1 /* 2 * QEMU Enhanced Disk Format 3 * 4 * Copyright IBM, Corp. 2010 5 * 6 * Authors: 7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU LGPL, version 2 or later. 11 * See the COPYING.LIB file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/timer.h" 17 #include "trace.h" 18 #include "qed.h" 19 #include "qapi/qmp/qerror.h" 20 #include "migration/migration.h" 21 22 static const AIOCBInfo qed_aiocb_info = { 23 .aiocb_size = sizeof(QEDAIOCB), 24 }; 25 26 static int bdrv_qed_probe(const uint8_t *buf, int buf_size, 27 const char *filename) 28 { 29 const QEDHeader *header = (const QEDHeader *)buf; 30 31 if (buf_size < sizeof(*header)) { 32 return 0; 33 } 34 if (le32_to_cpu(header->magic) != QED_MAGIC) { 35 return 0; 36 } 37 return 100; 38 } 39 40 /** 41 * Check whether an image format is raw 42 * 43 * @fmt: Backing file format, may be NULL 44 */ 45 static bool qed_fmt_is_raw(const char *fmt) 46 { 47 return fmt && strcmp(fmt, "raw") == 0; 48 } 49 50 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu) 51 { 52 cpu->magic = le32_to_cpu(le->magic); 53 cpu->cluster_size = le32_to_cpu(le->cluster_size); 54 cpu->table_size = le32_to_cpu(le->table_size); 55 cpu->header_size = le32_to_cpu(le->header_size); 56 cpu->features = le64_to_cpu(le->features); 57 cpu->compat_features = le64_to_cpu(le->compat_features); 58 cpu->autoclear_features = le64_to_cpu(le->autoclear_features); 59 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset); 60 cpu->image_size = le64_to_cpu(le->image_size); 61 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset); 62 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size); 63 } 64 65 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le) 66 { 67 le->magic = cpu_to_le32(cpu->magic); 68 le->cluster_size = cpu_to_le32(cpu->cluster_size); 69 le->table_size = cpu_to_le32(cpu->table_size); 70 le->header_size = cpu_to_le32(cpu->header_size); 71 le->features = cpu_to_le64(cpu->features); 72 le->compat_features = cpu_to_le64(cpu->compat_features); 73 le->autoclear_features = cpu_to_le64(cpu->autoclear_features); 74 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset); 75 le->image_size = cpu_to_le64(cpu->image_size); 76 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset); 77 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size); 78 } 79 80 int qed_write_header_sync(BDRVQEDState *s) 81 { 82 QEDHeader le; 83 int ret; 84 85 qed_header_cpu_to_le(&s->header, &le); 86 ret = bdrv_pwrite(s->bs->file->bs, 0, &le, sizeof(le)); 87 if (ret != sizeof(le)) { 88 return ret; 89 } 90 return 0; 91 } 92 93 typedef struct { 94 GenericCB gencb; 95 BDRVQEDState *s; 96 struct iovec iov; 97 QEMUIOVector qiov; 98 int nsectors; 99 uint8_t *buf; 100 } QEDWriteHeaderCB; 101 102 static void qed_write_header_cb(void *opaque, int ret) 103 { 104 QEDWriteHeaderCB *write_header_cb = opaque; 105 106 qemu_vfree(write_header_cb->buf); 107 gencb_complete(write_header_cb, ret); 108 } 109 110 static void qed_write_header_read_cb(void *opaque, int ret) 111 { 112 QEDWriteHeaderCB *write_header_cb = opaque; 113 BDRVQEDState *s = write_header_cb->s; 114 115 if (ret) { 116 qed_write_header_cb(write_header_cb, ret); 117 return; 118 } 119 120 /* Update header */ 121 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf); 122 123 bdrv_aio_writev(s->bs->file->bs, 0, &write_header_cb->qiov, 124 write_header_cb->nsectors, qed_write_header_cb, 125 write_header_cb); 126 } 127 128 /** 129 * Update header in-place (does not rewrite backing filename or other strings) 130 * 131 * This function only updates known header fields in-place and does not affect 132 * extra data after the QED header. 133 */ 134 static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb, 135 void *opaque) 136 { 137 /* We must write full sectors for O_DIRECT but cannot necessarily generate 138 * the data following the header if an unrecognized compat feature is 139 * active. Therefore, first read the sectors containing the header, update 140 * them, and write back. 141 */ 142 143 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) / 144 BDRV_SECTOR_SIZE; 145 size_t len = nsectors * BDRV_SECTOR_SIZE; 146 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb), 147 cb, opaque); 148 149 write_header_cb->s = s; 150 write_header_cb->nsectors = nsectors; 151 write_header_cb->buf = qemu_blockalign(s->bs, len); 152 write_header_cb->iov.iov_base = write_header_cb->buf; 153 write_header_cb->iov.iov_len = len; 154 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1); 155 156 bdrv_aio_readv(s->bs->file->bs, 0, &write_header_cb->qiov, nsectors, 157 qed_write_header_read_cb, write_header_cb); 158 } 159 160 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size) 161 { 162 uint64_t table_entries; 163 uint64_t l2_size; 164 165 table_entries = (table_size * cluster_size) / sizeof(uint64_t); 166 l2_size = table_entries * cluster_size; 167 168 return l2_size * table_entries; 169 } 170 171 static bool qed_is_cluster_size_valid(uint32_t cluster_size) 172 { 173 if (cluster_size < QED_MIN_CLUSTER_SIZE || 174 cluster_size > QED_MAX_CLUSTER_SIZE) { 175 return false; 176 } 177 if (cluster_size & (cluster_size - 1)) { 178 return false; /* not power of 2 */ 179 } 180 return true; 181 } 182 183 static bool qed_is_table_size_valid(uint32_t table_size) 184 { 185 if (table_size < QED_MIN_TABLE_SIZE || 186 table_size > QED_MAX_TABLE_SIZE) { 187 return false; 188 } 189 if (table_size & (table_size - 1)) { 190 return false; /* not power of 2 */ 191 } 192 return true; 193 } 194 195 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size, 196 uint32_t table_size) 197 { 198 if (image_size % BDRV_SECTOR_SIZE != 0) { 199 return false; /* not multiple of sector size */ 200 } 201 if (image_size > qed_max_image_size(cluster_size, table_size)) { 202 return false; /* image is too large */ 203 } 204 return true; 205 } 206 207 /** 208 * Read a string of known length from the image file 209 * 210 * @file: Image file 211 * @offset: File offset to start of string, in bytes 212 * @n: String length in bytes 213 * @buf: Destination buffer 214 * @buflen: Destination buffer length in bytes 215 * @ret: 0 on success, -errno on failure 216 * 217 * The string is NUL-terminated. 