xref: /openbmc/qemu/block/qcow2-refcount.c (revision dd8d6a2d)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 #include "qemu/cutils.h"
33 
34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
35                                     uint64_t max);
36 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
37                             int64_t offset, int64_t length, uint64_t addend,
38                             bool decrease, enum qcow2_discard_type type);
39 
40 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
46 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
47 
48 static void set_refcount_ro0(void *refcount_array, uint64_t index,
49                              uint64_t value);
50 static void set_refcount_ro1(void *refcount_array, uint64_t index,
51                              uint64_t value);
52 static void set_refcount_ro2(void *refcount_array, uint64_t index,
53                              uint64_t value);
54 static void set_refcount_ro3(void *refcount_array, uint64_t index,
55                              uint64_t value);
56 static void set_refcount_ro4(void *refcount_array, uint64_t index,
57                              uint64_t value);
58 static void set_refcount_ro5(void *refcount_array, uint64_t index,
59                              uint64_t value);
60 static void set_refcount_ro6(void *refcount_array, uint64_t index,
61                              uint64_t value);
62 
63 
64 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
65     &get_refcount_ro0,
66     &get_refcount_ro1,
67     &get_refcount_ro2,
68     &get_refcount_ro3,
69     &get_refcount_ro4,
70     &get_refcount_ro5,
71     &get_refcount_ro6
72 };
73 
74 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
75     &set_refcount_ro0,
76     &set_refcount_ro1,
77     &set_refcount_ro2,
78     &set_refcount_ro3,
79     &set_refcount_ro4,
80     &set_refcount_ro5,
81     &set_refcount_ro6
82 };
83 
84 
85 /*********************************************************/
86 /* refcount handling */
87 
88 static void update_max_refcount_table_index(BDRVQcow2State *s)
89 {
90     unsigned i = s->refcount_table_size - 1;
91     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
92         i--;
93     }
94     /* Set s->max_refcount_table_index to the index of the last used entry */
95     s->max_refcount_table_index = i;
96 }
97 
98 int qcow2_refcount_init(BlockDriverState *bs)
99 {
100     BDRVQcow2State *s = bs->opaque;
101     unsigned int refcount_table_size2, i;
102     int ret;
103 
104     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
105 
106     s->get_refcount = get_refcount_funcs[s->refcount_order];
107     s->set_refcount = set_refcount_funcs[s->refcount_order];
108 
109     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
110     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
111     s->refcount_table = g_try_malloc(refcount_table_size2);
112 
113     if (s->refcount_table_size > 0) {
114         if (s->refcount_table == NULL) {
115             ret = -ENOMEM;
116             goto fail;
117         }
118         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
119         ret = bdrv_pread(bs->file, s->refcount_table_offset,
120                          s->refcount_table, refcount_table_size2);
121         if (ret < 0) {
122             goto fail;
123         }
124         for(i = 0; i < s->refcount_table_size; i++)
125             be64_to_cpus(&s->refcount_table[i]);
126         update_max_refcount_table_index(s);
127     }
128     return 0;
129  fail:
130     return ret;
131 }
132 
133 void qcow2_refcount_close(BlockDriverState *bs)
134 {
135     BDRVQcow2State *s = bs->opaque;
136     g_free(s->refcount_table);
137 }
138 
139 
140 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
141 {
142     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
143 }
144 
145 static void set_refcount_ro0(void *refcount_array, uint64_t index,
146                              uint64_t value)
147 {
148     assert(!(value >> 1));
149     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
150     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
151 }
152 
153 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
154 {
155     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
156            & 0x3;
157 }
158 
159 static void set_refcount_ro1(void *refcount_array, uint64_t index,
160                              uint64_t value)
161 {
162     assert(!(value >> 2));
163     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
164     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
165 }
166 
167 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
168 {
169     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
170            & 0xf;
171 }
172 
173 static void set_refcount_ro2(void *refcount_array, uint64_t index,
174                              uint64_t value)
175 {
176     assert(!(value >> 4));
177     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
178     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
179 }
180 
181 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
182 {
183     return ((const uint8_t *)refcount_array)[index];
184 }
185 
186 static void set_refcount_ro3(void *refcount_array, uint64_t index,
187                              uint64_t value)
