xref: /openbmc/qemu/block/qed.c (revision c5b4ee5b)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "trace.h"
24 #include "qed.h"
25 #include "sysemu/block-backend.h"
26 #include "qapi/qmp/qdict.h"
27 #include "qapi/qobject-input-visitor.h"
28 #include "qapi/qapi-visit-block-core.h"
29 
30 static QemuOptsList qed_create_opts;
31 
32 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
33                           const char *filename)
34 {
35     const QEDHeader *header = (const QEDHeader *)buf;
36 
37     if (buf_size < sizeof(*header)) {
38         return 0;
39     }
40     if (le32_to_cpu(header->magic) != QED_MAGIC) {
41         return 0;
42     }
43     return 100;
44 }
45 
46 /**
47  * Check whether an image format is raw
48  *
49  * @fmt:    Backing file format, may be NULL
50  */
51 static bool qed_fmt_is_raw(const char *fmt)
52 {
53     return fmt && strcmp(fmt, "raw") == 0;
54 }
55 
56 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
57 {
58     cpu->magic = le32_to_cpu(le->magic);
59     cpu->cluster_size = le32_to_cpu(le->cluster_size);
60     cpu->table_size = le32_to_cpu(le->table_size);
61     cpu->header_size = le32_to_cpu(le->header_size);
62     cpu->features = le64_to_cpu(le->features);
63     cpu->compat_features = le64_to_cpu(le->compat_features);
64     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
65     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
66     cpu->image_size = le64_to_cpu(le->image_size);
67     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
68     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
69 }
70 
71 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
72 {
73     le->magic = cpu_to_le32(cpu->magic);
74     le->cluster_size = cpu_to_le32(cpu->cluster_size);
75     le->table_size = cpu_to_le32(cpu->table_size);
76     le->header_size = cpu_to_le32(cpu->header_size);
77     le->features = cpu_to_le64(cpu->features);
78     le->compat_features = cpu_to_le64(cpu->compat_features);
79     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
80     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
81     le->image_size = cpu_to_le64(cpu->image_size);
82     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
83     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
84 }
85 
86 int qed_write_header_sync(BDRVQEDState *s)
87 {
88     QEDHeader le;
89     int ret;
90 
91     qed_header_cpu_to_le(&s->header, &le);
92     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
93     if (ret != sizeof(le)) {
94         return ret;
95     }
96     return 0;
97 }
98 
99 /**
100  * Update header in-place (does not rewrite backing filename or other strings)
101  *
102  * This function only updates known header fields in-place and does not affect
103  * extra data after the QED header.
104  *
105  * No new allocating reqs can start while this function runs.
106  */
107 static int coroutine_fn qed_write_header(BDRVQEDState *s)
108 {
109     /* We must write full sectors for O_DIRECT but cannot necessarily generate
110      * the data following the header if an unrecognized compat feature is
111      * active.  Therefore, first read the sectors containing the header, update
112      * them, and write back.
113      */
114 
115     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
116     size_t len = nsectors * BDRV_SECTOR_SIZE;
117     uint8_t *buf;
118     int ret;
119 
120     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
121 
122     buf = qemu_blockalign(s->bs, len);
123 
124     ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
125     if (ret < 0) {
126         goto out;
127     }
128 
129     /* Update header */
130     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
131 
132     ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
133     if (ret < 0) {
134         goto out;
135     }
136 
137     ret = 0;
138 out:
139     qemu_vfree(buf);
140     return ret;
141 }
142 
143 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
144 {
145     uint64_t table_entries;
146     uint64_t l2_size;
147 
148     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
149     l2_size = table_entries * cluster_size;
150 
151     return l2_size * table_entries;
152 }
153 
154 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
155 {
156     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
157         cluster_size > QED_MAX_CLUSTER_SIZE) {
158         return false;
159     }
160     if (cluster_size & (cluster_size - 1)) {
161         return false; /* not power of 2 */
162     }
163     return true;
164 }
165 
166 static bool qed_is_table_size_valid(uint32_t table_size)
167 {
168     if (table_size < QED_MIN_TABLE_SIZE ||
169         table_size > QED_MAX_TABLE_SIZE) {
170         return false;
171     }
172     if (table_size & (table_size - 1)) {
173         return false; /* not power of 2 */
174     }
175     return true;
176 }
177 
178 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
179                                     uint32_t table_size)
180 {
181     if (image_size % BDRV_SECTOR_SIZE != 0) {
182         return false; /* not multiple of sector size */
183     }
184     if (image_size > qed_max_image_size(cluster_size, table_size)) {
185         return false; /* image is too large */
186     }
187     return true;
188 }
189 
190 /**
191  * Read a string of known length from the image file
192  *
193  * @file:       Image file
194  * @offset:     File offset to start of string, in bytes
195  * @n:          String length in bytes
196  * @buf:        Destination buffer
197  * @buflen:     Destination buffer length in bytes
198  * @ret:        0 on success, -errno on failure
199  *
200  * The string is NUL-terminated.
201  */
202 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
203                            char *buf, size_t buflen)
204 {
205     int ret;
206     if (n >= buflen) {
207         return -EINVAL;
208     }
209     ret = bdrv_pread(file, offset, buf, n);
210     if (ret < 0) {
211         return ret;
212     }
213     buf[n] = '\0';
214     return 0;
215 }
216 
217 /**
218  * Allocate new clusters
219  *
220  * @s:          QED state
221  * @n:          Number of contiguous clusters to allocate
222  * @ret:        Offset of first allocated cluster
223  *
224  * This function only produces the offset where the new clusters should be
225  * written.  It updates BDRVQEDState but does not make any changes to the image
226  * file.
227  *
228  * Called with table_lock held.