218 */ 219 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n, 220 char *buf, size_t buflen) 221 { 222 int ret; 223 if (n >= buflen) { 224 return -EINVAL; 225 } 226 ret = bdrv_pread(file, offset, buf, n); 227 if (ret < 0) { 228 return ret; 229 } 230 buf[n] = '\0'; 231 return 0; 232 } 233 234 /** 235 * Allocate new clusters 236 * 237 * @s: QED state 238 * @n: Number of contiguous clusters to allocate 239 * @ret: Offset of first allocated cluster 240 * 241 * This function only produces the offset where the new clusters should be 242 * written. It updates BDRVQEDState but does not make any changes to the image 243 * file. 244 */ 245 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n) 246 { 247 uint64_t offset = s->file_size; 248 s->file_size += n * s->header.cluster_size; 249 return offset; 250 } 251 252 QEDTable *qed_alloc_table(BDRVQEDState *s) 253 { 254 /* Honor O_DIRECT memory alignment requirements */ 255 return qemu_blockalign(s->bs, 256 s->header.cluster_size * s->header.table_size); 257 } 258 259 /** 260 * Allocate a new zeroed L2 table 261 */ 262 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s) 263 { 264 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache); 265 266 l2_table->table = qed_alloc_table(s); 267 l2_table->offset = qed_alloc_clusters(s, s->header.table_size); 268 269 memset(l2_table->table->offsets, 0, 270 s->header.cluster_size * s->header.table_size); 271 return l2_table; 272 } 273 274 static void qed_aio_next_io(void *opaque, int ret); 275 276 static void qed_plug_allocating_write_reqs(BDRVQEDState *s) 277 { 278 assert(!s->allocating_write_reqs_plugged); 279 280 s->allocating_write_reqs_plugged = true; 281 } 282 283 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s) 284 { 285 QEDAIOCB *acb; 286 287 assert(s->allocating_write_reqs_plugged); 288 289 s->allocating_write_reqs_plugged = false; 290 291 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs); 292 if (acb) { 293 qed_aio_next_io(acb, 0); 294 } 295 } 296 297 static void qed_finish_clear_need_check(void *opaque, int ret) 298 { 299 /* Do nothing */ 300 } 301 302 static void qed_flush_after_clear_need_check(void *opaque, int ret) 303 { 304 BDRVQEDState *s = opaque; 305 306 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s); 307 308 /* No need to wait until flush completes */ 309 qed_unplug_allocating_write_reqs(s); 310 } 311 312 static void qed_clear_need_check(void *opaque, int ret) 313 { 314 BDRVQEDState *s = opaque; 315 316 if (ret) { 317 qed_unplug_allocating_write_reqs(s); 318 return; 319 } 320 321 s->header.features &= ~QED_F_NEED_CHECK; 322 qed_write_header(s, qed_flush_after_clear_need_check, s); 323 } 324 325 static void qed_need_check_timer_cb(void *opaque) 326 { 327 BDRVQEDState *s = opaque; 328 329 /* The timer should only fire when allocating writes have drained */ 330 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs)); 331 332 trace_qed_need_check_timer_cb(s); 333 334 qed_plug_allocating_write_reqs(s); 335 336 /* Ensure writes are on disk before clearing flag */ 337 bdrv_aio_flush(s->bs, qed_clear_need_check, s); 338 } 339 340 static void qed_start_need_check_timer(BDRVQEDState *s) 341 { 342 trace_qed_start_need_check_timer(s); 343 344 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for 345 * migration. 346 */ 347 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 348 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT); 349 } 350 351 /* It's okay to call this multiple times or when no timer is started */ 352 static void qed_cancel_need_check_timer(BDRVQEDState *s) 353 { 354 trace_qed_cancel_need_check_timer(s); 355 timer_del(s->need_check_timer); 356 } 357 358 static void bdrv_qed_detach_aio_context(BlockDriverState *bs) 359 { 360 BDRVQEDState *s = bs->opaque; 361 362 qed_cancel_need_check_timer(s); 363 timer_free(s->need_check_timer); 364 } 365 366 static void bdrv_qed_attach_aio_context(BlockDriverState *bs, 367 AioContext *new_context) 368 { 369 BDRVQEDState *s = bs->opaque; 370 371 s->need_check_timer = aio_timer_new(new_context, 372 QEMU_CLOCK_VIRTUAL, SCALE_NS, 373 qed_need_check_timer_cb, s); 374 if (s->header.features & QED_F_NEED_CHECK) { 375 qed_start_need_check_timer(s); 376 } 377 } 378 379 static void bdrv_qed_drain(BlockDriverState *bs) 380 { 381 BDRVQEDState *s = bs->opaque; 382 383 /* Cancel timer and start doing I/O that were meant to happen as if it 384 * fired, that way we get bdrv_drain() taking care of the ongoing requests 385 * correctly. */ 386 qed_cancel_need_check_timer(s); 387 qed_plug_allocating_write_reqs(s); 388 bdrv_aio_flush(s->bs, qed_clear_need_check, s); 389 } 390 391 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags, 392 Error **errp) 393 { 394 BDRVQEDState *s = bs->opaque; 395 QEDHeader le_header; 396 int64_t file_size; 397 int ret; 398 399 s->bs = bs; 400 QSIMPLEQ_INIT(&s->allocating_write_reqs); 401 402 ret = bdrv_pread(bs->file->bs, 0, &le_header, sizeof(le_header)); 403 if (ret < 0) { 404 return ret; 405 } 406 qed_header_le_to_cpu(&le_header, &s->header); 407 408 if (s->header.magic != QED_MAGIC) { 409 error_setg(errp, "Image not in QED format"); 410 return -EINVAL; 411 } 412 if (s->header.features & ~QED_FEATURE_MASK) { 413 /* image uses unsupported feature bits */ 414 char buf[64]; 415 snprintf(buf, sizeof(buf), "%" PRIx64, 416 s->header.features & ~QED_FEATURE_MASK); 417 error_setg(errp, QERR_UNKNOWN_BLOCK_FORMAT_FEATURE, 418 bdrv_get_device_or_node_name(bs), "QED", buf); 419 return -ENOTSUP; 420 } 421 if (!qed_is_cluster_size_valid(s->header.cluster_size)) { 422 return -EINVAL; 423 } 424 425 /* Round down file size to the last cluster */ 426 file_size = bdrv_getlength(bs->file->bs); 427 if (file_size < 0) { 428 return file_size; 429 } 430 s->file_size = qed_start_of_cluster(s, file_size); 431 432 if (!qed_is_table_size_valid(s->header.table_size)) { 433 return -EINVAL; 434 } 435 if (!qed_is_image_size_valid(s->header.image_size, 436 s->header.cluster_size, 437 s->header.table_size)) { 438 return -EINVAL; 439 } 440 if (!qed_check_table_offset(s, s->header.l1_table_offset)) { 441 return -EINVAL; 442 } 443 444 s->table_nelems = (s->header.cluster_size * s->header.table_size) / 445 sizeof(uint64_t); 446 s->l2_shift = ctz32(s->header.cluster_size); 447 s->l2_mask = s->table_nelems - 1; 448 s->l1_shift = s->l2_shift + ctz32(s->table_nelems); 449 450 /* Header size calculation must not overflow uint32_t */ 451 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) { 452 return -EINVAL; 453 } 454 455 if ((s->header.features & QED_F_BACKING_FILE)) { 456 if ((uint64_t)s->header.backing_filename_offset + 457 s->header.backing_filename_size > 458 s->header.cluster_size * s->header.header_size) { 459 return -EINVAL; 460 } 461 462 ret = qed_read_string(bs->file->bs, s->header.backing_filename_offset, 463 s->header.backing_filename_size, bs->backing_file, 464 sizeof(bs->backing_file)); 465 if (ret < 0) { 466 return ret; 467 } 468 469 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) { 470 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw"); 471 } 472 } 473 474 /* Reset unknown autoclear feature bits. This is a backwards 475 * compatibility mechanism that allows images to be opened by older 476 * programs, which "knock out" unknown feature bits. When an image is 477 * opened by a newer program again it can detect that the autoclear 478 * feature is no longer valid. 479 */ 480 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 && 481 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) { 482 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK; 483 484 ret = qed_write_header_sync(s); 485 if (ret) { 486 return ret; 487 } 488 489 /* From here on only known autoclear feature bits are valid */ 490 bdrv_flush(bs->file->bs); 491 } 492 493 s->l1_table = qed_alloc_table(s); 494 qed_init_l2_cache(&s->l2_cache); 495 496 ret = qed_read_l1_table_sync(s); 497 if (ret) { 498 goto out; 499 } 500 501 /* If image was not closed cleanly, check consistency */ 502 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) { 503 /* Read-only images cannot be fixed. There is no risk of corruption 504 * since write operations are not possible. Therefore, allow 505 * potentially inconsistent images to be opened read-only. This can 506 * aid data recovery from an otherwise inconsistent image. 507 */ 508 if (!bdrv_is_read_only(bs->file->bs) && 509 !(flags & BDRV_O_INACTIVE)) { 510 BdrvCheckResult result = {0}; 511 512 ret = qed_check(s, &result, true); 513 if (ret) { 514 goto out; 515 } 516 } 517 } 518 519 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs)); 520 521 out: 522 if (ret) { 523 qed_free_l2_cache(&s->l2_cache); 524 qemu_vfree(s->l1_table); 525 } 526 return ret; 527 } 528 529 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp) 530 { 531 BDRVQEDState *s = bs->opaque; 532 533 bs->bl.write_zeroes_alignment = s->header.cluster_size >> BDRV_SECTOR_BITS; 534 } 535 536 /* We have nothing to do for QED reopen, stubs just return 537 * success */ 538 static int bdrv_qed_reopen_prepare(BDRVReopenState *state, 539 BlockReopenQueue *queue, Error **errp) 540 { 541 return 0; 542 } 543 544 static void bdrv_qed_close(BlockDriverState *bs) 545 { 546 BDRVQEDState *s = bs->opaque; 547 548 bdrv_qed_detach_aio_context(bs); 549 550 /* Ensure writes reach stable storage */ 551 bdrv_flush(bs->file->bs); 552 553 /* Clean shutdown, no check required on next open */ 554 if (s->header.features & QED_F_NEED_CHECK) { 555 s->header.features &= ~QED_F_NEED_CHECK; 556 qed_write_header_sync(s); 557 } 558 559 qed_free_l2_cache(&s->l2_cache); 560 qemu_vfree(s->l1_table); 561 } 562 563 static int qed_create(const char *filename, uint32_t cluster_size, 564 uint64_t image_size, uint32_t table_size, 565 const char *backing_file, const char *backing_fmt, 566 QemuOpts *opts, Error **errp) 567 { 568 QEDHeader header = { 569 .magic = QED_MAGIC, 570 .cluster_size = cluster_size, 571 .table_size = table_size, 572 .header_size = 1, 573 .features = 0, 574 .compat_features = 0, 575 .l1_table_offset = cluster_size, 576 .image_size = image_size, 577 }; 578 QEDHeader le_header; 579 uint8_t *l1_table = NULL; 580 size_t l1_size = header.cluster_size * header.table_size; 581 Error *local_err = NULL; 582 int ret = 0; 583 BlockDriverState *bs; 584 585 ret = bdrv_create_file(filename, opts, &local_err); 586 if (ret < 0) { 587 error_propagate(errp, local_err); 588 return ret; 589 } 590 591 bs = NULL; 592 ret = bdrv_open(&bs, filename, NULL, NULL, 593 BDRV_O_RDWR | BDRV_O_CACHE_WB | BDRV_O_PROTOCOL, 594 &local_err); 595 if (ret < 0) { 596 error_propagate(errp, local_err); 597 return ret; 598 } 599 600 /* File must start empty and grow, check truncate is supported */ 601 ret = bdrv_truncate(bs, 0); 602 if (ret < 0) { 603 goto out; 604 } 605 606 if (backing_file) { 607 header.features |= QED_F_BACKING_FILE; 608 header.backing_filename_offset = sizeof(le_header); 609 header.backing_filename_size = strlen(backing_file); 610 611 if (qed_fmt_is_raw(backing_fmt)) { 612 header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 613 } 614 } 615 616 qed_header_cpu_to_le(&header, &le_header); 617 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header)); 618 if (ret < 0) { 619 goto out; 620 } 621 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file, 622 header.backing_filename_size); 623 if (ret < 0) { 624 goto out; 625 } 626 627 l1_table = g_malloc0(l1_size); 628 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size); 629 if (ret < 0) { 630 goto out; 631 } 632 633 ret = 0; /* success */ 634 out: 635 g_free(l1_table); 636 bdrv_unref(bs); 637 return ret; 638 } 639 640 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp) 641 { 642 uint64_t image_size = 0; 643 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE; 644 uint32_t table_size = QED_DEFAULT_TABLE_SIZE; 645 char *backing_file = NULL; 646 char *backing_fmt = NULL; 647 int ret; 648 