xref: /openbmc/qemu/block/qcow2-refcount.c (revision ec603b55)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 #include "qemu/cutils.h"
33 
34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
36                             int64_t offset, int64_t length, uint64_t addend,
37                             bool decrease, enum qcow2_discard_type type);
38 
39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
46 
47 static void set_refcount_ro0(void *refcount_array, uint64_t index,
48                              uint64_t value);
49 static void set_refcount_ro1(void *refcount_array, uint64_t index,
50                              uint64_t value);
51 static void set_refcount_ro2(void *refcount_array, uint64_t index,
52                              uint64_t value);
53 static void set_refcount_ro3(void *refcount_array, uint64_t index,
54                              uint64_t value);
55 static void set_refcount_ro4(void *refcount_array, uint64_t index,
56                              uint64_t value);
57 static void set_refcount_ro5(void *refcount_array, uint64_t index,
58                              uint64_t value);
59 static void set_refcount_ro6(void *refcount_array, uint64_t index,
60                              uint64_t value);
61 
62 
63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
64     &get_refcount_ro0,
65     &get_refcount_ro1,
66     &get_refcount_ro2,
67     &get_refcount_ro3,
68     &get_refcount_ro4,
69     &get_refcount_ro5,
70     &get_refcount_ro6
71 };
72 
73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
74     &set_refcount_ro0,
75     &set_refcount_ro1,
76     &set_refcount_ro2,
77     &set_refcount_ro3,
78     &set_refcount_ro4,
79     &set_refcount_ro5,
80     &set_refcount_ro6
81 };
82 
83 
84 /*********************************************************/
85 /* refcount handling */
86 
87 static void update_max_refcount_table_index(BDRVQcow2State *s)
88 {
89     unsigned i = s->refcount_table_size - 1;
90     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
91         i--;
92     }
93     /* Set s->max_refcount_table_index to the index of the last used entry */
94     s->max_refcount_table_index = i;
95 }
96 
97 int qcow2_refcount_init(BlockDriverState *bs)
98 {
99     BDRVQcow2State *s = bs->opaque;
100     unsigned int refcount_table_size2, i;
101     int ret;
102 
103     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
104 
105     s->get_refcount = get_refcount_funcs[s->refcount_order];
106     s->set_refcount = set_refcount_funcs[s->refcount_order];
107 
108     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
109     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
110     s->refcount_table = g_try_malloc(refcount_table_size2);
111 
112     if (s->refcount_table_size > 0) {
113         if (s->refcount_table == NULL) {
114             ret = -ENOMEM;
115             goto fail;
116         }
117         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
118         ret = bdrv_pread(bs->file, s->refcount_table_offset,
119                          s->refcount_table, refcount_table_size2);
120         if (ret < 0) {
121             goto fail;
122         }
123         for(i = 0; i < s->refcount_table_size; i++)
124             be64_to_cpus(&s->refcount_table[i]);
125         update_max_refcount_table_index(s);
126     }
127     return 0;
128  fail:
129     return ret;
130 }
131 
132 void qcow2_refcount_close(BlockDriverState *bs)
133 {
134     BDRVQcow2State *s = bs->opaque;
135     g_free(s->refcount_table);
136 }
137 
138 
139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
140 {
141     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
142 }
143 
144 static void set_refcount_ro0(void *refcount_array, uint64_t index,
145                              uint64_t value)
146 {
147     assert(!(value >> 1));
148     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
149     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
150 }
151 
152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
153 {
154     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
155            & 0x3;
156 }
157 
158 static void set_refcount_ro1(void *refcount_array, uint64_t index,
159                              uint64_t value)
160 {
161     assert(!(value >> 2));
162     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
163     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
164 }
165 
166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
167 {
168     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
169            & 0xf;
170 }
171 
172 static void set_refcount_ro2(void *refcount_array, uint64_t index,
173                              uint64_t value)
174 {
175     assert(!(value >> 4));
176     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
177     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
178 }
179 
180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
181 {
182     return ((const uint8_t *)refcount_array)[index];
183 }
184 
185 static void set_refcount_ro3(void *refcount_array, uint64_t index,
186                              uint64_t value)
187 {
188     assert(!(value >> 8));
189     ((uint8_t *)refcount_array)[index] = value;
190 }
191 
192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
193 {
194     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
195 }
196 
197 static void set_refcount_ro4(void *refcount_array, uint64_t index,
198                              uint64_t value)
199 {
200     assert(!(value >> 16));
201     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
202 }
203 
204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
205 {
206     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
207 }
208 
209 static void set_refcount_ro5(void *refcount_array, uint64_t index,
210                              uint64_t value)
211 {
212     assert(!(value >> 32));
213     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
214 }
215 
216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
217 {
218     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
219 }
220 
221 static void set_refcount_ro6(void *refcount_array, uint64_t index,
222                              uint64_t value)
223 {
224     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
225 }
226 
227 
228 static int load_refcount_block(BlockDriverState *bs,
229                                int64_t refcount_block_offset,
230                                void **refcount_block)
231 {
232     BDRVQcow2State *s = bs->opaque;
233 
234     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
235     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
236                            refcount_block);
237 }
238 
239 /*
240  * Retrieves the refcount of the cluster given by its index and stores it in
241  * *refcount. Returns 0 on success and -errno on failure.
242  */
243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
244                        uint64_t *refcount)
245 {
246     BDRVQcow2State *s = bs->opaque;
247     uint64_t refcount_table_index, block_index;
248     int64_t refcount_block_offset;
249     int ret;
250     void *refcount_block;
251 
252     refcount_table_index = cluster_index >> s->refcount_block_bits;
253     if (refcount_table_index >= s->refcount_table_size) {
254         *refcount = 0;
255         return 0;
256     }
257     refcount_block_offset =
258         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
259     if (!refcount_block_offset) {
260         *refcount = 0;
261         return 0;
262     }
263 
264     if (offset_into_cluster(s, refcount_block_offset)) {
265         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
266                                 " unaligned (reftable index: %#" PRIx64 ")",
267                                 refcount_block_offset, refcount_table_index);
268         return -EIO;
269     }
270 
271     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
272                           &refcount_block);
273     if (ret < 0) {
274         return ret;
275     }
276 
277     block_index = cluster_index & (s->refcount_block_size - 1);
278     *refcount = s->get_refcount(refcount_block, block_index);
279 
280     qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
281 
282     return 0;
283 }
284 
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
287     uint64_t offset_b)
288 {
289     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
290     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
291 
292     return (block_a == block_b);
293 }
294 
295 /*
296  * Loads a refcount block. If it doesn't exist yet, it is allocated first
297  * (including growing the refcount table if needed).
298  *
299  * Returns 0 on success or -errno in error case
300  */
301 static int alloc_refcount_block(BlockDriverState *bs,
302                                 int64_t cluster_index, void **refcount_block)
303 {
304     BDRVQcow2State *s = bs->opaque;
305     unsigned int refcount_table_index;
306     int64_t ret;
307 
308     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
309 
310     /* Find the refcount block for the given cluster */
311     refcount_table_index = cluster_index >> s->refcount_block_bits;
312 
313     if (refcount_table_index < s->refcount_table_size) {
314 
315         uint64_t refcount_block_offset =
316             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
317 
318         /* If it's already there, we're done */
319         if (refcount_block_offset) {
320             if (offset_into_cluster(s, refcount_block_offset)) {
321                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
322                                         PRIx64 " unaligned (reftable index: "
323                                         "%#x)", refcount_block_offset,
324                                         refcount_table_index);
325                 return -EIO;
326             }
327 
328              return load_refcount_block(bs, refcount_block_offset,
329                                         refcount_block);
330         }
331     }
332 
333     /*
334      * If we came here, we need to allocate something. Something is at least
335      * a cluster for the new refcount block. It may also include a new refcount
336      * table if the old refcount table is too small.
337      *
338      * Note that allocating clusters here needs some special care:
339      *
340      * - We can't use the normal qcow2_alloc_clusters(), it would try to
341      *   increase the refcount and very likely we would end up with an endless
342      *   recursion. Instead we must place the refcount blocks in a way that
343      *   they can describe them themselves.
344      *
345      * - We need to consider that at this point we are inside update_refcounts
346      *   and potentially doing an initial refcount increase. This means that
347      *   some clusters have already been allocated by the caller, but their
348      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
349      *   need to return -EAGAIN to signal the caller that it needs to restart
350      *   the search for free clusters.
351      *
352      * - alloc_clusters_noref and qcow2_free_clusters may load a different
353      *   refcount block into the cache
354      */
355 
356     *refcount_block = NULL;
357 
358     /* We write to the refcount table, so we might depend on L2 tables */
359     ret = qcow2_cache_flush(bs, s->l2_table_cache);
360     if (ret < 0) {
361         return ret;
362     }
363 
364     /* Allocate the refcount block itself and mark it as used */
365     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
366     if (new_block < 0) {
367         return new_block;
368     }
369 
370     /* If we're allocating the block at offset 0 then something is wrong */
371     if (new_block == 0) {
372         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
373                                 "allocation of refcount block at offset 0");
374         return -EIO;
375     }
376 
377 #ifdef DEBUG_ALLOC2
378     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
379         " at %" PRIx64 "\n",
380         refcount_table_index, cluster_index << s->cluster_bits, new_block);
381 #endif
382 
383     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
384         /* Zero the new refcount block before updating it */
385         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
386                                     refcount_block);
387         if (ret < 0) {
388             goto fail;
389         }
390 
391         memset(*refcount_block, 0, s->cluster_size);
392 
393         /* The block describes itself, need to update the cache */
394         int block_index = (new_block >> s->cluster_bits) &
395             (s->refcount_block_size - 1);
396         s->set_refcount(*refcount_block, block_index, 1);
397     } else {
398         /* Described somewhere else. This can recurse at most twice before we
399          * arrive at a block that describes itself. */
400         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
401                               QCOW2_DISCARD_NEVER);
402         if (ret < 0) {
403             goto fail;
404         }
405 
406         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
407         if (ret < 0) {
408             goto fail;
409         }
410 
411         /* Initialize the new refcount block only after updating its refcount,
412          * update_refcount uses the refcount cache itself */
413         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
414                                     refcount_block);
415         if (ret < 0) {
416             goto fail;
417         }
418 
419         memset(*refcount_block, 0, s->cluster_size);
420     }
421 
422     /* Now the new refcount block needs to be written to disk */
423     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
424     qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
425     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
426     if (ret < 0) {
427         goto fail;
428     }
429 
430     /* If the refcount table is big enough, just hook the block up there */
431     if (refcount_table_index < s->refcount_table_size) {
432         uint64_t data64 = cpu_to_be64(new_block);
433         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
434         ret = bdrv_pwrite_sync(bs->file,
435             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
436             &data64, sizeof(data64));
437         if (ret < 0) {
438             goto fail;
439         }
440 
441         s->refcount_table[refcount_table_index] = new_block;
442         /* If there's a hole in s->refcount_table then it can happen
443          * that refcount_table_index < s->max_refcount_table_index */
444         s->max_refcount_table_index =
445             MAX(s->max_refcount_table_index, refcount_table_index);
446 
447         /* The new refcount block may be where the caller intended to put its
448          * data, so let it restart the search. */
449         return -EAGAIN;
450     }
451 
452     qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
453 
454     /*
455      * If we come here, we need to grow the refcount table. Again, a new
456      * refcount table needs some space and we can't simply allocate to avoid
457      * endless recursion.
458      *
459      * Therefore let's grab new refcount blocks at the end of the image, which
460      * will describe themselves and the new refcount table. This way we can
461      * reference them only in the new table and do the switch to the new
462      * refcount table at once without producing an inconsistent state in
463      * between.
464      */
465     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
466 
467     /* Calculate the number of refcount blocks needed so far; this will be the
468      * basis for calculating the index of the first cluster used for the
469      * self-describing refcount structures which we are about to create.