229  */
230 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
231 {
232     uint64_t offset = s->file_size;
233     s->file_size += n * s->header.cluster_size;
234     return offset;
235 }
236 
237 QEDTable *qed_alloc_table(BDRVQEDState *s)
238 {
239     /* Honor O_DIRECT memory alignment requirements */
240     return qemu_blockalign(s->bs,
241                            s->header.cluster_size * s->header.table_size);
242 }
243 
244 /**
245  * Allocate a new zeroed L2 table
246  *
247  * Called with table_lock held.
248  */
249 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
250 {
251     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
252 
253     l2_table->table = qed_alloc_table(s);
254     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
255 
256     memset(l2_table->table->offsets, 0,
257            s->header.cluster_size * s->header.table_size);
258     return l2_table;
259 }
260 
261 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
262 {
263     qemu_co_mutex_lock(&s->table_lock);
264 
265     /* No reentrancy is allowed.  */
266     assert(!s->allocating_write_reqs_plugged);
267     if (s->allocating_acb != NULL) {
268         /* Another allocating write came concurrently.  This cannot happen
269          * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
270          */
271         qemu_co_mutex_unlock(&s->table_lock);
272         return false;
273     }
274 
275     s->allocating_write_reqs_plugged = true;
276     qemu_co_mutex_unlock(&s->table_lock);
277     return true;
278 }
279 
280 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
281 {
282     qemu_co_mutex_lock(&s->table_lock);
283     assert(s->allocating_write_reqs_plugged);
284     s->allocating_write_reqs_plugged = false;
285     qemu_co_queue_next(&s->allocating_write_reqs);
286     qemu_co_mutex_unlock(&s->table_lock);
287 }
288 
289 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
290 {
291     BDRVQEDState *s = opaque;
292     int ret;
293 
294     trace_qed_need_check_timer_cb(s);
295 
296     if (!qed_plug_allocating_write_reqs(s)) {
297         return;
298     }
299 
300     /* Ensure writes are on disk before clearing flag */
301     ret = bdrv_co_flush(s->bs->file->bs);
302     if (ret < 0) {
303         qed_unplug_allocating_write_reqs(s);
304         return;
305     }
306 
307     s->header.features &= ~QED_F_NEED_CHECK;
308     ret = qed_write_header(s);
309     (void) ret;
310 
311     qed_unplug_allocating_write_reqs(s);
312 
313     ret = bdrv_co_flush(s->bs);
314     (void) ret;
315 }
316 
317 static void qed_need_check_timer_cb(void *opaque)
318 {
319     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
320     qemu_coroutine_enter(co);
321 }
322 
323 static void qed_start_need_check_timer(BDRVQEDState *s)
324 {
325     trace_qed_start_need_check_timer(s);
326 
327     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
328      * migration.
329      */
330     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
331                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
332 }
333 
334 /* It's okay to call this multiple times or when no timer is started */
335 static void qed_cancel_need_check_timer(BDRVQEDState *s)
336 {
337     trace_qed_cancel_need_check_timer(s);
338     timer_del(s->need_check_timer);
339 }
340 
341 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
342 {
343     BDRVQEDState *s = bs->opaque;
344 
345     qed_cancel_need_check_timer(s);
346     timer_free(s->need_check_timer);
347 }
348 
349 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
350                                         AioContext *new_context)
351 {
352     BDRVQEDState *s = bs->opaque;
353 
354     s->need_check_timer = aio_timer_new(new_context,
355                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
356                                         qed_need_check_timer_cb, s);
357     if (s->header.features & QED_F_NEED_CHECK) {
358         qed_start_need_check_timer(s);
359     }
360 }
361 
362 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
363 {
364     BDRVQEDState *s = bs->opaque;
365 
366     /* Fire the timer immediately in order to start doing I/O as soon as the
367      * header is flushed.
368      */
369     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
370         qed_cancel_need_check_timer(s);
371         qed_need_check_timer_entry(s);
372     }
373 }
374 
375 static void bdrv_qed_init_state(BlockDriverState *bs)
376 {
377     BDRVQEDState *s = bs->opaque;
378 
379     memset(s, 0, sizeof(BDRVQEDState));
380     s->bs = bs;
381     qemu_co_mutex_init(&s->table_lock);
382     qemu_co_queue_init(&s->allocating_write_reqs);
383 }
384 
385 /* Called with table_lock held.  */
386 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
387                                          int flags, Error **errp)
388 {
389     BDRVQEDState *s = bs->opaque;
390     QEDHeader le_header;
391     int64_t file_size;
392     int ret;
393 
394     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
395     if (ret < 0) {
396         error_setg(errp, "Failed to read QED header");
397         return ret;
398     }
399     qed_header_le_to_cpu(&le_header, &s->header);
400 
401     if (s->header.magic != QED_MAGIC) {
402         error_setg(errp, "Image not in QED format");
403         return -EINVAL;
404     }
405     if (s->header.features & ~QED_FEATURE_MASK) {
406         /* image uses unsupported feature bits */
407         error_setg(errp, "Unsupported QED features: %" PRIx64,
408                    s->header.features & ~QED_FEATURE_MASK);
409         return -ENOTSUP;
410     }
411     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
412         error_setg(errp, "QED cluster size is invalid");
413         return -EINVAL;
414     }
415 
416     /* Round down file size to the last cluster */
417     file_size = bdrv_getlength(bs->file->bs);
418     if (file_size < 0) {
419         error_setg(errp, "Failed to get file length");
420         return file_size;
421     }
422     s->file_size = qed_start_of_cluster(s, file_size);
423 
424     if (!qed_is_table_size_valid(s->header.table_size)) {
425         error_setg(errp, "QED table size is invalid");
426         return -EINVAL;
427     }
428     if (!qed_is_image_size_valid(s->header.image_size,
429                                  s->header.cluster_size,
430                                  s->header.table_size)) {
431         error_setg(errp, "QED image size is invalid");
432         return -EINVAL;
433     }
434     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
435         error_setg(errp, "QED table offset is invalid");
436         return -EINVAL;
437     }
438 
439     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
440                       sizeof(uint64_t);
441     s->l2_shift = ctz32(s->header.cluster_size);
442     s->l2_mask = s->table_nelems - 1;
443     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
444 
445     /* Header size calculation must not overflow uint32_t */
446     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
447         error_setg(errp, "QED header size is too large");
448         return -EINVAL;
449     }
450 
451     if ((s->header.features & QED_F_BACKING_FILE)) {
452         if ((uint64_t)s->header.backing_filename_offset +
453             s->header.backing_filename_size >
454             s->header.cluster_size * s->header.header_size) {
455             error_setg(errp, "QED backing filename offset is invalid");
456             return -EINVAL;
457         }
458 
459         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
460                               s->header.backing_filename_size,
461                               bs->auto_backing_file,
462                               sizeof(bs->auto_backing_file));
463         if (ret < 0) {
464             error_setg(errp, "Failed to read backing filename");
465             return ret;
466         }
467         pstrcpy(bs->backing_file, sizeof(bs->backing_file),
468                 bs->auto_backing_file);
469 
470         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
471             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
472         }
473     }
474 
475     /* Reset unknown autoclear feature bits.  This is a backwards
476      * compatibility mechanism that allows images to be opened by older
477      * programs, which "knock out" unknown feature bits.  When an image is
478      * opened by a newer program again it can detect that the autoclear
479      * feature is no longer valid.
