xref: /openbmc/qemu/block/qcow2-refcount.c (revision feabc71d)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qcow2.h"
28 #include "qemu/range.h"
29 #include "qemu/bswap.h"
30 #include "qemu/cutils.h"
31 #include "trace.h"
32 
33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
34                                     uint64_t max);
35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
36                             int64_t offset, int64_t length, uint64_t addend,
37                             bool decrease, enum qcow2_discard_type type);
38 
39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
46 
47 static void set_refcount_ro0(void *refcount_array, uint64_t index,
48                              uint64_t value);
49 static void set_refcount_ro1(void *refcount_array, uint64_t index,
50                              uint64_t value);
51 static void set_refcount_ro2(void *refcount_array, uint64_t index,
52                              uint64_t value);
53 static void set_refcount_ro3(void *refcount_array, uint64_t index,
54                              uint64_t value);
55 static void set_refcount_ro4(void *refcount_array, uint64_t index,
56                              uint64_t value);
57 static void set_refcount_ro5(void *refcount_array, uint64_t index,
58                              uint64_t value);
59 static void set_refcount_ro6(void *refcount_array, uint64_t index,
60                              uint64_t value);
61 
62 
63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
64     &get_refcount_ro0,
65     &get_refcount_ro1,
66     &get_refcount_ro2,
67     &get_refcount_ro3,
68     &get_refcount_ro4,
69     &get_refcount_ro5,
70     &get_refcount_ro6
71 };
72 
73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
74     &set_refcount_ro0,
75     &set_refcount_ro1,
76     &set_refcount_ro2,
77     &set_refcount_ro3,
78     &set_refcount_ro4,
79     &set_refcount_ro5,
80     &set_refcount_ro6
81 };
82 
83 
84 /*********************************************************/
85 /* refcount handling */
86 
87 static void update_max_refcount_table_index(BDRVQcow2State *s)
88 {
89     unsigned i = s->refcount_table_size - 1;
90     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
91         i--;
92     }
93     /* Set s->max_refcount_table_index to the index of the last used entry */
94     s->max_refcount_table_index = i;
95 }
96 
97 int qcow2_refcount_init(BlockDriverState *bs)
98 {
99     BDRVQcow2State *s = bs->opaque;
100     unsigned int refcount_table_size2, i;
101     int ret;
102 
103     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
104 
105     s->get_refcount = get_refcount_funcs[s->refcount_order];
106     s->set_refcount = set_refcount_funcs[s->refcount_order];
107 
108     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
109     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
110     s->refcount_table = g_try_malloc(refcount_table_size2);
111 
112     if (s->refcount_table_size > 0) {
113         if (s->refcount_table == NULL) {
114             ret = -ENOMEM;
115             goto fail;
116         }
117         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
118         ret = bdrv_pread(bs->file, s->refcount_table_offset,
119                          s->refcount_table, refcount_table_size2);
120         if (ret < 0) {
121             goto fail;
122         }
123         for(i = 0; i < s->refcount_table_size; i++)
124             be64_to_cpus(&s->refcount_table[i]);
125         update_max_refcount_table_index(s);
126     }
127     return 0;
128  fail:
129     return ret;
130 }
131 
132 void qcow2_refcount_close(BlockDriverState *bs)
133 {
134     BDRVQcow2State *s = bs->opaque;
135     g_free(s->refcount_table);
136 }
137 
138 
139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
140 {
141     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
142 }
143 
144 static void set_refcount_ro0(void *refcount_array, uint64_t index,
145                              uint64_t value)
146 {
147     assert(!(value >> 1));
148     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
149     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
150 }
151 
152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
153 {
154     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
155            & 0x3;
156 }
157 
158 static void set_refcount_ro1(void *refcount_array, uint64_t index,
159                              uint64_t value)
160 {
161     assert(!(value >> 2));
162     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
163     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
164 }
165 
166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
167 {
168     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
169            & 0xf;
170 }
171 
172 static void set_refcount_ro2(void *refcount_array, uint64_t index,
173                              uint64_t value)
174 {
175     assert(!(value >> 4));
176     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
177     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
178 }
179 
180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
181 {
182     return ((const uint8_t *)refcount_array)[index];
183 }
184 
185 static void set_refcount_ro3(void *refcount_array, uint64_t index,
186                              uint64_t value)
187 {
188     assert(!(value >> 8));
189     ((uint8_t *)refcount_array)[index] = value;
190 }
191 
192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
193 {
194     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
195 }
196 
197 static void set_refcount_ro4(void *refcount_array, uint64_t index,
198                              uint64_t value)
199 {
200     assert(!(value >> 16));
201     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
202 }
203 
204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
205 {
206     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
207 }
208 
209 static void set_refcount_ro5(void *refcount_array, uint64_t index,
210                              uint64_t value)
211 {
212     assert(!(value >> 32));
213     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
214 }
215 
216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
217 {
218     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
219 }
220 
221 static void set_refcount_ro6(void *refcount_array, uint64_t index,
222                              uint64_t value)
223 {
224     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
225 }
226 
227 
228 static int load_refcount_block(BlockDriverState *bs,
229                                int64_t refcount_block_offset,
230                                void **refcount_block)
231 {
232     BDRVQcow2State *s = bs->opaque;
233 
234     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
235     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
236                            refcount_block);
237 }
238 
239 /*
240  * Retrieves the refcount of the cluster given by its index and stores it in
241  * *refcount. Returns 0 on success and -errno on failure.
242  */
243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
244                        uint64_t *refcount)
245 {
246     BDRVQcow2State *s = bs->opaque;
247     uint64_t refcount_table_index, block_index;
248     int64_t refcount_block_offset;
249     int ret;
250     void *refcount_block;
251 
252     refcount_table_index = cluster_index >> s->refcount_block_bits;
253     if (refcount_table_index >= s->refcount_table_size) {
254         *refcount = 0;
255         return 0;
256     }
257     refcount_block_offset =
258         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
259     if (!refcount_block_offset) {
260         *refcount = 0;
261         return 0;
262     }
263 
264     if (offset_into_cluster(s, refcount_block_offset)) {
265         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
266                                 " unaligned (reftable index: %#" PRIx64 ")",
267                                 refcount_block_offset, refcount_table_index);
268         return -EIO;
269     }
270 
271     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
272                           &refcount_block);
273     if (ret < 0) {
274         return ret;
275     }
276 
277     block_index = cluster_index & (s->refcount_block_size - 1);
278     *refcount = s->get_refcount(refcount_block, block_index);
279 
280     qcow2_cache_put(s->refcount_block_cache, &refcount_block);
281 
282     return 0;
283 }
284 
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
287     uint64_t offset_b)
288 {
289     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
290     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
291 
292     return (block_a == block_b);
293 }
294 
295 /*
296  * Loads a refcount block. If it doesn't exist yet, it is allocated first
297  * (including growing the refcount table if needed).
298  *
299  * Returns 0 on success or -errno in error case
300  */
301 static int alloc_refcount_block(BlockDriverState *bs,
302                                 int64_t cluster_index, void **refcount_block)
303 {
304     BDRVQcow2State *s = bs->opaque;
305     unsigned int refcount_table_index;
306     int64_t ret;
307 
308     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
309 
310     /* Find the refcount block for the given cluster */
311     refcount_table_index = cluster_index >> s->refcount_block_bits;
312 
313     if (refcount_table_index < s->refcount_table_size) {
314 
315         uint64_t refcount_block_offset =
316             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
317 
318         /* If it's already there, we're done */
319         if (refcount_block_offset) {
320             if (offset_into_cluster(s, refcount_block_offset)) {
321                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
322                                         PRIx64 " unaligned (reftable index: "
323                                         "%#x)", refcount_block_offset,
324                                         refcount_table_index);
325                 return -EIO;
326             }
327 
328              return load_refcount_block(bs, refcount_block_offset,
329                                         refcount_block);
330         }
331     }
332 
333     /*
334      * If we came here, we need to allocate something. Something is at least
335      * a cluster for the new refcount block. It may also include a new refcount
336      * table if the old refcount table is too small.
337      *
338      * Note that allocating clusters here needs some special care:
339      *
340      * - We can't use the normal qcow2_alloc_clusters(), it would try to
341      *   increase the refcount and very likely we would end up with an endless
342      *   recursion. Instead we must place the refcount blocks in a way that
343      *   they can describe them themselves.
344      *
345      * - We need to consider that at this point we are inside update_refcounts
346      *   and potentially doing an initial refcount increase. This means that
347      *   some clusters have already been allocated by the caller, but their
348      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
349      *   need to return -EAGAIN to signal the caller that it needs to restart
350      *   the search for free clusters.
351      *
352      * - alloc_clusters_noref and qcow2_free_clusters may load a different
353      *   refcount block into the cache
354      */
355 
356     *refcount_block = NULL;
357 
358     /* We write to the refcount table, so we might depend on L2 tables */
359     ret = qcow2_cache_flush(bs, s->l2_table_cache);
360     if (ret < 0) {
361         return ret;
362     }
363 
364     /* Allocate the refcount block itself and mark it as used */
365     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX);
366     if (new_block < 0) {
367         return new_block;
368     }
369 
370     /* The offset must fit in the offset field of the refcount table entry */
371     assert((new_block & REFT_OFFSET_MASK) == new_block);
372 
373     /* If we're allocating the block at offset 0 then something is wrong */
374     if (new_block == 0) {
375         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
376                                 "allocation of refcount block at offset 0");
377         return -EIO;
378     }
379 
380 #ifdef DEBUG_ALLOC2
381     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
382         " at %" PRIx64 "\n",
383         refcount_table_index, cluster_index << s->cluster_bits, new_block);
384 #endif
385 
386     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
387         /* Zero the new refcount block before updating it */
388         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
389                                     refcount_block);
390         if (ret < 0) {
391             goto fail;
392         }
393 
394         memset(*refcount_block, 0, s->cluster_size);
395 
396         /* The block describes itself, need to update the cache */
397         int block_index = (new_block >> s->cluster_bits) &
398             (s->refcount_block_size - 1);
399         s->set_refcount(*refcount_block, block_index, 1);
400     } else {
401         /* Described somewhere else. This can recurse at most twice before we
402          * arrive at a block that describes itself. */
403         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
404                               QCOW2_DISCARD_NEVER);
405         if (ret < 0) {
406             goto fail;
407         }
408 
409         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
410         if (ret < 0) {
411             goto fail;
412         }
413 
414         /* Initialize the new refcount block only after updating its refcount,
415          * update_refcount uses the refcount cache itself */
416         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
417                                     refcount_block);
418         if (ret < 0) {
419             goto fail;
420         }
421 
422         memset(*refcount_block, 0, s->cluster_size);
423     }
424 
425     /* Now the new refcount block needs to be written to disk */
426     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
427     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
428     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
429     if (ret < 0) {
430         goto fail;
431     }
432 
433     /* If the refcount table is big enough, just hook the block up there */
434     if (refcount_table_index < s->refcount_table_size) {
435         uint64_t data64 = cpu_to_be64(new_block);
436         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
437         ret = bdrv_pwrite_sync(bs->file,
438             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
439             &data64, sizeof(data64));
440         if (ret < 0) {
441             goto fail;
442         }
443 
444         s->refcount_table[refcount_table_index] = new_block;
445         /* If there's a hole in s->refcount_table then it can happen
446          * that refcount_table_index < s->max_refcount_table_index */
447         s->max_refcount_table_index =
448             MAX(s->max_refcount_table_index, refcount_table_index);
449 
450         /* The new refcount block may be where the caller intended to put its
451          * data, so let it restart the search. */
452         return -EAGAIN;
453     }
454 
455     qcow2_cache_put(s->refcount_block_cache, refcount_block);
456 
457     /*
458      * If we come here, we need to grow the refcount table. Again, a new
459      * refcount table needs some space and we can't simply allocate to avoid
460      * endless recursion.
461      *
462      * Therefore let's grab new refcount blocks at the end of the image, which
463      * will describe themselves and the new refcount table. This way we can
464      * reference them only in the new table and do the switch to the new
465      * refcount table at once without producing an inconsistent state in
466      * between.
467      */
468     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
469 
470     /* Calculate the number of refcount blocks needed so far; this will be the
471      * basis for calculating the index of the first cluster used for the
472      * self-describing refcount structures which we are about to create.
473      *
474      * Because we reached this point, there cannot be any refcount entries for
475      * cluster_index or higher indices yet. However, because new_block has been
476      * allocated to describe that cluster (and it will assume this role later
477      * on), we cannot use that index; also, new_block may actually have a higher
478      * cluster index than cluster_index, so it needs to be taken into account
479      * here (and 1 needs to be added to its value because that cluster is used).
480      */
481     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
482                                             (new_block >> s->cluster_bits) + 1),
483                                         s->refcount_block_size);
484 
485     /* Create the new refcount table and blocks */
486     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
487         s->cluster_size;
488 
489     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
490                               refcount_table_index, new_block);
491     if (ret < 0) {
492         return ret;
493     }
494 
495     ret = load_refcount_block(bs, new_block, refcount_block);
496     if (ret < 0) {
497         return ret;
498     }
499 
500     /* If we were trying to do the initial refcount update for some cluster
501      * allocation, we might have used the same clusters to store newly
502      * allocated metadata. Make the caller search some new space. */
503     return -EAGAIN;
504 
505 fail:
506     if (*refcount_block != NULL) {
507         qcow2_cache_put(s->refcount_block_cache, refcount_block);
508     }
509     return ret;
510 }
511 
512 /*
513  * Starting at @start_offset, this function creates new self-covering refcount
514  * structures: A new refcount table and refcount blocks which cover all of
515  * themselves, and a number of @additional_clusters beyond their end.