470      *
471      * Because we reached this point, there cannot be any refcount entries for
472      * cluster_index or higher indices yet. However, because new_block has been
473      * allocated to describe that cluster (and it will assume this role later
474      * on), we cannot use that index; also, new_block may actually have a higher
475      * cluster index than cluster_index, so it needs to be taken into account
476      * here (and 1 needs to be added to its value because that cluster is used).
477      */
478     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
479                                             (new_block >> s->cluster_bits) + 1),
480                                         s->refcount_block_size);
481 
482     /* Create the new refcount table and blocks */
483     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
484         s->cluster_size;
485 
486     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
487                               refcount_table_index, new_block);
488     if (ret < 0) {
489         return ret;
490     }
491 
492     ret = load_refcount_block(bs, new_block, refcount_block);
493     if (ret < 0) {
494         return ret;
495     }
496 
497     /* If we were trying to do the initial refcount update for some cluster
498      * allocation, we might have used the same clusters to store newly
499      * allocated metadata. Make the caller search some new space. */
500     return -EAGAIN;
501 
502 fail:
503     if (*refcount_block != NULL) {
504         qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
505     }
506     return ret;
507 }
508 
509 /*
510  * Starting at @start_offset, this function creates new self-covering refcount
511  * structures: A new refcount table and refcount blocks which cover all of
512  * themselves, and a number of @additional_clusters beyond their end.
513  * @start_offset must be at the end of the image file, that is, there must be
514  * only empty space beyond it.
515  * If @exact_size is false, the refcount table will have 50 % more entries than
516  * necessary so it will not need to grow again soon.
517  * If @new_refblock_offset is not zero, it contains the offset of a refcount
518  * block that should be entered into the new refcount table at index
519  * @new_refblock_index.
520  *
521  * Returns: The offset after the new refcount structures (i.e. where the
522  *          @additional_clusters may be placed) on success, -errno on error.
523  */
524 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
525                             uint64_t additional_clusters, bool exact_size,
526                             int new_refblock_index,
527                             uint64_t new_refblock_offset)
528 {
529     BDRVQcow2State *s = bs->opaque;
530     uint64_t total_refblock_count_u64, additional_refblock_count;
531     int total_refblock_count, table_size, area_reftable_index, table_clusters;
532     int i;
533     uint64_t table_offset, block_offset, end_offset;
534     int ret;
535     uint64_t *new_table;
536 
537     assert(!(start_offset % s->cluster_size));
538 
539     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
540                                  additional_clusters,
541                                  s->cluster_size, s->refcount_order,
542                                  !exact_size, &total_refblock_count_u64);
543     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
544         return -EFBIG;
545     }
546     total_refblock_count = total_refblock_count_u64;
547 
548     /* Index in the refcount table of the first refcount block to cover the area
549      * of refcount structures we are about to create; we know that
550      * @total_refblock_count can cover @start_offset, so this will definitely
551      * fit into an int. */
552     area_reftable_index = (start_offset / s->cluster_size) /
553                           s->refcount_block_size;
554 
555     if (exact_size) {
556         table_size = total_refblock_count;
557     } else {
558         table_size = total_refblock_count +
559                      DIV_ROUND_UP(total_refblock_count, 2);
560     }
561     /* The qcow2 file can only store the reftable size in number of clusters */
562     table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
563     table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
564 
565     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
566         return -EFBIG;
567     }
568 
569     new_table = g_try_new0(uint64_t, table_size);
570 
571     assert(table_size > 0);
572     if (new_table == NULL) {
573         ret = -ENOMEM;
574         goto fail;
575     }
576 
577     /* Fill the new refcount table */
578     if (table_size > s->max_refcount_table_index) {
579         /* We're actually growing the reftable */
580         memcpy(new_table, s->refcount_table,
581                (s->max_refcount_table_index + 1) * sizeof(uint64_t));
582     } else {
583         /* Improbable case: We're shrinking the reftable. However, the caller
584          * has assured us that there is only empty space beyond @start_offset,
585          * so we can simply drop all of the refblocks that won't fit into the
586          * new reftable. */
587         memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
588     }
589 
590     if (new_refblock_offset) {
591         assert(new_refblock_index < total_refblock_count);
592         new_table[new_refblock_index] = new_refblock_offset;
593     }
594 
595     /* Count how many new refblocks we have to create */
596     additional_refblock_count = 0;
597     for (i = area_reftable_index; i < total_refblock_count; i++) {
598         if (!new_table[i]) {
599             additional_refblock_count++;
600         }
601     }
602 
603     table_offset = start_offset + additional_refblock_count * s->cluster_size;
604     end_offset = table_offset + table_clusters * s->cluster_size;
605 
606     /* Fill the refcount blocks, and create new ones, if necessary */
607     block_offset = start_offset;
608     for (i = area_reftable_index; i < total_refblock_count; i++) {
609         void *refblock_data;
610         uint64_t first_offset_covered;
611 
612         /* Reuse an existing refblock if possible, create a new one otherwise */
613         if (new_table[i]) {
614             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
615                                   &refblock_data);
616             if (ret < 0) {
617                 goto fail;
618             }
619         } else {
620             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
621                                         block_offset, &refblock_data);
622             if (ret < 0) {
623                 goto fail;
624             }
625             memset(refblock_data, 0, s->cluster_size);
626             qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
627                                          refblock_data);
628 
629             new_table[i] = block_offset;
630             block_offset += s->cluster_size;
631         }
632 
633         /* First host offset covered by this refblock */
634         first_offset_covered = (uint64_t)i * s->refcount_block_size *
635                                s->cluster_size;
636         if (first_offset_covered < end_offset) {
637             int j, end_index;
638 
639             /* Set the refcount of all of the new refcount structures to 1 */
640 
641             if (first_offset_covered < start_offset) {
642                 assert(i == area_reftable_index);
643                 j = (start_offset - first_offset_covered) / s->cluster_size;
644                 assert(j < s->refcount_block_size);
645             } else {
646                 j = 0;
647             }
648 
649             end_index = MIN((end_offset - first_offset_covered) /
650                             s->cluster_size,
651                             s->refcount_block_size);
652 
653             for (; j < end_index; j++) {
654                 /* The caller guaranteed us this space would be empty */
655                 assert(s->get_refcount(refblock_data, j) == 0);
656                 s->set_refcount(refblock_data, j, 1);
657             }
658 
659             qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
660                                          refblock_data);
661         }
662 
663         qcow2_cache_put(bs, s->refcount_block_cache, &refblock_data);
664     }
665 
666     assert(block_offset == table_offset);
667 
668     /* Write refcount blocks to disk */
669     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
670     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
671     if (ret < 0) {
672         goto fail;
673     }
674 
675     /* Write refcount table to disk */
676     for (i = 0; i < total_refblock_count; i++) {
677         cpu_to_be64s(&new_table[i]);
678     }
679 
680     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
681     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
682         table_size * sizeof(uint64_t));
683     if (ret < 0) {
684         goto fail;
685     }
686 
687     for (i = 0; i < total_refblock_count; i++) {
688         be64_to_cpus(&new_table[i]);
689     }
690 
691     /* Hook up the new refcount table in the qcow2 header */
692     struct QEMU_PACKED {
693         uint64_t d64;
694         uint32_t d32;
695     } data;
696     data.d64 = cpu_to_be64(table_offset);
697     data.d32 = cpu_to_be32(table_clusters);
698     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
699     ret = bdrv_pwrite_sync(bs->file,
700                            offsetof(QCowHeader, refcount_table_offset),
701                            &data, sizeof(data));
702     if (ret < 0) {
703         goto fail;
704     }
705 
706     /* And switch it in memory */
707     uint64_t old_table_offset = s->refcount_table_offset;
708     uint64_t old_table_size = s->refcount_table_size;
709 
710     g_free(s->refcount_table);
711     s->refcount_table = new_table;
712     s->refcount_table_size = table_size;
713     s->refcount_table_offset = table_offset;
714     update_max_refcount_table_index(s);
715 
716     /* Free old table. */
717     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
718                         QCOW2_DISCARD_OTHER);
719 
720     return end_offset;
721 
722 fail:
723     g_free(new_table);
724     return ret;
725 }
726 
727 void qcow2_process_discards(BlockDriverState *bs, int ret)
728 {
729     BDRVQcow2State *s = bs->opaque;
730     Qcow2DiscardRegion *d, *next;
731 
732     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
733         QTAILQ_REMOVE(&s->discards, d, next);
734 
735         /* Discard is optional, ignore the return value */
736         if (ret >= 0) {
737             bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
738         }
739 
740         g_free(d);
741     }
742 }
743 
744 static void update_refcount_discard(BlockDriverState *bs,
745                                     uint64_t offset, uint64_t length)
746 {
747     BDRVQcow2State *s = bs->opaque;
748     Qcow2DiscardRegion *d, *p, *next;
749 
750     QTAILQ_FOREACH(d, &s->discards, next) {
751         uint64_t new_start = MIN(offset, d->offset);
752         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
753 
754         if (new_end - new_start <= length + d->bytes) {
755             /* There can't be any overlap, areas ending up here have no
756              * references any more and therefore shouldn't get freed another
757              * time. */
758             assert(d->bytes + length == new_end - new_start);
759             d->offset = new_start;
760             d->bytes = new_end - new_start;
761             goto found;
762         }
763     }
764 
765     d = g_malloc(sizeof(*d));
766     *d = (Qcow2DiscardRegion) {
767         .bs     = bs,
768         .offset = offset,
769         .bytes  = length,
770     };
771     QTAILQ_INSERT_TAIL(&s->discards, d, next);
772 
773 found:
774     /* Merge discard requests if they are adjacent now */
775     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
776         if (p == d
777             || p->offset > d->offset + d->bytes
778             || d->offset > p->offset + p->bytes)
779         {
780             continue;
781         }
782 
783         /* Still no overlap possible */
784         assert(p->offset == d->offset + d->bytes
785             || d->offset == p->offset + p->bytes);
786 
787         QTAILQ_REMOVE(&s->discards, p, next);
788         d->offset = MIN(d->offset, p->offset);
789         d->bytes += p->bytes;
790         g_free(p);
791     }
792 }
793 
794 /* XXX: cache several refcount block clusters ? */
795 /* @addend is the absolute value of the addend; if @decrease is set, @addend
796  * will be subtracted from the current refcount, otherwise it will be added */
797 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
798                                                    int64_t offset,
799                                                    int64_t length,
800                                                    uint64_t addend,
801                                                    bool decrease,
802                                                    enum qcow2_discard_type type)
803 {
804     BDRVQcow2State *s = bs->opaque;
805     int64_t start, last, cluster_offset;
806     void *refcount_block = NULL;
807     int64_t old_table_index = -1;
808     int ret;
809 
810 #ifdef DEBUG_ALLOC2
811     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
812             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
813             addend);
814 #endif
815     if (length < 0) {
816         return -EINVAL;
817     } else if (length == 0) {
818         return 0;
819     }
820 
821     if (decrease) {
822         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
823             s->l2_table_cache);
824     }
825 
826     start = start_of_cluster(s, offset);
827     last = start_of_cluster(s, offset + length - 1);
828     for(cluster_offset = start; cluster_offset <= last;
829         cluster_offset += s->cluster_size)
830     {
831         int block_index;
832         uint64_t refcount;
833         int64_t cluster_index = cluster_offset >> s->cluster_bits;
834         int64_t table_index = cluster_index >> s->refcount_block_bits;
835 
836         /* Load the refcount block and allocate it if needed */
837         if (table_index != old_table_index) {
838             if (refcount_block) {
839                 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
840             }
841             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
842             if (ret < 0) {
843                 goto fail;
844             }
845         }
846         old_table_index = table_index;
847 
848         qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
849                                      refcount_block);
850 
851         /* we can update the count and save it */
852         block_index = cluster_index & (s->refcount_block_size - 1);
853 
854         refcount = s->get_refcount(refcount_block, block_index);
855         if (decrease ? (refcount - addend > refcount)
856                      : (refcount + addend < refcount ||
857                         refcount + addend > s->refcount_max))
858         {
859             ret = -EINVAL;
860             goto fail;
861         }
862         if (decrease) {
863             refcount -= addend;
864         } else {
865             refcount += addend;
866         }
867         if (refcount == 0 && cluster_index < s->free_cluster_index) {
868             s->free_cluster_index = cluster_index;
869         }
870         s->set_refcount(refcount_block, block_index, refcount);
871 
872         if (refcount == 0) {
873             void *table;
874 
875             table = qcow2_cache_is_table_offset(bs, s->refcount_block_cache,
876                                                 offset);
877             if (table != NULL) {
878                 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
879                 qcow2_cache_discard(bs, s->refcount_block_cache, table);
880             }
881 
882             table = qcow2_cache_is_table_offset(bs, s->l2_table_cache, offset);
883             if (table != NULL) {
884                 qcow2_cache_discard(bs, s->l2_table_cache, table);
885             }
886 
887             if (s->discard_passthrough[type]) {
888                 update_refcount_discard(bs, cluster_offset, s->cluster_size);
889             }
890         }
891     }
892 
893     ret = 0;
894 fail:
895     if (!s->cache_discards) {
896         qcow2_process_discards(bs, ret);
897     }
898 
899     /* Write last changed block to disk */
900     if (refcount_block) {
901         qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
902     }
903 
904     /*
905      * Try do undo any updates if an error is returned (This may succeed in
906      * some cases like ENOSPC for allocating a new refcount block)
907      */
908     if (ret < 0) {
909         int dummy;
910         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
911                                 !decrease, QCOW2_DISCARD_NEVER);
912         (void)dummy;
913     }
914 
915     return ret;
916 }
917 
918 /*
919  * Increases or decreases the refcount of a given cluster.