480      */
481     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
482         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
483         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
484 
485         ret = qed_write_header_sync(s);
486         if (ret) {
487             error_setg(errp, "Failed to update header");
488             return ret;
489         }
490 
491         /* From here on only known autoclear feature bits are valid */
492         bdrv_flush(bs->file->bs);
493     }
494 
495     s->l1_table = qed_alloc_table(s);
496     qed_init_l2_cache(&s->l2_cache);
497 
498     ret = qed_read_l1_table_sync(s);
499     if (ret) {
500         error_setg(errp, "Failed to read L1 table");
501         goto out;
502     }
503 
504     /* If image was not closed cleanly, check consistency */
505     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
506         /* Read-only images cannot be fixed.  There is no risk of corruption
507          * since write operations are not possible.  Therefore, allow
508          * potentially inconsistent images to be opened read-only.  This can
509          * aid data recovery from an otherwise inconsistent image.
510          */
511         if (!bdrv_is_read_only(bs->file->bs) &&
512             !(flags & BDRV_O_INACTIVE)) {
513             BdrvCheckResult result = {0};
514 
515             ret = qed_check(s, &result, true);
516             if (ret) {
517                 error_setg(errp, "Image corrupted");
518                 goto out;
519             }
520         }
521     }
522 
523     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
524 
525 out:
526     if (ret) {
527         qed_free_l2_cache(&s->l2_cache);
528         qemu_vfree(s->l1_table);
529     }
530     return ret;
531 }
532 
533 typedef struct QEDOpenCo {
534     BlockDriverState *bs;
535     QDict *options;
536     int flags;
537     Error **errp;
538     int ret;
539 } QEDOpenCo;
540 
541 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
542 {
543     QEDOpenCo *qoc = opaque;
544     BDRVQEDState *s = qoc->bs->opaque;
545 
546     qemu_co_mutex_lock(&s->table_lock);
547     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
548     qemu_co_mutex_unlock(&s->table_lock);
549 }
550 
551 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
552                          Error **errp)
553 {
554     QEDOpenCo qoc = {
555         .bs = bs,
556         .options = options,
557         .flags = flags,
558         .errp = errp,
559         .ret = -EINPROGRESS
560     };
561 
562     bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds,
563                                BDRV_CHILD_IMAGE, false, errp);
564     if (!bs->file) {
565         return -EINVAL;
566     }
567 
568     bdrv_qed_init_state(bs);
569     if (qemu_in_coroutine()) {
570         bdrv_qed_open_entry(&qoc);
571     } else {
572         assert(qemu_get_current_aio_context() == qemu_get_aio_context());
573         qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
574         BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
575     }
576     BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
577     return qoc.ret;
578 }
579 
580 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
581 {
582     BDRVQEDState *s = bs->opaque;
583 
584     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
585     bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
586 }
587 
588 /* We have nothing to do for QED reopen, stubs just return
589  * success */
590 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
591                                    BlockReopenQueue *queue, Error **errp)
592 {
593     return 0;
594 }
595 
596 static void bdrv_qed_close(BlockDriverState *bs)
597 {
598     BDRVQEDState *s = bs->opaque;
599 
600     bdrv_qed_detach_aio_context(bs);
601 
602     /* Ensure writes reach stable storage */
603     bdrv_flush(bs->file->bs);
604 
605     /* Clean shutdown, no check required on next open */
606     if (s->header.features & QED_F_NEED_CHECK) {
607         s->header.features &= ~QED_F_NEED_CHECK;
608         qed_write_header_sync(s);
609     }
610 
611     qed_free_l2_cache(&s->l2_cache);
612     qemu_vfree(s->l1_table);
613 }
614 
615 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
616                                            Error **errp)
617 {
618     BlockdevCreateOptionsQed *qed_opts;
619     BlockBackend *blk = NULL;
620     BlockDriverState *bs = NULL;
621 
622     QEDHeader header;
623     QEDHeader le_header;
624     uint8_t *l1_table = NULL;
625     size_t l1_size;
626     int ret = 0;
627 
628     assert(opts->driver == BLOCKDEV_DRIVER_QED);
629     qed_opts = &opts->u.qed;
630 
631     /* Validate options and set default values */
632     if (!qed_opts->has_cluster_size) {
633         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
634     }
635     if (!qed_opts->has_table_size) {
636         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
637     }
638 
639     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
640         error_setg(errp, "QED cluster size must be within range [%u, %u] "
641                          "and power of 2",
642                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
643         return -EINVAL;
644     }
645     if (!qed_is_table_size_valid(qed_opts->table_size)) {
646         error_setg(errp, "QED table size must be within range [%u, %u] "
647                          "and power of 2",
648                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
649         return -EINVAL;
650     }
651     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
652                                  qed_opts->table_size))
653     {
654         error_setg(errp, "QED image size must be a non-zero multiple of "
655                          "cluster size and less than %" PRIu64 " bytes",
656                    qed_max_image_size(qed_opts->cluster_size,
657                                       qed_opts->table_size));
658         return -EINVAL;
659     }
660 
661     /* Create BlockBackend to write to the image */
662     bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
663     if (bs == NULL) {
664         return -EIO;
665     }
666 
667     blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
668                           errp);
669     if (!blk) {
670         ret = -EPERM;
671         goto out;
672     }
673     blk_set_allow_write_beyond_eof(blk, true);
674 
675     /* Prepare image format */
676     header = (QEDHeader) {
677         .magic = QED_MAGIC,
678         .cluster_size = qed_opts->cluster_size,
679         .table_size = qed_opts->table_size,
680         .header_size = 1,
681         .features = 0,
682         .compat_features = 0,
683         .l1_table_offset = qed_opts->cluster_size,
684         .image_size = qed_opts->size,
685     };
686 
687     l1_size = header.cluster_size * header.table_size;
688 
689     /*
690      * The QED format associates file length with allocation status,
691      * so a new file (which is empty) must have a length of 0.
