1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/error.h" 17 #include "qemu/timer.h" 18 #include "qemu/bswap.h" 19 #include "trace.h" 20 #include "qed.h" 21 #include "qapi/qmp/qerror.h" 22 #include "migration/migration.h" 23 #include "sysemu/block-backend.h" 24 25 static const AIOCBInfo qed_aiocb_info = { 26 .aiocb_size = sizeof(QEDAIOCB), 27 }; 28 29 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 30 const char *filename) 31 { 32 const QEDHeader *header = (const QEDHeader *)buf; 33 34 if (buf_size < sizeof(*header)) { 35 return 0; 36 } 37 if (le32_to_cpu(header->magic) != QED_MAGIC) { 38 return 0; 39 } 40 return 100; 41 } 42 43 /** 44 * Check whether an image format is raw 45 * 46 * @fmt: Backing file format, may be NULL 47 */ 48 static bool qed_fmt_is_raw(const char *fmt) 49 { 50 return fmt && strcmp(fmt, "raw") == 0; 51 } 52 53 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 54 { 55 cpu->magic = le32_to_cpu(le->magic); 56 cpu->cluster_size = le32_to_cpu(le->cluster_size); 57 cpu->table_size = le32_to_cpu(le->table_size); 58 cpu->header_size = le32_to_cpu(le->header_size); 59 cpu->features = le64_to_cpu(le->features); 60 cpu->compat_features = le64_to_cpu(le->compat_features); 61 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 62 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 63 cpu->image_size = le64_to_cpu(le->image_size); 64 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 65 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 66 } 67 68 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 69 { 70 le->magic = cpu_to_le32(cpu->magic); 71 le->cluster_size = cpu_to_le32(cpu->cluster_size); 72 le->table_size = cpu_to_le32(cpu->table_size); 73 le->header_size = cpu_to_le32(cpu->header_size); 74 le->features = cpu_to_le64(cpu->features); 75 le->compat_features = cpu_to_le64(cpu->compat_features); 76 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 77 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 78 le->image_size = cpu_to_le64(cpu->image_size); 79 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 80 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 81 } 82 83 int qed_write_header_sync(BDRVQEDState *s) 84 { 85 QEDHeader le; 86 int ret; 87 88 qed_header_cpu_to_le(&s->header, &le); 89 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le)); 90 if (ret != sizeof(le)) { 91 return ret; 92 } 93 return 0; 94 } 95 96 typedef struct { 97 GenericCB gencb; 98 BDRVQEDState *s; 99 struct iovec iov; 100 QEMUIOVector qiov; 101 int nsectors; 102 uint8_t *buf; 103 } QEDWriteHeaderCB; 104 105 static void qed_write_header_cb(void *opaque, int ret) 106 { 107 QEDWriteHeaderCB *write_header_cb = opaque; 108 109 qemu_vfree(write_header_cb->buf); 110 gencb_complete(write_header_cb, ret); 111 } 112 113 static void qed_write_header_read_cb(void *opaque, int ret) 114 { 115 QEDWriteHeaderCB *write_header_cb = opaque; 116 BDRVQEDState *s = write_header_cb->s; 117 118 if (ret) { 119 qed_write_header_cb(write_header_cb, ret); 120 return; 121 } 122 123 /* Update header */ 124 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf); 125 126 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov, 127 write_header_cb->nsectors, qed_write_header_cb, 128 write_header_cb); 129 } 130 131 /** 132 * Update header in-place (does not rewrite backing filename or other strings) 133 * 134 * This function only updates known header fields in-place and does not affect 135 * extra data after the QED header. 136 */ 137 static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb, 138 void *opaque) 139 { 140 /* We must write full sectors for O_DIRECT but cannot necessarily generate 141 * the data following the header if an unrecognized compat feature is 142 * active. Therefore, first read the sectors containing the header, update 143 * them, and write back. 144 */ 145 146 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE); 147 size_t len = nsectors * BDRV_SECTOR_SIZE; 148 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb), 149 cb, opaque); 150 151 write_header_cb->s = s; 152 write_header_cb->nsectors = nsectors; 153 write_header_cb->buf = qemu_blockalign(s->bs, len); 154 write_header_cb->iov.iov_base = write_header_cb->buf; 155 write_header_cb->iov.iov_len = len; 156 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1); 157 158 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors, 159 qed_write_header_read_cb, write_header_cb); 160 } 161 162 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 163 { 164 uint64_t table_entries; 165 uint64_t l2_size; 166 167 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 168 l2_size = table_entries * cluster_size; 169 170 return l2_size * table_entries; 171 } 172 173 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 174 { 175 if (cluster_size < QED_MIN_CLUSTER_SIZE || 176 cluster_size > QED_MAX_CLUSTER_SIZE) { 177 return false; 178 } 179 if (cluster_size & (cluster_size - 1)) { 180 return false; /* not power of 2 */ 181 } 182 return true; 183 } 184 185 static bool qed_is_table_size_valid(uint32_t table_size) 186 { 187 if (table_size < QED_MIN_TABLE_SIZE || 188 table_size > QED_MAX_TABLE_SIZE) { 189 return false; 190 } 191 if (table_size & (table_size - 1)) { 192 return false; /* not power of 2 */ 193 } 194 return true; 195 } 196 197 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 198 uint32_t table_size) 199 { 200 if (image_size % BDRV_SECTOR_SIZE != 0) { 201 return false; /* not multiple of sector size */ 202 } 203 if (image_size > qed_max_image_size(cluster_size, table_size)) { 204 return false; /* image is too large */ 205 } 206 return true; 207 } 208 209 /** 210 * Read a string of known length from the image file 211 * 212 * @file: Image file 213 * @offset: File offset to start of string, in bytes 214 * @n: String length in bytes 215 * @buf: Destination buffer 216 * @buflen: Destination buffer length in bytes 217 * @ret: 0 on success, -errno on failure 218 * 219 * The string is NUL-terminated. 