649 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0), 650 BDRV_SECTOR_SIZE); 651 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE); 652 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT); 653 cluster_size = qemu_opt_get_size_del(opts, 654 BLOCK_OPT_CLUSTER_SIZE, 655 QED_DEFAULT_CLUSTER_SIZE); 656 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE, 657 QED_DEFAULT_TABLE_SIZE); 658 659 if (!qed_is_cluster_size_valid(cluster_size)) { 660 error_setg(errp, "QED cluster size must be within range [%u, %u] " 661 "and power of 2", 662 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE); 663 ret = -EINVAL; 664 goto finish; 665 } 666 if (!qed_is_table_size_valid(table_size)) { 667 error_setg(errp, "QED table size must be within range [%u, %u] " 668 "and power of 2", 669 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE); 670 ret = -EINVAL; 671 goto finish; 672 } 673 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) { 674 error_setg(errp, "QED image size must be a non-zero multiple of " 675 "cluster size and less than %" PRIu64 " bytes", 676 qed_max_image_size(cluster_size, table_size)); 677 ret = -EINVAL; 678 goto finish; 679 } 680 681 ret = qed_create(filename, cluster_size, image_size, table_size, 682 backing_file, backing_fmt, opts, errp); 683 684 finish: 685 g_free(backing_file); 686 g_free(backing_fmt); 687 return ret; 688 } 689 690 typedef struct { 691 BlockDriverState *bs; 692 Coroutine *co; 693 uint64_t pos; 694 int64_t status; 695 int *pnum; 696 } QEDIsAllocatedCB; 697 698 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len) 699 { 700 QEDIsAllocatedCB *cb = opaque; 701 BDRVQEDState *s = cb->bs->opaque; 702 *cb->pnum = len / BDRV_SECTOR_SIZE; 703 switch (ret) { 704 case QED_CLUSTER_FOUND: 705 offset |= qed_offset_into_cluster(s, cb->pos); 706 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset; 707 break; 708 case QED_CLUSTER_ZERO: 709 cb->status = BDRV_BLOCK_ZERO; 710 break; 711 case QED_CLUSTER_L2: 712 case QED_CLUSTER_L1: 713 cb->status = 0; 714 break; 715 default: 716 assert(ret < 0); 717 cb->status = ret; 718 break; 719 } 720 721 if (cb->co) { 722 qemu_coroutine_enter(cb->co, NULL); 723 } 724 } 725 726 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs, 727 int64_t sector_num, 728 int nb_sectors, int *pnum) 729 { 730 BDRVQEDState *s = bs->opaque; 731 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE; 732 QEDIsAllocatedCB cb = { 733 .bs = bs, 734 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE, 735 .status = BDRV_BLOCK_OFFSET_MASK, 736 .pnum = pnum, 737 }; 738 QEDRequest request = { .l2_table = NULL }; 739 740 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb); 741 742 /* Now sleep if the callback wasn't invoked immediately */ 743 while (cb.status == BDRV_BLOCK_OFFSET_MASK) { 744 cb.co = qemu_coroutine_self(); 745 qemu_coroutine_yield(); 746 } 747 748 qed_unref_l2_cache_entry(request.l2_table); 749 750 return cb.status; 751 } 752 753 static BDRVQEDState *acb_to_s(QEDAIOCB *acb) 754 { 755 return acb->common.bs->opaque; 756 } 757 758 /** 759 * Read from the backing file or zero-fill if no backing file 760 * 761 * @s: QED state 762 * @pos: Byte position in device 763 * @qiov: Destination I/O vector 764 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here 765 * @cb: Completion function 766 * @opaque: User data for completion function 767 * 768 * This function reads qiov->size bytes starting at pos from the backing file. 769 * If there is no backing file then zeroes are read. 770 */ 771 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos, 772 QEMUIOVector *qiov, 773 QEMUIOVector **backing_qiov, 774 BlockCompletionFunc *cb, void *opaque) 775 { 776 uint64_t backing_length = 0; 777 size_t size; 778 779 /* If there is a backing file, get its length. Treat the absence of a 780 * backing file like a zero length backing file. 781 */ 782 if (s->bs->backing) { 783 int64_t l = bdrv_getlength(s->bs->backing->bs); 784 if (l < 0) { 785 cb(opaque, l); 786 return; 787 } 788 backing_length = l; 789 } 790 791 /* Zero all sectors if reading beyond the end of the backing file */ 792 if (pos >= backing_length || 793 pos + qiov->size > backing_length) { 794 qemu_iovec_memset(qiov, 0, 0, qiov->size); 795 } 796 797 /* Complete now if there are no backing file sectors to read */ 798 if (pos >= backing_length) { 799 cb(opaque, 0); 800 return; 801 } 802 803 /* If the read straddles the end of the backing file, shorten it */ 804 size = MIN((uint64_t)backing_length - pos, qiov->size); 805 806 assert(*backing_qiov == NULL); 807 *backing_qiov = g_new(QEMUIOVector, 1); 808 qemu_iovec_init(*backing_qiov, qiov->niov); 809 qemu_iovec_concat(*backing_qiov, qiov, 0, size); 810 811 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO); 812 bdrv_aio_readv(s->bs->backing->bs, pos / BDRV_SECTOR_SIZE, 813 *backing_qiov, size / BDRV_SECTOR_SIZE, cb, opaque); 814 } 815 816 typedef struct { 817 GenericCB gencb; 818 BDRVQEDState *s; 819 QEMUIOVector qiov; 820 QEMUIOVector *backing_qiov; 821 struct iovec iov; 822 uint64_t offset; 823 } CopyFromBackingFileCB; 824 825 static void qed_copy_from_backing_file_cb(void *opaque, int ret) 826 { 827 CopyFromBackingFileCB *copy_cb = opaque; 828 qemu_vfree(copy_cb->iov.iov_base); 829 gencb_complete(©_cb->gencb, ret); 830 } 831 832 static void qed_copy_from_backing_file_write(void *opaque, int ret) 833 { 834 CopyFromBackingFileCB *copy_cb = opaque; 835 BDRVQEDState *s = copy_cb->s; 836 837 if (copy_cb->backing_qiov) { 838 qemu_iovec_destroy(copy_cb->backing_qiov); 839 g_free(copy_cb->backing_qiov); 840 copy_cb->backing_qiov = NULL; 841 } 842 843 if (ret) { 844 qed_copy_from_backing_file_cb(copy_cb, ret); 845 return; 846 } 847 848 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE); 849 bdrv_aio_writev(s->bs->file->bs, copy_cb->offset / BDRV_SECTOR_SIZE, 850 ©_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE, 851 qed_copy_from_backing_file_cb, copy_cb); 852 } 853 854 /** 855 * Copy data from backing file into the image 856 * 857 * @s: QED state 