1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #ifndef BLOCK_QED_H 16 #define BLOCK_QED_H 17 18 #include "block/block_int.h" 19 #include "qemu/cutils.h" 20 21 /* The layout of a QED file is as follows: 22 * 23 * +--------+----------+----------+----------+-----+ 24 * | header | L1 table | cluster0 | cluster1 | ... | 25 * +--------+----------+----------+----------+-----+ 26 * 27 * There is a 2-level pagetable for cluster allocation: 28 * 29 * +----------+ 30 * | L1 table | 31 * +----------+ 32 * ,------' | '------. 33 * +----------+ | +----------+ 34 * | L2 table | ... | L2 table | 35 * +----------+ +----------+ 36 * ,------' | '------. 37 * +----------+ | +----------+ 38 * | Data | ... | Data | 39 * +----------+ +----------+ 40 * 41 * The L1 table is fixed size and always present. L2 tables are allocated on 42 * demand. The L1 table size determines the maximum possible image size; it 43 * can be influenced using the cluster_size and table_size values. 44 * 45 * All fields are little-endian on disk. 46 */ 47 #define QED_DEFAULT_CLUSTER_SIZE 65536 48 enum { 49 QED_MAGIC = 'Q' | 'E' << 8 | 'D' << 16 | '\0' << 24, 50 51 /* The image supports a backing file */ 52 QED_F_BACKING_FILE = 0x01, 53 54 /* The image needs a consistency check before use */ 55 QED_F_NEED_CHECK = 0x02, 56 57 /* The backing file format must not be probed, treat as raw image */ 58 QED_F_BACKING_FORMAT_NO_PROBE = 0x04, 59 60 /* Feature bits must be used when the on-disk format changes */ 61 QED_FEATURE_MASK = QED_F_BACKING_FILE | /* supported feature bits */ 62 QED_F_NEED_CHECK | 63 QED_F_BACKING_FORMAT_NO_PROBE, 64 QED_COMPAT_FEATURE_MASK = 0, /* supported compat feature bits */ 65 QED_AUTOCLEAR_FEATURE_MASK = 0, /* supported autoclear feature bits */ 66 67 /* Data is stored in groups of sectors called clusters. Cluster size must 68 * be large to avoid keeping too much metadata. I/O requests that have 69 * sub-cluster size will require read-modify-write. 70 */ 71 QED_MIN_CLUSTER_SIZE = 4 * 1024, /* in bytes */ 72 QED_MAX_CLUSTER_SIZE = 64 * 1024 * 1024, 73 74 /* Allocated clusters are tracked using a 2-level pagetable. Table size is 75 * a multiple of clusters so large maximum image sizes can be supported 76 * without jacking up the cluster size too much. 77 */ 78 QED_MIN_TABLE_SIZE = 1, /* in clusters */ 79 QED_MAX_TABLE_SIZE = 16, 80 QED_DEFAULT_TABLE_SIZE = 4, 81 82 /* Delay to flush and clean image after last allocating write completes */ 83 QED_NEED_CHECK_TIMEOUT = 5, /* in seconds */ 84 }; 85 86 typedef struct { 87 uint32_t magic; /* QED\0 */ 88 89 uint32_t cluster_size; /* in bytes */ 90 uint32_t table_size; /* for L1 and L2 tables, in clusters */ 91 uint32_t header_size; /* in clusters */ 92 93 uint64_t features; /* format feature bits */ 94 uint64_t compat_features; /* compatible feature bits */ 95 uint64_t autoclear_features; /* self-resetting feature bits */ 96 97 uint64_t l1_table_offset; /* in bytes */ 98 uint64_t image_size; /* total logical image size, in bytes */ 99 100 /* if (features & QED_F_BACKING_FILE) */ 101 uint32_t backing_filename_offset; /* in