920  *
921  * @addend is the absolute value of the addend; if @decrease is set, @addend
922  * will be subtracted from the current refcount, otherwise it will be added.
923  *
924  * On success 0 is returned; on failure -errno is returned.
925  */
926 int qcow2_update_cluster_refcount(BlockDriverState *bs,
927                                   int64_t cluster_index,
928                                   uint64_t addend, bool decrease,
929                                   enum qcow2_discard_type type)
930 {
931     BDRVQcow2State *s = bs->opaque;
932     int ret;
933 
934     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
935                           decrease, type);
936     if (ret < 0) {
937         return ret;
938     }
939 
940     return 0;
941 }
942 
943 
944 
945 /*********************************************************/
946 /* cluster allocation functions */
947 
948 
949 
950 /* return < 0 if error */
951 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
952 {
953     BDRVQcow2State *s = bs->opaque;
954     uint64_t i, nb_clusters, refcount;
955     int ret;
956 
957     /* We can't allocate clusters if they may still be queued for discard. */
958     if (s->cache_discards) {
959         qcow2_process_discards(bs, 0);
960     }
961 
962     nb_clusters = size_to_clusters(s, size);
963 retry:
964     for(i = 0; i < nb_clusters; i++) {
965         uint64_t next_cluster_index = s->free_cluster_index++;
966         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
967 
968         if (ret < 0) {
969             return ret;
970         } else if (refcount != 0) {
971             goto retry;
972         }
973     }
974 
975     /* Make sure that all offsets in the "allocated" range are representable
976      * in an int64_t */
977     if (s->free_cluster_index > 0 &&
978         s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
979     {
980         return -EFBIG;
981     }
982 
983 #ifdef DEBUG_ALLOC2
984     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
985             size,
986             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
987 #endif
988     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
989 }
990 
991 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
992 {
993     int64_t offset;
994     int ret;
995 
996     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
997     do {
998         offset = alloc_clusters_noref(bs, size);
999         if (offset < 0) {
1000             return offset;
1001         }
1002 
1003         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1004     } while (ret == -EAGAIN);
1005 
1006     if (ret < 0) {
1007         return ret;
1008     }
1009 
1010     return offset;
1011 }
1012 
1013 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1014                                 int64_t nb_clusters)
1015 {
1016     BDRVQcow2State *s = bs->opaque;
1017     uint64_t cluster_index, refcount;
1018     uint64_t i;
1019     int ret;
1020 
1021     assert(nb_clusters >= 0);
1022     if (nb_clusters == 0) {
1023         return 0;
1024     }
1025 
1026     do {
1027         /* Check how many clusters there are free */
1028         cluster_index = offset >> s->cluster_bits;
1029         for(i = 0; i < nb_clusters; i++) {
1030             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1031             if (ret < 0) {
1032                 return ret;
1033             } else if (refcount != 0) {
1034                 break;
1035             }
1036         }
1037 
1038         /* And then allocate them */
1039         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1040                               QCOW2_DISCARD_NEVER);
1041     } while (ret == -EAGAIN);
1042 
1043     if (ret < 0) {
1044         return ret;
1045     }
1046 
1047     return i;
1048 }
1049 
1050 /* only used to allocate compressed sectors. We try to allocate
1051    contiguous sectors. size must be <= cluster_size */
1052 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1053 {
1054     BDRVQcow2State *s = bs->opaque;
1055     int64_t offset;
1056     size_t free_in_cluster;
1057     int ret;
1058 
1059     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1060     assert(size > 0 && size <= s->cluster_size);
1061     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1062 
1063     offset = s->free_byte_offset;
1064 
1065     if (offset) {
1066         uint64_t refcount;
1067         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1068         if (ret < 0) {
1069             return ret;
1070         }
1071 
1072         if (refcount == s->refcount_max) {
1073             offset = 0;
1074         }
1075     }
1076 
1077     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1078     do {
1079         if (!offset || free_in_cluster < size) {
1080             int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
1081             if (new_cluster < 0) {
1082                 return new_cluster;
1083             }
1084 
1085             if (new_cluster == 0) {
1086                 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1087                                         "allocation of compressed cluster "
1088                                         "at offset 0");
1089                 return -EIO;
1090             }
1091 
1092             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1093                 offset = new_cluster;
1094                 free_in_cluster = s->cluster_size;
1095             } else {
1096                 free_in_cluster += s->cluster_size;
1097             }
1098         }
1099 
1100         assert(offset);
1101         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1102         if (ret < 0) {
1103             offset = 0;
1104         }
1105     } while (ret == -EAGAIN);
1106     if (ret < 0) {
1107         return ret;
1108     }
1109 
1110     /* The cluster refcount was incremented; refcount blocks must be flushed
1111      * before the caller's L2 table updates. */
1112     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1113 
1114     s->free_byte_offset = offset + size;
1115     if (!offset_into_cluster(s, s->free_byte_offset)) {
1116         s->free_byte_offset = 0;
1117     }
1118 
1119     return offset;
1120 }
1121 
1122 void qcow2_free_clusters(BlockDriverState *bs,
1123                           int64_t offset, int64_t size,
1124                           enum qcow2_discard_type type)
1125 {
1126     int ret;
1127 
1128     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1129     ret = update_refcount(bs, offset, size, 1, true, type);
1130     if (ret < 0) {
1131         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1132         /* TODO Remember the clusters to free them later and avoid leaking */
1133     }
1134 }
1135 
1136 /*
1137  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1138  * normal cluster, compressed cluster, etc.)
1139  */
1140 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1141                              int nb_clusters, enum qcow2_discard_type type)
1142 {
1143     BDRVQcow2State *s = bs->opaque;
1144 
1145     switch (qcow2_get_cluster_type(l2_entry)) {
1146     case QCOW2_CLUSTER_COMPRESSED:
1147         {
1148             int nb_csectors;
1149             nb_csectors = ((l2_entry >> s->csize_shift) &
1150                            s->csize_mask) + 1;
1151             qcow2_free_clusters(bs,
1152                 (l2_entry & s->cluster_offset_mask) & ~511,
1153                 nb_csectors * 512, type);
1154         }
1155         break;
1156     case QCOW2_CLUSTER_NORMAL:
1157     case QCOW2_CLUSTER_ZERO_ALLOC:
1158         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1159             qcow2_signal_corruption(bs, false, -1, -1,
1160                                     "Cannot free unaligned cluster %#llx",
1161                                     l2_entry & L2E_OFFSET_MASK);
1162         } else {
1163             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1164                                 nb_clusters << s->cluster_bits, type);
1165         }
1166         break;
1167     case QCOW2_CLUSTER_ZERO_PLAIN:
1168     case QCOW2_CLUSTER_UNALLOCATED:
1169         break;
1170     default:
1171         abort();
1172     }
1173 }
1174 
1175 
1176 
1177 /*********************************************************/
1178 /* snapshots and image creation */
1179 
1180 
1181 
1182 /* update the refcounts of snapshots and the copied flag */
1183 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1184     int64_t l1_table_offset, int l1_size, int addend)
1185 {
1186     BDRVQcow2State *s = bs->opaque;
1187     uint64_t *l1_table, *l2_table, l2_offset, entry, l1_size2, refcount;
1188     bool l1_allocated = false;
1189     int64_t old_entry, old_l2_offset;
1190     int i, j, l1_modified = 0, nb_csectors;
1191     int ret;
1192 
1193     assert(addend >= -1 && addend <= 1);
1194 
1195     l2_table = NULL;
1196     l1_table = NULL;
1197     l1_size2 = l1_size * sizeof(uint64_t);
1198 
1199     s->cache_discards = true;
1200 
1201     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1202      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1203      * when changing this! */
1204     if (l1_table_offset != s->l1_table_offset) {
1205         l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1206         if (l1_size2 && l1_table == NULL) {
1207             ret = -ENOMEM;
1208             goto fail;
1209         }
1210         l1_allocated = true;
1211 
1212         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1213         if (ret < 0) {
1214             goto fail;
1215         }
1216 
1217         for (i = 0; i < l1_size; i++) {
1218             be64_to_cpus(&l1_table[i]);
1219         }
1220     } else {
1221         assert(l1_size == s->l1_size);
1222         l1_table = s->l1_table;
1223         l1_allocated = false;
1224     }
1225 
1226     for (i = 0; i < l1_size; i++) {
1227         l2_offset = l1_table[i];
1228         if (l2_offset) {
1229             old_l2_offset = l2_offset;
1230             l2_offset &= L1E_OFFSET_MASK;
1231 
1232             if (offset_into_cluster(s, l2_offset)) {
1233                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1234                                         PRIx64 " unaligned (L1 index: %#x)",
1235                                         l2_offset, i);
1236                 ret = -EIO;
1237                 goto fail;
1238             }
1239 
1240             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1241                 (void**) &l2_table);
1242             if (ret < 0) {
1243                 goto fail;
1244             }
1245 
1246             for (j = 0; j < s->l2_size; j++) {
1247                 uint64_t cluster_index;
1248                 uint64_t offset;
1249 
1250                 entry = be64_to_cpu(l2_table[j]);
1251                 old_entry = entry;
1252                 entry &= ~QCOW_OFLAG_COPIED;
1253                 offset = entry & L2E_OFFSET_MASK;
1254 
1255                 switch (qcow2_get_cluster_type(entry)) {
1256                 case QCOW2_CLUSTER_COMPRESSED:
1257                     nb_csectors = ((entry >> s->csize_shift) &
1258                                    s->csize_mask) + 1;
1259                     if (addend != 0) {
1260                         ret = update_refcount(bs,
1261                                 (entry & s->cluster_offset_mask) & ~511,
1262                                 nb_csectors * 512, abs(addend), addend < 0,
1263                                 QCOW2_DISCARD_SNAPSHOT);
1264                         if (ret < 0) {
1265                             goto fail;
1266                         }
1267                     }
1268                     /* compressed clusters are never modified */
1269                     refcount = 2;
1270                     break;
1271 
1272                 case QCOW2_CLUSTER_NORMAL:
1273                 case QCOW2_CLUSTER_ZERO_ALLOC:
1274                     if (offset_into_cluster(s, offset)) {
1275                         qcow2_signal_corruption(bs, true, -1, -1, "Cluster "
1276                                                 "allocation offset %#" PRIx64
1277                                                 " unaligned (L2 offset: %#"
1278                                                 PRIx64 ", L2 index: %#x)",
1279                                                 offset, l2_offset, j);
1280                         ret = -EIO;
1281                         goto fail;
1282                     }
1283 
1284                     cluster_index = offset >> s->cluster_bits;
1285                     assert(cluster_index);
1286                     if (addend != 0) {
1287                         ret = qcow2_update_cluster_refcount(bs,
1288                                     cluster_index, abs(addend), addend < 0,
1289                                     QCOW2_DISCARD_SNAPSHOT);
1290                         if (ret < 0) {
1291                             goto fail;
1292                         }
1293                     }
1294 
1295                     ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1296                     if (ret < 0) {
1297                         goto fail;
1298                     }
1299                     break;
1300 
1301                 case QCOW2_CLUSTER_ZERO_PLAIN:
1302                 case QCOW2_CLUSTER_UNALLOCATED:
1303                     refcount = 0;
1304                     break;
1305 
1306                 default:
1307                     abort();
1308                 }
1309 
1310                 if (refcount == 1) {
1311                     entry |= QCOW_OFLAG_COPIED;
1312                 }
1313                 if (entry != old_entry) {
1314                     if (addend > 0) {
1315                         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1316                             s->refcount_block_cache);
1317                     }
1318                     l2_table[j] = cpu_to_be64(entry);
1319                     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1320                                                  l2_table);
1321                 }
1322             }
1323 
1324             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1325 
1326             if (addend != 0) {
1327                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1328                                                         s->cluster_bits,
1329                                                     abs(addend), addend < 0,
1330                                                     QCOW2_DISCARD_SNAPSHOT);
1331                 if (ret < 0) {
1332                     goto fail;
1333                 }
1334             }
1335             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1336                                      &refcount);
1337             if (ret < 0) {
1338                 goto fail;
1339             } else if (refcount == 1) {
1340                 l2_offset |= QCOW_OFLAG_COPIED;
1341             }
1342             if (l2_offset != old_l2_offset) {
1343                 l1_table[i] = l2_offset;
1344                 l1_modified = 1;
1345             }
1346         }
1347     }
1348 
1349     ret = bdrv_flush(bs);
1350 fail:
1351     if (l2_table) {
1352         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1353     }
1354 
1355     s->cache_discards = false;
1356     qcow2_process_discards(bs, ret);
1357 
1358     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1359     if (ret == 0 && addend >= 0 && l1_modified) {
1360         for (i = 0; i < l1_size; i++) {
1361             cpu_to_be64s(&l1_table[i]);
1362         }
1363 
1364         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1365                                l1_table, l1_size2);
1366 
1367         for (i = 0; i < l1_size; i++) {
1368             be64_to_cpus(&l1_table[i]);
1369         }
1370     }
1371     if (l1_allocated)
1372         g_free(l1_table);
1373     return ret;
1374 }
1375 
1376 
1377 
1378 
1379 /*********************************************************/
1380 /* refcount checking functions */
1381 
1382 
1383 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1384 {
1385     /* This assertion holds because there is no way we can address more than
1386      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1387      * offsets have to be representable in bytes); due to every cluster
1388      * corresponding to one refcount entry, we are well below that limit */
1389     assert(entries < (UINT64_C(1) << (64 - 9)));
1390 
1391     /* Thanks to the assertion this will not overflow, because
1392      * s->refcount_order < 7.