858 * @pos: Byte position in device 859 * @len: Number of bytes 860 * @offset: Byte offset in image file 861 * @cb: Completion function 862 * @opaque: User data for completion function 863 */ 864 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, 865 uint64_t len, uint64_t offset, 866 BlockCompletionFunc *cb, 867 void *opaque) 868 { 869 CopyFromBackingFileCB *copy_cb; 870 871 /* Skip copy entirely if there is no work to do */ 872 if (len == 0) { 873 cb(opaque, 0); 874 return; 875 } 876 877 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque); 878 copy_cb->s = s; 879 copy_cb->offset = offset; 880 copy_cb->backing_qiov = NULL; 881 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len); 882 copy_cb->iov.iov_len = len; 883 qemu_iovec_init_external(©_cb->qiov, ©_cb->iov, 1); 884 885 qed_read_backing_file(s, pos, ©_cb->qiov, ©_cb->backing_qiov, 886 qed_copy_from_backing_file_write, copy_cb); 887 } 888 889 /** 890 * Link one or more contiguous clusters into a table 891 * 892 * @s: QED state 893 * @table: L2 table 894 * @index: First cluster index 895 * @n: Number of contiguous clusters 896 * @cluster: First cluster offset 897 * 898 * The cluster offset may be an allocated byte offset in the image file, the 899 * zero cluster marker, or the unallocated cluster marker. 900 */ 901 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index, 902 unsigned int n, uint64_t cluster) 903 { 904 int i; 905 for (i = index; i < index + n; i++) { 906 table->offsets[i] = cluster; 907 if (!qed_offset_is_unalloc_cluster(cluster) && 908 !qed_offset_is_zero_cluster(cluster)) { 909 cluster += s->header.cluster_size; 910 } 911 } 912 } 913 914 static void qed_aio_complete_bh(void *opaque) 915 { 916 QEDAIOCB *acb = opaque; 917 BlockCompletionFunc *cb = acb->common.cb; 918 void *user_opaque = acb->common.opaque; 919 int ret = acb->bh_ret; 920 921 qemu_bh_delete(acb->bh); 922 qemu_aio_unref(acb); 923 924 /* Invoke callback */ 925 cb(user_opaque, ret); 926 } 927 928 static void qed_aio_complete(QEDAIOCB *acb, int ret) 929 { 930 BDRVQEDState *s = acb_to_s(acb); 931 932 trace_qed_aio_complete(s, acb, ret); 933 934 /* Free resources */ 935 qemu_iovec_destroy(&acb->cur_qiov); 936 qed_unref_l2_cache_entry(acb->request.l2_table); 937 938 /* Free the buffer we may have allocated for zero writes */ 939 if (acb->flags & QED_AIOCB_ZERO) { 940 qemu_vfree(acb->qiov->iov[0].iov_base); 941 acb->qiov->iov[0].iov_base = NULL; 942 } 943 944 /* Arrange for a bh to invoke the completion function */ 945 acb->bh_ret = ret; 946 acb->bh = aio_bh_new(bdrv_get_aio_context(acb->common.bs), 947 qed_aio_complete_bh, acb); 948 qemu_bh_schedule(acb->bh); 949 950 /* Start next allocating write request waiting behind this one. Note that 951 * requests enqueue themselves when they first hit an unallocated cluster 952 * but they wait until the entire request is finished before waking up the 953 * next request in the queue. This ensures that we don't cycle through 954 * requests multiple times but rather finish one at a time completely. 955 */ 956 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) { 957 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next); 958 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs); 959 if (acb) { 960 qed_aio_next_io(acb, 0); 961 } else if (s->header.features & QED_F_NEED_CHECK) { 962 qed_start_need_check_timer(s); 963 } 964 } 965 } 966 967 /** 968 * Commit the current L2 table to the cache 969 */ 970 static void qed_commit_l2_update(void *opaque, int ret) 971 { 972 QEDAIOCB *acb = opaque; 973 BDRVQEDState *s = acb_to_s(acb); 974 CachedL2Table *l2_table = acb->request.l2_table; 975 uint64_t l2_offset = l2_table->offset; 976 977 qed_commit_l2_cache_entry(&s->l2_cache, l2_table); 978 979 /* This is guaranteed to succeed because we just committed the entry to the 980 * cache. 981 */ 982 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset); 983 assert(acb->request.l2_table != NULL); 984 985 qed_aio_next_io(opaque, ret); 986 } 987 988 /** 989 * Update L1 table with new L2 table offset and write it out 990 */ 991 static void qed_aio_write_l1_update(void *opaque, int ret) 992 { 993 QEDAIOCB *acb = opaque; 994 BDRVQEDState *s = acb_to_s(acb); 995 int index; 996 997 if (ret) { 998 qed_aio_complete(acb, ret); 999 return; 1000 } 1001 1002 index = qed_l1_index(s, acb->cur_pos); 1003 s->l1_table->offsets[index] = acb->request.l2_table->offset; 1004 1005 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb); 1006 } 1007 1008 /** 1009 * Update L2 table with new cluster offsets and write them out 1010 */ 1011 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset) 1012 { 1013 BDRVQEDState *s = acb_to_s(acb); 1014 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1; 1015 int index; 1016 1017 if (ret) { 1018 goto err; 1019 } 1020 1021 if (need_alloc) { 1022 qed_unref_l2_cache_entry(acb->request.l2_table); 1023 acb->request.l2_table = qed_new_l2_table(s); 1024 } 1025 1026 index = qed_l2_index(s, acb->cur_pos); 1027 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters, 1028 offset); 1029 1030 if (need_alloc) { 1031 /* Write out the whole new L2 table */ 1032 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true, 1033 qed_aio_write_l1_update, acb); 1034 } else { 1035 /* Write out only the updated part of the L2 table */ 1036 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false, 1037 qed_aio_next_io, acb); 1038 } 1039 return; 1040 1041 err: 1042 qed_aio_complete(acb, ret); 1043 } 1044 1045 static void qed_aio_write_l2_update_cb(void *opaque, int ret) 1046 { 1047 QEDAIOCB *acb = opaque; 1048 qed_aio_write_l2_update(acb, ret, acb->cur_cluster); 1049 } 1050 1051 /** 1052 * Flush new data clusters before updating the L2 table 1053 * 1054 * This flush is necessary when a backing file is in use. A crash during an 1055 * allocating write could result in empty clusters in the image. If the write 1056 * only touched a subregion of the cluster, then backing image sectors have 1057 * been lost in the untouched region. The solution is to flush after writing a 1058 * new data cluster and before updating the L2 table. 