692      */
693     ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
694     if (ret < 0) {
695         goto out;
696     }
697 
698     if (qed_opts->has_backing_file) {
699         header.features |= QED_F_BACKING_FILE;
700         header.backing_filename_offset = sizeof(le_header);
701         header.backing_filename_size = strlen(qed_opts->backing_file);
702 
703         if (qed_opts->has_backing_fmt) {
704             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
705             if (qed_fmt_is_raw(backing_fmt)) {
706                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
707             }
708         }
709     }
710 
711     qed_header_cpu_to_le(&header, &le_header);
712     ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
713     if (ret < 0) {
714         goto out;
715     }
716     ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
717                      header.backing_filename_size, 0);
718     if (ret < 0) {
719         goto out;
720     }
721 
722     l1_table = g_malloc0(l1_size);
723     ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
724     if (ret < 0) {
725         goto out;
726     }
727 
728     ret = 0; /* success */
729 out:
730     g_free(l1_table);
731     blk_unref(blk);
732     bdrv_unref(bs);
733     return ret;
734 }
735 
736 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
737                                                 const char *filename,
738                                                 QemuOpts *opts,
739                                                 Error **errp)
740 {
741     BlockdevCreateOptions *create_options = NULL;
742     QDict *qdict;
743     Visitor *v;
744     BlockDriverState *bs = NULL;
745     int ret;
746 
747     static const QDictRenames opt_renames[] = {
748         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
749         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
750         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
751         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
752         { NULL, NULL },
753     };
754 
755     /* Parse options and convert legacy syntax */
756     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
757 
758     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
759         ret = -EINVAL;
760         goto fail;
761     }
762 
763     /* Create and open the file (protocol layer) */
764     ret = bdrv_create_file(filename, opts, errp);
765     if (ret < 0) {
766         goto fail;
767     }
768 
769     bs = bdrv_open(filename, NULL, NULL,
770                    BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
771     if (bs == NULL) {
772         ret = -EIO;
773         goto fail;
774     }
775 
776     /* Now get the QAPI type BlockdevCreateOptions */
777     qdict_put_str(qdict, "driver", "qed");
778     qdict_put_str(qdict, "file", bs->node_name);
779 
780     v = qobject_input_visitor_new_flat_confused(qdict, errp);
781     if (!v) {
782         ret = -EINVAL;
783         goto fail;
784     }
785 
786     visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
787     visit_free(v);
788     if (!create_options) {
789         ret = -EINVAL;
790         goto fail;
791     }
792 
793     /* Silently round up size */
794     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
795     create_options->u.qed.size =
796         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
797 
798     /* Create the qed image (format layer) */
799     ret = bdrv_qed_co_create(create_options, errp);
800 
801 fail:
802     qobject_unref(qdict);
803     bdrv_unref(bs);
804     qapi_free_BlockdevCreateOptions(create_options);
805     return ret;
806 }
807 
808 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
809                                                  bool want_zero,
810                                                  int64_t pos, int64_t bytes,
811                                                  int64_t *pnum, int64_t *map,
812                                                  BlockDriverState **file)
813 {
814     BDRVQEDState *s = bs->opaque;
815     size_t len = MIN(bytes, SIZE_MAX);
816     int status;
817     QEDRequest request = { .l2_table = NULL };
818     uint64_t offset;
819     int ret;
820 
821     qemu_co_mutex_lock(&s->table_lock);
822     ret = qed_find_cluster(s, &request, pos, &len, &offset);
823 
824     *pnum = len;
825     switch (ret) {
826     case QED_CLUSTER_FOUND:
827         *map = offset | qed_offset_into_cluster(s, pos);
828         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
829         *file = bs->file->bs;
830         break;
831     case QED_CLUSTER_ZERO:
832         status = BDRV_BLOCK_ZERO;
833         break;
834     case QED_CLUSTER_L2:
835     case QED_CLUSTER_L1:
836         status = 0;
837         break;
838     default:
839         assert(ret < 0);
840         status = ret;
841         break;
842     }
843 
844     qed_unref_l2_cache_entry(request.l2_table);
845     qemu_co_mutex_unlock(&s->table_lock);
846 
847     return status;
848 }
849 
850 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
851 {
852     return acb->bs->opaque;
853 }
854 
855 /**
856  * Read from the backing file or zero-fill if no backing file
857  *
858  * @s:              QED state
859  * @pos:            Byte position in device
860  * @qiov:           Destination I/O vector
861  *
862  * This function reads qiov->size bytes starting at pos from the backing file.