220 */ 221 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n, 222 char *buf, size_t buflen) 223 { 224 int ret; 225 if (n >= buflen) { 226 return -EINVAL; 227 } 228 ret = bdrv_pread(file, offset, buf, n); 229 if (ret < 0) { 230 return ret; 231 } 232 buf[n] = '\0'; 233 return 0; 234 } 235 236 /** 237 * Allocate new clusters 238 * 239 * @s: QED state 240 * @n: Number of contiguous clusters to allocate 241 * @ret: Offset of first allocated cluster 242 * 243 * This function only produces the offset where the new clusters should be 244 * written. It updates BDRVQEDState but does not make any changes to the image 245 * file. 246 */ 247 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 248 { 249 uint64_t offset = s->file_size; 250 s->file_size += n * s->header.cluster_size; 251 return offset; 252 } 253 254 QEDTable *qed_alloc_table(BDRVQEDState *s) 255 { 256 /* Honor O_DIRECT memory alignment requirements */ 257 return qemu_blockalign(s->bs, 258 s->header.cluster_size * s->header.table_size); 259 } 260 261 /** 262 * Allocate a new zeroed L2 table 263 */ 264 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 265 { 266 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 267 268 l2_table->table = qed_alloc_table(s); 269 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 270 271 memset(l2_table->table->offsets, 0, 272 s->header.cluster_size * s->header.table_size); 273 return l2_table; 274 } 275 276 static void qed_aio_next_io(void *opaque, int ret); 277 278 static void qed_plug_allocating_write_reqs(BDRVQEDState *s) 279 { 280 assert(!s->allocating_write_reqs_plugged); 281 282 s->allocating_write_reqs_plugged = true; 283 } 284 285 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 286 { 287 QEDAIOCB *acb; 288 289 assert(s->allocating_write_reqs_plugged); 290 291 s->allocating_write_reqs_plugged = false; 292 293 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs); 294 if (acb) { 295 qed_aio_next_io(acb, 0); 296 } 297 } 298 299 static void qed_finish_clear_need_check(void *opaque, int ret) 300 { 301 /* Do nothing */ 302 } 303 304 static void qed_flush_after_clear_need_check(void *opaque, int ret) 305 { 306 BDRVQEDState *s = opaque; 307 308 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s); 309 310 /* No need to wait until flush completes */ 311 qed_unplug_allocating_write_reqs(s); 312 } 313 314 static void qed_clear_need_check(void *opaque, int ret) 315 { 316 BDRVQEDState *s = opaque; 317 318 if (ret) { 319 qed_unplug_allocating_write_reqs(s); 320 return; 321 } 322 323 s->header.features &= ~QED_F_NEED_CHECK; 324 qed_write_header(s, qed_flush_after_clear_need_check, s); 325 } 326 327 static void qed_need_check_timer_cb(void *opaque) 328 { 329 BDRVQEDState *s = opaque; 330 331 /* The timer should only fire when allocating writes have drained */ 332 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs)); 333 334 trace_qed_need_check_timer_cb(s); 335 336 qed_plug_allocating_write_reqs(s); 337 338 /* Ensure writes are on disk before clearing flag */ 339 bdrv_aio_flush(s->bs, qed_clear_need_check, s); 340 } 341 342 static void qed_start_need_check_timer(BDRVQEDState *s) 343 { 344 trace_qed_start_need_check_timer(s); 345 346 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 347 * migration. 348 */ 349 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 350 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT); 351 } 352 353 /* It's okay to call this multiple times or when no timer is started */ 354 static void qed_cancel_need_check_timer(BDRVQEDState *s) 355 { 356 trace_qed_cancel_need_check_timer(s); 357 timer_del(s->need_check_timer); 358 } 359 360 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 361 { 362 BDRVQEDState *s = bs->opaque; 363 364 qed_cancel_need_check_timer(s); 365 timer_free(s->need_check_timer); 366 } 367 368 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 369 AioContext *new_context) 370 { 371 BDRVQEDState *s = bs->opaque; 372 373 s->need_check_timer = aio_timer_new(new_context, 374 QEMU_CLOCK_VIRTUAL, SCALE_NS, 375 qed_need_check_timer_cb, s); 376 if (s->header.features & QED_F_NEED_CHECK) { 377 qed_start_need_check_timer(s); 378 } 379 } 380 381 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 382 Error **errp) 383 { 384 BDRVQEDState *s = bs->opaque; 385 QEDHeader le_header; 386 int64_t file_size; 387 int ret; 388 389 s->bs = bs; 390 QSIMPLEQ_INIT(&s->allocating_write_reqs); 391 392 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header)); 393 if (ret < 0) { 394 return ret; 395 } 396 qed_header_le_to_cpu(&le_header, &s->header); 397 398 if (s->header.magic != QED_MAGIC) { 399 error_setg(errp, "Image not in QED format"); 400 return -EINVAL; 401 } 402 if (s->header.features & ~QED_FEATURE_MASK) { 403 /* image uses unsupported feature bits */ 404 error_setg(errp, "Unsupported QED features: %" PRIx64, 405 s->header.features & ~QED_FEATURE_MASK); 406 return -ENOTSUP; 407 } 408 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 409 return -EINVAL; 410 } 411 412 /* Round down file size to the last cluster */ 413 file_size = bdrv_getlength(bs->file->bs); 414 if (file_size < 0) { 415 return file_size; 416 } 417 s->file_size = qed_start_of_cluster(s, file_size); 418 419 if (!qed_is_table_size_valid(s->header.table_size)) { 420 return -EINVAL; 421 } 422 if (!qed_is_image_size_valid(s->header.image_size, 423 s->header.cluster_size, 424 s->header.table_size)) { 425 return -EINVAL; 426 } 427 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 428 return -EINVAL; 429 } 430 431 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 432 sizeof(uint64_t); 433 s->l2_shift = ctz32(s->header.cluster_size); 434 s->l2_mask = s->table_nelems - 1; 435 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 436 437 /* Header