516  * @start_offset must be at the end of the image file, that is, there must be
517  * only empty space beyond it.
518  * If @exact_size is false, the refcount table will have 50 % more entries than
519  * necessary so it will not need to grow again soon.
520  * If @new_refblock_offset is not zero, it contains the offset of a refcount
521  * block that should be entered into the new refcount table at index
522  * @new_refblock_index.
523  *
524  * Returns: The offset after the new refcount structures (i.e. where the
525  *          @additional_clusters may be placed) on success, -errno on error.
526  */
527 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
528                             uint64_t additional_clusters, bool exact_size,
529                             int new_refblock_index,
530                             uint64_t new_refblock_offset)
531 {
532     BDRVQcow2State *s = bs->opaque;
533     uint64_t total_refblock_count_u64, additional_refblock_count;
534     int total_refblock_count, table_size, area_reftable_index, table_clusters;
535     int i;
536     uint64_t table_offset, block_offset, end_offset;
537     int ret;
538     uint64_t *new_table;
539 
540     assert(!(start_offset % s->cluster_size));
541 
542     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
543                                  additional_clusters,
544                                  s->cluster_size, s->refcount_order,
545                                  !exact_size, &total_refblock_count_u64);
546     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
547         return -EFBIG;
548     }
549     total_refblock_count = total_refblock_count_u64;
550 
551     /* Index in the refcount table of the first refcount block to cover the area
552      * of refcount structures we are about to create; we know that
553      * @total_refblock_count can cover @start_offset, so this will definitely
554      * fit into an int. */
555     area_reftable_index = (start_offset / s->cluster_size) /
556                           s->refcount_block_size;
557 
558     if (exact_size) {
559         table_size = total_refblock_count;
560     } else {
561         table_size = total_refblock_count +
562                      DIV_ROUND_UP(total_refblock_count, 2);
563     }
564     /* The qcow2 file can only store the reftable size in number of clusters */
565     table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
566     table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
567 
568     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
569         return -EFBIG;
570     }
571 
572     new_table = g_try_new0(uint64_t, table_size);
573 
574     assert(table_size > 0);
575     if (new_table == NULL) {
576         ret = -ENOMEM;
577         goto fail;
578     }
579 
580     /* Fill the new refcount table */
581     if (table_size > s->max_refcount_table_index) {
582         /* We're actually growing the reftable */
583         memcpy(new_table, s->refcount_table,
584                (s->max_refcount_table_index + 1) * sizeof(uint64_t));
585     } else {
586         /* Improbable case: We're shrinking the reftable. However, the caller
587          * has assured us that there is only empty space beyond @start_offset,
588          * so we can simply drop all of the refblocks that won't fit into the
589          * new reftable. */
590         memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
591     }
592 
593     if (new_refblock_offset) {
594         assert(new_refblock_index < total_refblock_count);
595         new_table[new_refblock_index] = new_refblock_offset;
596     }
597 
598     /* Count how many new refblocks we have to create */
599     additional_refblock_count = 0;
600     for (i = area_reftable_index; i < total_refblock_count; i++) {
601         if (!new_table[i]) {
602             additional_refblock_count++;
603         }
604     }
605 
606     table_offset = start_offset + additional_refblock_count * s->cluster_size;
607     end_offset = table_offset + table_clusters * s->cluster_size;
608 
609     /* Fill the refcount blocks, and create new ones, if necessary */
610     block_offset = start_offset;
611     for (i = area_reftable_index; i < total_refblock_count; i++) {
612         void *refblock_data;
613         uint64_t first_offset_covered;
614 
615         /* Reuse an existing refblock if possible, create a new one otherwise */
616         if (new_table[i]) {
617             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
618                                   &refblock_data);
619             if (ret < 0) {
620                 goto fail;
621             }
622         } else {
623             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
624                                         block_offset, &refblock_data);
625             if (ret < 0) {
626                 goto fail;
627             }
628             memset(refblock_data, 0, s->cluster_size);
629             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
630                                          refblock_data);
631 
632             new_table[i] = block_offset;
633             block_offset += s->cluster_size;
634         }
635 
636         /* First host offset covered by this refblock */
637         first_offset_covered = (uint64_t)i * s->refcount_block_size *
638                                s->cluster_size;
639         if (first_offset_covered < end_offset) {
640             int j, end_index;
641 
642             /* Set the refcount of all of the new refcount structures to 1 */
643 
644             if (first_offset_covered < start_offset) {
645                 assert(i == area_reftable_index);
646                 j = (start_offset - first_offset_covered) / s->cluster_size;
647                 assert(j < s->refcount_block_size);
648             } else {
649                 j = 0;
650             }
651 
652             end_index = MIN((end_offset - first_offset_covered) /
653                             s->cluster_size,
654                             s->refcount_block_size);
655 
656             for (; j < end_index; j++) {
657                 /* The caller guaranteed us this space would be empty */
658                 assert(s->get_refcount(refblock_data, j) == 0);
659                 s->set_refcount(refblock_data, j, 1);
660             }
661 
662             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
663                                          refblock_data);
664         }
665 
666         qcow2_cache_put(s->refcount_block_cache, &refblock_data);
667     }
668 
669     assert(block_offset == table_offset);
670 
671     /* Write refcount blocks to disk */
672     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
673     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
674     if (ret < 0) {
675         goto fail;
676     }
677 
678     /* Write refcount table to disk */
679     for (i = 0; i < total_refblock_count; i++) {
680         cpu_to_be64s(&new_table[i]);
681     }
682 
683     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
684     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
685         table_size * sizeof(uint64_t));
686     if (ret < 0) {
687         goto fail;
688     }
689 
690     for (i = 0; i < total_refblock_count; i++) {
691         be64_to_cpus(&new_table[i]);
692     }
693 
694     /* Hook up the new refcount table in the qcow2 header */
695     struct QEMU_PACKED {
696         uint64_t d64;
697         uint32_t d32;
698     } data;
699     data.d64 = cpu_to_be64(table_offset);
700     data.d32 = cpu_to_be32(table_clusters);
701     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
702     ret = bdrv_pwrite_sync(bs->file,
703                            offsetof(QCowHeader, refcount_table_offset),
704                            &data, sizeof(data));
705     if (ret < 0) {
706         goto fail;
707     }
708 
709     /* And switch it in memory */
710     uint64_t old_table_offset = s->refcount_table_offset;
711     uint64_t old_table_size = s->refcount_table_size;
712 
713     g_free(s->refcount_table);
714     s->refcount_table = new_table;
715     s->refcount_table_size = table_size;
716     s->refcount_table_offset = table_offset;
717     update_max_refcount_table_index(s);
718 
719     /* Free old table. */
720     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
721                         QCOW2_DISCARD_OTHER);
722 
723     return end_offset;
724 
725 fail:
726     g_free(new_table);
727     return ret;
728 }
729 
730 void qcow2_process_discards(BlockDriverState *bs, int ret)
731 {
732     BDRVQcow2State *s = bs->opaque;
733     Qcow2DiscardRegion *d, *next;
734 
735     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
736         QTAILQ_REMOVE(&s->discards, d, next);
737 
738         /* Discard is optional, ignore the return value */
739         if (ret >= 0) {
740             int r2 = bdrv_pdiscard(bs->file, d->offset, d->bytes);
741             if (r2 < 0) {
742                 trace_qcow2_process_discards_failed_region(d->offset, d->bytes,
743                                                            r2);
744             }
745         }
746 
747         g_free(d);
748     }
749 }
750 
751 static void update_refcount_discard(BlockDriverState *bs,
752                                     uint64_t offset, uint64_t length)
753 {
754     BDRVQcow2State *s = bs->opaque;
755     Qcow2DiscardRegion *d, *p, *next;
756 
757     QTAILQ_FOREACH(d, &s->discards, next) {
758         uint64_t new_start = MIN(offset, d->offset);
759         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
760 
761         if (new_end - new_start <= length + d->bytes) {
762             /* There can't be any overlap, areas ending up here have no
763              * references any more and therefore shouldn't get freed another
764              * time. */
765             assert(d->bytes + length == new_end - new_start);
766             d->offset = new_start;
767             d->bytes = new_end - new_start;
768             goto found;
769         }
770     }
771 
772     d = g_malloc(sizeof(*d));
773     *d = (Qcow2DiscardRegion) {
774         .bs     = bs,
775         .offset = offset,
776         .bytes  = length,
777     };
778     QTAILQ_INSERT_TAIL(&s->discards, d, next);
779 
780 found:
781     /* Merge discard requests if they are adjacent now */
782     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
783         if (p == d
784             || p->offset > d->offset + d->bytes
785             || d->offset > p->offset + p->bytes)
786         {
787             continue;
788         }
789 
790         /* Still no overlap possible */
791         assert(p->offset == d->offset + d->bytes
792             || d->offset == p->offset + p->bytes);
793 
794         QTAILQ_REMOVE(&s->discards, p, next);
795         d->offset = MIN(d->offset, p->offset);
796         d->bytes += p->bytes;
797         g_free(p);
798     }
799 }
800 
801 /* XXX: cache several refcount block clusters ? */
802 /* @addend is the absolute value of the addend; if @decrease is set, @addend
803  * will be subtracted from the current refcount, otherwise it will be added */
804 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
805                                                    int64_t offset,
806                                                    int64_t length,
807                                                    uint64_t addend,
808                                                    bool decrease,
809                                                    enum qcow2_discard_type type)
810 {
811     BDRVQcow2State *s = bs->opaque;
812     int64_t start, last, cluster_offset;
813     void *refcount_block = NULL;
814     int64_t old_table_index = -1;
815     int ret;
816 
817 #ifdef DEBUG_ALLOC2
818     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
819             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
820             addend);
821 #endif
822     if (length < 0) {
823         return -EINVAL;
824     } else if (length == 0) {
825         return 0;
826     }
827 
828     if (decrease) {
829         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
830             s->l2_table_cache);
831     }
832 
833     start = start_of_cluster(s, offset);
834     last = start_of_cluster(s, offset + length - 1);
835     for(cluster_offset = start; cluster_offset <= last;
836         cluster_offset += s->cluster_size)
837     {
838         int block_index;
839         uint64_t refcount;
840         int64_t cluster_index = cluster_offset >> s->cluster_bits;
841         int64_t table_index = cluster_index >> s->refcount_block_bits;
842 
843         /* Load the refcount block and allocate it if needed */
844         if (table_index != old_table_index) {
845             if (refcount_block) {
846                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
847             }
848             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
849             /* If the caller needs to restart the search for free clusters,
850              * try the same ones first to see if they're still free. */
851             if (ret == -EAGAIN) {
852                 if (s->free_cluster_index > (start >> s->cluster_bits)) {
853                     s->free_cluster_index = (start >> s->cluster_bits);
854                 }
855             }
856             if (ret < 0) {
857                 goto fail;
858             }
859         }
860         old_table_index = table_index;
861 
862         qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
863 
864         /* we can update the count and save it */
865         block_index = cluster_index & (s->refcount_block_size - 1);
866 
867         refcount = s->get_refcount(refcount_block, block_index);
868         if (decrease ? (refcount - addend > refcount)
869                      : (refcount + addend < refcount ||
870                         refcount + addend > s->refcount_max))
871         {
872             ret = -EINVAL;
873             goto fail;
874         }
875         if (decrease) {
876             refcount -= addend;
877         } else {
878             refcount += addend;
879         }
880         if (refcount == 0 && cluster_index < s->free_cluster_index) {
881             s->free_cluster_index = cluster_index;
882         }
883         s->set_refcount(refcount_block, block_index, refcount);
884 
885         if (refcount == 0) {
886             void *table;
887 
888             table = qcow2_cache_is_table_offset(s->refcount_block_cache,
889                                                 offset);
890             if (table != NULL) {
891                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
892                 old_table_index = -1;
893                 qcow2_cache_discard(s->refcount_block_cache, table);
894             }
895 
896             table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
897             if (table != NULL) {
898                 qcow2_cache_discard(s->l2_table_cache, table);
899             }
900 
901             if (s->discard_passthrough[type]) {
902                 update_refcount_discard(bs, cluster_offset, s->cluster_size);
903             }
904         }
905     }
906 
907     ret = 0;
908 fail:
909     if (!s->cache_discards) {
910         qcow2_process_discards(bs, ret);
911     }
912 
913     /* Write last changed block to disk */
914     if (refcount_block) {
915         qcow2_cache_put(s->refcount_block_cache, &refcount_block);
916     }
917 
918     /*
919      * Try do undo any updates if an error is returned (This may succeed in
920      * some cases like ENOSPC for allocating a new refcount block)
921      */
922     if (ret < 0) {
923         int dummy;
924         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
925                                 !decrease, QCOW2_DISCARD_NEVER);
926         (void)dummy;
927     }
928 
929     return ret;
930 }
931 
932 /*
933  * Increases or decreases the refcount of a given cluster.
934  *
935  * @addend is the absolute value of the addend; if @decrease is set, @addend
936  * will be subtracted from the current refcount, otherwise it will be added.
937  *
938  * On success 0 is returned; on failure -errno is returned.