1059 */ 1060 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret) 1061 { 1062 QEDAIOCB *acb = opaque; 1063 BDRVQEDState *s = acb_to_s(acb); 1064 1065 if (!bdrv_aio_flush(s->bs->file->bs, qed_aio_write_l2_update_cb, opaque)) { 1066 qed_aio_complete(acb, -EIO); 1067 } 1068 } 1069 1070 /** 1071 * Write data to the image file 1072 */ 1073 static void qed_aio_write_main(void *opaque, int ret) 1074 { 1075 QEDAIOCB *acb = opaque; 1076 BDRVQEDState *s = acb_to_s(acb); 1077 uint64_t offset = acb->cur_cluster + 1078 qed_offset_into_cluster(s, acb->cur_pos); 1079 BlockCompletionFunc *next_fn; 1080 1081 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size); 1082 1083 if (ret) { 1084 qed_aio_complete(acb, ret); 1085 return; 1086 } 1087 1088 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) { 1089 next_fn = qed_aio_next_io; 1090 } else { 1091 if (s->bs->backing) { 1092 next_fn = qed_aio_write_flush_before_l2_update; 1093 } else { 1094 next_fn = qed_aio_write_l2_update_cb; 1095 } 1096 } 1097 1098 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO); 1099 bdrv_aio_writev(s->bs->file->bs, offset / BDRV_SECTOR_SIZE, 1100 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE, 1101 next_fn, acb); 1102 } 1103 1104 /** 1105 * Populate back untouched region of new data cluster 1106 */ 1107 static void qed_aio_write_postfill(void *opaque, int ret) 1108 { 1109 QEDAIOCB *acb = opaque; 1110 BDRVQEDState *s = acb_to_s(acb); 1111 uint64_t start = acb->cur_pos + acb->cur_qiov.size; 1112 uint64_t len = 1113 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start; 1114 uint64_t offset = acb->cur_cluster + 1115 qed_offset_into_cluster(s, acb->cur_pos) + 1116 acb->cur_qiov.size; 1117 1118 if (ret) { 1119 qed_aio_complete(acb, ret); 1120 return; 1121 } 1122 1123 trace_qed_aio_write_postfill(s, acb, start, len, offset); 1124 qed_copy_from_backing_file(s, start, len, offset, 1125 qed_aio_write_main, acb); 1126 } 1127 1128 /** 1129 * Populate front untouched region of new data cluster 1130 */ 1131 static void qed_aio_write_prefill(void *opaque, int ret) 1132 { 1133 QEDAIOCB *acb = opaque; 1134 BDRVQEDState *s = acb_to_s(acb); 1135 uint64_t start = qed_start_of_cluster(s, acb->cur_pos); 1136 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos); 1137 1138 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster); 1139 qed_copy_from_backing_file(s, start, len, acb->cur_cluster, 1140 qed_aio_write_postfill, acb); 1141 } 1142 1143 /** 1144 * Check if the QED_F_NEED_CHECK bit should be set during allocating write 1145 */ 1146 static bool qed_should_set_need_check(BDRVQEDState *s) 1147 { 1148 /* The flush before L2 update path ensures consistency */ 1149 if (s->bs->backing) { 1150 return false; 1151 } 1152 1153 return !(s->header.features & QED_F_NEED_CHECK); 1154 } 1155 1156 static void qed_aio_write_zero_cluster(void *opaque, int ret) 1157 { 1158 QEDAIOCB *acb = opaque; 1159 1160 if (ret) { 1161 qed_aio_complete(acb, ret); 1162 return; 1163 } 1164 1165 qed_aio_write_l2_update(acb, 0, 1); 1166 } 1167 1168 /** 1169 * Write new data cluster 1170 * 1171 * @acb: Write request 1172 * @len: Length in bytes 1173 * 1174 * This path is taken when writing to previously unallocated clusters. 1175 */ 1176 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len) 1177 { 1178 BDRVQEDState *s = acb_to_s(acb); 1179 BlockCompletionFunc *cb; 1180 1181 /* Cancel timer when the first allocating request comes in */ 1182 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) { 1183 qed_cancel_need_check_timer(s); 1184 } 1185 1186 /* Freeze this request if another allocating write is in progress */ 1187 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) { 1188 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next); 1189 } 1190 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) || 1191 s->allocating_write_reqs_plugged) { 1192 return; /* wait for existing request to finish */ 1193 } 1194 1195 acb->cur_nclusters = qed_bytes_to_clusters(s, 1196 qed_offset_into_cluster(s, acb->cur_pos) + len); 1197 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1198 1199 if (acb->flags & QED_AIOCB_ZERO) { 1200 /* Skip ahead if the clusters are already zero */ 1201 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) { 1202 qed_aio_next_io(acb, 0); 1203 return; 1204 } 1205 1206 cb = qed_aio_write_zero_cluster; 1207 } else { 1208 cb = qed_aio_write_prefill; 1209 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters); 1210 } 1211 1212 if (qed_should_set_need_check(s)) { 1213 s->header.features |= QED_F_NEED_CHECK; 1214 qed_write_header(s, cb, acb); 1215 } else { 1216 cb(acb, 0); 1217 } 1218 } 1219 1220 /** 1221 * Write data cluster in place 1222 * 1223 * @acb: Write request 1224 * @offset: Cluster offset in bytes 1225 * @len: Length in bytes 1226 * 1227 * This path is taken when writing to already allocated clusters. 1228 */ 1229 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len) 1230 { 1231 /* Allocate buffer for zero writes */ 1232 if (acb->flags & QED_AIOCB_ZERO) { 1233 struct iovec *iov = acb->qiov->iov; 1234 1235 if (!iov->iov_base) { 1236 iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len); 1237 if (iov->iov_base == NULL) { 1238 qed_aio_complete(acb, -ENOMEM); 1239 return; 1240 } 1241 memset(iov->iov_base, 0, iov->iov_len); 1242 } 1243 } 1244 1245 /* Calculate the I/O vector */ 1246 acb->cur_cluster = offset; 1247 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1248 1249 /* Do the actual write */ 1250 qed_aio_write_main(acb, 0); 1251 } 1252 1253 /** 1254 * Write data cluster 1255 * 1256 * @opaque: Write request 1257 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1, 1258 * or -errno 1259 * @offset: Cluster offset in bytes 1260 * @len: Length in bytes 1261 * 1262 * Callback from qed_find_cluster(). 