1393      * (note: x << s->refcount_order == x * s->refcount_bits) */
1394     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1395 }
1396 
1397 /**
1398  * Reallocates *array so that it can hold new_size entries. *size must contain
1399  * the current number of entries in *array. If the reallocation fails, *array
1400  * and *size will not be modified and -errno will be returned. If the
1401  * reallocation is successful, *array will be set to the new buffer, *size
1402  * will be set to new_size and 0 will be returned. The size of the reallocated
1403  * refcount array buffer will be aligned to a cluster boundary, and the newly
1404  * allocated area will be zeroed.
1405  */
1406 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1407                                   int64_t *size, int64_t new_size)
1408 {
1409     int64_t old_byte_size, new_byte_size;
1410     void *new_ptr;
1411 
1412     /* Round to clusters so the array can be directly written to disk */
1413     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1414                     * s->cluster_size;
1415     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1416                     * s->cluster_size;
1417 
1418     if (new_byte_size == old_byte_size) {
1419         *size = new_size;
1420         return 0;
1421     }
1422 
1423     assert(new_byte_size > 0);
1424 
1425     if (new_byte_size > SIZE_MAX) {
1426         return -ENOMEM;
1427     }
1428 
1429     new_ptr = g_try_realloc(*array, new_byte_size);
1430     if (!new_ptr) {
1431         return -ENOMEM;
1432     }
1433 
1434     if (new_byte_size > old_byte_size) {
1435         memset((char *)new_ptr + old_byte_size, 0,
1436                new_byte_size - old_byte_size);
1437     }
1438 
1439     *array = new_ptr;
1440     *size  = new_size;
1441 
1442     return 0;
1443 }
1444 
1445 /*
1446  * Increases the refcount for a range of clusters in a given refcount table.
1447  * This is used to construct a temporary refcount table out of L1 and L2 tables
1448  * which can be compared to the refcount table saved in the image.
1449  *
1450  * Modifies the number of errors in res.
1451  */
1452 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1453                              void **refcount_table,
1454                              int64_t *refcount_table_size,
1455                              int64_t offset, int64_t size)
1456 {
1457     BDRVQcow2State *s = bs->opaque;
1458     uint64_t start, last, cluster_offset, k, refcount;
1459     int ret;
1460 
1461     if (size <= 0) {
1462         return 0;
1463     }
1464 
1465     start = start_of_cluster(s, offset);
1466     last = start_of_cluster(s, offset + size - 1);
1467     for(cluster_offset = start; cluster_offset <= last;
1468         cluster_offset += s->cluster_size) {
1469         k = cluster_offset >> s->cluster_bits;
1470         if (k >= *refcount_table_size) {
1471             ret = realloc_refcount_array(s, refcount_table,
1472                                          refcount_table_size, k + 1);
1473             if (ret < 0) {
1474                 res->check_errors++;
1475                 return ret;
1476             }
1477         }
1478 
1479         refcount = s->get_refcount(*refcount_table, k);
1480         if (refcount == s->refcount_max) {
1481             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1482                     "\n", cluster_offset);
1483             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1484                     "width or qemu-img convert to create a clean copy if the "
1485                     "image cannot be opened for writing\n");
1486             res->corruptions++;
1487             continue;
1488         }
1489         s->set_refcount(*refcount_table, k, refcount + 1);
1490     }
1491 
1492     return 0;
1493 }
1494 
1495 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1496 enum {
1497     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1498 };
1499 
1500 /*
1501  * Increases the refcount in the given refcount table for the all clusters
1502  * referenced in the L2 table. While doing so, performs some checks on L2
1503  * entries.
1504  *
1505  * Returns the number of errors found by the checks or -errno if an internal
1506  * error occurred.
1507  */
1508 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1509                               void **refcount_table,
1510                               int64_t *refcount_table_size, int64_t l2_offset,
1511                               int flags)
1512 {
1513     BDRVQcow2State *s = bs->opaque;
1514     uint64_t *l2_table, l2_entry;
1515     uint64_t next_contiguous_offset = 0;
1516     int i, l2_size, nb_csectors, ret;
1517 
1518     /* Read L2 table from disk */
1519     l2_size = s->l2_size * sizeof(uint64_t);
1520     l2_table = g_malloc(l2_size);
1521 
1522     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1523     if (ret < 0) {
1524         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1525         res->check_errors++;
1526         goto fail;
1527     }
1528 
1529     /* Do the actual checks */
1530     for(i = 0; i < s->l2_size; i++) {
1531         l2_entry = be64_to_cpu(l2_table[i]);
1532 
1533         switch (qcow2_get_cluster_type(l2_entry)) {
1534         case QCOW2_CLUSTER_COMPRESSED:
1535             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1536             if (l2_entry & QCOW_OFLAG_COPIED) {
1537                 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1538                     "copied flag must never be set for compressed "
1539                     "clusters\n", l2_entry >> s->cluster_bits);
1540                 l2_entry &= ~QCOW_OFLAG_COPIED;
1541                 res->corruptions++;
1542             }
1543 
1544             /* Mark cluster as used */
1545             nb_csectors = ((l2_entry >> s->csize_shift) &
1546                            s->csize_mask) + 1;
1547             l2_entry &= s->cluster_offset_mask;
1548             ret = qcow2_inc_refcounts_imrt(bs, res,
1549                                            refcount_table, refcount_table_size,
1550                                            l2_entry & ~511, nb_csectors * 512);
1551             if (ret < 0) {
1552                 goto fail;
1553             }
1554 
1555             if (flags & CHECK_FRAG_INFO) {
1556                 res->bfi.allocated_clusters++;
1557                 res->bfi.compressed_clusters++;
1558 
1559                 /* Compressed clusters are fragmented by nature.  Since they
1560                  * take up sub-sector space but we only have sector granularity
1561                  * I/O we need to re-read the same sectors even for adjacent
1562                  * compressed clusters.
1563                  */
1564                 res->bfi.fragmented_clusters++;
1565             }
1566             break;
1567 
1568         case QCOW2_CLUSTER_ZERO_ALLOC:
1569         case QCOW2_CLUSTER_NORMAL:
1570         {
1571             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1572 
1573             if (flags & CHECK_FRAG_INFO) {
1574                 res->bfi.allocated_clusters++;
1575                 if (next_contiguous_offset &&
1576                     offset != next_contiguous_offset) {
1577                     res->bfi.fragmented_clusters++;
1578                 }
1579                 next_contiguous_offset = offset + s->cluster_size;
1580             }
1581 
1582             /* Mark cluster as used */
1583             ret = qcow2_inc_refcounts_imrt(bs, res,
1584                                            refcount_table, refcount_table_size,
1585                                            offset, s->cluster_size);
1586             if (ret < 0) {
1587                 goto fail;
1588             }
1589 
1590             /* Correct offsets are cluster aligned */
1591             if (offset_into_cluster(s, offset)) {
1592                 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1593                     "properly aligned; L2 entry corrupted.\n", offset);
1594                 res->corruptions++;
1595             }
1596             break;
1597         }
1598 
1599         case QCOW2_CLUSTER_ZERO_PLAIN:
1600         case QCOW2_CLUSTER_UNALLOCATED:
1601             break;
1602 
1603         default:
1604             abort();
1605         }
1606     }
1607 
1608     g_free(l2_table);
1609     return 0;
1610 
1611 fail:
1612     g_free(l2_table);
1613     return ret;
1614 }
1615 
1616 /*
1617  * Increases the refcount for the L1 table, its L2 tables and all referenced
1618  * clusters in the given refcount table. While doing so, performs some checks
1619  * on L1 and L2 entries.
1620  *
1621  * Returns the number of errors found by the checks or -errno if an internal
1622  * error occurred.
1623  */
1624 static int check_refcounts_l1(BlockDriverState *bs,
1625                               BdrvCheckResult *res,
1626                               void **refcount_table,
1627                               int64_t *refcount_table_size,
1628                               int64_t l1_table_offset, int l1_size,
1629                               int flags)
1630 {
1631     BDRVQcow2State *s = bs->opaque;
1632     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1633     int i, ret;
1634 
1635     l1_size2 = l1_size * sizeof(uint64_t);
1636 
1637     /* Mark L1 table as used */
1638     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1639                                    l1_table_offset, l1_size2);
1640     if (ret < 0) {
1641         goto fail;
1642     }
1643 
1644     /* Read L1 table entries from disk */
1645     if (l1_size2 > 0) {
1646         l1_table = g_try_malloc(l1_size2);
1647         if (l1_table == NULL) {
1648             ret = -ENOMEM;
1649             res->check_errors++;
1650             goto fail;
1651         }
1652         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1653         if (ret < 0) {
1654             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1655             res->check_errors++;
1656             goto fail;
1657         }
1658         for(i = 0;i < l1_size; i++)
1659             be64_to_cpus(&l1_table[i]);
1660     }
1661 
1662     /* Do the actual checks */
1663     for(i = 0; i < l1_size; i++) {
1664         l2_offset = l1_table[i];
1665         if (l2_offset) {
1666             /* Mark L2 table as used */
1667             l2_offset &= L1E_OFFSET_MASK;
1668             ret = qcow2_inc_refcounts_imrt(bs, res,
1669                                            refcount_table, refcount_table_size,
1670                                            l2_offset, s->cluster_size);
1671             if (ret < 0) {
1672                 goto fail;
1673             }
1674 
1675             /* L2 tables are cluster aligned */
1676             if (offset_into_cluster(s, l2_offset)) {
1677                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1678                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1679                 res->corruptions++;
1680             }
1681 
1682             /* Process and check L2 entries */
1683             ret = check_refcounts_l2(bs, res, refcount_table,
1684                                      refcount_table_size, l2_offset, flags);
1685             if (ret < 0) {
1686                 goto fail;
1687             }
1688         }
1689     }
1690     g_free(l1_table);
1691     return 0;
1692 
1693 fail:
1694     g_free(l1_table);
1695     return ret;
1696 }
1697 
1698 /*
1699  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1700  *
1701  * This function does not print an error message nor does it increment
1702  * check_errors if qcow2_get_refcount fails (this is because such an error will
1703  * have been already detected and sufficiently signaled by the calling function
1704  * (qcow2_check_refcounts) by the time this function is called).