863  * If there is no backing file then zeroes are read.
864  */
865 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
866                                               QEMUIOVector *qiov)
867 {
868     if (s->bs->backing) {
869         BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
870         return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
871     }
872     qemu_iovec_memset(qiov, 0, 0, qiov->size);
873     return 0;
874 }
875 
876 /**
877  * Copy data from backing file into the image
878  *
879  * @s:          QED state
880  * @pos:        Byte position in device
881  * @len:        Number of bytes
882  * @offset:     Byte offset in image file
883  */
884 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
885                                                    uint64_t pos, uint64_t len,
886                                                    uint64_t offset)
887 {
888     QEMUIOVector qiov;
889     int ret;
890 
891     /* Skip copy entirely if there is no work to do */
892     if (len == 0) {
893         return 0;
894     }
895 
896     qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
897 
898     ret = qed_read_backing_file(s, pos, &qiov);
899 
900     if (ret) {
901         goto out;
902     }
903 
904     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
905     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
906     if (ret < 0) {
907         goto out;
908     }
909     ret = 0;
910 out:
911     qemu_vfree(qemu_iovec_buf(&qiov));
912     return ret;
913 }
914 
915 /**
916  * Link one or more contiguous clusters into a table
917  *
918  * @s:              QED state
919  * @table:          L2 table
920  * @index:          First cluster index
921  * @n:              Number of contiguous clusters
922  * @cluster:        First cluster offset
923  *
924  * The cluster offset may be an allocated byte offset in the image file, the
925  * zero cluster marker, or the unallocated cluster marker.
926  *
927  * Called with table_lock held.
928  */
929 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
930                                              int index, unsigned int n,
931                                              uint64_t cluster)
932 {
933     int i;
934     for (i = index; i < index + n; i++) {
935         table->offsets[i] = cluster;
936         if (!qed_offset_is_unalloc_cluster(cluster) &&
937             !qed_offset_is_zero_cluster(cluster)) {
938             cluster += s->header.cluster_size;
939         }
940     }
941 }
942 
943 /* Called with table_lock held.  */
944 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
945 {
946     BDRVQEDState *s = acb_to_s(acb);
947 
948     /* Free resources */
949     qemu_iovec_destroy(&acb->cur_qiov);
950     qed_unref_l2_cache_entry(acb->request.l2_table);
951 
952     /* Free the buffer we may have allocated for zero writes */
953     if (acb->flags & QED_AIOCB_ZERO) {
954         qemu_vfree(acb->qiov->iov[0].iov_base);
955         acb->qiov->iov[0].iov_base = NULL;
956     }
957 
958     /* Start next allocating write request waiting behind this one.  Note that
959      * requests enqueue themselves when they first hit an unallocated cluster
960      * but they wait until the entire request is finished before waking up the
961      * next request in the queue.  This ensures that we don't cycle through
962      * requests multiple times but rather finish one at a time completely.
963      */
964     if (acb == s->allocating_acb) {
965         s->allocating_acb = NULL;
966         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
967             qemu_co_queue_next(&s->allocating_write_reqs);
968         } else if (s->header.features & QED_F_NEED_CHECK) {
969             qed_start_need_check_timer(s);
970         }
971     }
972 }
973 
974 /**
975  * Update L1 table with new L2 table offset and write it out
976  *
977  * Called with table_lock held.
978  */
979 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
980 {
981     BDRVQEDState *s = acb_to_s(acb);
982     CachedL2Table *l2_table = acb->request.l2_table;
983     uint64_t l2_offset = l2_table->offset;
984     int index, ret;
985 
986     index = qed_l1_index(s, acb->cur_pos);
987     s->l1_table->offsets[index] = l2_table->offset;
988 
989     ret = qed_write_l1_table(s, index, 1);
990 
991     /* Commit the current L2 table to the cache */
992     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
993 
994     /* This is guaranteed to succeed because we just committed the entry to the
995      * cache.
996      */
997     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
998     assert(acb->request.l2_table != NULL);
999 
1000     return ret;
1001 }
1002 
1003 
1004 /**
1005  * Update L2 table with new cluster offsets and write them out
1006  *
1007  * Called with table_lock held.
1008  */
1009 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1010 {
1011     BDRVQEDState *s = acb_to_s(acb);
1012     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1013     int index, ret;
1014 
1015     if (need_alloc) {
1016         qed_unref_l2_cache_entry(acb->request.l2_table);
1017         acb->request.l2_table = qed_new_l2_table(s);
1018     }
1019 
1020     index = qed_l2_index(s, acb->cur_pos);
1021     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1022                          offset);
1023 
1024     if (need_alloc) {
1025         /* Write out the whole new L2 table */
1026         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1027         if (ret) {
1028             return ret;
1029         }
1030         return qed_aio_write_l1_update(acb);
1031     } else {
1032         /* Write out only the updated part of the L2 table */
1033         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1034                                  false);
1035         if (ret) {
1036             return ret;
1037         }
1038     }
1039     return 0;
1040 }
1041 
1042 /**
1043  * Write data to the image file
1044  *
1045  * Called with table_lock *not* held.
1046  */
1047 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1048 {
1049     BDRVQEDState *s = acb_to_s(acb);
1050     uint64_t offset = acb->cur_cluster +
1051                       qed_offset_into_cluster(s, acb->cur_pos);
1052 
1053     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1054 
1055     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1056     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1057                            &acb->cur_qiov, 0);
1058 }
1059 
1060 /**
1061  * Populate untouched regions of new data cluster
1062  *
1063  * Called with table_lock held.