1263 */ 1264 static void qed_aio_write_data(void *opaque, int ret, 1265 uint64_t offset, size_t len) 1266 { 1267 QEDAIOCB *acb = opaque; 1268 1269 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len); 1270 1271 acb->find_cluster_ret = ret; 1272 1273 switch (ret) { 1274 case QED_CLUSTER_FOUND: 1275 qed_aio_write_inplace(acb, offset, len); 1276 break; 1277 1278 case QED_CLUSTER_L2: 1279 case QED_CLUSTER_L1: 1280 case QED_CLUSTER_ZERO: 1281 qed_aio_write_alloc(acb, len); 1282 break; 1283 1284 default: 1285 qed_aio_complete(acb, ret); 1286 break; 1287 } 1288 } 1289 1290 /** 1291 * Read data cluster 1292 * 1293 * @opaque: Read request 1294 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1, 1295 * or -errno 1296 * @offset: Cluster offset in bytes 1297 * @len: Length in bytes 1298 * 1299 * Callback from qed_find_cluster(). 1300 */ 1301 static void qed_aio_read_data(void *opaque, int ret, 1302 uint64_t offset, size_t len) 1303 { 1304 QEDAIOCB *acb = opaque; 1305 BDRVQEDState *s = acb_to_s(acb); 1306 BlockDriverState *bs = acb->common.bs; 1307 1308 /* Adjust offset into cluster */ 1309 offset += qed_offset_into_cluster(s, acb->cur_pos); 1310 1311 trace_qed_aio_read_data(s, acb, ret, offset, len); 1312 1313 if (ret < 0) { 1314 goto err; 1315 } 1316 1317 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len); 1318 1319 /* Handle zero cluster and backing file reads */ 1320 if (ret == QED_CLUSTER_ZERO) { 1321 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size); 1322 qed_aio_next_io(acb, 0); 1323 return; 1324 } else if (ret != QED_CLUSTER_FOUND) { 1325 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov, 1326 &acb->backing_qiov, qed_aio_next_io, acb); 1327 return; 1328 } 1329 1330 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO); 1331 bdrv_aio_readv(bs->file->bs, offset / BDRV_SECTOR_SIZE, 1332 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE, 1333 qed_aio_next_io, acb); 1334 return; 1335 1336 err: 1337 qed_aio_complete(acb, ret); 1338 } 1339 1340 /** 1341 * Begin next I/O or complete the request 1342 */ 1343 static void qed_aio_next_io(void *opaque, int ret) 1344 { 1345 QEDAIOCB *acb = opaque; 1346 BDRVQEDState *s = acb_to_s(acb); 1347 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ? 1348 qed_aio_write_data : qed_aio_read_data; 1349 1350 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size); 1351 1352 if (acb->backing_qiov) { 1353 qemu_iovec_destroy(acb->backing_qiov); 1354 g_free(acb->backing_qiov); 1355 acb->backing_qiov = NULL; 1356 } 1357 1358 /* Handle I/O error */ 1359 if (ret) { 1360 qed_aio_complete(acb, ret); 1361 return; 1362 } 1363 1364 acb->qiov_offset += acb->cur_qiov.size; 1365 acb->cur_pos += acb->cur_qiov.size; 1366 qemu_iovec_reset(&acb->cur_qiov); 1367 1368 /* Complete request */ 1369 if (acb->cur_pos >= acb->end_pos) { 1370 qed_aio_complete(acb, 0); 1371 return; 1372 } 1373 1374 /* Find next cluster and start I/O */ 1375 qed_find_cluster(s, &acb->request, 1376 acb->cur_pos, acb->end_pos - acb->cur_pos, 1377 io_fn, acb); 1378 } 1379 1380 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs, 1381 int64_t sector_num, 1382 QEMUIOVector *qiov, int nb_sectors, 1383 BlockCompletionFunc *cb, 1384 void *opaque, int flags) 1385 { 1386 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque); 1387 1388 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors, 1389 opaque, flags); 1390 1391 acb->flags = flags; 1392 acb->qiov = qiov; 1393 acb->qiov_offset = 0; 1394 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE; 1395 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE; 1396 acb->backing_qiov = NULL; 1397 acb->request.l2_table = NULL; 1398 qemu_iovec_init(&acb->cur_qiov, qiov->niov); 1399 1400 /* Start request */ 1401 qed_aio_next_io(acb, 0); 1402 return &acb->common; 1403 } 1404 1405 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs, 1406 int64_t sector_num, 1407 QEMUIOVector *qiov, int nb_sectors, 1408 BlockCompletionFunc *cb, 1409 void *opaque) 1410 { 1411 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 1412 } 1413 1414 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs, 1415 int64_t sector_num, 1416 QEMUIOVector *qiov, int nb_sectors, 1417 BlockCompletionFunc *cb, 1418 void *opaque) 1419 { 1420 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, 1421 opaque, QED_AIOCB_WRITE); 1422 } 1423 1424 typedef struct { 1425 Coroutine *co; 1426 int ret; 1427 bool done; 1428 } QEDWriteZeroesCB; 1429 1430 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret) 1431 { 1432 QEDWriteZeroesCB *cb = opaque; 1433 1434 cb->done = true; 1435 cb->ret = ret; 1436 if (cb->co) { 1437 qemu_coroutine_enter(cb->co, NULL); 1438 } 1439 } 1440 1441 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs, 1442 int64_t sector_num, 1443 int nb_sectors, 1444 BdrvRequestFlags flags) 1445 { 1446 BlockAIOCB *blockacb; 1447 BDRVQEDState *s = bs->opaque; 1448 QEDWriteZeroesCB cb = { .done = false }; 1449 QEMUIOVector qiov; 1450 struct iovec iov; 1451 1452 /* Refuse if there are untouched backing file sectors */ 1453 if (bs->backing) { 1454 if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) { 1455 return -ENOTSUP; 1456 } 1457 if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) { 1458 return -ENOTSUP; 1459 } 1460 } 1461 1462 /* Zero writes start without an I/O buffer. If a buffer becomes necessary 1463 * then it will be allocated during request processing. 