1705  */
1706 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1707                               BdrvCheckMode fix)
1708 {
1709     BDRVQcow2State *s = bs->opaque;
1710     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1711     int ret;
1712     uint64_t refcount;
1713     int i, j;
1714 
1715     for (i = 0; i < s->l1_size; i++) {
1716         uint64_t l1_entry = s->l1_table[i];
1717         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1718         bool l2_dirty = false;
1719 
1720         if (!l2_offset) {
1721             continue;
1722         }
1723 
1724         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1725                                  &refcount);
1726         if (ret < 0) {
1727             /* don't print message nor increment check_errors */
1728             continue;
1729         }
1730         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1731             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1732                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1733                     fix & BDRV_FIX_ERRORS ? "Repairing" :
1734                                             "ERROR",
1735                     i, l1_entry, refcount);
1736             if (fix & BDRV_FIX_ERRORS) {
1737                 s->l1_table[i] = refcount == 1
1738                                ? l1_entry |  QCOW_OFLAG_COPIED
1739                                : l1_entry & ~QCOW_OFLAG_COPIED;
1740                 ret = qcow2_write_l1_entry(bs, i);
1741                 if (ret < 0) {
1742                     res->check_errors++;
1743                     goto fail;
1744                 }
1745                 res->corruptions_fixed++;
1746             } else {
1747                 res->corruptions++;
1748             }
1749         }
1750 
1751         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1752                          s->l2_size * sizeof(uint64_t));
1753         if (ret < 0) {
1754             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1755                     strerror(-ret));
1756             res->check_errors++;
1757             goto fail;
1758         }
1759 
1760         for (j = 0; j < s->l2_size; j++) {
1761             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1762             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1763             QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1764 
1765             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1766                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1767                 ret = qcow2_get_refcount(bs,
1768                                          data_offset >> s->cluster_bits,
1769                                          &refcount);
1770                 if (ret < 0) {
1771                     /* don't print message nor increment check_errors */
1772                     continue;
1773                 }
1774                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1775                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1776                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1777                             fix & BDRV_FIX_ERRORS ? "Repairing" :
1778                                                     "ERROR",
1779                             l2_entry, refcount);
1780                     if (fix & BDRV_FIX_ERRORS) {
1781                         l2_table[j] = cpu_to_be64(refcount == 1
1782                                     ? l2_entry |  QCOW_OFLAG_COPIED
1783                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1784                         l2_dirty = true;
1785                         res->corruptions_fixed++;
1786                     } else {
1787                         res->corruptions++;
1788                     }
1789                 }
1790             }
1791         }
1792 
1793         if (l2_dirty) {
1794             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1795                                                 l2_offset, s->cluster_size);
1796             if (ret < 0) {
1797                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1798                         "overlap check failed: %s\n", strerror(-ret));
1799                 res->check_errors++;
1800                 goto fail;
1801             }
1802 
1803             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1804                               s->cluster_size);
1805             if (ret < 0) {
1806                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1807                         strerror(-ret));
1808                 res->check_errors++;
1809                 goto fail;
1810             }
1811         }
1812     }
1813 
1814     ret = 0;
1815 
1816 fail:
1817     qemu_vfree(l2_table);
1818     return ret;
1819 }
1820 
1821 /*
1822  * Checks consistency of refblocks and accounts for each refblock in
1823  * *refcount_table.
1824  */
1825 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1826                            BdrvCheckMode fix, bool *rebuild,
1827                            void **refcount_table, int64_t *nb_clusters)
1828 {
1829     BDRVQcow2State *s = bs->opaque;
1830     int64_t i, size;
1831     int ret;
1832 
1833     for(i = 0; i < s->refcount_table_size; i++) {
1834         uint64_t offset, cluster;
1835         offset = s->refcount_table[i];
1836         cluster = offset >> s->cluster_bits;
1837 
1838         /* Refcount blocks are cluster aligned */
1839         if (offset_into_cluster(s, offset)) {
1840             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1841                 "cluster aligned; refcount table entry corrupted\n", i);
1842             res->corruptions++;
1843             *rebuild = true;
1844             continue;
1845         }
1846 
1847         if (cluster >= *nb_clusters) {
1848             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1849                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1850 
1851             if (fix & BDRV_FIX_ERRORS) {
1852                 int64_t new_nb_clusters;
1853                 Error *local_err = NULL;
1854 
1855                 if (offset > INT64_MAX - s->cluster_size) {
1856                     ret = -EINVAL;
1857                     goto resize_fail;
1858                 }
1859 
1860                 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1861                                     PREALLOC_MODE_OFF, &local_err);
1862                 if (ret < 0) {
1863                     error_report_err(local_err);
1864                     goto resize_fail;
1865                 }
1866                 size = bdrv_getlength(bs->file->bs);
1867                 if (size < 0) {
1868                     ret = size;
1869                     goto resize_fail;
1870                 }
1871 
1872                 new_nb_clusters = size_to_clusters(s, size);
1873                 assert(new_nb_clusters >= *nb_clusters);
1874 
1875                 ret = realloc_refcount_array(s, refcount_table,
1876                                              nb_clusters, new_nb_clusters);
1877                 if (ret < 0) {
1878                     res->check_errors++;
1879                     return ret;
1880                 }
1881 
1882                 if (cluster >= *nb_clusters) {
1883                     ret = -EINVAL;
1884                     goto resize_fail;
1885                 }
1886 
1887                 res->corruptions_fixed++;
1888                 ret = qcow2_inc_refcounts_imrt(bs, res,
1889                                                refcount_table, nb_clusters,
1890                                                offset, s->cluster_size);
1891                 if (ret < 0) {
1892                     return ret;
1893                 }
1894                 /* No need to check whether the refcount is now greater than 1:
1895                  * This area was just allocated and zeroed, so it can only be
1896                  * exactly 1 after qcow2_inc_refcounts_imrt() */
1897                 continue;
1898 
1899 resize_fail:
1900                 res->corruptions++;
1901                 *rebuild = true;
1902                 fprintf(stderr, "ERROR could not resize image: %s\n",
1903                         strerror(-ret));
1904             } else {
1905                 res->corruptions++;
1906             }
1907             continue;
1908         }
1909 
1910         if (offset != 0) {
1911             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1912                                            offset, s->cluster_size);
1913             if (ret < 0) {
1914                 return ret;
1915             }
1916             if (s->get_refcount(*refcount_table, cluster) != 1) {
1917                 fprintf(stderr, "ERROR refcount block %" PRId64
1918                         " refcount=%" PRIu64 "\n", i,
1919                         s->get_refcount(*refcount_table, cluster));
1920                 res->corruptions++;
1921                 *rebuild = true;
1922             }
1923         }
1924     }
1925 
1926     return 0;
1927 }
1928 
1929 /*
1930  * Calculates an in-memory refcount table.
1931  */
1932 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1933                                BdrvCheckMode fix, bool *rebuild,
1934                                void **refcount_table, int64_t *nb_clusters)
1935 {
1936     BDRVQcow2State *s = bs->opaque;
1937     int64_t i;
1938     QCowSnapshot *sn;
1939     int ret;
1940 
1941     if (!*refcount_table) {
1942         int64_t old_size = 0;
1943         ret = realloc_refcount_array(s, refcount_table,
1944                                      &old_size, *nb_clusters);
1945         if (ret < 0) {
1946             res->check_errors++;
1947             return ret;
1948         }
1949     }
1950 
1951     /* header */
1952     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1953                                    0, s->cluster_size);
1954     if (ret < 0) {
1955         return ret;
1956     }
1957 
1958     /* current L1 table */
1959     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1960                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1961     if (ret < 0) {
1962         return ret;
1963     }
1964 
1965     /* snapshots */
1966     for (i = 0; i < s->nb_snapshots; i++) {
1967         sn = s->snapshots + i;
1968         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1969                                  sn->l1_table_offset, sn->l1_size, 0);
1970         if (ret < 0) {
1971             return ret;
1972         }
1973     }
1974     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1975                                    s->snapshots_offset, s->snapshots_size);
1976     if (ret < 0) {
1977         return ret;
1978     }
1979 
1980     /* refcount data */
1981     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1982                                    s->refcount_table_offset,
1983                                    s->refcount_table_size * sizeof(uint64_t));
1984     if (ret < 0) {
1985         return ret;
1986     }
1987 
1988     /* encryption */
1989     if (s->crypto_header.length) {
1990         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1991                                        s->crypto_header.offset,
1992                                        s->crypto_header.length);
1993         if (ret < 0) {
1994             return ret;
1995         }
1996     }
1997 
1998     /* bitmaps */
1999     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2000     if (ret < 0) {
2001         return ret;
2002     }
2003 
2004     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2005 }
2006 
2007 /*
2008  * Compares the actual reference count for each cluster in the image against the
2009  * refcount as reported by the refcount structures on-disk.
2010  */
2011 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2012                               BdrvCheckMode fix, bool *rebuild,
2013                               int64_t *highest_cluster,
2014                               void *refcount_table, int64_t nb_clusters)
2015 {
2016     BDRVQcow2State *s = bs->opaque;
2017     int64_t i;
2018     uint64_t refcount1, refcount2;
2019     int ret;
2020 
2021     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2022         ret = qcow2_get_refcount(bs, i, &refcount1);
2023         if (ret < 0) {
2024             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2025                     i, strerror(-ret));
2026             res->check_errors++;
2027             continue;
2028         }
2029 
2030         refcount2 = s->get_refcount(refcount_table, i);
2031 
2032         if (refcount1 > 0 || refcount2 > 0) {
2033             *highest_cluster = i;
2034         }
2035 
2036         if (refcount1 != refcount2) {
2037             /* Check if we're allowed to fix the mismatch */
2038             int *num_fixed = NULL;
2039             if (refcount1 == 0) {
2040                 *rebuild = true;
2041             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2042                 num_fixed = &res->leaks_fixed;
2043             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2044                 num_fixed = &res->corruptions_fixed;
2045             }
2046 
2047             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2048                     " reference=%" PRIu64 "\n",
2049                    num_fixed != NULL     ? "Repairing" :
2050                    refcount1 < refcount2 ? "ERROR" :
2051                                            "Leaked",
2052                    i, refcount1, refcount2);
2053 
2054             if (num_fixed) {
2055                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2056                                       refcount_diff(refcount1, refcount2),
2057                                       refcount1 > refcount2,
2058                                       QCOW2_DISCARD_ALWAYS);
2059                 if (ret >= 0) {
2060                     (*num_fixed)++;
2061                     continue;
2062                 }
2063             }
2064 
2065             /* And if we couldn't, print an error */
2066             if (refcount1 < refcount2) {
2067                 res->corruptions++;
2068             } else {
2069                 res->leaks++;
2070             }
2071         }
2072     }
2073 }
2074 
2075 /*
2076  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2077  * the on-disk refcount structures.