bytes from start of header */ 102 uint32_t backing_filename_size; /* in bytes */ 103 } QEMU_PACKED QEDHeader; 104 105 typedef struct { 106 uint64_t offsets[0]; /* in bytes */ 107 } QEDTable; 108 109 /* The L2 cache is a simple write-through cache for L2 structures */ 110 typedef struct CachedL2Table { 111 QEDTable *table; 112 uint64_t offset; /* offset=0 indicates an invalidate entry */ 113 QTAILQ_ENTRY(CachedL2Table) node; 114 int ref; 115 } CachedL2Table; 116 117 typedef struct { 118 QTAILQ_HEAD(, CachedL2Table) entries; 119 unsigned int n_entries; 120 } L2TableCache; 121 122 typedef struct QEDRequest { 123 CachedL2Table *l2_table; 124 } QEDRequest; 125 126 enum { 127 QED_AIOCB_WRITE = 0x0001, /* read or write? */ 128 QED_AIOCB_ZERO = 0x0002, /* zero write, used with QED_AIOCB_WRITE */ 129 }; 130 131 typedef struct QEDAIOCB { 132 BlockDriverState *bs; 133 QSIMPLEQ_ENTRY(QEDAIOCB) next; /* next request */ 134 int flags; /* QED_AIOCB_* bits ORed together */ 135 uint64_t end_pos; /* request end on block device, in bytes */ 136 137 /* User scatter-gather list */ 138 QEMUIOVector *qiov; 139 size_t qiov_offset; /* byte count already processed */ 140 141 /* Current cluster scatter-gather list */ 142 QEMUIOVector cur_qiov; 143 QEMUIOVector *backing_qiov; 144 uint64_t cur_pos; /* position on block device, in bytes */ 145 uint64_t cur_cluster; /* cluster offset in image file */ 146 unsigned int cur_nclusters; /* number of clusters being accessed */ 147 int find_cluster_ret; /* used for L1/L2 update */ 148 149 QEDRequest request; 150 } QEDAIOCB; 151 152 typedef struct { 153 BlockDriverState *bs; /* device */ 154 uint64_t file_size; /* length of image file, in bytes */ 155 156 QEDHeader header; /* always cpu-endian */ 157 QEDTable *l1_table; 158 L2TableCache l2_cache; /* l2 table cache */ 159 uint32_t table_nelems; 160 uint32_t l1_shift; 161 uint32_t l2_shift; 162 uint32_t l2_mask; 163 164 /* Allocating write request queue */ 165 QEDAIOCB *allocating_acb; 166 CoQueue allocating_write_reqs; 167 bool allocating_write_reqs_plugged; 168 169 /* Periodic flush and clear need check flag */ 170 QEMUTimer *need_check_timer; 171 } BDRVQEDState; 172 173 enum { 174 QED_CLUSTER_FOUND, /* cluster found */ 175 QED_CLUSTER_ZERO, /* zero cluster found */ 176 QED_CLUSTER_L2, /* cluster missing in L2 */ 177 QED_CLUSTER_L1, /* cluster missing in L1 */ 178 }; 179 180 void qed_acquire(BDRVQEDState *s); 181 void qed_release(BDRVQEDState *s); 182 183 /** 184 * Header functions 185 */ 186 int qed_write_header_sync(BDRVQEDState *s); 187 188 /** 189 * L2 cache functions 190 */ 191 void qed_init_l2_cache(L2TableCache *l2_cache); 192 void qed_free_l2_cache(L2TableCache *l2_cache); 193 CachedL2Table *qed_alloc_l2_cache_entry(L2TableCache *l2_cache); 194 void qed_unref_l2_cache_entry(CachedL2Table *entry); 195 CachedL2Table *qed_find_l2_cache_entry(L2TableCache *l2_cache, uint64_t offset); 196 void qed_commit_l2_cache_entry(L2TableCache *l2_cache, CachedL2Table *l2_table); 197 198 /** 199 * Table I/O functions 200 */ 201 int qed_read_l1_table_sync(BDRVQEDState *s); 