size calculation must not overflow uint32_t */ 438 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 439 return -EINVAL; 440 } 441 442 if ((s->header.features & QED_F_BACKING_FILE)) { 443 if ((uint64_t)s->header.backing_filename_offset + 444 s->header.backing_filename_size > 445 s->header.cluster_size * s->header.header_size) { 446 return -EINVAL; 447 } 448 449 ret = qed_read_string(bs->file, s->header.backing_filename_offset, 450 s->header.backing_filename_size, bs->backing_file, 451 sizeof(bs->backing_file)); 452 if (ret < 0) { 453 return ret; 454 } 455 456 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 457 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 458 } 459 } 460 461 /* Reset unknown autoclear feature bits. This is a backwards 462 * compatibility mechanism that allows images to be opened by older 463 * programs, which "knock out" unknown feature bits. When an image is 464 * opened by a newer program again it can detect that the autoclear 465 * feature is no longer valid. 466 */ 467 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 468 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 469 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 470 471 ret = qed_write_header_sync(s); 472 if (ret) { 473 return ret; 474 } 475 476 /* From here on only known autoclear feature bits are valid */ 477 bdrv_flush(bs->file->bs); 478 } 479 480 s->l1_table = qed_alloc_table(s); 481 qed_init_l2_cache(&s->l2_cache); 482 483 ret = qed_read_l1_table_sync(s); 484 if (ret) { 485 goto out; 486 } 487 488 /* If image was not closed cleanly, check consistency */ 489 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 490 /* Read-only images cannot be fixed. There is no risk of corruption 491 * since write operations are not possible. Therefore, allow 492 * potentially inconsistent images to be opened read-only. This can 493 * aid data recovery from an otherwise inconsistent image. 494 */ 495 if (!bdrv_is_read_only(bs->file->bs) && 496 !(flags & BDRV_O_INACTIVE)) { 497 BdrvCheckResult result = {0}; 498 499 ret = qed_check(s, &result, true); 500 if (ret) { 501 goto out; 502 } 503 } 504 } 505 506 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 507 508 out: 509 if (ret) { 510 qed_free_l2_cache(&s->l2_cache); 511 qemu_vfree(s->l1_table); 512 } 513 return ret; 514 } 515 516 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 517 { 518 BDRVQEDState *s = bs->opaque; 519 520 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size; 521 } 522 523 /* We have nothing to do for QED reopen, stubs just return 524 * success */ 525 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 526 BlockReopenQueue *queue, Error **errp) 527 { 528 return 0; 529 } 530 531 static void bdrv_qed_close(BlockDriverState *bs) 532 { 533 BDRVQEDState *s = bs->opaque; 534 535 bdrv_qed_detach_aio_context(bs); 536 537 /* Ensure writes reach stable storage */ 538 bdrv_flush(bs->file->bs); 539 540 /* Clean shutdown, no check required on next open */ 541 if (s->header.features & QED_F_NEED_CHECK) { 542 s->header.features &= ~QED_F_NEED_CHECK; 543 qed_write_header_sync(s); 544 } 545 546 qed_free_l2_cache(&s->l2_cache); 547 qemu_vfree(s->l1_table); 548 } 549 550 static int qed_create(const char *filename, uint32_t cluster_size, 551 uint64_t image_size, uint32_t table_size, 552 const char *backing_file, const char *backing_fmt, 553 QemuOpts *opts, Error **errp) 554 { 555 QEDHeader header = { 556 .magic = QED_MAGIC, 557 .cluster_size = cluster_size, 558 .table_size = table_size, 559 .header_size = 1, 560 .features = 0, 561 .compat_features = 0, 562 .l1_table_offset = cluster_size, 563 .image_size = image_size, 564 }; 565 QEDHeader le_header; 566 uint8_t *l1_table = NULL; 567 size_t l1_size = header.cluster_size * header.table_size; 568 Error *local_err = NULL; 569 int ret = 0; 570 BlockBackend *blk; 571 572 ret = bdrv_create_file(filename, opts, &local_err); 573 if (ret < 0) { 574 error_propagate(errp, local_err); 575 return ret; 576 } 577 578 blk = blk_new_open(filename, NULL, NULL, 579 BDRV_O_RDWR | BDRV_O_PROTOCOL, &local_err); 580 if (blk == NULL) { 581 error_propagate(errp, local_err); 582 return -EIO; 583 } 584 585 blk_set_allow_write_beyond_eof(blk, true); 586 587 /* File must start empty and grow, check truncate is supported */ 588 ret = blk_truncate(blk, 0); 589 if (ret < 0) { 590 goto out; 591 } 592 593 if (backing_file) { 594 header.features |= QED_F_BACKING_FILE; 595 header.backing_filename_offset = sizeof(le_header); 596 header.backing_filename_size = strlen(backing_file); 597 598 if (qed_fmt_is_raw(backing_fmt)) { 599 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 600 } 601 } 602 603 qed_header_cpu_to_le(&header, &le_header); 604 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0); 605 if (ret < 0) { 606 goto out; 607 } 608 ret = blk_pwrite(blk, sizeof(le_header), backing_file, 609 header.backing_filename_size, 0); 610 if (ret < 0) { 611 goto out; 612 } 613 614 l1_table = g_malloc0(l1_size); 615 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0); 616 if (ret < 0) { 617 goto out; 618 } 619 620 ret = 0; /* success */ 621 out: 622 g_free(l1_table); 623 blk_unref(blk); 624 return ret; 625 } 626 627 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp) 628 { 629 uint64_t image_size = 0; 630 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE; 631 uint32_t table_size = QED_DEFAULT_TABLE_SIZE; 632 char *backing_file = NULL; 633 char *backing_fmt = NULL; 634 int ret; 635 636 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0), 637 BDRV_SECTOR_SIZE); 638 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE); 639 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT); 640 cluster_size = qemu_opt_get_size_del(opts, 641 BLOCK_OPT_CLUSTER_SIZE, 642 QED_DEFAULT_CLUSTER_SIZE); 643 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE, 644 QED_DEFAULT_TABLE_SIZE); 645 