2078  *
2079  * On input, *first_free_cluster tells where to start looking, and need not
2080  * actually be a free cluster; the returned offset will not be before that
2081  * cluster.  On output, *first_free_cluster points to the first gap found, even
2082  * if that gap was too small to be used as the returned offset.
2083  *
2084  * Note that *first_free_cluster is a cluster index whereas the return value is
2085  * an offset.
2086  */
2087 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2088                                    int cluster_count,
2089                                    void **refcount_table,
2090                                    int64_t *imrt_nb_clusters,
2091                                    int64_t *first_free_cluster)
2092 {
2093     BDRVQcow2State *s = bs->opaque;
2094     int64_t cluster = *first_free_cluster, i;
2095     bool first_gap = true;
2096     int contiguous_free_clusters;
2097     int ret;
2098 
2099     /* Starting at *first_free_cluster, find a range of at least cluster_count
2100      * continuously free clusters */
2101     for (contiguous_free_clusters = 0;
2102          cluster < *imrt_nb_clusters &&
2103          contiguous_free_clusters < cluster_count;
2104          cluster++)
2105     {
2106         if (!s->get_refcount(*refcount_table, cluster)) {
2107             contiguous_free_clusters++;
2108             if (first_gap) {
2109                 /* If this is the first free cluster found, update
2110                  * *first_free_cluster accordingly */
2111                 *first_free_cluster = cluster;
2112                 first_gap = false;
2113             }
2114         } else if (contiguous_free_clusters) {
2115             contiguous_free_clusters = 0;
2116         }
2117     }
2118 
2119     /* If contiguous_free_clusters is greater than zero, it contains the number
2120      * of continuously free clusters until the current cluster; the first free
2121      * cluster in the current "gap" is therefore
2122      * cluster - contiguous_free_clusters */
2123 
2124     /* If no such range could be found, grow the in-memory refcount table
2125      * accordingly to append free clusters at the end of the image */
2126     if (contiguous_free_clusters < cluster_count) {
2127         /* contiguous_free_clusters clusters are already empty at the image end;
2128          * we need cluster_count clusters; therefore, we have to allocate
2129          * cluster_count - contiguous_free_clusters new clusters at the end of
2130          * the image (which is the current value of cluster; note that cluster
2131          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2132          * the image end) */
2133         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2134                                      cluster + cluster_count
2135                                      - contiguous_free_clusters);
2136         if (ret < 0) {
2137             return ret;
2138         }
2139     }
2140 
2141     /* Go back to the first free cluster */
2142     cluster -= contiguous_free_clusters;
2143     for (i = 0; i < cluster_count; i++) {
2144         s->set_refcount(*refcount_table, cluster + i, 1);
2145     }
2146 
2147     return cluster << s->cluster_bits;
2148 }
2149 
2150 /*
2151  * Creates a new refcount structure based solely on the in-memory information
2152  * given through *refcount_table. All necessary allocations will be reflected
2153  * in that array.
2154  *
2155  * On success, the old refcount structure is leaked (it will be covered by the
2156  * new refcount structure).
2157  */
2158 static int rebuild_refcount_structure(BlockDriverState *bs,
2159                                       BdrvCheckResult *res,
2160                                       void **refcount_table,
2161                                       int64_t *nb_clusters)
2162 {
2163     BDRVQcow2State *s = bs->opaque;
2164     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2165     int64_t refblock_offset, refblock_start, refblock_index;
2166     uint32_t reftable_size = 0;
2167     uint64_t *on_disk_reftable = NULL;
2168     void *on_disk_refblock;
2169     int ret = 0;
2170     struct {
2171         uint64_t reftable_offset;
2172         uint32_t reftable_clusters;
2173     } QEMU_PACKED reftable_offset_and_clusters;
2174 
2175     qcow2_cache_empty(bs, s->refcount_block_cache);
2176 
2177 write_refblocks:
2178     for (; cluster < *nb_clusters; cluster++) {
2179         if (!s->get_refcount(*refcount_table, cluster)) {
2180             continue;
2181         }
2182 
2183         refblock_index = cluster >> s->refcount_block_bits;
2184         refblock_start = refblock_index << s->refcount_block_bits;
2185 
2186         /* Don't allocate a cluster in a refblock already written to disk */
2187         if (first_free_cluster < refblock_start) {
2188             first_free_cluster = refblock_start;
2189         }
2190         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2191                                               nb_clusters, &first_free_cluster);
2192         if (refblock_offset < 0) {
2193             fprintf(stderr, "ERROR allocating refblock: %s\n",
2194                     strerror(-refblock_offset));
2195             res->check_errors++;
2196             ret = refblock_offset;
2197             goto fail;
2198         }
2199 
2200         if (reftable_size <= refblock_index) {
2201             uint32_t old_reftable_size = reftable_size;
2202             uint64_t *new_on_disk_reftable;
2203 
2204             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2205                                      s->cluster_size) / sizeof(uint64_t);
2206             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2207                                                  reftable_size *
2208                                                  sizeof(uint64_t));
2209             if (!new_on_disk_reftable) {
2210                 res->check_errors++;
2211                 ret = -ENOMEM;
2212                 goto fail;
2213             }
2214             on_disk_reftable = new_on_disk_reftable;
2215 
2216             memset(on_disk_reftable + old_reftable_size, 0,
2217                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2218 
2219             /* The offset we have for the reftable is now no longer valid;
2220              * this will leak that range, but we can easily fix that by running
2221              * a leak-fixing check after this rebuild operation */
2222             reftable_offset = -1;
2223         } else {
2224             assert(on_disk_reftable);
2225         }
2226         on_disk_reftable[refblock_index] = refblock_offset;
2227 
2228         /* If this is apparently the last refblock (for now), try to squeeze the
2229          * reftable in */
2230         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2231             reftable_offset < 0)
2232         {
2233             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2234                                                           sizeof(uint64_t));
2235             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2236                                                   refcount_table, nb_clusters,
2237                                                   &first_free_cluster);
2238             if (reftable_offset < 0) {
2239                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2240                         strerror(-reftable_offset));
2241                 res->check_errors++;
2242                 ret = reftable_offset;
2243                 goto fail;
2244             }
2245         }
2246 
2247         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2248                                             s->cluster_size);
2249         if (ret < 0) {
2250             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2251             goto fail;
2252         }
2253 
2254         /* The size of *refcount_table is always cluster-aligned, therefore the
2255          * write operation will not overflow */
2256         on_disk_refblock = (void *)((char *) *refcount_table +
2257                                     refblock_index * s->cluster_size);
2258 
2259         ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2260                          on_disk_refblock, s->cluster_sectors);
2261         if (ret < 0) {
2262             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2263             goto fail;
2264         }
2265 
2266         /* Go to the end of this refblock */
2267         cluster = refblock_start + s->refcount_block_size - 1;
2268     }
2269 
2270     if (reftable_offset < 0) {
2271         uint64_t post_refblock_start, reftable_clusters;
2272 
2273         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2274         reftable_clusters = size_to_clusters(s,
2275                                              reftable_size * sizeof(uint64_t));
2276         /* Not pretty but simple */
2277         if (first_free_cluster < post_refblock_start) {
2278             first_free_cluster = post_refblock_start;
2279         }
2280         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2281                                               refcount_table, nb_clusters,
2282                                               &first_free_cluster);
2283         if (reftable_offset < 0) {
2284             fprintf(stderr, "ERROR allocating reftable: %s\n",
2285                     strerror(-reftable_offset));
2286             res->check_errors++;
2287             ret = reftable_offset;
2288             goto fail;
2289         }
2290 
2291         goto write_refblocks;
2292     }
2293 
2294     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2295         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2296     }
2297 
2298     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2299                                         reftable_size * sizeof(uint64_t));
2300     if (ret < 0) {
2301         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2302         goto fail;
2303     }
2304 
2305     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2306     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2307                       reftable_size * sizeof(uint64_t));
2308     if (ret < 0) {
2309         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2310         goto fail;
2311     }
2312 
2313     /* Enter new reftable into the image header */
2314     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2315     reftable_offset_and_clusters.reftable_clusters =
2316         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2317     ret = bdrv_pwrite_sync(bs->file,
2318                            offsetof(QCowHeader, refcount_table_offset),
2319                            &reftable_offset_and_clusters,
2320                            sizeof(reftable_offset_and_clusters));
2321     if (ret < 0) {
2322         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2323         goto fail;
2324     }
2325 
2326     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2327         be64_to_cpus(&on_disk_reftable[refblock_index]);
2328     }
2329     s->refcount_table = on_disk_reftable;
2330     s->refcount_table_offset = reftable_offset;
2331     s->refcount_table_size = reftable_size;
2332     update_max_refcount_table_index(s);
2333 
2334     return 0;
2335 
2336 fail:
2337     g_free(on_disk_reftable);
2338     return ret;
2339 }
2340 
2341 /*
2342  * Checks an image for refcount consistency.
2343  *
2344  * Returns 0 if no errors are found, the number of errors in case the image is
2345  * detected as corrupted, and -errno when an internal error occurred.
2346  */
2347 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2348                           BdrvCheckMode fix)
2349 {
2350     BDRVQcow2State *s = bs->opaque;
2351     BdrvCheckResult pre_compare_res;
2352     int64_t size, highest_cluster, nb_clusters;
2353     void *refcount_table = NULL;
2354     bool rebuild = false;
2355     int ret;
2356 
2357     size = bdrv_getlength(bs->file->bs);
2358     if (size < 0) {
2359         res->check_errors++;
2360         return size;
2361     }
2362 
2363     nb_clusters = size_to_clusters(s, size);
2364     if (nb_clusters > INT_MAX) {
2365         res->check_errors++;
2366         return -EFBIG;
2367     }
2368 
2369     res->bfi.total_clusters =
2370         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2371 
2372     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2373                               &nb_clusters);
2374     if (ret < 0) {
2375         goto fail;
2376     }
2377 
2378     /* In case we don't need to rebuild the refcount structure (but want to fix
2379      * something), this function is immediately called again, in which case the
2380      * result should be ignored */
2381     pre_compare_res = *res;
2382     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2383                       nb_clusters);
2384 
2385     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2386         BdrvCheckResult old_res = *res;
2387         int fresh_leaks = 0;
2388 
2389         fprintf(stderr, "Rebuilding refcount structure\n");
2390         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2391                                          &nb_clusters);
2392         if (ret < 0) {
2393             goto fail;
2394         }
2395 
2396         res->corruptions = 0;
2397         res->leaks = 0;
2398 
2399         /* Because the old reftable has been exchanged for a new one the
2400          * references have to be recalculated */
2401         rebuild = false;
2402         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2403         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2404                                   &nb_clusters);
2405         if (ret < 0) {
2406             goto fail;
2407         }
2408 
2409         if (fix & BDRV_FIX_LEAKS) {
2410             /* The old refcount structures are now leaked, fix it; the result
2411              * can be ignored, aside from leaks which were introduced by
2412              * rebuild_refcount_structure() that could not be fixed */
2413             BdrvCheckResult saved_res = *res;
2414             *res = (BdrvCheckResult){ 0 };
2415 
2416             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2417                               &highest_cluster, refcount_table, nb_clusters);
2418             if (rebuild) {
2419                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2420                         "broken\n");
2421             }
2422 
2423             /* Any leaks accounted for here were introduced by
2424              * rebuild_refcount_structure() because that function has created a
2425              * new refcount structure from scratch */
2426             fresh_leaks = res->leaks;
2427             *res = saved_res;
2428         }
2429 
2430         if (res->corruptions < old_res.corruptions) {
2431             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2432         }
2433         if (res->leaks < old_res.leaks) {
2434             res->leaks_fixed += old_res.leaks - res->leaks;
2435         }
2436         res->leaks += fresh_leaks;
2437     } else if (fix) {
2438         if (rebuild) {
2439             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2440             res->check_errors++;
2441             ret = -EIO;
2442             goto fail;
2443         }
2444 
2445         if (res->leaks || res->corruptions) {
2446             *res = pre_compare_res;
2447             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2448                               refcount_table, nb_clusters);
2449         }
2450     }
2451 
2452     /* check OFLAG_COPIED */
2453     ret = check_oflag_copied(bs, res, fix);
2454     if (ret < 0) {
2455         goto fail;
2456     }
2457 
2458     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2459     ret = 0;
2460 
2461 fail:
2462     g_free(refcount_table);
2463 
2464     return ret;
2465 }
2466 
2467 #define overlaps_with(ofs, sz) \
2468     ranges_overlap(offset, size, ofs, sz)
2469 
2470 /*
2471  * Checks if the given offset into the image file is actually free to use by
2472  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2473  * i.e. a sanity check without relying on the refcount tables.