939  */
940 int qcow2_update_cluster_refcount(BlockDriverState *bs,
941                                   int64_t cluster_index,
942                                   uint64_t addend, bool decrease,
943                                   enum qcow2_discard_type type)
944 {
945     BDRVQcow2State *s = bs->opaque;
946     int ret;
947 
948     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
949                           decrease, type);
950     if (ret < 0) {
951         return ret;
952     }
953 
954     return 0;
955 }
956 
957 
958 
959 /*********************************************************/
960 /* cluster allocation functions */
961 
962 
963 
964 /* return < 0 if error */
965 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
966                                     uint64_t max)
967 {
968     BDRVQcow2State *s = bs->opaque;
969     uint64_t i, nb_clusters, refcount;
970     int ret;
971 
972     /* We can't allocate clusters if they may still be queued for discard. */
973     if (s->cache_discards) {
974         qcow2_process_discards(bs, 0);
975     }
976 
977     nb_clusters = size_to_clusters(s, size);
978 retry:
979     for(i = 0; i < nb_clusters; i++) {
980         uint64_t next_cluster_index = s->free_cluster_index++;
981         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
982 
983         if (ret < 0) {
984             return ret;
985         } else if (refcount != 0) {
986             goto retry;
987         }
988     }
989 
990     /* Make sure that all offsets in the "allocated" range are representable
991      * in the requested max */
992     if (s->free_cluster_index > 0 &&
993         s->free_cluster_index - 1 > (max >> s->cluster_bits))
994     {
995         return -EFBIG;
996     }
997 
998 #ifdef DEBUG_ALLOC2
999     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
1000             size,
1001             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
1002 #endif
1003     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
1004 }
1005 
1006 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
1007 {
1008     int64_t offset;
1009     int ret;
1010 
1011     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
1012     do {
1013         offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET);
1014         if (offset < 0) {
1015             return offset;
1016         }
1017 
1018         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1019     } while (ret == -EAGAIN);
1020 
1021     if (ret < 0) {
1022         return ret;
1023     }
1024 
1025     return offset;
1026 }
1027 
1028 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1029                                 int64_t nb_clusters)
1030 {
1031     BDRVQcow2State *s = bs->opaque;
1032     uint64_t cluster_index, refcount;
1033     uint64_t i;
1034     int ret;
1035 
1036     assert(nb_clusters >= 0);
1037     if (nb_clusters == 0) {
1038         return 0;
1039     }
1040 
1041     do {
1042         /* Check how many clusters there are free */
1043         cluster_index = offset >> s->cluster_bits;
1044         for(i = 0; i < nb_clusters; i++) {
1045             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1046             if (ret < 0) {
1047                 return ret;
1048             } else if (refcount != 0) {
1049                 break;
1050             }
1051         }
1052 
1053         /* And then allocate them */
1054         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1055                               QCOW2_DISCARD_NEVER);
1056     } while (ret == -EAGAIN);
1057 
1058     if (ret < 0) {
1059         return ret;
1060     }
1061 
1062     return i;
1063 }
1064 
1065 /* only used to allocate compressed sectors. We try to allocate
1066    contiguous sectors. size must be <= cluster_size */
1067 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1068 {
1069     BDRVQcow2State *s = bs->opaque;
1070     int64_t offset;
1071     size_t free_in_cluster;
1072     int ret;
1073 
1074     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1075     assert(size > 0 && size <= s->cluster_size);
1076     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1077 
1078     offset = s->free_byte_offset;
1079 
1080     if (offset) {
1081         uint64_t refcount;
1082         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1083         if (ret < 0) {
1084             return ret;
1085         }
1086 
1087         if (refcount == s->refcount_max) {
1088             offset = 0;
1089         }
1090     }
1091 
1092     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1093     do {
1094         if (!offset || free_in_cluster < size) {
1095             int64_t new_cluster;
1096 
1097             new_cluster = alloc_clusters_noref(bs, s->cluster_size,
1098                                                MIN(s->cluster_offset_mask,
1099                                                    QCOW_MAX_CLUSTER_OFFSET));
1100             if (new_cluster < 0) {
1101                 return new_cluster;
1102             }
1103 
1104             if (new_cluster == 0) {
1105                 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1106                                         "allocation of compressed cluster "
1107                                         "at offset 0");
1108                 return -EIO;
1109             }
1110 
1111             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1112                 offset = new_cluster;
1113                 free_in_cluster = s->cluster_size;
1114             } else {
1115                 free_in_cluster += s->cluster_size;
1116             }
1117         }
1118 
1119         assert(offset);
1120         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1121         if (ret < 0) {
1122             offset = 0;
1123         }
1124     } while (ret == -EAGAIN);
1125     if (ret < 0) {
1126         return ret;
1127     }
1128 
1129     /* The cluster refcount was incremented; refcount blocks must be flushed
1130      * before the caller's L2 table updates. */
1131     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1132 
1133     s->free_byte_offset = offset + size;
1134     if (!offset_into_cluster(s, s->free_byte_offset)) {
1135         s->free_byte_offset = 0;
1136     }
1137 
1138     return offset;
1139 }
1140 
1141 void qcow2_free_clusters(BlockDriverState *bs,
1142                           int64_t offset, int64_t size,
1143                           enum qcow2_discard_type type)
1144 {
1145     int ret;
1146 
1147     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1148     ret = update_refcount(bs, offset, size, 1, true, type);
1149     if (ret < 0) {
1150         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1151         /* TODO Remember the clusters to free them later and avoid leaking */
1152     }
1153 }
1154 
1155 /*
1156  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1157  * normal cluster, compressed cluster, etc.)
1158  */
1159 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1160                              int nb_clusters, enum qcow2_discard_type type)
1161 {
1162     BDRVQcow2State *s = bs->opaque;
1163     QCow2ClusterType ctype = qcow2_get_cluster_type(bs, l2_entry);
1164 
1165     if (has_data_file(bs)) {
1166         if (s->discard_passthrough[type] &&
1167             (ctype == QCOW2_CLUSTER_NORMAL ||
1168              ctype == QCOW2_CLUSTER_ZERO_ALLOC))
1169         {
1170             bdrv_pdiscard(s->data_file, l2_entry & L2E_OFFSET_MASK,
1171                           nb_clusters << s->cluster_bits);
1172         }
1173         return;
1174     }
1175 
1176     switch (ctype) {
1177     case QCOW2_CLUSTER_COMPRESSED:
1178         {
1179             int64_t offset = (l2_entry & s->cluster_offset_mask)
1180                 & QCOW2_COMPRESSED_SECTOR_MASK;
1181             int size = QCOW2_COMPRESSED_SECTOR_SIZE *
1182                 (((l2_entry >> s->csize_shift) & s->csize_mask) + 1);
1183             qcow2_free_clusters(bs, offset, size, type);
1184         }
1185         break;
1186     case QCOW2_CLUSTER_NORMAL:
1187     case QCOW2_CLUSTER_ZERO_ALLOC:
1188         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1189             qcow2_signal_corruption(bs, false, -1, -1,
1190                                     "Cannot free unaligned cluster %#llx",
1191                                     l2_entry & L2E_OFFSET_MASK);
1192         } else {
1193             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1194                                 nb_clusters << s->cluster_bits, type);
1195         }
1196         break;
1197     case QCOW2_CLUSTER_ZERO_PLAIN:
1198     case QCOW2_CLUSTER_UNALLOCATED:
1199         break;
1200     default:
1201         abort();
1202     }
1203 }
1204 
1205 int coroutine_fn qcow2_write_caches(BlockDriverState *bs)
1206 {
1207     BDRVQcow2State *s = bs->opaque;
1208     int ret;
1209 
1210     ret = qcow2_cache_write(bs, s->l2_table_cache);
1211     if (ret < 0) {
1212         return ret;
1213     }
1214 
1215     if (qcow2_need_accurate_refcounts(s)) {
1216         ret = qcow2_cache_write(bs, s->refcount_block_cache);
1217         if (ret < 0) {
1218             return ret;
1219         }
1220     }
1221 
1222     return 0;
1223 }
1224 
1225 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs)
1226 {
1227     int ret = qcow2_write_caches(bs);
1228     if (ret < 0) {
1229         return ret;
1230     }
1231 
1232     return bdrv_flush(bs->file->bs);
1233 }
1234 
1235 /*********************************************************/
1236 /* snapshots and image creation */
1237 
1238 
1239 
1240 /* update the refcounts of snapshots and the copied flag */
1241 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1242     int64_t l1_table_offset, int l1_size, int addend)
1243 {
1244     BDRVQcow2State *s = bs->opaque;
1245     uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1246     bool l1_allocated = false;
1247     int64_t old_entry, old_l2_offset;
1248     unsigned slice, slice_size2, n_slices;
1249     int i, j, l1_modified = 0, nb_csectors;
1250     int ret;
1251 
1252     assert(addend >= -1 && addend <= 1);
1253 
1254     l2_slice = NULL;
1255     l1_table = NULL;
1256     l1_size2 = l1_size * sizeof(uint64_t);
1257     slice_size2 = s->l2_slice_size * l2_entry_size(s);
1258     n_slices = s->cluster_size / slice_size2;
1259 
1260     s->cache_discards = true;
1261 
1262     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1263      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1264      * when changing this! */
1265     if (l1_table_offset != s->l1_table_offset) {
1266         l1_table = g_try_malloc0(l1_size2);
1267         if (l1_size2 && l1_table == NULL) {
1268             ret = -ENOMEM;
1269             goto fail;
1270         }
1271         l1_allocated = true;
1272 
1273         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1274         if (ret < 0) {
1275             goto fail;
1276         }
1277 
1278         for (i = 0; i < l1_size; i++) {
1279             be64_to_cpus(&l1_table[i]);
1280         }
1281     } else {
1282         assert(l1_size == s->l1_size);
1283         l1_table = s->l1_table;
1284         l1_allocated = false;
1285     }
1286 
1287     for (i = 0; i < l1_size; i++) {
1288         l2_offset = l1_table[i];
1289         if (l2_offset) {
1290             old_l2_offset = l2_offset;
1291             l2_offset &= L1E_OFFSET_MASK;
1292 
1293             if (offset_into_cluster(s, l2_offset)) {
1294                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1295                                         PRIx64 " unaligned (L1 index: %#x)",
1296                                         l2_offset, i);
1297                 ret = -EIO;
1298                 goto fail;
1299             }
1300 
1301             for (slice = 0; slice < n_slices; slice++) {
1302                 ret = qcow2_cache_get(bs, s->l2_table_cache,
1303                                       l2_offset + slice * slice_size2,
1304                                       (void **) &l2_slice);
1305                 if (ret < 0) {
1306                     goto fail;
1307                 }
1308 
1309                 for (j = 0; j < s->l2_slice_size; j++) {
1310                     uint64_t cluster_index;
1311                     uint64_t offset;
1312 
1313                     entry = get_l2_entry(s, l2_slice, j);
1314                     old_entry = entry;
1315                     entry &= ~QCOW_OFLAG_COPIED;
1316                     offset = entry & L2E_OFFSET_MASK;
1317 
1318                     switch (qcow2_get_cluster_type(bs, entry)) {
1319                     case QCOW2_CLUSTER_COMPRESSED:
1320                         nb_csectors = ((entry >> s->csize_shift) &
1321                                        s->csize_mask) + 1;
1322                         if (addend != 0) {
1323                             uint64_t coffset = (entry & s->cluster_offset_mask)
1324                                 & QCOW2_COMPRESSED_SECTOR_MASK;
1325                             ret = update_refcount(
1326                                 bs, coffset,
1327                                 nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE,
1328                                 abs(addend), addend < 0,
1329                                 QCOW2_DISCARD_SNAPSHOT);
1330                             if (ret < 0) {
1331                                 goto fail;
1332                             }
1333                         }
1334                         /* compressed clusters are never modified */
1335                         refcount = 2;
1336                         break;
1337 
1338                     case QCOW2_CLUSTER_NORMAL:
1339                     case QCOW2_CLUSTER_ZERO_ALLOC:
1340                         if (offset_into_cluster(s, offset)) {
1341                             /* Here l2_index means table (not slice) index */
1342                             int l2_index = slice * s->l2_slice_size + j;
1343                             qcow2_signal_corruption(
1344                                 bs, true, -1, -1, "Cluster "
1345                                 "allocation offset %#" PRIx64
1346                                 " unaligned (L2 offset: %#"
1347                                 PRIx64 ", L2 index: %#x)",
1348                                 offset, l2_offset, l2_index);
1349                             ret = -EIO;
1350                             goto fail;
1351                         }
1352 
1353                         cluster_index = offset >> s->cluster_bits;
1354                         assert(cluster_index);
1355                         if (addend != 0) {
1356                             ret = qcow2_update_cluster_refcount(
1357                                 bs, cluster_index, abs(addend), addend < 0,
1358                                 QCOW2_DISCARD_SNAPSHOT);
1359                             if (ret < 0) {
1360                                 goto fail;
1361                             }
1362                         }
1363 
1364                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1365                         if (ret < 0) {
1366                             goto fail;
1367                         }
1368                         break;
1369 
1370                     case QCOW2_CLUSTER_ZERO_PLAIN:
1371                     case QCOW2_CLUSTER_UNALLOCATED:
1372                         refcount = 0;
1373                         break;
1374 
1375                     default:
1376                         abort();
1377                     }
1378 
1379                     if (refcount == 1) {
1380                         entry |= QCOW_OFLAG_COPIED;
1381                     }
1382                     if (entry != old_entry) {
1383                         if (addend > 0) {
1384                             qcow2_cache_set_dependency(bs, s->l2_table_cache,
1385                                                        s->refcount_block_cache);
1386                         }
1387                         set_l2_entry(s, l2_slice, j, entry);
1388                         qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1389                                                      l2_slice);
1390                     }
1391                 }
1392 
1393                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1394             }
1395 
1396             if (addend != 0) {
1397                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1398                                                         s->cluster_bits,
1399                                                     abs(addend), addend < 0,
1400                                                     QCOW2_DISCARD_SNAPSHOT);
1401                 if (ret < 0) {
1402                     goto fail;
1403                 }
1404             }
1405             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1406                                      &refcount);
1407             if (ret < 0) {
1408                 goto fail;
1409             } else if (refcount == 1) {
1410                 l2_offset |= QCOW_OFLAG_COPIED;
1411             }
1412             if (l2_offset != old_l2_offset) {
1413                 l1_table[i] = l2_offset;
1414                 l1_modified = 1;
1415             }
1416         }
1417     }
1418 
1419     ret = bdrv_flush(bs);
1420 fail:
1421     if (l2_slice) {
1422         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1423     }
1424 
1425     s->cache_discards = false;
1426     qcow2_process_discards(bs, ret);
1427 
1428     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1429     if (ret == 0 && addend >= 0 && l1_modified) {
1430         for (i = 0; i < l1_size; i++) {
1431             cpu_to_be64s(&l1_table[i]);
1432         }
1433 
1434         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1435                                l1_table, l1_size2);
1436 
1437         for (i = 0; i < l1_size; i++) {
1438             be64_to_cpus(&l1_table[i]);
1439         }
1440     }
1441     if (l1_allocated)
1442         g_free(l1_table);
1443     return ret;
1444 }
1445 
1446 
1447 
1448 
1449 /*********************************************************/
1450 /* refcount checking functions */
1451 
1452 
1453 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1454 {
1455     /* This assertion holds because there is no way we can address more than
1456      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1457      * offsets have to be representable in bytes); due to every cluster
1458      * corresponding to one refcount entry, we are well below that limit */
1459     assert(entries < (UINT64_C(1) << (64 - 9)));
1460 
1461     /* Thanks to the assertion this will not overflow, because
1462      * s->refcount_order < 7.