646 if (!qed_is_cluster_size_valid(cluster_size)) { 647 error_setg(errp, "QED cluster size must be within range [%u, %u] " 648 "and power of 2", 649 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 650 ret = -EINVAL; 651 goto finish; 652 } 653 if (!qed_is_table_size_valid(table_size)) { 654 error_setg(errp, "QED table size must be within range [%u, %u] " 655 "and power of 2", 656 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 657 ret = -EINVAL; 658 goto finish; 659 } 660 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) { 661 error_setg(errp, "QED image size must be a non-zero multiple of " 662 "cluster size and less than %" PRIu64 " bytes", 663 qed_max_image_size(cluster_size, table_size)); 664 ret = -EINVAL; 665 goto finish; 666 } 667 668 ret = qed_create(filename, cluster_size, image_size, table_size, 669 backing_file, backing_fmt, opts, errp); 670 671 finish: 672 g_free(backing_file); 673 g_free(backing_fmt); 674 return ret; 675 } 676 677 typedef struct { 678 BlockDriverState *bs; 679 Coroutine *co; 680 uint64_t pos; 681 int64_t status; 682 int *pnum; 683 BlockDriverState **file; 684 } QEDIsAllocatedCB; 685 686 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len) 687 { 688 QEDIsAllocatedCB *cb = opaque; 689 BDRVQEDState *s = cb->bs->opaque; 690 *cb->pnum = len / BDRV_SECTOR_SIZE; 691 switch (ret) { 692 case QED_CLUSTER_FOUND: 693 offset |= qed_offset_into_cluster(s, cb->pos); 694 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset; 695 *cb->file = cb->bs->file->bs; 696 break; 697 case QED_CLUSTER_ZERO: 698 cb->status = BDRV_BLOCK_ZERO; 699 break; 700 case QED_CLUSTER_L2: 701 case QED_CLUSTER_L1: 702 cb->status = 0; 703 break; 704 default: 705 assert(ret < 0); 706 cb->status = ret; 707 break; 708 } 709 710 if (cb->co) { 711 qemu_coroutine_enter(cb->co); 712 } 713 } 714 715 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs, 716 int64_t sector_num, 717 int nb_sectors, int *pnum, 718 BlockDriverState **file) 719 { 720 BDRVQEDState *s = bs->opaque; 721 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE; 722 QEDIsAllocatedCB cb = { 723 .bs = bs, 724 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE, 725 .status = BDRV_BLOCK_OFFSET_MASK, 726 .pnum = pnum, 727 .file = file, 728 }; 729 QEDRequest request = { .l2_table = NULL }; 730 731 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb); 732 733 /* Now sleep if the callback wasn't invoked immediately */ 734 while (cb.status == BDRV_BLOCK_OFFSET_MASK) { 735 cb.co = qemu_coroutine_self(); 736 qemu_coroutine_yield(); 737 } 738 739 qed_unref_l2_cache_entry(request.l2_table); 740 741 return cb.status; 742 } 743 744 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 745 { 746 return acb->common.bs->opaque; 747 } 748 749 /** 750 * Read from the backing file or zero-fill if no backing file 751 * 752 * @s: QED state 753 * @pos: Byte position in device 754 * @qiov: Destination I/O vector 755 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here 756 * @cb: Completion function 757 * @opaque: User data for completion function 758 * 759 * This function reads qiov->size bytes starting at pos from the backing file. 760 * If there is no backing file then zeroes are read. 761 */ 762 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 763 QEMUIOVector *qiov, 764 QEMUIOVector **backing_qiov, 765 BlockCompletionFunc *cb, void *opaque) 766 { 767 uint64_t backing_length = 0; 768 size_t size; 769 770 /* If there is a backing file, get its length. Treat the absence of a 771 * backing file like a zero length backing file. 772 */ 773 if (s->bs->backing) { 774 int64_t l = bdrv_getlength(s->bs->backing->bs); 775 if (l < 0) { 776 cb(opaque, l); 777 return; 778 } 779 backing_length = l; 780 } 781 782 /* Zero all sectors if reading beyond the end of the backing file */ 783 if (pos >= backing_length || 784 pos + qiov->size > backing_length) { 785 qemu_iovec_memset(qiov, 0, 0, qiov->size); 786 } 787 788 /* Complete now if there are no backing file sectors to read */ 789 if (pos >= backing_length) { 790 cb(opaque, 0); 791 return; 792 } 793 794 /* If the read straddles the end of the backing file, shorten it */ 795 size = MIN((uint64_t)backing_length - pos, qiov->size); 796 797 assert(*backing_qiov == NULL); 798 *backing_qiov = g_new(QEMUIOVector, 1); 799 qemu_iovec_init(*backing_qiov, qiov->niov); 800 qemu_iovec_concat(*backing_qiov, qiov, 0, size); 801 802 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 803 bdrv_aio_readv(s->bs->backing, pos / BDRV_SECTOR_SIZE, 804 *backing_qiov, size / BDRV_SECTOR_SIZE, cb, opaque); 805 } 806 807 typedef struct { 808 GenericCB gencb; 809 BDRVQEDState *s; 810 QEMUIOVector qiov; 811 QEMUIOVector *backing_qiov; 812 struct iovec iov; 813 uint64_t offset; 814 } CopyFromBackingFileCB; 815 816 static void qed_copy_from_backing_file_cb(void *opaque, int ret) 817 { 818 CopyFromBackingFileCB *copy_cb = opaque; 819 qemu_vfree(copy_cb->iov.iov_base); 820 gencb_complete(©_cb->gencb, ret); 821 } 822 823 static void qed_copy_from_backing_file_write(void *opaque, int ret) 824 { 825 CopyFromBackingFileCB *copy_cb = opaque; 826 BDRVQEDState *s = copy_cb->s; 827 828 if (copy_cb->backing_qiov) { 829 qemu_iovec_destroy(copy_cb->backing_qiov); 830 g_free(copy_cb->backing_qiov); 831 copy_cb->backing_qiov = NULL; 832 } 833 834 if (ret) { 835 qed_copy_from_backing_file_cb(copy_cb, ret); 836 return; 837 } 838 839 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 840 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE, 841 ©_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE, 842 qed_copy_from_backing_file_cb, copy_cb); 843 } 844 845 /** 846 * Copy data from backing file into the image 847 * 848 * @s: QED state 849 * @pos: Byte position in device 850 * @len: Number of bytes 851 * @offset: Byte offset in image file 852 * @cb: Completion function 853 * @opaque: User data for