1064  */
1065 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1066 {
1067     BDRVQEDState *s = acb_to_s(acb);
1068     uint64_t start, len, offset;
1069     int ret;
1070 
1071     qemu_co_mutex_unlock(&s->table_lock);
1072 
1073     /* Populate front untouched region of new data cluster */
1074     start = qed_start_of_cluster(s, acb->cur_pos);
1075     len = qed_offset_into_cluster(s, acb->cur_pos);
1076 
1077     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1078     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1079     if (ret < 0) {
1080         goto out;
1081     }
1082 
1083     /* Populate back untouched region of new data cluster */
1084     start = acb->cur_pos + acb->cur_qiov.size;
1085     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1086     offset = acb->cur_cluster +
1087              qed_offset_into_cluster(s, acb->cur_pos) +
1088              acb->cur_qiov.size;
1089 
1090     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1091     ret = qed_copy_from_backing_file(s, start, len, offset);
1092     if (ret < 0) {
1093         goto out;
1094     }
1095 
1096     ret = qed_aio_write_main(acb);
1097     if (ret < 0) {
1098         goto out;
1099     }
1100 
1101     if (s->bs->backing) {
1102         /*
1103          * Flush new data clusters before updating the L2 table
1104          *
1105          * This flush is necessary when a backing file is in use.  A crash
1106          * during an allocating write could result in empty clusters in the
1107          * image.  If the write only touched a subregion of the cluster,
1108          * then backing image sectors have been lost in the untouched
1109          * region.  The solution is to flush after writing a new data
1110          * cluster and before updating the L2 table.
1111          */
1112         ret = bdrv_co_flush(s->bs->file->bs);
1113     }
1114 
1115 out:
1116     qemu_co_mutex_lock(&s->table_lock);
1117     return ret;
1118 }
1119 
1120 /**
1121  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1122  */
1123 static bool qed_should_set_need_check(BDRVQEDState *s)
1124 {
1125     /* The flush before L2 update path ensures consistency */
1126     if (s->bs->backing) {
1127         return false;
1128     }
1129 
1130     return !(s->header.features & QED_F_NEED_CHECK);
1131 }
1132 
1133 /**
1134  * Write new data cluster
1135  *
1136  * @acb:        Write request
1137  * @len:        Length in bytes
1138  *
1139  * This path is taken when writing to previously unallocated clusters.
1140  *
1141  * Called with table_lock held.
1142  */
1143 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1144 {
1145     BDRVQEDState *s = acb_to_s(acb);
1146     int ret;
1147 
1148     /* Cancel timer when the first allocating request comes in */
1149     if (s->allocating_acb == NULL) {
1150         qed_cancel_need_check_timer(s);
1151     }
1152 
1153     /* Freeze this request if another allocating write is in progress */
1154     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1155         if (s->allocating_acb != NULL) {
1156             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1157             assert(s->allocating_acb == NULL);
1158         }
1159         s->allocating_acb = acb;
1160         return -EAGAIN; /* start over with looking up table entries */
1161     }
1162 
1163     acb->cur_nclusters = qed_bytes_to_clusters(s,
1164             qed_offset_into_cluster(s, acb->cur_pos) + len);
1165     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1166 
1167     if (acb->flags & QED_AIOCB_ZERO) {
1168         /* Skip ahead if the clusters are already zero */
1169         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1170             return 0;
1171         }
1172         acb->cur_cluster = 1;
1173     } else {
1174         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1175     }
1176 
1177     if (qed_should_set_need_check(s)) {
1178         s->header.features |= QED_F_NEED_CHECK;
1179         ret = qed_write_header(s);
1180         if (ret < 0) {
1181             return ret;
1182         }
1183     }
1184 
1185     if (!(acb->flags & QED_AIOCB_ZERO)) {
1186         ret = qed_aio_write_cow(acb);
1187         if (ret < 0) {
1188             return ret;
1189         }
1190     }
1191 
1192     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1193 }
1194 
1195 /**
1196  * Write data cluster in place
1197  *
1198  * @acb:        Write request
1199  * @offset:     Cluster offset in bytes
1200  * @len:        Length in bytes
1201  *
1202  * This path is taken when writing to already allocated clusters.
1203  *
1204  * Called with table_lock held.
1205  */
1206 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1207                                               size_t len)
1208 {
1209     BDRVQEDState *s = acb_to_s(acb);
1210     int r;
1211 
1212     qemu_co_mutex_unlock(&s->table_lock);
1213 
1214     /* Allocate buffer for zero writes */
1215     if (acb->flags & QED_AIOCB_ZERO) {
1216         struct iovec *iov = acb->qiov->iov;
1217 
1218         if (!iov->iov_base) {
1219             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1220             if (iov->iov_base == NULL) {
1221                 r = -ENOMEM;
1222                 goto out;
1223             }
1224             memset(iov->iov_base, 0, iov->iov_len);
1225         }
1226     }
1227 
1228     /* Calculate the I/O vector */
1229     acb->cur_cluster = offset;
1230     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1231 
1232     /* Do the actual write.  */
1233     r = qed_aio_write_main(acb);
1234 out:
1235     qemu_co_mutex_lock(&s->table_lock);
1236     return r;
1237 }
1238 
1239 /**
1240  * Write data cluster
1241  *
1242  * @opaque:     Write request
1243  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1244  * @offset:     Cluster offset in bytes
1245  * @len:        Length in bytes
1246  *
1247  * Called with table_lock held.
1248  */
1249 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1250                                            uint64_t offset, size_t len)
1251 {
1252     QEDAIOCB *acb = opaque;
1253 
1254     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1255 
1256     acb->find_cluster_ret = ret;
1257 
1258     switch (ret) {
1259     case QED_CLUSTER_FOUND:
1260         return qed_aio_write_inplace(acb, offset, len);
1261 
1262     case QED_CLUSTER_L2:
1263     case QED_CLUSTER_L1:
1264     case QED_CLUSTER_ZERO:
1265         return qed_aio_write_alloc(acb, len);
1266 
1267     default:
1268         g_assert_not_reached();
1269     }
1270 }
1271 
1272 /**
1273  * Read data cluster
1274  *
1275  * @opaque:     Read request
1276  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1277  * @offset:     Cluster offset in bytes
1278  * @len:        Length in bytes
1279  *
1280  * Called with table_lock held.