188 {
189     assert(!(value >> 8));
190     ((uint8_t *)refcount_array)[index] = value;
191 }
192 
193 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
194 {
195     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
196 }
197 
198 static void set_refcount_ro4(void *refcount_array, uint64_t index,
199                              uint64_t value)
200 {
201     assert(!(value >> 16));
202     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
203 }
204 
205 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
206 {
207     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
208 }
209 
210 static void set_refcount_ro5(void *refcount_array, uint64_t index,
211                              uint64_t value)
212 {
213     assert(!(value >> 32));
214     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
215 }
216 
217 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
218 {
219     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
220 }
221 
222 static void set_refcount_ro6(void *refcount_array, uint64_t index,
223                              uint64_t value)
224 {
225     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
226 }
227 
228 
229 static int load_refcount_block(BlockDriverState *bs,
230                                int64_t refcount_block_offset,
231                                void **refcount_block)
232 {
233     BDRVQcow2State *s = bs->opaque;
234 
235     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
236     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
237                            refcount_block);
238 }
239 
240 /*
241  * Retrieves the refcount of the cluster given by its index and stores it in
242  * *refcount. Returns 0 on success and -errno on failure.
243  */
244 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
245                        uint64_t *refcount)
246 {
247     BDRVQcow2State *s = bs->opaque;
248     uint64_t refcount_table_index, block_index;
249     int64_t refcount_block_offset;
250     int ret;
251     void *refcount_block;
252 
253     refcount_table_index = cluster_index >> s->refcount_block_bits;
254     if (refcount_table_index >= s->refcount_table_size) {
255         *refcount = 0;
256         return 0;
257     }
258     refcount_block_offset =
259         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
260     if (!refcount_block_offset) {
261         *refcount = 0;
262         return 0;
263     }
264 
265     if (offset_into_cluster(s, refcount_block_offset)) {
266         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
267                                 " unaligned (reftable index: %#" PRIx64 ")",
268                                 refcount_block_offset, refcount_table_index);
269         return -EIO;
270     }
271 
272     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
273                           &refcount_block);
274     if (ret < 0) {
275         return ret;
276     }
277 
278     block_index = cluster_index & (s->refcount_block_size - 1);
279     *refcount = s->get_refcount(refcount_block, block_index);
280 
281     qcow2_cache_put(s->refcount_block_cache, &refcount_block);
282 
283     return 0;
284 }
285 
286 /* Checks if two offsets are described by the same refcount block */
287 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
288     uint64_t offset_b)
289 {
290     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
291     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
292 
293     return (block_a == block_b);
294 }
295 
296 /*
297  * Loads a refcount block. If it doesn't exist yet, it is allocated first
298  * (including growing the refcount table if needed).
299  *
300  * Returns 0 on success or -errno in error case
301  */
302 static int alloc_refcount_block(BlockDriverState *bs,
303                                 int64_t cluster_index, void **refcount_block)
304 {
305     BDRVQcow2State *s = bs->opaque;
306     unsigned int refcount_table_index;
307     int64_t ret;
308 
309     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
310 
311     /* Find the refcount block for the given cluster */
312     refcount_table_index = cluster_index >> s->refcount_block_bits;
313 
314     if (refcount_table_index < s->refcount_table_size) {
315 
316         uint64_t refcount_block_offset =
317             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
318 
319         /* If it's already there, we're done */
320         if (refcount_block_offset) {
321             if (offset_into_cluster(s, refcount_block_offset)) {
322                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
323                                         PRIx64 " unaligned (reftable index: "
324                                         "%#x)", refcount_block_offset,
325                                         refcount_table_index);
326                 return -EIO;
327             }
328 
329              return load_refcount_block(bs, refcount_block_offset,
330                                         refcount_block);
331         }
332     }
333 
334     /*
335      * If we came here, we need to allocate something. Something is at least
336      * a cluster for the new refcount block. It may also include a new refcount
337      * table if the old refcount table is too small.