2474  *
2475  * The ign parameter specifies what checks not to perform (being a bitmask of
2476  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2477  *
2478  * Returns:
2479  * - 0 if writing to this offset will not affect the mentioned metadata
2480  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2481  * - a negative value (-errno) indicating an error while performing a check,
2482  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2483  */
2484 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2485                                  int64_t size)
2486 {
2487     BDRVQcow2State *s = bs->opaque;
2488     int chk = s->overlap_check & ~ign;
2489     int i, j;
2490 
2491     if (!size) {
2492         return 0;
2493     }
2494 
2495     if (chk & QCOW2_OL_MAIN_HEADER) {
2496         if (offset < s->cluster_size) {
2497             return QCOW2_OL_MAIN_HEADER;
2498         }
2499     }
2500 
2501     /* align range to test to cluster boundaries */
2502     size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2503     offset = start_of_cluster(s, offset);
2504 
2505     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2506         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2507             return QCOW2_OL_ACTIVE_L1;
2508         }
2509     }
2510 
2511     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2512         if (overlaps_with(s->refcount_table_offset,
2513             s->refcount_table_size * sizeof(uint64_t))) {
2514             return QCOW2_OL_REFCOUNT_TABLE;
2515         }
2516     }
2517 
2518     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2519         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2520             return QCOW2_OL_SNAPSHOT_TABLE;
2521         }
2522     }
2523 
2524     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2525         for (i = 0; i < s->nb_snapshots; i++) {
2526             if (s->snapshots[i].l1_size &&
2527                 overlaps_with(s->snapshots[i].l1_table_offset,
2528                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2529                 return QCOW2_OL_INACTIVE_L1;
2530             }
2531         }
2532     }
2533 
2534     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2535         for (i = 0; i < s->l1_size; i++) {
2536             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2537                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2538                 s->cluster_size)) {
2539                 return QCOW2_OL_ACTIVE_L2;
2540             }
2541         }
2542     }
2543 
2544     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2545         unsigned last_entry = s->max_refcount_table_index;
2546         assert(last_entry < s->refcount_table_size);
2547         assert(last_entry + 1 == s->refcount_table_size ||
2548                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2549         for (i = 0; i <= last_entry; i++) {
2550             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2551                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2552                 s->cluster_size)) {
2553                 return QCOW2_OL_REFCOUNT_BLOCK;
2554             }
2555         }
2556     }
2557 
2558     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2559         for (i = 0; i < s->nb_snapshots; i++) {
2560             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2561             uint32_t l1_sz  = s->snapshots[i].l1_size;
2562             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2563             uint64_t *l1 = g_try_malloc(l1_sz2);
2564             int ret;
2565 
2566             if (l1_sz2 && l1 == NULL) {
2567                 return -ENOMEM;
2568             }
2569 
2570             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2571             if (ret < 0) {
2572                 g_free(l1);
2573                 return ret;
2574             }
2575 
2576             for (j = 0; j < l1_sz; j++) {
2577                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2578                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2579                     g_free(l1);
2580                     return QCOW2_OL_INACTIVE_L2;
2581                 }
2582             }
2583 
2584             g_free(l1);
2585         }
2586     }
2587 
2588     return 0;
2589 }
2590 
2591 static const char *metadata_ol_names[] = {
2592     [QCOW2_OL_MAIN_HEADER_BITNR]    = "qcow2_header",
2593     [QCOW2_OL_ACTIVE_L1_BITNR]      = "active L1 table",
2594     [QCOW2_OL_ACTIVE_L2_BITNR]      = "active L2 table",
2595     [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2596     [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2597     [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2598     [QCOW2_OL_INACTIVE_L1_BITNR]    = "inactive L1 table",
2599     [QCOW2_OL_INACTIVE_L2_BITNR]    = "inactive L2 table",
2600 };
2601 
2602 /*
2603  * First performs a check for metadata overlaps (through
2604  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2605  * while performing a check), that value is returned. If an impending overlap
2606  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2607  * and -EIO returned.
2608  *
2609  * Returns 0 if there were neither overlaps nor errors while checking for
2610  * overlaps; or a negative value (-errno) on error.
2611  */
2612 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2613                                   int64_t size)
2614 {
2615     int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2616 
2617     if (ret < 0) {
2618         return ret;
2619     } else if (ret > 0) {
2620         int metadata_ol_bitnr = ctz32(ret);
2621         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2622 
2623         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2624                                 "write on metadata (overlaps with %s)",
2625                                 metadata_ol_names[metadata_ol_bitnr]);
2626         return -EIO;
2627     }
2628 
2629     return 0;
2630 }
2631 
2632 /* A pointer to a function of this type is given to walk_over_reftable(). That
2633  * function will create refblocks and pass them to a RefblockFinishOp once they
2634  * are completed (@refblock). @refblock_empty is set if the refblock is
2635  * completely empty.
2636  *
2637  * Along with the refblock, a corresponding reftable entry is passed, in the
2638  * reftable @reftable (which may be reallocated) at @reftable_index.
2639  *
2640  * @allocated should be set to true if a new cluster has been allocated.
2641  */
2642 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2643                                uint64_t reftable_index, uint64_t *reftable_size,
2644                                void *refblock, bool refblock_empty,
2645                                bool *allocated, Error **errp);
2646 
2647 /**
2648  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2649  * it is not empty) and inserts its offset into the new reftable. The size of
2650  * this new reftable is increased as required.
2651  */
2652 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2653                           uint64_t reftable_index, uint64_t *reftable_size,
2654                           void *refblock, bool refblock_empty, bool *allocated,
2655                           Error **errp)
2656 {
2657     BDRVQcow2State *s = bs->opaque;
2658     int64_t offset;
2659 
2660     if (!refblock_empty && reftable_index >= *reftable_size) {
2661         uint64_t *new_reftable;
2662         uint64_t new_reftable_size;
2663 
2664         new_reftable_size = ROUND_UP(reftable_index + 1,
2665                                      s->cluster_size / sizeof(uint64_t));
2666         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2667             error_setg(errp,
2668                        "This operation would make the refcount table grow "
2669                        "beyond the maximum size supported by QEMU, aborting");
2670             return -ENOTSUP;
2671         }
2672 
2673         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2674                                                 sizeof(uint64_t));
2675         if (!new_reftable) {
2676             error_setg(errp, "Failed to increase reftable buffer size");
2677             return -ENOMEM;
2678         }
2679 
2680         memset(new_reftable + *reftable_size, 0,
2681                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2682 
2683         *reftable      = new_reftable;
2684         *reftable_size = new_reftable_size;
2685     }
2686 
2687     if (!refblock_empty && !(*reftable)[reftable_index]) {
2688         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2689         if (offset < 0) {
2690             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2691             return offset;
2692         }
2693         (*reftable)[reftable_index] = offset;
2694         *allocated = true;
2695     }
2696 
2697     return 0;
2698 }
2699 
2700 /**
2701  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2702  * offset specified by the new reftable's entry. It does not modify the new
2703  * reftable or change any refcounts.
2704  */
2705 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2706                           uint64_t reftable_index, uint64_t *reftable_size,
2707                           void *refblock, bool refblock_empty, bool *allocated,
2708                           Error **errp)
2709 {
2710     BDRVQcow2State *s = bs->opaque;
2711     int64_t offset;
2712     int ret;
2713 
2714     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2715         offset = (*reftable)[reftable_index];
2716 
2717         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2718         if (ret < 0) {
2719             error_setg_errno(errp, -ret, "Overlap check failed");
2720             return ret;
2721         }
2722 
2723         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2724         if (ret < 0) {
2725             error_setg_errno(errp, -ret, "Failed to write refblock");
2726             return ret;
2727         }
2728     } else {
2729         assert(refblock_empty);
2730     }
2731 
2732     return 0;
2733 }
2734 
2735 /**
2736  * This function walks over the existing reftable and every referenced refblock;
2737  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2738  * create an equal new entry in the passed @new_refblock. Once that
2739  * @new_refblock is completely filled, @operation will be called.
2740  *
2741  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2742  * @index is the index of the walk_over_reftable() calls and @total is the total
2743  * number of walk_over_reftable() calls per amend operation. Both are used for
2744  * calculating the parameters for the status callback.
2745  *
2746  * @allocated is set to true if a new cluster has been allocated.