1281  */
1282 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1283                                           uint64_t offset, size_t len)
1284 {
1285     QEDAIOCB *acb = opaque;
1286     BDRVQEDState *s = acb_to_s(acb);
1287     BlockDriverState *bs = acb->bs;
1288     int r;
1289 
1290     qemu_co_mutex_unlock(&s->table_lock);
1291 
1292     /* Adjust offset into cluster */
1293     offset += qed_offset_into_cluster(s, acb->cur_pos);
1294 
1295     trace_qed_aio_read_data(s, acb, ret, offset, len);
1296 
1297     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1298 
1299     /* Handle zero cluster and backing file reads, otherwise read
1300      * data cluster directly.
1301      */
1302     if (ret == QED_CLUSTER_ZERO) {
1303         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1304         r = 0;
1305     } else if (ret != QED_CLUSTER_FOUND) {
1306         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1307     } else {
1308         BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1309         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1310                            &acb->cur_qiov, 0);
1311     }
1312 
1313     qemu_co_mutex_lock(&s->table_lock);
1314     return r;
1315 }
1316 
1317 /**
1318  * Begin next I/O or complete the request
1319  */
1320 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1321 {
1322     BDRVQEDState *s = acb_to_s(acb);
1323     uint64_t offset;
1324     size_t len;
1325     int ret;
1326 
1327     qemu_co_mutex_lock(&s->table_lock);
1328     while (1) {
1329         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1330 
1331         acb->qiov_offset += acb->cur_qiov.size;
1332         acb->cur_pos += acb->cur_qiov.size;
1333         qemu_iovec_reset(&acb->cur_qiov);
1334 
1335         /* Complete request */
1336         if (acb->cur_pos >= acb->end_pos) {
1337             ret = 0;
1338             break;
1339         }
1340 
1341         /* Find next cluster and start I/O */
1342         len = acb->end_pos - acb->cur_pos;
1343         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1344         if (ret < 0) {
1345             break;
1346         }
1347 
1348         if (acb->flags & QED_AIOCB_WRITE) {
1349             ret = qed_aio_write_data(acb, ret, offset, len);
1350         } else {
1351             ret = qed_aio_read_data(acb, ret, offset, len);
1352         }
1353 
1354         if (ret < 0 && ret != -EAGAIN) {
1355             break;
1356         }
1357     }
1358 
1359     trace_qed_aio_complete(s, acb, ret);
1360     qed_aio_complete(acb);
1361     qemu_co_mutex_unlock(&s->table_lock);
1362     return ret;
1363 }
1364 
1365 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1366                                        QEMUIOVector *qiov, int nb_sectors,
1367                                        int flags)
1368 {
1369     QEDAIOCB acb = {
1370         .bs         = bs,
1371         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1372         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1373         .qiov       = qiov,
1374         .flags      = flags,
1375     };
1376     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1377 
1378     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1379 
1380     /* Start request */
1381     return qed_aio_next_io(&acb);
1382 }
1383 
1384 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1385                                           int64_t sector_num, int nb_sectors,
1386                                           QEMUIOVector *qiov)
1387 {
1388     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1389 }
1390 
1391 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1392                                            int64_t sector_num, int nb_sectors,
1393                                            QEMUIOVector *qiov, int flags)
1394 {
1395     assert(!flags);
1396     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1397 }
1398 
1399 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1400                                                   int64_t offset,
1401                                                   int64_t bytes,
1402                                                   BdrvRequestFlags flags)
1403 {
1404     BDRVQEDState *s = bs->opaque;
1405 
1406     /*
1407      * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1408      * then it will be allocated during request processing.
1409      */
1410     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1411 
1412     /*
1413      * QED is not prepared for 63bit write-zero requests, so rely on
1414      * max_pwrite_zeroes.
1415      */
1416     assert(bytes <= INT_MAX);
1417 
1418     /* Fall back if the request is not aligned */
1419     if (qed_offset_into_cluster(s, offset) ||
1420         qed_offset_into_cluster(s, bytes)) {
1421         return -ENOTSUP;
1422     }
1423 
1424     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1425                           bytes >> BDRV_SECTOR_BITS,
1426                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1427 }
1428 
1429 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1430                                              int64_t offset,
1431                                              bool exact,
1432                                              PreallocMode prealloc,
1433                                              BdrvRequestFlags flags,
1434                                              Error **errp)
1435 {
1436     BDRVQEDState *s = bs->opaque;
1437     uint64_t old_image_size;
1438     int ret;
1439 
1440     if (prealloc != PREALLOC_MODE_OFF) {
1441         error_setg(errp, "Unsupported preallocation mode '%s'",
1442                    PreallocMode_str(prealloc));
1443         return -ENOTSUP;
1444     }
1445 
1446     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1447                                  s->header.table_size)) {
1448         error_setg(errp, "Invalid image size specified");
1449         return -EINVAL;
1450     }
1451 
1452     if ((uint64_t)offset < s->header.image_size) {
1453         error_setg(errp, "Shrinking images is currently not supported");
1454         return -ENOTSUP;
1455     }
1456 
1457     old_image_size = s->header.image_size;
1458     s->header.image_size = offset;
1459     ret = qed_write_header_sync(s);
1460     if (ret < 0) {
1461         s->header.image_size = old_image_size;
1462         error_setg_errno(errp, -ret, "Failed to update the image size");
1463     }
1464     return ret;
1465 }
1466 
1467 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1468 {
1469     BDRVQEDState *s = bs->opaque;
1470     return s->header.image_size;
1471 }
1472 
1473 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1474 {
1475     BDRVQEDState *s = bs->opaque;
1476 
1477     memset(bdi, 0, sizeof(*bdi));
1478     bdi->cluster_size = s->header.cluster_size;
1479     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1480     return 0;
1481 }
1482 
1483 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1484                                         const char *backing_file,
1485                                         const char *backing_fmt)
1486 {
1487     BDRVQEDState *s = bs->opaque;
1488     QEDHeader new_header, le_header;
1489     void *buffer;
1490     size_t buffer_len, backing_file_len;
1491     int ret;
1492 
1493     /* Refuse to set backing filename if unknown compat feature bits are
1494      * active.  If the image uses an unknown compat feature then we may not
1495      * know the layout of data following the header structure and cannot safely
1496      * add a new string.