338      *
339      * Note that allocating clusters here needs some special care:
340      *
341      * - We can't use the normal qcow2_alloc_clusters(), it would try to
342      *   increase the refcount and very likely we would end up with an endless
343      *   recursion. Instead we must place the refcount blocks in a way that
344      *   they can describe them themselves.
345      *
346      * - We need to consider that at this point we are inside update_refcounts
347      *   and potentially doing an initial refcount increase. This means that
348      *   some clusters have already been allocated by the caller, but their
349      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
350      *   need to return -EAGAIN to signal the caller that it needs to restart
351      *   the search for free clusters.
352      *
353      * - alloc_clusters_noref and qcow2_free_clusters may load a different
354      *   refcount block into the cache
355      */
356 
357     *refcount_block = NULL;
358 
359     /* We write to the refcount table, so we might depend on L2 tables */
360     ret = qcow2_cache_flush(bs, s->l2_table_cache);
361     if (ret < 0) {
362         return ret;
363     }
364 
365     /* Allocate the refcount block itself and mark it as used */
366     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX);
367     if (new_block < 0) {
368         return new_block;
369     }
370 
371     /* The offset must fit in the offset field of the refcount table entry */
372     assert((new_block & REFT_OFFSET_MASK) == new_block);
373 
374     /* If we're allocating the block at offset 0 then something is wrong */
375     if (new_block == 0) {
376         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
377                                 "allocation of refcount block at offset 0");
378         return -EIO;
379     }
380 
381 #ifdef DEBUG_ALLOC2
382     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
383         " at %" PRIx64 "\n",
384         refcount_table_index, cluster_index << s->cluster_bits, new_block);
385 #endif
386 
387     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
388         /* Zero the new refcount block before updating it */
389         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
390                                     refcount_block);
391         if (ret < 0) {
392             goto fail;
393         }
394 
395         memset(*refcount_block, 0, s->cluster_size);
396 
397         /* The block describes itself, need to update the cache */
398         int block_index = (new_block >> s->cluster_bits) &
399             (s->refcount_block_size - 1);
400         s->set_refcount(*refcount_block, block_index, 1);
401     } else {
402         /* Described somewhere else. This can recurse at most twice before we
403          * arrive at a block that describes itself. */
404         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
405                               QCOW2_DISCARD_NEVER);
406         if (ret < 0) {
407             goto fail;
408         }
409 
410         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
411         if (ret < 0) {
412             goto fail;
413         }
414 
415         /* Initialize the new refcount block only after updating its refcount,
416          * update_refcount uses the refcount cache itself */
417         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
418                                     refcount_block);
419         if (ret < 0) {
420             goto fail;
421         }
422 
423         memset(*refcount_block, 0, s->cluster_size);
424     }
425 
426     /* Now the new refcount block needs to be written to disk */
427     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
428     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
429     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
430     if (ret < 0) {
431         goto fail;
432     }
433 
434     /* If the refcount table is big enough, just hook the block up there */
435     if (refcount_table_index < s->refcount_table_size) {
436         uint64_t data64 = cpu_to_be64(new_block);
437         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
438         ret = bdrv_pwrite_sync(bs->file,
439             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
440             &data64, sizeof(data64));
441         if (ret < 0) {
442             goto fail;
443         }
444 
445         s->refcount_table[refcount_table_index] = new_block;
446         /* If there's a hole in s->refcount_table then it can happen
447          * that refcount_table_index < s->max_refcount_table_index */
448         s->max_refcount_table_index =
449             MAX(s->max_refcount_table_index, refcount_table_index);
450 
451         /* The new refcount block may be where the caller intended to put its
452          * data, so let it restart the search. */
453         return -EAGAIN;
454     }
455 
456     qcow2_cache_put(s->refcount_block_cache, refcount_block);
457 
458     /*
459      * If we come here, we need to grow the refcount table. Again, a new
460      * refcount table needs some space and we can't simply allocate to avoid
461      * endless recursion.