1463      * (note: x << s->refcount_order == x * s->refcount_bits) */
1464     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1465 }
1466 
1467 /**
1468  * Reallocates *array so that it can hold new_size entries. *size must contain
1469  * the current number of entries in *array. If the reallocation fails, *array
1470  * and *size will not be modified and -errno will be returned. If the
1471  * reallocation is successful, *array will be set to the new buffer, *size
1472  * will be set to new_size and 0 will be returned. The size of the reallocated
1473  * refcount array buffer will be aligned to a cluster boundary, and the newly
1474  * allocated area will be zeroed.
1475  */
1476 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1477                                   int64_t *size, int64_t new_size)
1478 {
1479     int64_t old_byte_size, new_byte_size;
1480     void *new_ptr;
1481 
1482     /* Round to clusters so the array can be directly written to disk */
1483     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1484                     * s->cluster_size;
1485     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1486                     * s->cluster_size;
1487 
1488     if (new_byte_size == old_byte_size) {
1489         *size = new_size;
1490         return 0;
1491     }
1492 
1493     assert(new_byte_size > 0);
1494 
1495     if (new_byte_size > SIZE_MAX) {
1496         return -ENOMEM;
1497     }
1498 
1499     new_ptr = g_try_realloc(*array, new_byte_size);
1500     if (!new_ptr) {
1501         return -ENOMEM;
1502     }
1503 
1504     if (new_byte_size > old_byte_size) {
1505         memset((char *)new_ptr + old_byte_size, 0,
1506                new_byte_size - old_byte_size);
1507     }
1508 
1509     *array = new_ptr;
1510     *size  = new_size;
1511 
1512     return 0;
1513 }
1514 
1515 /*
1516  * Increases the refcount for a range of clusters in a given refcount table.
1517  * This is used to construct a temporary refcount table out of L1 and L2 tables
1518  * which can be compared to the refcount table saved in the image.
1519  *
1520  * Modifies the number of errors in res.
1521  */
1522 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1523                              void **refcount_table,
1524                              int64_t *refcount_table_size,
1525                              int64_t offset, int64_t size)
1526 {
1527     BDRVQcow2State *s = bs->opaque;
1528     uint64_t start, last, cluster_offset, k, refcount;
1529     int64_t file_len;
1530     int ret;
1531 
1532     if (size <= 0) {
1533         return 0;
1534     }
1535 
1536     file_len = bdrv_getlength(bs->file->bs);
1537     if (file_len < 0) {
1538         return file_len;
1539     }
1540 
1541     /*
1542      * Last cluster of qcow2 image may be semi-allocated, so it may be OK to
1543      * reference some space after file end but it should be less than one
1544      * cluster.
1545      */
1546     if (offset + size - file_len >= s->cluster_size) {
1547         fprintf(stderr, "ERROR: counting reference for region exceeding the "
1548                 "end of the file by one cluster or more: offset 0x%" PRIx64
1549                 " size 0x%" PRIx64 "\n", offset, size);
1550         res->corruptions++;
1551         return 0;
1552     }
1553 
1554     start = start_of_cluster(s, offset);
1555     last = start_of_cluster(s, offset + size - 1);
1556     for(cluster_offset = start; cluster_offset <= last;
1557         cluster_offset += s->cluster_size) {
1558         k = cluster_offset >> s->cluster_bits;
1559         if (k >= *refcount_table_size) {
1560             ret = realloc_refcount_array(s, refcount_table,
1561                                          refcount_table_size, k + 1);
1562             if (ret < 0) {
1563                 res->check_errors++;
1564                 return ret;
1565             }
1566         }
1567 
1568         refcount = s->get_refcount(*refcount_table, k);
1569         if (refcount == s->refcount_max) {
1570             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1571                     "\n", cluster_offset);
1572             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1573                     "width or qemu-img convert to create a clean copy if the "
1574                     "image cannot be opened for writing\n");
1575             res->corruptions++;
1576             continue;
1577         }
1578         s->set_refcount(*refcount_table, k, refcount + 1);
1579     }
1580 
1581     return 0;
1582 }
1583 
1584 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1585 enum {
1586     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1587 };
1588 
1589 /*
1590  * Increases the refcount in the given refcount table for the all clusters
1591  * referenced in the L2 table. While doing so, performs some checks on L2
1592  * entries.
1593  *
1594  * Returns the number of errors found by the checks or -errno if an internal
1595  * error occurred.
1596  */
1597 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1598                               void **refcount_table,
1599                               int64_t *refcount_table_size, int64_t l2_offset,
1600                               int flags, BdrvCheckMode fix, bool active)
1601 {
1602     BDRVQcow2State *s = bs->opaque;
1603     uint64_t *l2_table, l2_entry;
1604     uint64_t next_contiguous_offset = 0;
1605     int i, l2_size, nb_csectors, ret;
1606 
1607     /* Read L2 table from disk */
1608     l2_size = s->l2_size * l2_entry_size(s);
1609     l2_table = g_malloc(l2_size);
1610 
1611     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1612     if (ret < 0) {
1613         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1614         res->check_errors++;
1615         goto fail;
1616     }
1617 
1618     /* Do the actual checks */
1619     for(i = 0; i < s->l2_size; i++) {
1620         l2_entry = get_l2_entry(s, l2_table, i);
1621 
1622         switch (qcow2_get_cluster_type(bs, l2_entry)) {
1623         case QCOW2_CLUSTER_COMPRESSED:
1624             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1625             if (l2_entry & QCOW_OFLAG_COPIED) {
1626                 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
1627                     "copied flag must never be set for compressed "
1628                     "clusters\n", l2_entry & s->cluster_offset_mask);
1629                 l2_entry &= ~QCOW_OFLAG_COPIED;
1630                 res->corruptions++;
1631             }
1632 
1633             if (has_data_file(bs)) {
1634                 fprintf(stderr, "ERROR compressed cluster %d with data file, "
1635                         "entry=0x%" PRIx64 "\n", i, l2_entry);
1636                 res->corruptions++;
1637                 break;
1638             }
1639 
1640             /* Mark cluster as used */
1641             nb_csectors = ((l2_entry >> s->csize_shift) &
1642                            s->csize_mask) + 1;
1643             l2_entry &= s->cluster_offset_mask;
1644             ret = qcow2_inc_refcounts_imrt(
1645                 bs, res, refcount_table, refcount_table_size,
1646                 l2_entry & QCOW2_COMPRESSED_SECTOR_MASK,
1647                 nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE);
1648             if (ret < 0) {
1649                 goto fail;
1650             }
1651 
1652             if (flags & CHECK_FRAG_INFO) {
1653                 res->bfi.allocated_clusters++;
1654                 res->bfi.compressed_clusters++;
1655 
1656                 /* Compressed clusters are fragmented by nature.  Since they
1657                  * take up sub-sector space but we only have sector granularity
1658                  * I/O we need to re-read the same sectors even for adjacent
1659                  * compressed clusters.
1660                  */
1661                 res->bfi.fragmented_clusters++;
1662             }
1663             break;
1664 
1665         case QCOW2_CLUSTER_ZERO_ALLOC:
1666         case QCOW2_CLUSTER_NORMAL:
1667         {
1668             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1669 
1670             /* Correct offsets are cluster aligned */
1671             if (offset_into_cluster(s, offset)) {
1672                 bool contains_data;
1673                 res->corruptions++;
1674 
1675                 if (has_subclusters(s)) {
1676                     uint64_t l2_bitmap = get_l2_bitmap(s, l2_table, i);
1677                     contains_data = (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC);
1678                 } else {
1679                     contains_data = !(l2_entry & QCOW_OFLAG_ZERO);
1680                 }
1681 
1682                 if (!contains_data) {
1683                     fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated "
1684                             "cluster is not properly aligned; L2 entry "
1685                             "corrupted.\n",
1686                             fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1687                             offset);
1688                     if (fix & BDRV_FIX_ERRORS) {
1689                         int idx = i * (l2_entry_size(s) / sizeof(uint64_t));
1690                         uint64_t l2e_offset =
1691                             l2_offset + (uint64_t)i * l2_entry_size(s);
1692                         int ign = active ? QCOW2_OL_ACTIVE_L2 :
1693                                            QCOW2_OL_INACTIVE_L2;
1694 
1695                         l2_entry = has_subclusters(s) ? 0 : QCOW_OFLAG_ZERO;
1696                         set_l2_entry(s, l2_table, i, l2_entry);
1697                         ret = qcow2_pre_write_overlap_check(bs, ign,
1698                                 l2e_offset, l2_entry_size(s), false);
1699                         if (ret < 0) {
1700                             fprintf(stderr, "ERROR: Overlap check failed\n");
1701                             res->check_errors++;
1702                             /* Something is seriously wrong, so abort checking
1703                              * this L2 table */
1704                             goto fail;
1705                         }
1706 
1707                         ret = bdrv_pwrite_sync(bs->file, l2e_offset,
1708                                                &l2_table[idx],
1709                                                l2_entry_size(s));
1710                         if (ret < 0) {
1711                             fprintf(stderr, "ERROR: Failed to overwrite L2 "
1712                                     "table entry: %s\n", strerror(-ret));
1713                             res->check_errors++;
1714                             /* Do not abort, continue checking the rest of this
1715                              * L2 table's entries */
1716                         } else {
1717                             res->corruptions--;
1718                             res->corruptions_fixed++;
1719                             /* Skip marking the cluster as used
1720                              * (it is unused now) */
1721                             continue;
1722                         }
1723                     }
1724                 } else {
1725                     fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1726                         "not properly aligned; L2 entry corrupted.\n", offset);
1727                 }
1728             }
1729 
1730             if (flags & CHECK_FRAG_INFO) {
1731                 res->bfi.allocated_clusters++;
1732                 if (next_contiguous_offset &&
1733                     offset != next_contiguous_offset) {
1734                     res->bfi.fragmented_clusters++;
1735                 }
1736                 next_contiguous_offset = offset + s->cluster_size;
1737             }
1738 
1739             /* Mark cluster as used */
1740             if (!has_data_file(bs)) {
1741                 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table,
1742                                                refcount_table_size,
1743                                                offset, s->cluster_size);
1744                 if (ret < 0) {
1745                     goto fail;
1746                 }
1747             }
1748             break;
1749         }
1750 
1751         case QCOW2_CLUSTER_ZERO_PLAIN:
1752         case QCOW2_CLUSTER_UNALLOCATED:
1753             break;
1754 
1755         default:
1756             abort();
1757         }
1758     }
1759 
1760     g_free(l2_table);
1761     return 0;
1762 
1763 fail:
1764     g_free(l2_table);
1765     return ret;
1766 }
1767 
1768 /*
1769  * Increases the refcount for the L1 table, its L2 tables and all referenced
1770  * clusters in the given refcount table. While doing so, performs some checks
1771  * on L1 and L2 entries.
1772  *
1773  * Returns the number of errors found by the checks or -errno if an internal
1774  * error occurred.