completion function 854 */ 855 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, 856 uint64_t len, uint64_t offset, 857 BlockCompletionFunc *cb, 858 void *opaque) 859 { 860 CopyFromBackingFileCB *copy_cb; 861 862 /* Skip copy entirely if there is no work to do */ 863 if (len == 0) { 864 cb(opaque, 0); 865 return; 866 } 867 868 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque); 869 copy_cb->s = s; 870 copy_cb->offset = offset; 871 copy_cb->backing_qiov = NULL; 872 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len); 873 copy_cb->iov.iov_len = len; 874 qemu_iovec_init_external(©_cb->qiov, ©_cb->iov, 1); 875 876 qed_read_backing_file(s, pos, ©_cb->qiov, ©_cb->backing_qiov, 877 qed_copy_from_backing_file_write, copy_cb); 878 } 879 880 /** 881 * Link one or more contiguous clusters into a table 882 * 883 * @s: QED state 884 * @table: L2 table 885 * @index: First cluster index 886 * @n: Number of contiguous clusters 887 * @cluster: First cluster offset 888 * 889 * The cluster offset may be an allocated byte offset in the image file, the 890 * zero cluster marker, or the unallocated cluster marker. 891 */ 892 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index, 893 unsigned int n, uint64_t cluster) 894 { 895 int i; 896 for (i = index; i < index + n; i++) { 897 table->offsets[i] = cluster; 898 if (!qed_offset_is_unalloc_cluster(cluster) && 899 !qed_offset_is_zero_cluster(cluster)) { 900 cluster += s->header.cluster_size; 901 } 902 } 903 } 904 905 static void qed_aio_complete_bh(void *opaque) 906 { 907 QEDAIOCB *acb = opaque; 908 BlockCompletionFunc *cb = acb->common.cb; 909 void *user_opaque = acb->common.opaque; 910 int ret = acb->bh_ret; 911 912 qemu_bh_delete(acb->bh); 913 qemu_aio_unref(acb); 914 915 /* Invoke callback */ 916 cb(user_opaque, ret); 917 } 918 919 static void qed_aio_complete(QEDAIOCB *acb, int ret) 920 { 921 BDRVQEDState *s = acb_to_s(acb); 922 923 trace_qed_aio_complete(s, acb, ret); 924 925 /* Free resources */ 926 qemu_iovec_destroy(&acb->cur_qiov); 927 qed_unref_l2_cache_entry(acb->request.l2_table); 928 929 /* Free the buffer we may have allocated for zero writes */ 930 if (acb->flags & QED_AIOCB_ZERO) { 931 qemu_vfree(acb->qiov->iov[0].iov_base); 932 acb->qiov->iov[0].iov_base = NULL; 933 } 934 935 /* Arrange for a bh to invoke the completion function */ 936 acb->bh_ret = ret; 937 acb->bh = aio_bh_new(bdrv_get_aio_context(acb->common.bs), 938 qed_aio_complete_bh, acb); 939 qemu_bh_schedule(acb->bh); 940 941 /* Start next allocating write request waiting behind this one. Note that 942 * requests enqueue themselves when they first hit an unallocated cluster 943 * but they wait until the entire request is finished before waking up the 944 * next request in the queue. This ensures that we don't cycle through 945 * requests multiple times but rather finish one at a time completely. 946 */ 947 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) { 948 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next); 949 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs); 950 if (acb) { 951 qed_aio_next_io(acb, 0); 952 } else if (s->header.features & QED_F_NEED_CHECK) { 953 qed_start_need_check_timer(s); 954 } 955 } 956 } 957 958 /** 959 * Commit the current L2 table to the cache 960 */ 961 static void qed_commit_l2_update(void *opaque, int ret) 962 { 963 QEDAIOCB *acb = opaque; 964 BDRVQEDState *s = acb_to_s(acb); 965 CachedL2Table *l2_table = acb->request.l2_table; 966 uint64_t l2_offset = l2_table->offset; 967 968 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 969 970 /* This is guaranteed to succeed because we just committed the entry to the 971 * cache. 972 */ 973 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 974 assert(acb->request.l2_table != NULL); 975 976 qed_aio_next_io(opaque, ret); 977 } 978 979 /** 980 * Update L1 table with new L2 table offset and write it out 981 */ 982 static void qed_aio_write_l1_update(void *opaque, int ret) 983 { 984 QEDAIOCB *acb = opaque; 985 BDRVQEDState *s = acb_to_s(acb); 986 int index; 987 988 if (ret) { 989 qed_aio_complete(acb, ret); 990 return; 991 } 992 993 index = qed_l1_index(s, acb->cur_pos); 994 s->l1_table->offsets[index] = acb->request.l2_table->offset; 995 996 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb); 997 } 998 999 /** 1000 * Update L2 table with new cluster offsets and write them out 1001 */ 1002 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset) 1003 { 1004 BDRVQEDState *s = acb_to_s(acb); 1005 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 1006 int index; 1007 1008 if (ret) { 1009 goto err; 1010 } 1011 1012 if (need_alloc) { 1013 qed_unref_l2_cache_entry(acb->request.l2_table); 1014 acb->request.l2_table = qed_new_l2_table(s); 1015 } 1016 1017 index = qed_l2_index(s, acb->cur_pos); 1018 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 1019 offset); 1020 1021 if (need_alloc) { 1022 /* Write out the whole new L2 table */ 1023 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true, 1024 qed_aio_write_l1_update, acb); 1025 } else { 1026 /* Write out only the updated part of the L2 table */ 1027 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false, 1028 qed_aio_next_io, acb); 1029 } 1030 return; 1031 1032 err: 1033 qed_aio_complete(acb, ret); 1034 } 1035 1036 static void qed_aio_write_l2_update_cb(void *opaque, int ret) 1037 { 1038 QEDAIOCB *acb = opaque; 1039 qed_aio_write_l2_update(acb, ret, acb->cur_cluster); 1040 } 1041 1042 /** 1043 * Flush new data clusters before updating the L2 table 1044 * 1045 * This flush is necessary when a backing file is in use. A crash during an 1046 * allocating write could result in empty clusters in the image. If the write 1047 * only touched a subregion of the cluster, then backing image sectors have 1048 * been lost in the untouched region. The solution is to flush after writing a 1049 * new data cluster and before updating the L2 table. 