1464 */ 1465 iov.iov_base = NULL, 1466 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1467 1468 qemu_iovec_init_external(&qiov, &iov, 1); 1469 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors, 1470 qed_co_write_zeroes_cb, &cb, 1471 QED_AIOCB_WRITE | QED_AIOCB_ZERO); 1472 if (!blockacb) { 1473 return -EIO; 1474 } 1475 if (!cb.done) { 1476 cb.co = qemu_coroutine_self(); 1477 qemu_coroutine_yield(); 1478 } 1479 assert(cb.done); 1480 return cb.ret; 1481 } 1482 1483 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset) 1484 { 1485 BDRVQEDState *s = bs->opaque; 1486 uint64_t old_image_size; 1487 int ret; 1488 1489 if (!qed_is_image_size_valid(offset, s->header.cluster_size, 1490 s->header.table_size)) { 1491 return -EINVAL; 1492 } 1493 1494 /* Shrinking is currently not supported */ 1495 if ((uint64_t)offset < s->header.image_size) { 1496 return -ENOTSUP; 1497 } 1498 1499 old_image_size = s->header.image_size; 1500 s->header.image_size = offset; 1501 ret = qed_write_header_sync(s); 1502 if (ret < 0) { 1503 s->header.image_size = old_image_size; 1504 } 1505 return ret; 1506 } 1507 1508 static int64_t bdrv_qed_getlength(BlockDriverState *bs) 1509 { 1510 BDRVQEDState *s = bs->opaque; 1511 return s->header.image_size; 1512 } 1513 1514 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 1515 { 1516 BDRVQEDState *s = bs->opaque; 1517 1518 memset(bdi, 0, sizeof(*bdi)); 1519 bdi->cluster_size = s->header.cluster_size; 1520 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK; 1521 bdi->unallocated_blocks_are_zero = true; 1522 bdi->can_write_zeroes_with_unmap = true; 1523 return 0; 1524 } 1525 1526 static int bdrv_qed_change_backing_file(BlockDriverState *bs, 1527 const char *backing_file, 1528 const char *backing_fmt) 1529 { 1530 BDRVQEDState *s = bs->opaque; 1531 QEDHeader new_header, le_header; 1532 void *buffer; 1533 size_t buffer_len, backing_file_len; 1534 int ret; 1535 1536 /* Refuse to set backing filename if unknown compat feature bits are 1537 * active. If the image uses an unknown compat feature then we may not 1538 * know the layout of data following the header structure and cannot safely 1539 * add a new string. 1540 */ 1541 if (backing_file && (s->header.compat_features & 1542 ~QED_COMPAT_FEATURE_MASK)) { 1543 return -ENOTSUP; 1544 } 1545 1546 memcpy(&new_header, &s->header, sizeof(new_header)); 1547 1548 new_header.features &= ~(QED_F_BACKING_FILE | 1549 QED_F_BACKING_FORMAT_NO_PROBE); 1550 1551 /* Adjust feature flags */ 1552 if (backing_file) { 1553 new_header.features |= QED_F_BACKING_FILE; 1554 1555 if (qed_fmt_is_raw(backing_fmt)) { 1556 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE; 1557 } 1558 } 1559 1560 /* Calculate new header size */ 1561 backing_file_len = 0; 1562 1563 if (backing_file) { 1564 backing_file_len = strlen(backing_file); 1565 } 1566 1567 buffer_len = sizeof(new_header); 1568 new_header.backing_filename_offset = buffer_len; 1569 new_header.backing_filename_size = backing_file_len; 1570 buffer_len += backing_file_len; 1571 1572 /* Make sure we can rewrite header without failing */ 1573 if (buffer_len > new_header.header_size * new_header.cluster_size) { 1574 return -ENOSPC; 1575 } 1576 1577 /* Prepare new header */ 1578 buffer = g_malloc(buffer_len); 1579 1580 qed_header_cpu_to_le(&new_header, &le_header); 1581 memcpy(buffer, &le_header, sizeof(le_header)); 1582 buffer_len = sizeof(le_header); 1583 1584 if (backing_file) { 1585 memcpy(buffer + buffer_len, backing_file, backing_file_len); 1586 buffer_len += backing_file_len; 1587 } 1588 1589 /* Write new header */ 1590 ret = bdrv_pwrite_sync(bs->file->bs, 0, buffer, buffer_len); 1591 g_free(buffer); 1592 if (ret == 0) { 1593 memcpy(&s->header, &new_header, sizeof(new_header)); 1594 } 1595 return ret; 1596 } 1597 1598 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp) 1599 { 1600 BDRVQEDState *s = bs->opaque; 1601 Error *local_err = NULL; 1602 int ret; 1603 1604 bdrv_qed_close(bs); 1605 1606 bdrv_invalidate_cache(bs->file->bs, &local_err); 1607 if (local_err) { 1608 error_propagate(errp, local_err); 1609 return; 1610 } 1611 1612 memset(s, 0, sizeof(BDRVQEDState)); 1613 ret = bdrv_qed_open(bs, NULL, bs->open_flags, &local_err); 1614 if (local_err) { 1615 error_propagate(errp, local_err); 1616 error_prepend(errp, "Could not reopen qed layer: "); 1617 return; 1618 } else if (ret < 0) { 1619 error_setg_errno(errp, -ret, "Could not reopen qed layer"); 1620 return; 1621 } 1622 } 1623 1624 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result, 1625 BdrvCheckMode fix) 1626 { 1627 BDRVQEDState *s = bs->opaque; 1628 1629 return qed_check(s, result, !!fix); 1630 } 1631 1632 static QemuOptsList qed_create_opts = { 1633 .name = "qed-create-opts", 1634 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head), 1635 .desc = { 1636 { 1637 .name = BLOCK_OPT_SIZE, 1638 .type = QEMU_OPT_SIZE, 1639 .help = "Virtual disk size" 1640 }, 1641 { 1642 .name = BLOCK_OPT_BACKING_FILE, 1643 .type = QEMU_OPT_STRING, 1644 .help = "File name of a base image" 1645 }, 1646 { 1647 .name = BLOCK_OPT_BACKING_FMT, 1648 .type = QEMU_OPT_STRING, 1649 .help = "Image format of the base image" 1650 }, 1651 { 1652 .name = BLOCK_OPT_CLUSTER_SIZE, 1653 .type = QEMU_OPT_SIZE, 1654 .help = "Cluster size (in bytes)", 1655 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE) 1656 }, 1657 { 1658 .name = BLOCK_OPT_TABLE_SIZE, 1659 .type = QEMU_OPT_SIZE, 1660 .help = "L1/L2 table size (in clusters)" 1661 }, 1662 { /* end of list */ } 1663 } 1664 }; 1665 1666 static BlockDriver bdrv_qed = { 1667 .format_name = "qed", 1668 .instance_size = sizeof(BDRVQEDState), 1669 .create_opts = &qed_create_opts, 1670 .supports_backing = true, 1671 1672 .bdrv_probe = bdrv_qed_probe, 1673 .bdrv_open = bdrv_qed_open, 1674 .bdrv_close = bdrv_qed_close, 1675 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare, 1676 .bdrv_create = bdrv_qed_create, 1677 .bdrv_has_zero_init = bdrv_has_zero_init_1, 1678 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status, 1679 .bdrv_aio_readv = bdrv_qed_aio_readv, 1680 .bdrv_aio_writev = bdrv_qed_aio_writev, 1681 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes, 1682 .bdrv_truncate = bdrv_qed_truncate, 1683 .bdrv_getlength = bdrv_qed_getlength, 1684 .bdrv_get_info = bdrv_qed_get_info, 1685 .bdrv_refresh_limits = bdrv_qed_refresh_limits, 1686 .bdrv_change_backing_file = bdrv_qed_change_backing_file, 1687 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache, 1688 .bdrv_check = bdrv_qed_check, 1689 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context, 1690 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context, 1691 .bdrv_drain = bdrv_qed_drain, 1692 }; 1693 1694 static void bdrv_qed_init(void) 1695 { 1696 bdrv_register(&bdrv_qed); 1697 } 1698 1699 block_init(bdrv_qed_init); 1700