1775  */
1776 static int check_refcounts_l1(BlockDriverState *bs,
1777                               BdrvCheckResult *res,
1778                               void **refcount_table,
1779                               int64_t *refcount_table_size,
1780                               int64_t l1_table_offset, int l1_size,
1781                               int flags, BdrvCheckMode fix, bool active)
1782 {
1783     BDRVQcow2State *s = bs->opaque;
1784     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1785     int i, ret;
1786 
1787     l1_size2 = l1_size * sizeof(uint64_t);
1788 
1789     /* Mark L1 table as used */
1790     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1791                                    l1_table_offset, l1_size2);
1792     if (ret < 0) {
1793         goto fail;
1794     }
1795 
1796     /* Read L1 table entries from disk */
1797     if (l1_size2 > 0) {
1798         l1_table = g_try_malloc(l1_size2);
1799         if (l1_table == NULL) {
1800             ret = -ENOMEM;
1801             res->check_errors++;
1802             goto fail;
1803         }
1804         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1805         if (ret < 0) {
1806             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1807             res->check_errors++;
1808             goto fail;
1809         }
1810         for(i = 0;i < l1_size; i++)
1811             be64_to_cpus(&l1_table[i]);
1812     }
1813 
1814     /* Do the actual checks */
1815     for(i = 0; i < l1_size; i++) {
1816         l2_offset = l1_table[i];
1817         if (l2_offset) {
1818             /* Mark L2 table as used */
1819             l2_offset &= L1E_OFFSET_MASK;
1820             ret = qcow2_inc_refcounts_imrt(bs, res,
1821                                            refcount_table, refcount_table_size,
1822                                            l2_offset, s->cluster_size);
1823             if (ret < 0) {
1824                 goto fail;
1825             }
1826 
1827             /* L2 tables are cluster aligned */
1828             if (offset_into_cluster(s, l2_offset)) {
1829                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1830                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1831                 res->corruptions++;
1832             }
1833 
1834             /* Process and check L2 entries */
1835             ret = check_refcounts_l2(bs, res, refcount_table,
1836                                      refcount_table_size, l2_offset, flags,
1837                                      fix, active);
1838             if (ret < 0) {
1839                 goto fail;
1840             }
1841         }
1842     }
1843     g_free(l1_table);
1844     return 0;
1845 
1846 fail:
1847     g_free(l1_table);
1848     return ret;
1849 }
1850 
1851 /*
1852  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1853  *
1854  * This function does not print an error message nor does it increment
1855  * check_errors if qcow2_get_refcount fails (this is because such an error will
1856  * have been already detected and sufficiently signaled by the calling function
1857  * (qcow2_check_refcounts) by the time this function is called).
1858  */
1859 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1860                               BdrvCheckMode fix)
1861 {
1862     BDRVQcow2State *s = bs->opaque;
1863     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1864     int ret;
1865     uint64_t refcount;
1866     int i, j;
1867     bool repair;
1868 
1869     if (fix & BDRV_FIX_ERRORS) {
1870         /* Always repair */
1871         repair = true;
1872     } else if (fix & BDRV_FIX_LEAKS) {
1873         /* Repair only if that seems safe: This function is always
1874          * called after the refcounts have been fixed, so the refcount
1875          * is accurate if that repair was successful */
1876         repair = !res->check_errors && !res->corruptions && !res->leaks;
1877     } else {
1878         repair = false;
1879     }
1880 
1881     for (i = 0; i < s->l1_size; i++) {
1882         uint64_t l1_entry = s->l1_table[i];
1883         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1884         int l2_dirty = 0;
1885 
1886         if (!l2_offset) {
1887             continue;
1888         }
1889 
1890         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1891                                  &refcount);
1892         if (ret < 0) {
1893             /* don't print message nor increment check_errors */
1894             continue;
1895         }
1896         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1897             res->corruptions++;
1898             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1899                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1900                     repair ? "Repairing" : "ERROR", i, l1_entry, refcount);
1901             if (repair) {
1902                 s->l1_table[i] = refcount == 1
1903                                ? l1_entry |  QCOW_OFLAG_COPIED
1904                                : l1_entry & ~QCOW_OFLAG_COPIED;
1905                 ret = qcow2_write_l1_entry(bs, i);
1906                 if (ret < 0) {
1907                     res->check_errors++;
1908                     goto fail;
1909                 }
1910                 res->corruptions--;
1911                 res->corruptions_fixed++;
1912             }
1913         }
1914 
1915         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1916                          s->l2_size * l2_entry_size(s));
1917         if (ret < 0) {
1918             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1919                     strerror(-ret));
1920             res->check_errors++;
1921             goto fail;
1922         }
1923 
1924         for (j = 0; j < s->l2_size; j++) {
1925             uint64_t l2_entry = get_l2_entry(s, l2_table, j);
1926             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1927             QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1928 
1929             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1930                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1931                 if (has_data_file(bs)) {
1932                     refcount = 1;
1933                 } else {
1934                     ret = qcow2_get_refcount(bs,
1935                                              data_offset >> s->cluster_bits,
1936                                              &refcount);
1937                     if (ret < 0) {
1938                         /* don't print message nor increment check_errors */
1939                         continue;
1940                     }
1941                 }
1942                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1943                     res->corruptions++;
1944                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1945                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1946                             repair ? "Repairing" : "ERROR", l2_entry, refcount);
1947                     if (repair) {
1948                         set_l2_entry(s, l2_table, j,
1949                                      refcount == 1 ?
1950                                      l2_entry |  QCOW_OFLAG_COPIED :
1951                                      l2_entry & ~QCOW_OFLAG_COPIED);
1952                         l2_dirty++;
1953                     }
1954                 }
1955             }
1956         }
1957 
1958         if (l2_dirty > 0) {
1959             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1960                                                 l2_offset, s->cluster_size,
1961                                                 false);
1962             if (ret < 0) {
1963                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1964                         "overlap check failed: %s\n", strerror(-ret));
1965                 res->check_errors++;
1966                 goto fail;
1967             }
1968 
1969             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1970                               s->cluster_size);
1971             if (ret < 0) {
1972                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1973                         strerror(-ret));
1974                 res->check_errors++;
1975                 goto fail;
1976             }
1977             res->corruptions -= l2_dirty;
1978             res->corruptions_fixed += l2_dirty;
1979         }
1980     }
1981 
1982     ret = 0;
1983 
1984 fail:
1985     qemu_vfree(l2_table);
1986     return ret;
1987 }
1988 
1989 /*
1990  * Checks consistency of refblocks and accounts for each refblock in
1991  * *refcount_table.
1992  */
1993 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1994                            BdrvCheckMode fix, bool *rebuild,
1995                            void **refcount_table, int64_t *nb_clusters)
1996 {
1997     BDRVQcow2State *s = bs->opaque;
1998     int64_t i, size;
1999     int ret;
2000 
2001     for(i = 0; i < s->refcount_table_size; i++) {
2002         uint64_t offset, cluster;
2003         offset = s->refcount_table[i];
2004         cluster = offset >> s->cluster_bits;
2005 
2006         /* Refcount blocks are cluster aligned */
2007         if (offset_into_cluster(s, offset)) {
2008             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
2009                 "cluster aligned; refcount table entry corrupted\n", i);
2010             res->corruptions++;
2011             *rebuild = true;
2012             continue;
2013         }
2014 
2015         if (cluster >= *nb_clusters) {
2016             res->corruptions++;
2017             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
2018                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
2019 
2020             if (fix & BDRV_FIX_ERRORS) {
2021                 int64_t new_nb_clusters;
2022                 Error *local_err = NULL;
2023 
2024                 if (offset > INT64_MAX - s->cluster_size) {
2025                     ret = -EINVAL;
2026                     goto resize_fail;
2027                 }
2028 
2029                 ret = bdrv_truncate(bs->file, offset + s->cluster_size, false,
2030                                     PREALLOC_MODE_OFF, 0, &local_err);
2031                 if (ret < 0) {
2032                     error_report_err(local_err);
2033                     goto resize_fail;
2034                 }
2035                 size = bdrv_getlength(bs->file->bs);
2036                 if (size < 0) {
2037                     ret = size;
2038                     goto resize_fail;
2039                 }
2040 
2041                 new_nb_clusters = size_to_clusters(s, size);
2042                 assert(new_nb_clusters >= *nb_clusters);
2043 
2044                 ret = realloc_refcount_array(s, refcount_table,
2045                                              nb_clusters, new_nb_clusters);
2046                 if (ret < 0) {
2047                     res->check_errors++;
2048                     return ret;
2049                 }
2050 
2051                 if (cluster >= *nb_clusters) {
2052                     ret = -EINVAL;
2053                     goto resize_fail;
2054                 }
2055 
2056                 res->corruptions--;
2057                 res->corruptions_fixed++;
2058                 ret = qcow2_inc_refcounts_imrt(bs, res,
2059                                                refcount_table, nb_clusters,
2060                                                offset, s->cluster_size);
2061                 if (ret < 0) {
2062                     return ret;
2063                 }
2064                 /* No need to check whether the refcount is now greater than 1:
2065                  * This area was just allocated and zeroed, so it can only be
2066                  * exactly 1 after qcow2_inc_refcounts_imrt() */
2067                 continue;
2068 
2069 resize_fail:
2070                 *rebuild = true;
2071                 fprintf(stderr, "ERROR could not resize image: %s\n",
2072                         strerror(-ret));
2073             }
2074             continue;
2075         }
2076 
2077         if (offset != 0) {
2078             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2079                                            offset, s->cluster_size);
2080             if (ret < 0) {
2081                 return ret;
2082             }
2083             if (s->get_refcount(*refcount_table, cluster) != 1) {
2084                 fprintf(stderr, "ERROR refcount block %" PRId64
2085                         " refcount=%" PRIu64 "\n", i,
2086                         s->get_refcount(*refcount_table, cluster));
2087                 res->corruptions++;
2088                 *rebuild = true;
2089             }
2090         }
2091     }
2092 
2093     return 0;
2094 }
2095 
2096 /*
2097  * Calculates an in-memory refcount table.
2098  */
2099 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2100                                BdrvCheckMode fix, bool *rebuild,
2101                                void **refcount_table, int64_t *nb_clusters)
2102 {
2103     BDRVQcow2State *s = bs->opaque;
2104     int64_t i;
2105     QCowSnapshot *sn;
2106     int ret;
2107 
2108     if (!*refcount_table) {
2109         int64_t old_size = 0;
2110         ret = realloc_refcount_array(s, refcount_table,
2111                                      &old_size, *nb_clusters);
2112         if (ret < 0) {
2113             res->check_errors++;
2114             return ret;
2115         }
2116     }
2117 
2118     /* header */
2119     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2120                                    0, s->cluster_size);
2121     if (ret < 0) {
2122         return ret;
2123     }
2124 
2125     /* current L1 table */
2126     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2127                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2128                              fix, true);
2129     if (ret < 0) {
2130         return ret;
2131     }
2132 
2133     /* snapshots */
2134     if (has_data_file(bs) && s->nb_snapshots) {
2135         fprintf(stderr, "ERROR %d snapshots in image with data file\n",
2136                 s->nb_snapshots);
2137         res->corruptions++;
2138     }
2139 
2140     for (i = 0; i < s->nb_snapshots; i++) {
2141         sn = s->snapshots + i;
2142         if (offset_into_cluster(s, sn->l1_table_offset)) {
2143             fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": "
2144                     "L1 table is not cluster aligned; snapshot table entry "
2145                     "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset);
2146             res->corruptions++;
2147             continue;
2148         }
2149         if (sn->l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2150             fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": "
2151                     "L1 table is too large; snapshot table entry corrupted\n",
2152                     sn->id_str, sn->name, sn->l1_size);
2153             res->corruptions++;
2154             continue;
2155         }
2156         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2157                                  sn->l1_table_offset, sn->l1_size, 0, fix,
2158                                  false);
2159         if (ret < 0) {
2160             return ret;
2161         }
2162     }
2163     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2164                                    s->snapshots_offset, s->snapshots_size);
2165     if (ret < 0) {
2166         return ret;
2167     }
2168 
2169     /* refcount data */
2170     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2171                                    s->refcount_table_offset,
2172                                    s->refcount_table_size * sizeof(uint64_t));
2173     if (ret < 0) {
2174         return ret;
2175     }
2176 
2177     /* encryption */
2178     if (s->crypto_header.length) {
2179         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2180                                        s->crypto_header.offset,
2181                                        s->crypto_header.length);
2182         if (ret < 0) {
2183             return ret;
2184         }
2185     }
2186 
2187     /* bitmaps */
2188     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2189     if (ret < 0) {
2190         return ret;
2191     }
2192 
2193     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2194 }
2195 
2196 /*
2197  * Compares the actual reference count for each cluster in the image against the
2198  * refcount as reported by the refcount structures on-disk.
2199  */
2200 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2201                               BdrvCheckMode fix, bool *rebuild,
2202                               int64_t *highest_cluster,
2203                               void *refcount_table, int64_t nb_clusters)
2204 {
2205     BDRVQcow2State *s = bs->opaque;
2206     int64_t i;
2207     uint64_t refcount1, refcount2;
2208     int ret;
2209 
2210     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2211         ret = qcow2_get_refcount(bs, i, &refcount1);
2212         if (ret < 0) {
2213             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2214                     i, strerror(-ret));
2215             res->check_errors++;
2216             continue;
2217         }
2218 
2219         refcount2 = s->get_refcount(refcount_table, i);
2220 
2221         if (refcount1 > 0 || refcount2 > 0) {
2222             *highest_cluster = i;
2223         }
2224 
2225         if (refcount1 != refcount2) {
2226             /* Check if we're allowed to fix the mismatch */
2227             int *num_fixed = NULL;
2228             if (refcount1 == 0) {
2229                 *rebuild = true;
2230             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2231                 num_fixed = &res->leaks_fixed;
2232             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2233                 num_fixed = &res->corruptions_fixed;
2234             }
2235 
2236             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2237                     " reference=%" PRIu64 "\n",
2238                    num_fixed != NULL     ? "Repairing" :
2239                    refcount1 < refcount2 ? "ERROR" :
2240                                            "Leaked",
2241                    i, refcount1, refcount2);
2242 
2243             if (num_fixed) {
2244                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2245                                       refcount_diff(refcount1, refcount2),
2246                                       refcount1 > refcount2,
2247                                       QCOW2_DISCARD_ALWAYS);
2248                 if (ret >= 0) {
2249                     (*num_fixed)++;
2250                     continue;
2251                 }
2252             }
2253 
2254             /* And if we couldn't, print an error */
2255             if (refcount1 < refcount2) {
2256                 res->corruptions++;
2257             } else {
2258                 res->leaks++;
2259             }
2260         }
2261     }
2262 }
2263 
2264 /*
2265  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2266  * the on-disk refcount structures.