202 int qed_write_l1_table(BDRVQEDState *s, unsigned int index, unsigned int n); 203 int qed_write_l1_table_sync(BDRVQEDState *s, unsigned int index, 204 unsigned int n); 205 int qed_read_l2_table_sync(BDRVQEDState *s, QEDRequest *request, 206 uint64_t offset); 207 int qed_read_l2_table(BDRVQEDState *s, QEDRequest *request, uint64_t offset); 208 int qed_write_l2_table(BDRVQEDState *s, QEDRequest *request, 209 unsigned int index, unsigned int n, bool flush); 210 int qed_write_l2_table_sync(BDRVQEDState *s, QEDRequest *request, 211 unsigned int index, unsigned int n, bool flush); 212 213 /** 214 * Cluster functions 215 */ 216 int coroutine_fn qed_find_cluster(BDRVQEDState *s, QEDRequest *request, 217 uint64_t pos, size_t *len, 218 uint64_t *img_offset); 219 220 /** 221 * Consistency check 222 */ 223 int qed_check(BDRVQEDState *s, BdrvCheckResult *result, bool fix); 224 225 QEDTable *qed_alloc_table(BDRVQEDState *s); 226 227 /** 228 * Round down to the start of a cluster 229 */ 230 static inline uint64_t qed_start_of_cluster(BDRVQEDState *s, uint64_t offset) 231 { 232 return offset & ~(uint64_t)(s->header.cluster_size - 1); 233 } 234 235 static inline uint64_t qed_offset_into_cluster(BDRVQEDState *s, uint64_t offset) 236 { 237 return offset & (s->header.cluster_size - 1); 238 } 239 240 static inline uint64_t qed_bytes_to_clusters(BDRVQEDState *s, uint64_t bytes) 241 { 242 return qed_start_of_cluster(s, bytes + (s->header.cluster_size - 1)) / 243 (s->header.cluster_size - 1); 244 } 245 246 static inline unsigned int qed_l1_index(BDRVQEDState *s, uint64_t pos) 247 { 248 return pos >> s->l1_shift; 249 } 250 251 static inline unsigned int qed_l2_index(BDRVQEDState *s, uint64_t pos) 252 { 253 return (pos >> s->l2_shift) & s->l2_mask; 254 } 255 256 /** 257 * Test if a cluster offset is valid 258 */ 259 static inline bool qed_check_cluster_offset(BDRVQEDState *s, uint64_t offset) 260 { 261 uint64_t header_size = (uint64_t)s->header.header_size * 262 s->header.cluster_size; 263 264 if (offset & (s->header.cluster_size - 1)) { 265 return false; 266 } 267 return offset >= header_size && offset < s->file_size; 268 } 269 270 /** 271 * Test if a table offset is valid 272 */ 273 static inline bool qed_check_table_offset(BDRVQEDState *s, uint64_t offset) 274 { 275 uint64_t end_offset = offset + (s->header.table_size - 1) * 276 s->header.cluster_size; 277 278 /* Overflow check */ 279 if (end_offset <= offset) { 280 return false; 281 } 282 283 return qed_check_cluster_offset(s, offset) && 284 qed_check_cluster_offset(s, end_offset); 285 } 286 287 static inline bool qed_offset_is_cluster_aligned(BDRVQEDState *s, 288 uint64_t offset) 289 { 290 if (qed_offset_into_cluster(s, offset)) { 291 return false; 292 } 293 return true; 294 } 295 296 static inline bool qed_offset_is_unalloc_cluster(uint64_t offset) 297 { 298 if (offset == 0) { 299 return true; 300 } 301 return false; 302 } 303 304 static inline bool qed_offset_is_zero_cluster(uint64_t offset) 305 { 306 if (offset == 1) { 307 return true; 308 } 309 return false; 310 } 311 312 #endif /* BLOCK_QED_H */ 313