2747  */
2748 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2749                               uint64_t *new_reftable_index,
2750                               uint64_t *new_reftable_size,
2751                               void *new_refblock, int new_refblock_size,
2752                               int new_refcount_bits,
2753                               RefblockFinishOp *operation, bool *allocated,
2754                               Qcow2SetRefcountFunc *new_set_refcount,
2755                               BlockDriverAmendStatusCB *status_cb,
2756                               void *cb_opaque, int index, int total,
2757                               Error **errp)
2758 {
2759     BDRVQcow2State *s = bs->opaque;
2760     uint64_t reftable_index;
2761     bool new_refblock_empty = true;
2762     int refblock_index;
2763     int new_refblock_index = 0;
2764     int ret;
2765 
2766     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2767          reftable_index++)
2768     {
2769         uint64_t refblock_offset = s->refcount_table[reftable_index]
2770                                  & REFT_OFFSET_MASK;
2771 
2772         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2773                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2774 
2775         if (refblock_offset) {
2776             void *refblock;
2777 
2778             if (offset_into_cluster(s, refblock_offset)) {
2779                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2780                                         PRIx64 " unaligned (reftable index: %#"
2781                                         PRIx64 ")", refblock_offset,
2782                                         reftable_index);
2783                 error_setg(errp,
2784                            "Image is corrupt (unaligned refblock offset)");
2785                 return -EIO;
2786             }
2787 
2788             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2789                                   &refblock);
2790             if (ret < 0) {
2791                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2792                 return ret;
2793             }
2794 
2795             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2796                  refblock_index++)
2797             {
2798                 uint64_t refcount;
2799 
2800                 if (new_refblock_index >= new_refblock_size) {
2801                     /* new_refblock is now complete */
2802                     ret = operation(bs, new_reftable, *new_reftable_index,
2803                                     new_reftable_size, new_refblock,
2804                                     new_refblock_empty, allocated, errp);
2805                     if (ret < 0) {
2806                         qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2807                         return ret;
2808                     }
2809 
2810                     (*new_reftable_index)++;
2811                     new_refblock_index = 0;
2812                     new_refblock_empty = true;
2813                 }
2814 
2815                 refcount = s->get_refcount(refblock, refblock_index);
2816                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2817                     uint64_t offset;
2818 
2819                     qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2820 
2821                     offset = ((reftable_index << s->refcount_block_bits)
2822                               + refblock_index) << s->cluster_bits;
2823 
2824                     error_setg(errp, "Cannot decrease refcount entry width to "
2825                                "%i bits: Cluster at offset %#" PRIx64 " has a "
2826                                "refcount of %" PRIu64, new_refcount_bits,
2827                                offset, refcount);
2828                     return -EINVAL;
2829                 }
2830 
2831                 if (new_set_refcount) {
2832                     new_set_refcount(new_refblock, new_refblock_index++,
2833                                      refcount);
2834                 } else {
2835                     new_refblock_index++;
2836                 }
2837                 new_refblock_empty = new_refblock_empty && refcount == 0;
2838             }
2839 
2840             qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2841         } else {
2842             /* No refblock means every refcount is 0 */
2843             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2844                  refblock_index++)
2845             {
2846                 if (new_refblock_index >= new_refblock_size) {
2847                     /* new_refblock is now complete */
2848                     ret = operation(bs, new_reftable, *new_reftable_index,
2849                                     new_reftable_size, new_refblock,
2850                                     new_refblock_empty, allocated, errp);
2851                     if (ret < 0) {
2852                         return ret;
2853                     }
2854 
2855                     (*new_reftable_index)++;
2856                     new_refblock_index = 0;
2857                     new_refblock_empty = true;
2858                 }
2859 
2860                 if (new_set_refcount) {
2861                     new_set_refcount(new_refblock, new_refblock_index++, 0);
2862                 } else {
2863                     new_refblock_index++;
2864                 }
2865             }
2866         }
2867     }
2868 
2869     if (new_refblock_index > 0) {
2870         /* Complete the potentially existing partially filled final refblock */
2871         if (new_set_refcount) {
2872             for (; new_refblock_index < new_refblock_size;
2873                  new_refblock_index++)
2874             {
2875                 new_set_refcount(new_refblock, new_refblock_index, 0);
2876             }
2877         }
2878 
2879         ret = operation(bs, new_reftable, *new_reftable_index,
2880                         new_reftable_size, new_refblock, new_refblock_empty,
2881                         allocated, errp);
2882         if (ret < 0) {
2883             return ret;
2884         }
2885 
2886         (*new_reftable_index)++;
2887     }
2888 
2889     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2890               (uint64_t)total * s->refcount_table_size, cb_opaque);
2891 
2892     return 0;
2893 }
2894 
2895 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2896                                 BlockDriverAmendStatusCB *status_cb,
2897                                 void *cb_opaque, Error **errp)
2898 {
2899     BDRVQcow2State *s = bs->opaque;
2900     Qcow2GetRefcountFunc *new_get_refcount;
2901     Qcow2SetRefcountFunc *new_set_refcount;
2902     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2903     uint64_t *new_reftable = NULL, new_reftable_size = 0;
2904     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2905     uint64_t new_reftable_index = 0;
2906     uint64_t i;
2907     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2908     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2909     int old_refcount_order;
2910     int walk_index = 0;
2911     int ret;
2912     bool new_allocation;
2913 
2914     assert(s->qcow_version >= 3);
2915     assert(refcount_order >= 0 && refcount_order <= 6);
2916 
2917     /* see qcow2_open() */
2918     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2919 
2920     new_get_refcount = get_refcount_funcs[refcount_order];
2921     new_set_refcount = set_refcount_funcs[refcount_order];
2922 
2923 
2924     do {
2925         int total_walks;
2926 
2927         new_allocation = false;
2928 
2929         /* At least we have to do this walk and the one which writes the
2930          * refblocks; also, at least we have to do this loop here at least
2931          * twice (normally), first to do the allocations, and second to
2932          * determine that everything is correctly allocated, this then makes
2933          * three walks in total */
2934         total_walks = MAX(walk_index + 2, 3);
2935 
2936         /* First, allocate the structures so they are present in the refcount
2937          * structures */
2938         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2939                                  &new_reftable_size, NULL, new_refblock_size,
2940                                  new_refcount_bits, &alloc_refblock,
2941                                  &new_allocation, NULL, status_cb, cb_opaque,
2942                                  walk_index++, total_walks, errp);
2943         if (ret < 0) {
2944             goto done;
2945         }
2946 
2947         new_reftable_index = 0;
2948 
2949         if (new_allocation) {
2950             if (new_reftable_offset) {
2951                 qcow2_free_clusters(bs, new_reftable_offset,
2952                                     allocated_reftable_size * sizeof(uint64_t),
2953                                     QCOW2_DISCARD_NEVER);
2954             }
2955 
2956             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2957                                                            sizeof(uint64_t));
2958             if (new_reftable_offset < 0) {
2959                 error_setg_errno(errp, -new_reftable_offset,
2960                                  "Failed to allocate the new reftable");
2961                 ret = new_reftable_offset;
2962                 goto done;
2963             }
2964             allocated_reftable_size = new_reftable_size;
2965         }
2966     } while (new_allocation);
2967 
2968     /* Second, write the new refblocks */
2969     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2970                              &new_reftable_size, new_refblock,
2971                              new_refblock_size, new_refcount_bits,
2972                              &flush_refblock, &new_allocation, new_set_refcount,
2973                              status_cb, cb_opaque, walk_index, walk_index + 1,
2974                              errp);
2975     if (ret < 0) {
2976         goto done;
2977     }
2978     assert(!new_allocation);
2979 
2980 
2981     /* Write the new reftable */
2982     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2983                                         new_reftable_size * sizeof(uint64_t));
2984     if (ret < 0) {
2985         error_setg_errno(errp, -ret, "Overlap check failed");
2986         goto done;
2987     }
2988 
2989     for (i = 0; i < new_reftable_size; i++) {
2990         cpu_to_be64s(&new_reftable[i]);
2991     }
2992 
2993     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
2994                       new_reftable_size * sizeof(uint64_t));
2995 
2996     for (i = 0; i < new_reftable_size; i++) {
2997         be64_to_cpus(&new_reftable[i]);
2998     }
2999 
3000     if (ret < 0) {
3001         error_setg_errno(errp, -ret, "Failed to write the new reftable");
3002         goto done;
3003     }
3004 
3005 
3006     /* Empty the refcount cache */
3007     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3008     if (ret < 0) {
3009         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3010         goto done;
3011     }
3012 
3013     /* Update the image header to point to the new reftable; this only updates
3014      * the fields which are relevant to qcow2_update_header(); other fields
3015      * such as s->refcount_table or s->refcount_bits stay stale for now
3016      * (because we have to restore everything if qcow2_update_header() fails) */
3017     old_refcount_order  = s->refcount_order;
3018     old_reftable_size   = s->refcount_table_size;
3019     old_reftable_offset = s->refcount_table_offset;
3020 
3021     s->refcount_order        = refcount_order;
3022     s->refcount_table_size   = new_reftable_size;
3023     s->refcount_table_offset = new_reftable_offset;
3024 
3025     ret = qcow2_update_header(bs);
3026     if (ret < 0) {
3027         s->refcount_order        = old_refcount_order;
3028         s->refcount_table_size   = old_reftable_size;
3029         s->refcount_table_offset = old_reftable_offset;
3030         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3031         goto done;
3032     }
3033 
3034     /* Now update the rest of the in-memory information */
3035     old_reftable = s->refcount_table;
3036     s->refcount_table = new_reftable;
3037     update_max_refcount_table_index(s);
3038 
3039     s->refcount_bits = 1 << refcount_order;
3040     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3041     s->refcount_max += s->refcount_max - 1;
3042 
3043     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3044     s->refcount_block_size = 1 << s->refcount_block_bits;
3045 
3046     s->get_refcount = new_get_refcount;
3047     s->set_refcount = new_set_refcount;
3048 
3049     /* For cleaning up all old refblocks and the old reftable below the "done"
3050      * label */
3051     new_reftable        = old_reftable;
3052     new_reftable_size   = old_reftable_size;
3053     new_reftable_offset = old_reftable_offset;
3054 
3055 done:
3056     if (new_reftable) {
3057         /* On success, new_reftable actually points to the old reftable (and
3058          * new_reftable_size is the old reftable's size); but that is just
3059          * fine */
3060         for (i = 0; i < new_reftable_size; i++) {
3061             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3062             if (offset) {
3063                 qcow2_free_clusters(bs, offset, s->cluster_size,
3064                                     QCOW2_DISCARD_OTHER);
3065             }
3066         }
3067         g_free(new_reftable);
3068 
3069         if (new_reftable_offset > 0) {
3070             qcow2_free_clusters(bs, new_reftable_offset,
3071                                 new_reftable_size * sizeof(uint64_t),
3072                                 QCOW2_DISCARD_OTHER);
3073         }
3074     }
3075 
3076     qemu_vfree(new_refblock);
3077     return ret;
3078 }
3079 
3080 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3081                                         uint64_t discard_block_offs)
3082 {
3083     BDRVQcow2State *s = bs->opaque;
3084     uint64_t refblock_offs = get_refblock_offset(s, discard_block_offs);
3085     uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3086     uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3087     void *refblock;
3088     int ret;
3089 
3090     assert(discard_block_offs != 0);
3091 
3092     ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3093                           &refblock);
3094     if (ret < 0) {
3095         return ret;
3096     }
3097 
3098     if (s->get_refcount(refblock, block_index) != 1) {
3099         qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3100                                 " refblock offset %#" PRIx64
3101                                 ", reftable index %u"
3102                                 ", block offset %#" PRIx64
3103                                 ", refcount %#" PRIx64,
3104                                 refblock_offs,
3105                                 offset_to_reftable_index(s, discard_block_offs),
3106                                 discard_block_offs,
3107                                 s->get_refcount(refblock, block_index));
3108         qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
3109         return -EINVAL;
3110     }
3111     s->set_refcount(refblock, block_index, 0);
3112 
3113     qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, refblock);
3114 
3115     qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
3116 
3117     if (cluster_index < s->free_cluster_index) {
3118         s->free_cluster_index = cluster_index;
3119     }
3120 
3121     refblock = qcow2_cache_is_table_offset(bs, s->refcount_block_cache,
3122                                            discard_block_offs);
3123     if (refblock) {
3124         /* discard refblock from the cache if refblock is cached */
3125         qcow2_cache_discard(bs, s->refcount_block_cache, refblock);
3126     }
3127     update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3128 
3129     return 0;
3130 }
3131 
3132 int qcow2_shrink_reftable(BlockDriverState *bs)
3133 {
3134     BDRVQcow2State *s = bs->opaque;
3135     uint64_t *reftable_tmp =
3136         g_malloc(s->refcount_table_size * sizeof(uint64_t));
3137     int i, ret;
3138 
3139     for (i = 0; i < s->refcount_table_size; i++) {
3140         int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3141         void *refblock;
3142         bool unused_block;
3143 
3144         if (refblock_offs == 0) {
3145             reftable_tmp[i] = 0;
3146             continue;
3147         }
3148         ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3149                               &refblock);
3150         if (ret < 0) {
3151             goto out;
3152         }
3153 
3154         /* the refblock has own reference */
3155         if (i == offset_to_reftable_index(s, refblock_offs)) {
3156             uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3157                                    (s->refcount_block_size - 1);
3158             uint64_t refcount = s->get_refcount(refblock, block_index);
3159 
3160             s->set_refcount(refblock, block_index, 0);
3161 
3162             unused_block = buffer_is_zero(refblock, s->cluster_size);
3163 
3164             s->set_refcount(refblock, block_index, refcount);
3165         } else {
3166             unused_block = buffer_is_zero(refblock, s->cluster_size);
3167         }
3168         qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
3169 
3170         reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3171     }
3172 
3173     ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3174                            s->refcount_table_size * sizeof(uint64_t));
3175     /*
3176      * If the write in the reftable failed the image may contain a partially
3177      * overwritten reftable. In this case it would be better to clear the
3178      * reftable in memory to avoid possible image corruption.
3179      */
3180     for (i = 0; i < s->refcount_table_size; i++) {
3181         if (s->refcount_table[i] && !reftable_tmp[i]) {
3182             if (ret == 0) {
3183                 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3184                                                        REFT_OFFSET_MASK);
3185             }
3186             s->refcount_table[i] = 0;
3187         }
3188     }
3189 
3190     if (!s->cache_discards) {
3191         qcow2_process_discards(bs, ret);
3192     }
3193 
3194 out:
3195     g_free(reftable_tmp);
3196     return ret;
3197 }
3198 
3199 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3200 {
3201     BDRVQcow2State *s = bs->opaque;
3202     int64_t i;
3203 
3204     for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3205         uint64_t refcount;
3206         int ret = qcow2_get_refcount(bs, i, &refcount);
3207         if (ret < 0) {
3208             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3209                     i, strerror(-ret));
3210             return ret;
3211         }
3212         if (refcount > 0) {
3213             return i;
3214         }
3215     }
3216     qcow2_signal_corruption(bs, true, -1, -1,
3217                             "There are no references in the refcount table.");
3218     return -EIO;
3219 }
3220