1497      */
1498     if (backing_file && (s->header.compat_features &
1499                          ~QED_COMPAT_FEATURE_MASK)) {
1500         return -ENOTSUP;
1501     }
1502 
1503     memcpy(&new_header, &s->header, sizeof(new_header));
1504 
1505     new_header.features &= ~(QED_F_BACKING_FILE |
1506                              QED_F_BACKING_FORMAT_NO_PROBE);
1507 
1508     /* Adjust feature flags */
1509     if (backing_file) {
1510         new_header.features |= QED_F_BACKING_FILE;
1511 
1512         if (qed_fmt_is_raw(backing_fmt)) {
1513             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1514         }
1515     }
1516 
1517     /* Calculate new header size */
1518     backing_file_len = 0;
1519 
1520     if (backing_file) {
1521         backing_file_len = strlen(backing_file);
1522     }
1523 
1524     buffer_len = sizeof(new_header);
1525     new_header.backing_filename_offset = buffer_len;
1526     new_header.backing_filename_size = backing_file_len;
1527     buffer_len += backing_file_len;
1528 
1529     /* Make sure we can rewrite header without failing */
1530     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1531         return -ENOSPC;
1532     }
1533 
1534     /* Prepare new header */
1535     buffer = g_malloc(buffer_len);
1536 
1537     qed_header_cpu_to_le(&new_header, &le_header);
1538     memcpy(buffer, &le_header, sizeof(le_header));
1539     buffer_len = sizeof(le_header);
1540 
1541     if (backing_file) {
1542         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1543         buffer_len += backing_file_len;
1544     }
1545 
1546     /* Write new header */
1547     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1548     g_free(buffer);
1549     if (ret == 0) {
1550         memcpy(&s->header, &new_header, sizeof(new_header));
1551     }
1552     return ret;
1553 }
1554 
1555 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1556                                                       Error **errp)
1557 {
1558     BDRVQEDState *s = bs->opaque;
1559     int ret;
1560 
1561     bdrv_qed_close(bs);
1562 
1563     bdrv_qed_init_state(bs);
1564     qemu_co_mutex_lock(&s->table_lock);
1565     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1566     qemu_co_mutex_unlock(&s->table_lock);
1567     if (ret < 0) {
1568         error_prepend(errp, "Could not reopen qed layer: ");
1569     }
1570 }
1571 
1572 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1573                                           BdrvCheckResult *result,
1574                                           BdrvCheckMode fix)
1575 {
1576     BDRVQEDState *s = bs->opaque;
1577     int ret;
1578 
1579     qemu_co_mutex_lock(&s->table_lock);
1580     ret = qed_check(s, result, !!fix);
1581     qemu_co_mutex_unlock(&s->table_lock);
1582 
1583     return ret;
1584 }
1585 
1586 static QemuOptsList qed_create_opts = {
1587     .name = "qed-create-opts",
1588     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1589     .desc = {
1590         {
1591             .name = BLOCK_OPT_SIZE,
1592             .type = QEMU_OPT_SIZE,
1593             .help = "Virtual disk size"
1594         },
1595         {
1596             .name = BLOCK_OPT_BACKING_FILE,
1597             .type = QEMU_OPT_STRING,
1598             .help = "File name of a base image"
1599         },
1600         {
1601             .name = BLOCK_OPT_BACKING_FMT,
1602             .type = QEMU_OPT_STRING,
1603             .help = "Image format of the base image"
1604         },
1605         {
1606             .name = BLOCK_OPT_CLUSTER_SIZE,
1607             .type = QEMU_OPT_SIZE,
1608             .help = "Cluster size (in bytes)",
1609             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1610         },
1611         {
1612             .name = BLOCK_OPT_TABLE_SIZE,
1613             .type = QEMU_OPT_SIZE,
1614             .help = "L1/L2 table size (in clusters)"
1615         },
1616         { /* end of list */ }
1617     }
1618 };
1619 
1620 static BlockDriver bdrv_qed = {
1621     .format_name              = "qed",
1622     .instance_size            = sizeof(BDRVQEDState),
1623     .create_opts              = &qed_create_opts,
1624     .is_format                = true,
1625     .supports_backing         = true,
1626 
1627     .bdrv_probe               = bdrv_qed_probe,
1628     .bdrv_open                = bdrv_qed_open,
1629     .bdrv_close               = bdrv_qed_close,
1630     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1631     .bdrv_child_perm          = bdrv_default_perms,
1632     .bdrv_co_create           = bdrv_qed_co_create,
1633     .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1634     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1635     .bdrv_co_block_status     = bdrv_qed_co_block_status,
1636     .bdrv_co_readv            = bdrv_qed_co_readv,
1637     .bdrv_co_writev           = bdrv_qed_co_writev,
1638     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1639     .bdrv_co_truncate         = bdrv_qed_co_truncate,
1640     .bdrv_getlength           = bdrv_qed_getlength,
1641     .bdrv_get_info            = bdrv_qed_get_info,
1642     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1643     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1644     .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1645     .bdrv_co_check            = bdrv_qed_co_check,
1646     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1647     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1648     .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
1649 };
1650 
1651 static void bdrv_qed_init(void)
1652 {
1653     bdrv_register(&bdrv_qed);
1654 }
1655 
1656 block_init(bdrv_qed_init);
1657