462      *
463      * Therefore let's grab new refcount blocks at the end of the image, which
464      * will describe themselves and the new refcount table. This way we can
465      * reference them only in the new table and do the switch to the new
466      * refcount table at once without producing an inconsistent state in
467      * between.
468      */
469     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
470 
471     /* Calculate the number of refcount blocks needed so far; this will be the
472      * basis for calculating the index of the first cluster used for the
473      * self-describing refcount structures which we are about to create.
474      *
475      * Because we reached this point, there cannot be any refcount entries for
476      * cluster_index or higher indices yet. However, because new_block has been
477      * allocated to describe that cluster (and it will assume this role later
478      * on), we cannot use that index; also, new_block may actually have a higher
479      * cluster index than cluster_index, so it needs to be taken into account
480      * here (and 1 needs to be added to its value because that cluster is used).
481      */
482     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
483                                             (new_block >> s->cluster_bits) + 1),
484                                         s->refcount_block_size);
485 
486     /* Create the new refcount table and blocks */
487     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
488         s->cluster_size;
489 
490     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
491                               refcount_table_index, new_block);
492     if (ret < 0) {
493         return ret;
494     }
495 
496     ret = load_refcount_block(bs, new_block, refcount_block);
497     if (ret < 0) {
498         return ret;
499     }
500 
501     /* If we were trying to do the initial refcount update for some cluster
502      * allocation, we might have used the same clusters to store newly
503      * allocated metadata. Make the caller search some new space. */
504     return -EAGAIN;
505 
506 fail:
507     if (*refcount_block != NULL) {
508         qcow2_cache_put(s->refcount_block_cache, refcount_block);
509     }
510     return ret;
511 }
512 
513 /*
514  * Starting at @start_offset, this function creates new self-covering refcount
515  * structures: A new refcount table and refcount blocks which cover all of
516  * themselves, and a number of @additional_clusters beyond their end.
517  * @start_offset must be at the end of the image file, that is, there must be
518  * only empty space beyond it.
519  * If @exact_size is false, the refcount table will have 50 % more entries than
520  * necessary so it will not need to grow again soon.
521  * If @new_refblock_offset is not zero, it contains the offset of a refcount
522  * block that should be entered into the new refcount table at index
523  * @new_refblock_index.
524  *
525  * Returns: The offset after the new refcount structures (i.e. where the
526  *          @additional_clusters may be placed) on success, -errno on error.