2267  *
2268  * On input, *first_free_cluster tells where to start looking, and need not
2269  * actually be a free cluster; the returned offset will not be before that
2270  * cluster.  On output, *first_free_cluster points to the first gap found, even
2271  * if that gap was too small to be used as the returned offset.
2272  *
2273  * Note that *first_free_cluster is a cluster index whereas the return value is
2274  * an offset.
2275  */
2276 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2277                                    int cluster_count,
2278                                    void **refcount_table,
2279                                    int64_t *imrt_nb_clusters,
2280                                    int64_t *first_free_cluster)
2281 {
2282     BDRVQcow2State *s = bs->opaque;
2283     int64_t cluster = *first_free_cluster, i;
2284     bool first_gap = true;
2285     int contiguous_free_clusters;
2286     int ret;
2287 
2288     /* Starting at *first_free_cluster, find a range of at least cluster_count
2289      * continuously free clusters */
2290     for (contiguous_free_clusters = 0;
2291          cluster < *imrt_nb_clusters &&
2292          contiguous_free_clusters < cluster_count;
2293          cluster++)
2294     {
2295         if (!s->get_refcount(*refcount_table, cluster)) {
2296             contiguous_free_clusters++;
2297             if (first_gap) {
2298                 /* If this is the first free cluster found, update
2299                  * *first_free_cluster accordingly */
2300                 *first_free_cluster = cluster;
2301                 first_gap = false;
2302             }
2303         } else if (contiguous_free_clusters) {
2304             contiguous_free_clusters = 0;
2305         }
2306     }
2307 
2308     /* If contiguous_free_clusters is greater than zero, it contains the number
2309      * of continuously free clusters until the current cluster; the first free
2310      * cluster in the current "gap" is therefore
2311      * cluster - contiguous_free_clusters */
2312 
2313     /* If no such range could be found, grow the in-memory refcount table
2314      * accordingly to append free clusters at the end of the image */
2315     if (contiguous_free_clusters < cluster_count) {
2316         /* contiguous_free_clusters clusters are already empty at the image end;
2317          * we need cluster_count clusters; therefore, we have to allocate
2318          * cluster_count - contiguous_free_clusters new clusters at the end of
2319          * the image (which is the current value of cluster; note that cluster
2320          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2321          * the image end) */
2322         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2323                                      cluster + cluster_count
2324                                      - contiguous_free_clusters);
2325         if (ret < 0) {
2326             return ret;
2327         }
2328     }
2329 
2330     /* Go back to the first free cluster */
2331     cluster -= contiguous_free_clusters;
2332     for (i = 0; i < cluster_count; i++) {
2333         s->set_refcount(*refcount_table, cluster + i, 1);
2334     }
2335 
2336     return cluster << s->cluster_bits;
2337 }
2338 
2339 /*
2340  * Creates a new refcount structure based solely on the in-memory information
2341  * given through *refcount_table. All necessary allocations will be reflected
2342  * in that array.
2343  *
2344  * On success, the old refcount structure is leaked (it will be covered by the
2345  * new refcount structure).
2346  */
2347 static int rebuild_refcount_structure(BlockDriverState *bs,
2348                                       BdrvCheckResult *res,
2349                                       void **refcount_table,
2350                                       int64_t *nb_clusters)
2351 {
2352     BDRVQcow2State *s = bs->opaque;
2353     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2354     int64_t refblock_offset, refblock_start, refblock_index;
2355     uint32_t reftable_size = 0;
2356     uint64_t *on_disk_reftable = NULL;
2357     void *on_disk_refblock;
2358     int ret = 0;
2359     struct {
2360         uint64_t reftable_offset;
2361         uint32_t reftable_clusters;
2362     } QEMU_PACKED reftable_offset_and_clusters;
2363 
2364     qcow2_cache_empty(bs, s->refcount_block_cache);
2365 
2366 write_refblocks:
2367     for (; cluster < *nb_clusters; cluster++) {
2368         if (!s->get_refcount(*refcount_table, cluster)) {
2369             continue;
2370         }
2371 
2372         refblock_index = cluster >> s->refcount_block_bits;
2373         refblock_start = refblock_index << s->refcount_block_bits;
2374 
2375         /* Don't allocate a cluster in a refblock already written to disk */
2376         if (first_free_cluster < refblock_start) {
2377             first_free_cluster = refblock_start;
2378         }
2379         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2380                                               nb_clusters, &first_free_cluster);
2381         if (refblock_offset < 0) {
2382             fprintf(stderr, "ERROR allocating refblock: %s\n",
2383                     strerror(-refblock_offset));
2384             res->check_errors++;
2385             ret = refblock_offset;
2386             goto fail;
2387         }
2388 
2389         if (reftable_size <= refblock_index) {
2390             uint32_t old_reftable_size = reftable_size;
2391             uint64_t *new_on_disk_reftable;
2392 
2393             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2394                                      s->cluster_size) / sizeof(uint64_t);
2395             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2396                                                  reftable_size *
2397                                                  sizeof(uint64_t));
2398             if (!new_on_disk_reftable) {
2399                 res->check_errors++;
2400                 ret = -ENOMEM;
2401                 goto fail;
2402             }
2403             on_disk_reftable = new_on_disk_reftable;
2404 
2405             memset(on_disk_reftable + old_reftable_size, 0,
2406                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2407 
2408             /* The offset we have for the reftable is now no longer valid;
2409              * this will leak that range, but we can easily fix that by running
2410              * a leak-fixing check after this rebuild operation */
2411             reftable_offset = -1;
2412         } else {
2413             assert(on_disk_reftable);
2414         }
2415         on_disk_reftable[refblock_index] = refblock_offset;
2416 
2417         /* If this is apparently the last refblock (for now), try to squeeze the
2418          * reftable in */
2419         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2420             reftable_offset < 0)
2421         {
2422             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2423                                                           sizeof(uint64_t));
2424             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2425                                                   refcount_table, nb_clusters,
2426                                                   &first_free_cluster);
2427             if (reftable_offset < 0) {
2428                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2429                         strerror(-reftable_offset));
2430                 res->check_errors++;
2431                 ret = reftable_offset;
2432                 goto fail;
2433             }
2434         }
2435 
2436         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2437                                             s->cluster_size, false);
2438         if (ret < 0) {
2439             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2440             goto fail;
2441         }
2442 
2443         /* The size of *refcount_table is always cluster-aligned, therefore the
2444          * write operation will not overflow */
2445         on_disk_refblock = (void *)((char *) *refcount_table +
2446                                     refblock_index * s->cluster_size);
2447 
2448         ret = bdrv_pwrite(bs->file, refblock_offset, on_disk_refblock,
2449                           s->cluster_size);
2450         if (ret < 0) {
2451             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2452             goto fail;
2453         }
2454 
2455         /* Go to the end of this refblock */
2456         cluster = refblock_start + s->refcount_block_size - 1;
2457     }
2458 
2459     if (reftable_offset < 0) {
2460         uint64_t post_refblock_start, reftable_clusters;
2461 
2462         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2463         reftable_clusters = size_to_clusters(s,
2464                                              reftable_size * sizeof(uint64_t));
2465         /* Not pretty but simple */
2466         if (first_free_cluster < post_refblock_start) {
2467             first_free_cluster = post_refblock_start;
2468         }
2469         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2470                                               refcount_table, nb_clusters,
2471                                               &first_free_cluster);
2472         if (reftable_offset < 0) {
2473             fprintf(stderr, "ERROR allocating reftable: %s\n",
2474                     strerror(-reftable_offset));
2475             res->check_errors++;
2476             ret = reftable_offset;
2477             goto fail;
2478         }
2479 
2480         goto write_refblocks;
2481     }
2482 
2483     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2484         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2485     }
2486 
2487     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2488                                         reftable_size * sizeof(uint64_t),
2489                                         false);
2490     if (ret < 0) {
2491         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2492         goto fail;
2493     }
2494 
2495     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2496     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2497                       reftable_size * sizeof(uint64_t));
2498     if (ret < 0) {
2499         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2500         goto fail;
2501     }
2502 
2503     /* Enter new reftable into the image header */
2504     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2505     reftable_offset_and_clusters.reftable_clusters =
2506         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2507     ret = bdrv_pwrite_sync(bs->file,
2508                            offsetof(QCowHeader, refcount_table_offset),
2509                            &reftable_offset_and_clusters,
2510                            sizeof(reftable_offset_and_clusters));
2511     if (ret < 0) {
2512         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2513         goto fail;
2514     }
2515 
2516     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2517         be64_to_cpus(&on_disk_reftable[refblock_index]);
2518     }
2519     s->refcount_table = on_disk_reftable;
2520     s->refcount_table_offset = reftable_offset;
2521     s->refcount_table_size = reftable_size;
2522     update_max_refcount_table_index(s);
2523 
2524     return 0;
2525 
2526 fail:
2527     g_free(on_disk_reftable);
2528     return ret;
2529 }
2530 
2531 /*
2532  * Checks an image for refcount consistency.
2533  *
2534  * Returns 0 if no errors are found, the number of errors in case the image is
2535  * detected as corrupted, and -errno when an internal error occurred.
2536  */
2537 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2538                           BdrvCheckMode fix)
2539 {
2540     BDRVQcow2State *s = bs->opaque;
2541     BdrvCheckResult pre_compare_res;
2542     int64_t size, highest_cluster, nb_clusters;
2543     void *refcount_table = NULL;
2544     bool rebuild = false;
2545     int ret;
2546 
2547     size = bdrv_getlength(bs->file->bs);
2548     if (size < 0) {
2549         res->check_errors++;
2550         return size;
2551     }
2552 
2553     nb_clusters = size_to_clusters(s, size);
2554     if (nb_clusters > INT_MAX) {
2555         res->check_errors++;
2556         return -EFBIG;
2557     }
2558 
2559     res->bfi.total_clusters =
2560         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2561 
2562     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2563                               &nb_clusters);
2564     if (ret < 0) {
2565         goto fail;
2566     }
2567 
2568     /* In case we don't need to rebuild the refcount structure (but want to fix
2569      * something), this function is immediately called again, in which case the
2570      * result should be ignored */
2571     pre_compare_res = *res;
2572     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2573                       nb_clusters);
2574 
2575     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2576         BdrvCheckResult old_res = *res;
2577         int fresh_leaks = 0;
2578 
2579         fprintf(stderr, "Rebuilding refcount structure\n");
2580         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2581                                          &nb_clusters);
2582         if (ret < 0) {
2583             goto fail;
2584         }
2585 
2586         res->corruptions = 0;
2587         res->leaks = 0;
2588 
2589         /* Because the old reftable has been exchanged for a new one the
2590          * references have to be recalculated */
2591         rebuild = false;
2592         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2593         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2594                                   &nb_clusters);
2595         if (ret < 0) {
2596             goto fail;
2597         }
2598 
2599         if (fix & BDRV_FIX_LEAKS) {
2600             /* The old refcount structures are now leaked, fix it; the result
2601              * can be ignored, aside from leaks which were introduced by
2602              * rebuild_refcount_structure() that could not be fixed */
2603             BdrvCheckResult saved_res = *res;
2604             *res = (BdrvCheckResult){ 0 };
2605 
2606             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2607                               &highest_cluster, refcount_table, nb_clusters);
2608             if (rebuild) {
2609                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2610                         "broken\n");
2611             }
2612 
2613             /* Any leaks accounted for here were introduced by
2614              * rebuild_refcount_structure() because that function has created a
2615              * new refcount structure from scratch */
2616             fresh_leaks = res->leaks;
2617             *res = saved_res;
2618         }
2619 
2620         if (res->corruptions < old_res.corruptions) {
2621             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2622         }
2623         if (res->leaks < old_res.leaks) {
2624             res->leaks_fixed += old_res.leaks - res->leaks;
2625         }
2626         res->leaks += fresh_leaks;
2627     } else if (fix) {
2628         if (rebuild) {
2629             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2630             res->check_errors++;
2631             ret = -EIO;
2632             goto fail;
2633         }
2634 
2635         if (res->leaks || res->corruptions) {
2636             *res = pre_compare_res;
2637             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2638                               refcount_table, nb_clusters);
2639         }
2640     }
2641 
2642     /* check OFLAG_COPIED */
2643     ret = check_oflag_copied(bs, res, fix);
2644     if (ret < 0) {
2645         goto fail;
2646     }
2647 
2648     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2649     ret = 0;
2650 
2651 fail:
2652     g_free(refcount_table);
2653 
2654     return ret;
2655 }
2656 
2657 #define overlaps_with(ofs, sz) \
2658     ranges_overlap(offset, size, ofs, sz)
2659 
2660 /*
2661  * Checks if the given offset into the image file is actually free to use by
2662  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2663  * i.e. a sanity check without relying on the refcount tables.