1050 */ 1051 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret) 1052 { 1053 QEDAIOCB *acb = opaque; 1054 BDRVQEDState *s = acb_to_s(acb); 1055 1056 if (!bdrv_aio_flush(s->bs->file->bs, qed_aio_write_l2_update_cb, opaque)) { 1057 qed_aio_complete(acb, -EIO); 1058 } 1059 } 1060 1061 /** 1062 * Write data to the image file 1063 */ 1064 static void qed_aio_write_main(void *opaque, int ret) 1065 { 1066 QEDAIOCB *acb = opaque; 1067 BDRVQEDState *s = acb_to_s(acb); 1068 uint64_t offset = acb->cur_cluster + 1069 qed_offset_into_cluster(s, acb->cur_pos); 1070 BlockCompletionFunc *next_fn; 1071 1072 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size); 1073 1074 if (ret) { 1075 qed_aio_complete(acb, ret); 1076 return; 1077 } 1078 1079 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) { 1080 next_fn = qed_aio_next_io; 1081 } else { 1082 if (s->bs->backing) { 1083 next_fn = qed_aio_write_flush_before_l2_update; 1084 } else { 1085 next_fn = qed_aio_write_l2_update_cb; 1086 } 1087 } 1088 1089 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1090 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE, 1091 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE, 1092 next_fn, acb); 1093 } 1094 1095 /** 1096 * Populate back untouched region of new data cluster 1097 */ 1098 static void qed_aio_write_postfill(void *opaque, int ret) 1099 { 1100 QEDAIOCB *acb = opaque; 1101 BDRVQEDState *s = acb_to_s(acb); 1102 uint64_t start = acb->cur_pos + acb->cur_qiov.size; 1103 uint64_t len = 1104 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1105 uint64_t offset = acb->cur_cluster + 1106 qed_offset_into_cluster(s, acb->cur_pos) + 1107 acb->cur_qiov.size; 1108 1109 if (ret) { 1110 qed_aio_complete(acb, ret); 1111 return; 1112 } 1113 1114 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1115 qed_copy_from_backing_file(s, start, len, offset, 1116 qed_aio_write_main, acb); 1117 } 1118 1119 /** 1120 * Populate front untouched region of new data cluster 1121 */ 1122 static void qed_aio_write_prefill(void *opaque, int ret) 1123 { 1124 QEDAIOCB *acb = opaque; 1125 BDRVQEDState *s = acb_to_s(acb); 1126 uint64_t start = qed_start_of_cluster(s, acb->cur_pos); 1127 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos); 1128 1129 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1130 qed_copy_from_backing_file(s, start, len, acb->cur_cluster, 1131 qed_aio_write_postfill, acb); 1132 } 1133 1134 /** 1135 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1136 */ 1137 static bool qed_should_set_need_check(BDRVQEDState *s) 1138 { 1139 /* The flush before L2 update path ensures consistency */ 1140 if (s->bs->backing) { 1141 return false; 1142 } 1143 1144 return !(s->header.features & QED_F_NEED_CHECK); 1145 } 1146 1147 static void qed_aio_write_zero_cluster(void *opaque, int ret) 1148 { 1149 QEDAIOCB *acb = opaque; 1150 1151 if (ret) { 1152 qed_aio_complete(acb, ret); 1153 return; 1154 } 1155 1156 qed_aio_write_l2_update(acb, 0, 1); 1157 } 1158 1159 /** 1160 * Write new data cluster 1161 * 1162 * @acb: Write request 1163 * @len: Length in bytes 1164 * 1165 * This path is taken when writing to previously unallocated clusters. 1166 */ 1167 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1168 { 1169 BDRVQEDState *s = acb_to_s(acb); 1170 BlockCompletionFunc *cb; 1171 1172 /* Cancel timer when the first allocating request comes in */ 1173 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) { 1174 qed_cancel_need_check_timer(s); 1175 } 1176 1177 /* Freeze this request if another allocating write is in progress */ 1178 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) { 1179 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next); 1180 } 1181 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) || 1182 s->allocating_write_reqs_plugged) { 1183 return; /* wait for existing request to finish */ 1184 } 1185 1186 acb->cur_nclusters = qed_bytes_to_clusters(s, 1187 qed_offset_into_cluster(s, acb->cur_pos) + len); 1188 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1189 1190 if (acb->flags & QED_AIOCB_ZERO) { 1191 /* Skip ahead if the clusters are already zero */ 1192 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1193 qed_aio_next_io(acb, 0); 1194 return; 1195 } 1196 1197 cb = qed_aio_write_zero_cluster; 1198 } else { 1199 cb = qed_aio_write_prefill; 1200 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1201 } 1202 1203 if (qed_should_set_need_check(s)) { 1204 s->header.features |= QED_F_NEED_CHECK; 1205 qed_write_header(s, cb, acb); 1206 } else { 1207 cb(acb, 0); 1208 } 1209 } 1210 1211 /** 1212 * Write data cluster in place 1213 * 1214 * @acb: Write request 1215 * @offset: Cluster offset in bytes 1216 * @len: Length in bytes 1217 * 1218 * This path is taken when writing to already allocated clusters. 1219 */ 1220 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len) 1221 { 1222 /* Allocate buffer for zero writes */ 1223 if (acb->flags & QED_AIOCB_ZERO) { 1224 struct iovec *iov = acb->qiov->iov; 1225 1226 if (!iov->iov_base) { 1227 iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len); 1228 if (iov->iov_base == NULL) { 1229 qed_aio_complete(acb, -ENOMEM); 1230 return; 1231 } 1232 memset(iov->iov_base, 0, iov->iov_len); 1233 } 1234 } 1235 1236 /* Calculate the I/O vector */ 1237 acb->cur_cluster = offset; 1238 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1239 1240 /* Do the actual write */ 1241 qed_aio_write_main(acb, 0); 1242 } 1243 1244 /** 1245 * Write data cluster 1246 * 1247 * @opaque: Write request 1248 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1, 1249 * or -errno 1250 * @offset: Cluster offset in bytes 1251 * @len: Length in bytes 1252 * 1253 * Callback from qed_find_cluster(). 