 } 644 645 if (retval < 0) { 646 perror("load_elf_binary"); 647 exit(-1); 648 free(elf_phdata); 649 return -errno; 650 } 651 652 bswap_phdr(elf_phdata, elf_ex.e_phnum); 653 elf_ppnt = elf_phdata; 654 655 elf_brk = 0; 656 657 658 elf_interpreter = NULL; 659 for (i = 0; i < elf_ex.e_phnum; i++) { 660 if (elf_ppnt->p_type == PT_INTERP) { 661 if (elf_interpreter != NULL) { 662 free(elf_phdata); 663 free(elf_interpreter); 664 close(bprm->fd); 665 return -EINVAL; 666 } 667 668 elf_interpreter = (char *)malloc(elf_ppnt->p_filesz); 669 if (elf_interpreter == NULL) { 670 free(elf_phdata); 671 close(bprm->fd); 672 return -ENOMEM; 673 } 674 675 retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET); 676 if (retval >= 0) { 677 retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz); 678 } 679 if (retval < 0) { 680 perror("load_elf_binary2"); 681 exit(-1); 682 } 683 684 if (retval >= 0) { 685 retval = open(path(elf_interpreter), O_RDONLY); 686 if (retval >= 0) { 687 interpreter_fd = retval; 688 } else { 689 perror(elf_interpreter); 690 exit(-1); 691 /* retval = -errno; */ 692 } 693 } 694 695 if (retval >= 0) { 696 retval = lseek(interpreter_fd, 0, SEEK_SET); 697 if (retval >= 0) { 698 retval = read(interpreter_fd, bprm->buf, 128); 699 } 700 } 701 if (retval >= 0) { 702 interp_elf_ex = *((struct elfhdr *) bprm->buf); 703 } 704 if (retval < 0) { 705 perror("load_elf_binary3"); 706 exit(-1); 707 free(elf_phdata); 708 free(elf_interpreter); 709 close(bprm->fd); 710 return retval; 711 } 712 } 713 elf_ppnt++; 714 } 715 716 /* Some simple consistency checks for the interpreter */ 717 if (elf_interpreter) { 718 if (interp_elf_ex.e_ident[0] != 0x7f || 719 strncmp((char *)&interp_elf_ex.e_ident[1], "ELF", 3) != 0) { 720 free(elf_interpreter); 721 free(elf_phdata); 722 close(bprm->fd); 723 return -ELIBBAD; 724 } 725 } 726 727 /* 728 * OK, we are done with that, now set up the arg stuff, and then start this 729 * sucker up 730 */ 731 if (!bprm->p) { 732 free(elf_interpreter); 733 free(elf_phdata); 734 close(bprm->fd); 735 return -E2BIG; 736 } 737 738 /* OK, This is the point of no return */ 739 info->end_data = 0; 740 info->end_code = 0; 741 elf_entry = (abi_ulong) elf_ex.e_entry; 742 743 /* XXX Join this with PT_INTERP search? */ 744 baddr = 0; 745 for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { 746 if (elf_ppnt->p_type != PT_LOAD) { 747 continue; 748 } 749 baddr = elf_ppnt->p_vaddr; 750 break; 751 } 752 753 et_dyn_addr = 0; 754 if (elf_ex.e_type == ET_DYN && baddr == 0) { 755 et_dyn_addr = ELF_ET_DYN_LOAD_ADDR; 756 } 757 758 /* 759 * Do this so that we can load the interpreter, if need be. We will 760 * change some of these later 761 */ 762 info->rss = 0; 763 setup_arg_pages(bprm, info, &bprm->p, &bprm->stringp); 764 info->start_stack = bprm->p; 765 766 info->elf_flags = elf_ex.e_flags; 767 768 error = load_elf_sections(&elf_ex, elf_phdata, bprm->fd, et_dyn_addr, 769 &load_addr); 770 for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { 771 if (elf_ppnt->p_type != PT_LOAD) { 772 continue; 773 } 774 if (elf_ppnt->p_memsz > elf_ppnt->p_filesz) 775 elf_brk = MAX(elf_brk, et_dyn_addr + elf_ppnt->p_vaddr + 776 elf_ppnt->p_memsz); 777 } 778 if (error != 0) { 779 perror("load_elf_sections"); 780 exit(-1); 781 } 782 783 if (elf_interpreter) { 784 elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd, 785 &interp_load_addr); 786 reloc_func_desc = interp_load_addr; 787 788 close(interpreter_fd); 789 free(elf_interpreter); 790 791 if (elf_entry == ~((abi_ulong)0UL)) { 792 printf("Unable to load interpreter\n"); 793 free(elf_phdata); 794 exit(-1); 795 return 0; 796 } 797 } else { 798 interp_load_addr = et_dyn_addr; 799 elf_entry += interp_load_addr; 800 } 801 802 free(elf_phdata); 803 804 if (qemu_log_enabled()) { 805 load_symbols(&elf_ex, bprm->fd); 806 } 807 808 close(bprm->fd); 809 810 bprm->p = target_create_elf_tables(bprm->p, bprm->argc, bprm->envc, 811 bprm->stringp, &elf_ex, load_addr, 812 et_dyn_addr, interp_load_addr, info); 813 info->load_addr = reloc_func_desc; 814 info->brk = elf_brk; 815 info->start_stack = bprm->p; 816 info->load_bias = 0; 817 818 info->entry = elf_entry; 819 820 #ifdef USE_ELF_CORE_DUMP 821 bprm->core_dump = &elf_core_dump; 822 #else 823 bprm->core_dump = NULL; 824 #endif 825 826 return 0; 827 } 828 829 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 830 { 831 832 target_thread_init(regs, infop); 833 } 834