2664  *
2665  * The ign parameter specifies what checks not to perform (being a bitmask of
2666  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2667  *
2668  * Returns:
2669  * - 0 if writing to this offset will not affect the mentioned metadata
2670  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2671  * - a negative value (-errno) indicating an error while performing a check,
2672  *   e.g. when bdrv_pread failed on QCOW2_OL_INACTIVE_L2
2673  */
2674 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2675                                  int64_t size)
2676 {
2677     BDRVQcow2State *s = bs->opaque;
2678     int chk = s->overlap_check & ~ign;
2679     int i, j;
2680 
2681     if (!size) {
2682         return 0;
2683     }
2684 
2685     if (chk & QCOW2_OL_MAIN_HEADER) {
2686         if (offset < s->cluster_size) {
2687             return QCOW2_OL_MAIN_HEADER;
2688         }
2689     }
2690 
2691     /* align range to test to cluster boundaries */
2692     size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2693     offset = start_of_cluster(s, offset);
2694 
2695     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2696         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2697             return QCOW2_OL_ACTIVE_L1;
2698         }
2699     }
2700 
2701     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2702         if (overlaps_with(s->refcount_table_offset,
2703             s->refcount_table_size * sizeof(uint64_t))) {
2704             return QCOW2_OL_REFCOUNT_TABLE;
2705         }
2706     }
2707 
2708     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2709         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2710             return QCOW2_OL_SNAPSHOT_TABLE;
2711         }
2712     }
2713 
2714     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2715         for (i = 0; i < s->nb_snapshots; i++) {
2716             if (s->snapshots[i].l1_size &&
2717                 overlaps_with(s->snapshots[i].l1_table_offset,
2718                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2719                 return QCOW2_OL_INACTIVE_L1;
2720             }
2721         }
2722     }
2723 
2724     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2725         for (i = 0; i < s->l1_size; i++) {
2726             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2727                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2728                 s->cluster_size)) {
2729                 return QCOW2_OL_ACTIVE_L2;
2730             }
2731         }
2732     }
2733 
2734     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2735         unsigned last_entry = s->max_refcount_table_index;
2736         assert(last_entry < s->refcount_table_size);
2737         assert(last_entry + 1 == s->refcount_table_size ||
2738                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2739         for (i = 0; i <= last_entry; i++) {
2740             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2741                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2742                 s->cluster_size)) {
2743                 return QCOW2_OL_REFCOUNT_BLOCK;
2744             }
2745         }
2746     }
2747 
2748     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2749         for (i = 0; i < s->nb_snapshots; i++) {
2750             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2751             uint32_t l1_sz  = s->snapshots[i].l1_size;
2752             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2753             uint64_t *l1;
2754             int ret;
2755 
2756             ret = qcow2_validate_table(bs, l1_ofs, l1_sz, sizeof(uint64_t),
2757                                        QCOW_MAX_L1_SIZE, "", NULL);
2758             if (ret < 0) {
2759                 return ret;
2760             }
2761 
2762             l1 = g_try_malloc(l1_sz2);
2763 
2764             if (l1_sz2 && l1 == NULL) {
2765                 return -ENOMEM;
2766             }
2767 
2768             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2769             if (ret < 0) {
2770                 g_free(l1);
2771                 return ret;
2772             }
2773 
2774             for (j = 0; j < l1_sz; j++) {
2775                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2776                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2777                     g_free(l1);
2778                     return QCOW2_OL_INACTIVE_L2;
2779                 }
2780             }
2781 
2782             g_free(l1);
2783         }
2784     }
2785 
2786     if ((chk & QCOW2_OL_BITMAP_DIRECTORY) &&
2787         (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS))
2788     {
2789         if (overlaps_with(s->bitmap_directory_offset,
2790                           s->bitmap_directory_size))
2791         {
2792             return QCOW2_OL_BITMAP_DIRECTORY;
2793         }
2794     }
2795 
2796     return 0;
2797 }
2798 
2799 static const char *metadata_ol_names[] = {
2800     [QCOW2_OL_MAIN_HEADER_BITNR]        = "qcow2_header",
2801     [QCOW2_OL_ACTIVE_L1_BITNR]          = "active L1 table",
2802     [QCOW2_OL_ACTIVE_L2_BITNR]          = "active L2 table",
2803     [QCOW2_OL_REFCOUNT_TABLE_BITNR]     = "refcount table",
2804     [QCOW2_OL_REFCOUNT_BLOCK_BITNR]     = "refcount block",
2805     [QCOW2_OL_SNAPSHOT_TABLE_BITNR]     = "snapshot table",
2806     [QCOW2_OL_INACTIVE_L1_BITNR]        = "inactive L1 table",
2807     [QCOW2_OL_INACTIVE_L2_BITNR]        = "inactive L2 table",
2808     [QCOW2_OL_BITMAP_DIRECTORY_BITNR]   = "bitmap directory",
2809 };
2810 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names));
2811 
2812 /*
2813  * First performs a check for metadata overlaps (through
2814  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2815  * while performing a check), that value is returned. If an impending overlap
2816  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2817  * and -EIO returned.
2818  *
2819  * Returns 0 if there were neither overlaps nor errors while checking for
2820  * overlaps; or a negative value (-errno) on error.
2821  */
2822 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2823                                   int64_t size, bool data_file)
2824 {
2825     int ret;
2826 
2827     if (data_file && has_data_file(bs)) {
2828         return 0;
2829     }
2830 
2831     ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2832     if (ret < 0) {
2833         return ret;
2834     } else if (ret > 0) {
2835         int metadata_ol_bitnr = ctz32(ret);
2836         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2837 
2838         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2839                                 "write on metadata (overlaps with %s)",
2840                                 metadata_ol_names[metadata_ol_bitnr]);
2841         return -EIO;
2842     }
2843 
2844     return 0;
2845 }
2846 
2847 /* A pointer to a function of this type is given to walk_over_reftable(). That
2848  * function will create refblocks and pass them to a RefblockFinishOp once they
2849  * are completed (@refblock). @refblock_empty is set if the refblock is
2850  * completely empty.
2851  *
2852  * Along with the refblock, a corresponding reftable entry is passed, in the
2853  * reftable @reftable (which may be reallocated) at @reftable_index.
2854  *
2855  * @allocated should be set to true if a new cluster has been allocated.
2856  */
2857 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2858                                uint64_t reftable_index, uint64_t *reftable_size,
2859                                void *refblock, bool refblock_empty,
2860                                bool *allocated, Error **errp);
2861 
2862 /**
2863  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2864  * it is not empty) and inserts its offset into the new reftable. The size of
2865  * this new reftable is increased as required.
2866  */
2867 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2868                           uint64_t reftable_index, uint64_t *reftable_size,
2869                           void *refblock, bool refblock_empty, bool *allocated,
2870                           Error **errp)
2871 {
2872     BDRVQcow2State *s = bs->opaque;
2873     int64_t offset;
2874 
2875     if (!refblock_empty && reftable_index >= *reftable_size) {
2876         uint64_t *new_reftable;
2877         uint64_t new_reftable_size;
2878 
2879         new_reftable_size = ROUND_UP(reftable_index + 1,
2880                                      s->cluster_size / sizeof(uint64_t));
2881         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2882             error_setg(errp,
2883                        "This operation would make the refcount table grow "
2884                        "beyond the maximum size supported by QEMU, aborting");
2885             return -ENOTSUP;
2886         }
2887 
2888         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2889                                                 sizeof(uint64_t));
2890         if (!new_reftable) {
2891             error_setg(errp, "Failed to increase reftable buffer size");
2892             return -ENOMEM;
2893         }
2894 
2895         memset(new_reftable + *reftable_size, 0,
2896                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2897 
2898         *reftable      = new_reftable;
2899         *reftable_size = new_reftable_size;
2900     }
2901 
2902     if (!refblock_empty && !(*reftable)[reftable_index]) {
2903         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2904         if (offset < 0) {
2905             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2906             return offset;
2907         }
2908         (*reftable)[reftable_index] = offset;
2909         *allocated = true;
2910     }
2911 
2912     return 0;
2913 }
2914 
2915 /**
2916  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2917  * offset specified by the new reftable's entry. It does not modify the new
2918  * reftable or change any refcounts.
2919  */
2920 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2921                           uint64_t reftable_index, uint64_t *reftable_size,
2922                           void *refblock, bool refblock_empty, bool *allocated,
2923                           Error **errp)
2924 {
2925     BDRVQcow2State *s = bs->opaque;
2926     int64_t offset;
2927     int ret;
2928 
2929     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2930         offset = (*reftable)[reftable_index];
2931 
2932         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size,
2933                                             false);
2934         if (ret < 0) {
2935             error_setg_errno(errp, -ret, "Overlap check failed");
2936             return ret;
2937         }
2938 
2939         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2940         if (ret < 0) {
2941             error_setg_errno(errp, -ret, "Failed to write refblock");
2942             return ret;
2943         }
2944     } else {
2945         assert(refblock_empty);
2946     }
2947 
2948     return 0;
2949 }
2950 
2951 /**
2952  * This function walks over the existing reftable and every referenced refblock;
2953  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2954  * create an equal new entry in the passed @new_refblock. Once that
2955  * @new_refblock is completely filled, @operation will be called.
2956  *
2957  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2958  * @index is the index of the walk_over_reftable() calls and @total is the total
2959  * number of walk_over_reftable() calls per amend operation. Both are used for
2960  * calculating the parameters for the status callback.
2961  *
2962  * @allocated is set to true if a new cluster has been allocated.