1254 */ 1255 static void qed_aio_write_data(void *opaque, int ret, 1256 uint64_t offset, size_t len) 1257 { 1258 QEDAIOCB *acb = opaque; 1259 1260 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1261 1262 acb->find_cluster_ret = ret; 1263 1264 switch (ret) { 1265 case QED_CLUSTER_FOUND: 1266 qed_aio_write_inplace(acb, offset, len); 1267 break; 1268 1269 case QED_CLUSTER_L2: 1270 case QED_CLUSTER_L1: 1271 case QED_CLUSTER_ZERO: 1272 qed_aio_write_alloc(acb, len); 1273 break; 1274 1275 default: 1276 qed_aio_complete(acb, ret); 1277 break; 1278 } 1279 } 1280 1281 /** 1282 * Read data cluster 1283 * 1284 * @opaque: Read request 1285 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1, 1286 * or -errno 1287 * @offset: Cluster offset in bytes 1288 * @len: Length in bytes 1289 * 1290 * Callback from qed_find_cluster(). 1291 */ 1292 static void qed_aio_read_data(void *opaque, int ret, 1293 uint64_t offset, size_t len) 1294 { 1295 QEDAIOCB *acb = opaque; 1296 BDRVQEDState *s = acb_to_s(acb); 1297 BlockDriverState *bs = acb->common.bs; 1298 1299 /* Adjust offset into cluster */ 1300 offset += qed_offset_into_cluster(s, acb->cur_pos); 1301 1302 trace_qed_aio_read_data(s, acb, ret, offset, len); 1303 1304 if (ret < 0) { 1305 goto err; 1306 } 1307 1308 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1309 1310 /* Handle zero cluster and backing file reads */ 1311 if (ret == QED_CLUSTER_ZERO) { 1312 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1313 qed_aio_next_io(acb, 0); 1314 return; 1315 } else if (ret != QED_CLUSTER_FOUND) { 1316 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov, 1317 &acb->backing_qiov, qed_aio_next_io, acb); 1318 return; 1319 } 1320 1321 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1322 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE, 1323 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE, 1324 qed_aio_next_io, acb); 1325 return; 1326 1327 err: 1328 qed_aio_complete(acb, ret); 1329 } 1330 1331 /** 1332 * Begin next I/O or complete the request 1333 */ 1334 static void qed_aio_next_io(void *opaque, int ret) 1335 { 1336 QEDAIOCB *acb = opaque; 1337 BDRVQEDState *s = acb_to_s(acb); 1338 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ? 1339 qed_aio_write_data : qed_aio_read_data; 1340 1341 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size); 1342 1343 if (acb->backing_qiov) { 1344 qemu_iovec_destroy(acb->backing_qiov); 1345 g_free(acb->backing_qiov); 1346 acb->backing_qiov = NULL; 1347 } 1348 1349 /* Handle I/O error */ 1350 if (ret) { 1351 qed_aio_complete(acb, ret); 1352 return; 1353 } 1354 1355 acb->qiov_offset += acb->cur_qiov.size; 1356 acb->cur_pos += acb->cur_qiov.size; 1357 qemu_iovec_reset(&acb->cur_qiov); 1358 1359 /* Complete request */ 1360 if (acb->cur_pos >= acb->end_pos) { 1361 qed_aio_complete(acb, 0); 1362 return; 1363 } 1364 1365 /* Find next cluster and start I/O */ 1366 qed_find_cluster(s, &acb->request, 1367 acb->cur_pos, acb->end_pos - acb->cur_pos, 1368 io_fn, acb); 1369 } 1370 1371 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs, 1372 int64_t sector_num, 1373 QEMUIOVector *qiov, int nb_sectors, 1374 BlockCompletionFunc *cb, 1375 void *opaque, int flags) 1376 { 1377 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque); 1378 1379 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors, 1380 opaque, flags); 1381 1382 acb->flags = flags; 1383 acb->qiov = qiov; 1384 acb->qiov_offset = 0; 1385 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE; 1386 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE; 1387 acb->backing_qiov = NULL; 1388 acb->request.l2_table = NULL; 1389 qemu_iovec_init(&acb->cur_qiov, qiov->niov); 1390 1391 /* Start request */ 1392 qed_aio_next_io(acb, 0); 1393 return &acb->common; 1394 } 1395 1396 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs, 1397 int64_t sector_num, 1398 QEMUIOVector *qiov, int nb_sectors, 1399 BlockCompletionFunc *cb, 1400 void *opaque) 1401 { 1402 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 1403 } 1404 1405 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs, 1406 int64_t sector_num, 1407 QEMUIOVector *qiov, int nb_sectors, 1408 BlockCompletionFunc *cb, 1409 void *opaque) 1410 { 1411 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, 1412 opaque, QED_AIOCB_WRITE); 1413 } 1414 1415 typedef struct { 1416 Coroutine *co; 1417 int ret; 1418 bool done; 1419 } QEDWriteZeroesCB; 1420 1421 static void coroutine_fn qed_co_pwrite_zeroes_cb(void *opaque, int ret) 1422 { 1423 QEDWriteZeroesCB *cb = opaque; 1424 1425 cb->done = true; 1426 cb->ret = ret; 1427 if (cb->co) { 1428 qemu_coroutine_enter(cb->co); 1429 } 1430 } 1431 1432 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, 1433 int64_t offset, 1434 int count, 1435 BdrvRequestFlags flags) 1436 { 1437 BlockAIOCB *blockacb; 1438 BDRVQEDState *s = bs->opaque; 1439 QEDWriteZeroesCB cb = { .done = false }; 1440 QEMUIOVector qiov; 1441 struct iovec iov; 1442 1443 /* Fall back if the request is not aligned */ 1444 if (qed_offset_into_cluster(s, offset) || 1445 qed_offset_into_cluster(s, count)) { 1446 return -ENOTSUP; 1447 } 1448 1449 /* Zero writes start without an I/O buffer. If a buffer becomes necessary 1450 * then it will be allocated during request processing. 