2963  */
2964 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2965                               uint64_t *new_reftable_index,
2966                               uint64_t *new_reftable_size,
2967                               void *new_refblock, int new_refblock_size,
2968                               int new_refcount_bits,
2969                               RefblockFinishOp *operation, bool *allocated,
2970                               Qcow2SetRefcountFunc *new_set_refcount,
2971                               BlockDriverAmendStatusCB *status_cb,
2972                               void *cb_opaque, int index, int total,
2973                               Error **errp)
2974 {
2975     BDRVQcow2State *s = bs->opaque;
2976     uint64_t reftable_index;
2977     bool new_refblock_empty = true;
2978     int refblock_index;
2979     int new_refblock_index = 0;
2980     int ret;
2981 
2982     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2983          reftable_index++)
2984     {
2985         uint64_t refblock_offset = s->refcount_table[reftable_index]
2986                                  & REFT_OFFSET_MASK;
2987 
2988         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2989                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2990 
2991         if (refblock_offset) {
2992             void *refblock;
2993 
2994             if (offset_into_cluster(s, refblock_offset)) {
2995                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2996                                         PRIx64 " unaligned (reftable index: %#"
2997                                         PRIx64 ")", refblock_offset,
2998                                         reftable_index);
2999                 error_setg(errp,
3000                            "Image is corrupt (unaligned refblock offset)");
3001                 return -EIO;
3002             }
3003 
3004             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
3005                                   &refblock);
3006             if (ret < 0) {
3007                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
3008                 return ret;
3009             }
3010 
3011             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3012                  refblock_index++)
3013             {
3014                 uint64_t refcount;
3015 
3016                 if (new_refblock_index >= new_refblock_size) {
3017                     /* new_refblock is now complete */
3018                     ret = operation(bs, new_reftable, *new_reftable_index,
3019                                     new_reftable_size, new_refblock,
3020                                     new_refblock_empty, allocated, errp);
3021                     if (ret < 0) {
3022                         qcow2_cache_put(s->refcount_block_cache, &refblock);
3023                         return ret;
3024                     }
3025 
3026                     (*new_reftable_index)++;
3027                     new_refblock_index = 0;
3028                     new_refblock_empty = true;
3029                 }
3030 
3031                 refcount = s->get_refcount(refblock, refblock_index);
3032                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
3033                     uint64_t offset;
3034 
3035                     qcow2_cache_put(s->refcount_block_cache, &refblock);
3036 
3037                     offset = ((reftable_index << s->refcount_block_bits)
3038                               + refblock_index) << s->cluster_bits;
3039 
3040                     error_setg(errp, "Cannot decrease refcount entry width to "
3041                                "%i bits: Cluster at offset %#" PRIx64 " has a "
3042                                "refcount of %" PRIu64, new_refcount_bits,
3043                                offset, refcount);
3044                     return -EINVAL;
3045                 }
3046 
3047                 if (new_set_refcount) {
3048                     new_set_refcount(new_refblock, new_refblock_index++,
3049                                      refcount);
3050                 } else {
3051                     new_refblock_index++;
3052                 }
3053                 new_refblock_empty = new_refblock_empty && refcount == 0;
3054             }
3055 
3056             qcow2_cache_put(s->refcount_block_cache, &refblock);
3057         } else {
3058             /* No refblock means every refcount is 0 */
3059             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3060                  refblock_index++)
3061             {
3062                 if (new_refblock_index >= new_refblock_size) {
3063                     /* new_refblock is now complete */
3064                     ret = operation(bs, new_reftable, *new_reftable_index,
3065                                     new_reftable_size, new_refblock,
3066                                     new_refblock_empty, allocated, errp);
3067                     if (ret < 0) {
3068                         return ret;
3069                     }
3070 
3071                     (*new_reftable_index)++;
3072                     new_refblock_index = 0;
3073                     new_refblock_empty = true;
3074                 }
3075 
3076                 if (new_set_refcount) {
3077                     new_set_refcount(new_refblock, new_refblock_index++, 0);
3078                 } else {
3079                     new_refblock_index++;
3080                 }
3081             }
3082         }
3083     }
3084 
3085     if (new_refblock_index > 0) {
3086         /* Complete the potentially existing partially filled final refblock */
3087         if (new_set_refcount) {
3088             for (; new_refblock_index < new_refblock_size;
3089                  new_refblock_index++)
3090             {
3091                 new_set_refcount(new_refblock, new_refblock_index, 0);
3092             }
3093         }
3094 
3095         ret = operation(bs, new_reftable, *new_reftable_index,
3096                         new_reftable_size, new_refblock, new_refblock_empty,
3097                         allocated, errp);
3098         if (ret < 0) {
3099             return ret;
3100         }
3101 
3102         (*new_reftable_index)++;
3103     }
3104 
3105     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
3106               (uint64_t)total * s->refcount_table_size, cb_opaque);
3107 
3108     return 0;
3109 }
3110 
3111 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
3112                                 BlockDriverAmendStatusCB *status_cb,
3113                                 void *cb_opaque, Error **errp)
3114 {
3115     BDRVQcow2State *s = bs->opaque;
3116     Qcow2GetRefcountFunc *new_get_refcount;
3117     Qcow2SetRefcountFunc *new_set_refcount;
3118     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
3119     uint64_t *new_reftable = NULL, new_reftable_size = 0;
3120     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
3121     uint64_t new_reftable_index = 0;
3122     uint64_t i;
3123     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
3124     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
3125     int old_refcount_order;
3126     int walk_index = 0;
3127     int ret;
3128     bool new_allocation;
3129 
3130     assert(s->qcow_version >= 3);
3131     assert(refcount_order >= 0 && refcount_order <= 6);
3132 
3133     /* see qcow2_open() */
3134     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3135 
3136     new_get_refcount = get_refcount_funcs[refcount_order];
3137     new_set_refcount = set_refcount_funcs[refcount_order];
3138 
3139 
3140     do {
3141         int total_walks;
3142 
3143         new_allocation = false;
3144 
3145         /* At least we have to do this walk and the one which writes the
3146          * refblocks; also, at least we have to do this loop here at least
3147          * twice (normally), first to do the allocations, and second to
3148          * determine that everything is correctly allocated, this then makes
3149          * three walks in total */
3150         total_walks = MAX(walk_index + 2, 3);
3151 
3152         /* First, allocate the structures so they are present in the refcount
3153          * structures */
3154         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3155                                  &new_reftable_size, NULL, new_refblock_size,
3156                                  new_refcount_bits, &alloc_refblock,
3157                                  &new_allocation, NULL, status_cb, cb_opaque,
3158                                  walk_index++, total_walks, errp);
3159         if (ret < 0) {
3160             goto done;
3161         }
3162 
3163         new_reftable_index = 0;
3164 
3165         if (new_allocation) {
3166             if (new_reftable_offset) {
3167                 qcow2_free_clusters(bs, new_reftable_offset,
3168                                     allocated_reftable_size * sizeof(uint64_t),
3169                                     QCOW2_DISCARD_NEVER);
3170             }
3171 
3172             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3173                                                            sizeof(uint64_t));
3174             if (new_reftable_offset < 0) {
3175                 error_setg_errno(errp, -new_reftable_offset,
3176                                  "Failed to allocate the new reftable");
3177                 ret = new_reftable_offset;
3178                 goto done;
3179             }
3180             allocated_reftable_size = new_reftable_size;
3181         }
3182     } while (new_allocation);
3183 
3184     /* Second, write the new refblocks */
3185     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3186                              &new_reftable_size, new_refblock,
3187                              new_refblock_size, new_refcount_bits,
3188                              &flush_refblock, &new_allocation, new_set_refcount,
3189                              status_cb, cb_opaque, walk_index, walk_index + 1,
3190                              errp);
3191     if (ret < 0) {
3192         goto done;
3193     }
3194     assert(!new_allocation);
3195 
3196 
3197     /* Write the new reftable */
3198     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3199                                         new_reftable_size * sizeof(uint64_t),
3200                                         false);
3201     if (ret < 0) {
3202         error_setg_errno(errp, -ret, "Overlap check failed");
3203         goto done;
3204     }
3205 
3206     for (i = 0; i < new_reftable_size; i++) {
3207         cpu_to_be64s(&new_reftable[i]);
3208     }
3209 
3210     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
3211                       new_reftable_size * sizeof(uint64_t));
3212 
3213     for (i = 0; i < new_reftable_size; i++) {
3214         be64_to_cpus(&new_reftable[i]);
3215     }
3216 
3217     if (ret < 0) {
3218         error_setg_errno(errp, -ret, "Failed to write the new reftable");
3219         goto done;
3220     }
3221 
3222 
3223     /* Empty the refcount cache */
3224     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3225     if (ret < 0) {
3226         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3227         goto done;
3228     }
3229 
3230     /* Update the image header to point to the new reftable; this only updates
3231      * the fields which are relevant to qcow2_update_header(); other fields
3232      * such as s->refcount_table or s->refcount_bits stay stale for now
3233      * (because we have to restore everything if qcow2_update_header() fails) */
3234     old_refcount_order  = s->refcount_order;
3235     old_reftable_size   = s->refcount_table_size;
3236     old_reftable_offset = s->refcount_table_offset;
3237 
3238     s->refcount_order        = refcount_order;
3239     s->refcount_table_size   = new_reftable_size;
3240     s->refcount_table_offset = new_reftable_offset;
3241 
3242     ret = qcow2_update_header(bs);
3243     if (ret < 0) {
3244         s->refcount_order        = old_refcount_order;
3245         s->refcount_table_size   = old_reftable_size;
3246         s->refcount_table_offset = old_reftable_offset;
3247         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3248         goto done;
3249     }
3250 
3251     /* Now update the rest of the in-memory information */
3252     old_reftable = s->refcount_table;
3253     s->refcount_table = new_reftable;
3254     update_max_refcount_table_index(s);
3255 
3256     s->refcount_bits = 1 << refcount_order;
3257     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3258     s->refcount_max += s->refcount_max - 1;
3259 
3260     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3261     s->refcount_block_size = 1 << s->refcount_block_bits;
3262 
3263     s->get_refcount = new_get_refcount;
3264     s->set_refcount = new_set_refcount;
3265 
3266     /* For cleaning up all old refblocks and the old reftable below the "done"
3267      * label */
3268     new_reftable        = old_reftable;
3269     new_reftable_size   = old_reftable_size;
3270     new_reftable_offset = old_reftable_offset;
3271 
3272 done:
3273     if (new_reftable) {
3274         /* On success, new_reftable actually points to the old reftable (and
3275          * new_reftable_size is the old reftable's size); but that is just
3276          * fine */
3277         for (i = 0; i < new_reftable_size; i++) {
3278             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3279             if (offset) {
3280                 qcow2_free_clusters(bs, offset, s->cluster_size,
3281                                     QCOW2_DISCARD_OTHER);
3282             }
3283         }
3284         g_free(new_reftable);
3285 
3286         if (new_reftable_offset > 0) {
3287             qcow2_free_clusters(bs, new_reftable_offset,
3288                                 new_reftable_size * sizeof(uint64_t),
3289                                 QCOW2_DISCARD_OTHER);
3290         }
3291     }
3292 
3293     qemu_vfree(new_refblock);
3294     return ret;
3295 }
3296 
3297 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3298 {
3299     BDRVQcow2State *s = bs->opaque;
3300     uint32_t index = offset_to_reftable_index(s, offset);
3301     int64_t covering_refblock_offset = 0;
3302 
3303     if (index < s->refcount_table_size) {
3304         covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3305     }
3306     if (!covering_refblock_offset) {
3307         qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3308                                 "not covered by the refcount structures",
3309                                 offset);
3310         return -EIO;
3311     }
3312 
3313     return covering_refblock_offset;
3314 }
3315 
3316 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3317                                         uint64_t discard_block_offs)
3318 {
3319     BDRVQcow2State *s = bs->opaque;
3320     int64_t refblock_offs;
3321     uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3322     uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3323     void *refblock;
3324     int ret;
3325 
3326     refblock_offs = get_refblock_offset(bs, discard_block_offs);
3327     if (refblock_offs < 0) {
3328         return refblock_offs;
3329     }
3330 
3331     assert(discard_block_offs != 0);
3332 
3333     ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3334                           &refblock);
3335     if (ret < 0) {
3336         return ret;
3337     }
3338 
3339     if (s->get_refcount(refblock, block_index) != 1) {
3340         qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3341                                 " refblock offset %#" PRIx64
3342                                 ", reftable index %u"
3343                                 ", block offset %#" PRIx64
3344                                 ", refcount %#" PRIx64,
3345                                 refblock_offs,
3346                                 offset_to_reftable_index(s, discard_block_offs),
3347                                 discard_block_offs,
3348                                 s->get_refcount(refblock, block_index));
3349         qcow2_cache_put(s->refcount_block_cache, &refblock);
3350         return -EINVAL;
3351     }
3352     s->set_refcount(refblock, block_index, 0);
3353 
3354     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3355 
3356     qcow2_cache_put(s->refcount_block_cache, &refblock);
3357 
3358     if (cluster_index < s->free_cluster_index) {
3359         s->free_cluster_index = cluster_index;
3360     }
3361 
3362     refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3363                                            discard_block_offs);
3364     if (refblock) {
3365         /* discard refblock from the cache if refblock is cached */
3366         qcow2_cache_discard(s->refcount_block_cache, refblock);
3367     }
3368     update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3369 
3370     return 0;
3371 }
3372 
3373 int qcow2_shrink_reftable(BlockDriverState *bs)
3374 {
3375     BDRVQcow2State *s = bs->opaque;
3376     uint64_t *reftable_tmp =
3377         g_malloc(s->refcount_table_size * sizeof(uint64_t));
3378     int i, ret;
3379 
3380     for (i = 0; i < s->refcount_table_size; i++) {
3381         int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3382         void *refblock;
3383         bool unused_block;
3384 
3385         if (refblock_offs == 0) {
3386             reftable_tmp[i] = 0;
3387             continue;
3388         }
3389         ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3390                               &refblock);
3391         if (ret < 0) {
3392             goto out;
3393         }
3394 
3395         /* the refblock has own reference */
3396         if (i == offset_to_reftable_index(s, refblock_offs)) {
3397             uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3398                                    (s->refcount_block_size - 1);
3399             uint64_t refcount = s->get_refcount(refblock, block_index);
3400 
3401             s->set_refcount(refblock, block_index, 0);
3402 
3403             unused_block = buffer_is_zero(refblock, s->cluster_size);
3404 
3405             s->set_refcount(refblock, block_index, refcount);
3406         } else {
3407             unused_block = buffer_is_zero(refblock, s->cluster_size);
3408         }
3409         qcow2_cache_put(s->refcount_block_cache, &refblock);
3410 
3411         reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3412     }
3413 
3414     ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3415                            s->refcount_table_size * sizeof(uint64_t));
3416     /*
3417      * If the write in the reftable failed the image may contain a partially
3418      * overwritten reftable. In this case it would be better to clear the
3419      * reftable in memory to avoid possible image corruption.
3420      */
3421     for (i = 0; i < s->refcount_table_size; i++) {
3422         if (s->refcount_table[i] && !reftable_tmp[i]) {
3423             if (ret == 0) {
3424                 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3425                                                        REFT_OFFSET_MASK);
3426             }
3427             s->refcount_table[i] = 0;
3428         }
3429     }
3430 
3431     if (!s->cache_discards) {
3432         qcow2_process_discards(bs, ret);
3433     }
3434 
3435 out:
3436     g_free(reftable_tmp);
3437     return ret;
3438 }
3439 
3440 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3441 {
3442     BDRVQcow2State *s = bs->opaque;
3443     int64_t i;
3444 
3445     for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3446         uint64_t refcount;
3447         int ret = qcow2_get_refcount(bs, i, &refcount);
3448         if (ret < 0) {
3449             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3450                     i, strerror(-ret));
3451             return ret;
3452         }
3453         if (refcount > 0) {
3454             return i;
3455         }
3456     }
3457     qcow2_signal_corruption(bs, true, -1, -1,
3458                             "There are no references in the refcount table.");
3459     return -EIO;
3460 }
3461 
3462 int qcow2_detect_metadata_preallocation(BlockDriverState *bs)
3463 {
3464     BDRVQcow2State *s = bs->opaque;
3465     int64_t i, end_cluster, cluster_count = 0, threshold;
3466     int64_t file_length, real_allocation, real_clusters;
3467 
3468     qemu_co_mutex_assert_locked(&s->lock);
3469 
3470     file_length = bdrv_getlength(bs->file->bs);
3471     if (file_length < 0) {
3472         return file_length;
3473     }
3474 
3475     real_allocation = bdrv_get_allocated_file_size(bs->file->bs);
3476     if (real_allocation < 0) {
3477         return real_allocation;
3478     }
3479 
3480     real_clusters = real_allocation / s->cluster_size;
3481     threshold = MAX(real_clusters * 10 / 9, real_clusters + 2);
3482 
3483     end_cluster = size_to_clusters(s, file_length);
3484     for (i = 0; i < end_cluster && cluster_count < threshold; i++) {
3485         uint64_t refcount;
3486         int ret = qcow2_get_refcount(bs, i, &refcount);
3487         if (ret < 0) {
3488             return ret;
3489         }
3490         cluster_count += !!refcount;
3491     }
3492 
3493     return cluster_count >= threshold;
3494 }
3495