1451 */ 1452 iov.iov_base = NULL; 1453 iov.iov_len = count; 1454 1455 qemu_iovec_init_external(&qiov, &iov, 1); 1456 blockacb = qed_aio_setup(bs, offset >> BDRV_SECTOR_BITS, &qiov, 1457 count >> BDRV_SECTOR_BITS, 1458 qed_co_pwrite_zeroes_cb, &cb, 1459 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1460 if (!blockacb) { 1461 return -EIO; 1462 } 1463 if (!cb.done) { 1464 cb.co = qemu_coroutine_self(); 1465 qemu_coroutine_yield(); 1466 } 1467 assert(cb.done); 1468 return cb.ret; 1469 } 1470 1471 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset) 1472 { 1473 BDRVQEDState *s = bs->opaque; 1474 uint64_t old_image_size; 1475 int ret; 1476 1477 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1478 s->header.table_size)) { 1479 return -EINVAL; 1480 } 1481 1482 /* Shrinking is currently not supported */ 1483 if ((uint64_t)offset < s->header.image_size) { 1484 return -ENOTSUP; 1485 } 1486 1487 old_image_size = s->header.image_size; 1488 s->header.image_size = offset; 1489 ret = qed_write_header_sync(s); 1490 if (ret < 0) { 1491 s->header.image_size = old_image_size; 1492 } 1493 return ret; 1494 } 1495 1496 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1497 { 1498 BDRVQEDState *s = bs->opaque; 1499 return s->header.image_size; 1500 } 1501 1502 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1503 { 1504 BDRVQEDState *s = bs->opaque; 1505 1506 memset(bdi, 0, sizeof(*bdi)); 1507 bdi->cluster_size = s->header.cluster_size; 1508 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1509 bdi->unallocated_blocks_are_zero = true; 1510 bdi->can_write_zeroes_with_unmap = true; 1511 return 0; 1512 } 1513 1514 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1515 const char *backing_file, 1516 const char *backing_fmt) 1517 { 1518 BDRVQEDState *s = bs->opaque; 1519 QEDHeader new_header, le_header; 1520 void *buffer; 1521 size_t buffer_len, backing_file_len; 1522 int ret; 1523 1524 /* Refuse to set backing filename if unknown compat feature bits are 1525 * active. If the image uses an unknown compat feature then we may not 1526 * know the layout of data following the header structure and cannot safely 1527 * add a new string. 1528 */ 1529 if (backing_file && (s->header.compat_features & 1530 ~QED_COMPAT_FEATURE_MASK)) { 1531 return -ENOTSUP; 1532 } 1533 1534 memcpy(&new_header, &s->header, sizeof(new_header)); 1535 1536 new_header.features &= ~(QED_F_BACKING_FILE | 1537 QED_F_BACKING_FORMAT_NO_PROBE); 1538 1539 /* Adjust feature flags */ 1540 if (backing_file) { 1541 new_header.features |= QED_F_BACKING_FILE; 1542 1543 if (qed_fmt_is_raw(backing_fmt)) { 1544 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1545 } 1546 } 1547 1548 /* Calculate new header size */ 1549 backing_file_len = 0; 1550 1551 if (backing_file) { 1552 backing_file_len = strlen(backing_file); 1553 } 1554 1555 buffer_len = sizeof(new_header); 1556 new_header.backing_filename_offset = buffer_len; 1557 new_header.backing_filename_size = backing_file_len; 1558 buffer_len += backing_file_len; 1559 1560 /* Make sure we can rewrite header without failing */ 1561 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1562 return -ENOSPC; 1563 } 1564 1565 /* Prepare new header */ 1566 buffer = g_malloc(buffer_len); 1567 1568 qed_header_cpu_to_le(&new_header, &le_header); 1569 memcpy(buffer, &le_header, sizeof(le_header)); 1570 buffer_len = sizeof(le_header); 1571 1572 if (backing_file) { 1573 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1574 buffer_len += backing_file_len; 1575 } 1576 1577 /* Write new header */ 1578 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len); 1579 g_free(buffer); 1580 if (ret == 0) { 1581 memcpy(&s->header, &new_header, sizeof(new_header)); 1582 } 1583 return ret; 1584 } 1585 1586 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp) 1587 { 1588 BDRVQEDState *s = bs->opaque; 1589 Error *local_err = NULL; 1590 int ret; 1591 1592 bdrv_qed_close(bs); 1593 1594 memset(s, 0, sizeof(BDRVQEDState)); 1595 ret = bdrv_qed_open(bs, NULL, bs->open_flags, &local_err); 1596 if (local_err) { 1597 error_propagate(errp, local_err); 1598 error_prepend(errp, "Could not reopen qed layer: "); 1599 return; 1600 } else if (ret < 0) { 1601 error_setg_errno(errp, -ret, "Could not reopen qed layer"); 1602 return; 1603 } 1604 } 1605 1606 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result, 1607 BdrvCheckMode fix) 1608 { 1609 BDRVQEDState *s = bs->opaque; 1610 1611 return qed_check(s, result, !!fix); 1612 } 1613 1614 static QemuOptsList qed_create_opts = { 1615 .name = "qed-create-opts", 1616 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1617 .desc = { 1618 { 1619 .name = BLOCK_OPT_SIZE, 1620 .type = QEMU_OPT_SIZE, 1621 .help = "Virtual disk size" 1622 }, 1623 { 1624 .name = BLOCK_OPT_BACKING_FILE, 1625 .type = QEMU_OPT_STRING, 1626 .help = "File name of a base image" 1627 }, 1628 { 1629 .name = BLOCK_OPT_BACKING_FMT, 1630 .type = QEMU_OPT_STRING, 1631 .help = "Image format of the base image" 1632 }, 1633 { 1634 .name = BLOCK_OPT_CLUSTER_SIZE, 1635 .type = QEMU_OPT_SIZE, 1636 .help = "Cluster size (in bytes)", 1637 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1638 }, 1639 { 1640 .name = BLOCK_OPT_TABLE_SIZE, 1641 .type = QEMU_OPT_SIZE, 1642 .help = "L1/L2 table size (in clusters)" 1643 }, 1644 { /* end of list */ } 1645 } 1646 }; 1647 1648 static BlockDriver bdrv_qed = { 1649 .format_name = "qed", 1650 .instance_size = sizeof(BDRVQEDState), 1651 .create_opts = &qed_create_opts, 1652 .supports_backing = true, 1653 1654 .bdrv_probe = bdrv_qed_probe, 1655 .bdrv_open = bdrv_qed_open, 1656 .bdrv_close = bdrv_qed_close, 1657 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1658 .bdrv_create = bdrv_qed_create, 1659 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1660 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status, 1661 .bdrv_aio_readv = bdrv_qed_aio_readv, 1662 .bdrv_aio_writev = bdrv_qed_aio_writev, 1663 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes, 1664 .bdrv_truncate = bdrv_qed_truncate, 1665 .bdrv_getlength = bdrv_qed_getlength, 1666 .bdrv_get_info = bdrv_qed_get_info, 1667 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1668 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1669 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache, 1670 .bdrv_check = bdrv_qed_check, 1671 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1672 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1673 }; 1674 1675 static void bdrv_qed_init(void) 1676 { 1677 bdrv_register(&bdrv_qed); 1678 } 1679 1680 block_init(bdrv_qed_init); 1681