527  */
528 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
529                             uint64_t additional_clusters, bool exact_size,
530                             int new_refblock_index,
531                             uint64_t new_refblock_offset)
532 {
533     BDRVQcow2State *s = bs->opaque;
534     uint64_t total_refblock_count_u64, additional_refblock_count;
535     int total_refblock_count, table_size, area_reftable_index, table_clusters;
536     int i;
537     uint64_t table_offset, block_offset, end_offset;
538     int ret;
539     uint64_t *new_table;
540 
541     assert(!(start_offset % s->cluster_size));
542 
543     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
544                                  additional_clusters,
545                                  s->cluster_size, s->refcount_order,
546                                  !exact_size, &total_refblock_count_u64);
547     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
548         return -EFBIG;
549     }
550     total_refblock_count = total_refblock_count_u64;
551 
552     /* Index in the refcount table of the first refcount block to cover the area
553      * of refcount structures we are about to create; we know that
554      * @total_refblock_count can cover @start_offset, so this will definitely
555      * fit into an int. */
556     area_reftable_index = (start_offset / s->cluster_size) /
557                           s->refcount_block_size;
558 
559     if (exact_size) {
560         table_size = total_refblock_count;
561     } else {
562         table_size = total_refblock_count +
563                      DIV_ROUND_UP(total_refblock_count, 2);
564     }
565     /* The qcow2 file can only store the reftable size in number of clusters */
566     table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
567     table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
568 
569     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
570         return -EFBIG;
571     }
572 
573     new_table = g_try_new0(uint64_t, table_size);
574 
575     assert(table_size > 0);
576     if (new_table == NULL) {
577         ret = -ENOMEM;
578         goto fail;
579     }
580 
581     /* Fill the new refcount table */
582     if (table_size > s->max_refcount_table_index) {
583         /* We're actually growing the reftable */
584         memcpy(new_table, s->refcount_table,
585                (s->max_refcount_table_index + 1) * sizeof(uint64_t));
586     } else {
587         /* Improbable case: We're shrinking the reftable. However, the caller
588          * has assured us that there is only empty space beyond @start_offset,
589          * so we can simply drop all of the refblocks that won't fit into the
590          * new reftable. */
591         memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
592     }
593 
594     if (new_refblock_offset) {
595         assert(new_refblock_index < total_refblock_count);
596         new_table[new_refblock_index] = new_refblock_offset;
597     }
598 
599     /* Count how many new refblocks we have to create */
600     additional_refblock_count = 0;
601     for (i = area_reftable_index; i < total_refblock_count; i++) {
602         if (!new_table[i]) {
603             additional_refblock_count++;
604         }
605     }
606 
607     table_offset = start_offset + additional_refblock_count * s->cluster_size;
608     end_offset = table_offset + table_clusters * s->cluster_size;
609 
610     /* Fill the refcount blocks, and create new ones, if necessary */
611     block_offset = start_offset;
612     for (i = area_reftable_index; i < total_refblock_count; i++) {
613         void *refblock_data;
614         uint64_t first_offset_covered;
615 
616         /* Reuse an existing refblock if possible, create a new one otherwise */
617         if (new_table[i]) {
618             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
619                                   &refblock_data);
620             if (ret < 0) {
621                 goto fail;
622             }
623         } else {
624             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
625                                         block_offset, &refblock_data);
626             if (ret < 0) {
627                 goto fail;
628             }
629             memset(refblock_data, 0, s->cluster_size);
630             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
631                                          refblock_data);
632 
633             new_table[i] = block_offset;
634             block_offset += s->cluster_size;
635         }
636 
637         /* First host offset covered by this refblock */
638         first_offset_covered = (uint64_t)i * s->refcount_block_size *
639                                s->cluster_size;
640         if (first_offset_covered < end_offset) {
641             int j, end_index;
642 
643             /* Set the refcount of all of the new refcount structures to 1 */
644 
645             if (first_offset_covered < start_offset) {
646                 assert(i == area_reftable_index);
647                 j = (start_offset - first_offset_covered) / s->cluster_size;
648                 assert(j < s->refcount_block_size);
649             } else {
650                 j = 0;
651             }
652 
653             end_index = MIN((end_offset - first_offset_covered) /
654                             s->cluster_size,
655                             s->refcount_block_size);
656 
657             for (; j < end_index; j++) {
658                 /* The caller guaranteed us this space would be empty */
659                 assert(s->get_refcount(refblock_data, j) == 0);
660                 s->set_refcount(refblock_data, j, 1);
661             }
662 
663             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
664                                          refblock_data);
665         }
666 
667         qcow2_cache_put(s->refcount_block_cache, &refblock_data);
668     }
669 
670     assert(block_offset == table_offset);
671 
672     /* Write refcount blocks to disk */
673     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
674     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
675     if (ret < 0) {
676         goto fail;
677     }
678 
679     /* Write refcount table to disk */
680     for (i = 0; i < total_refblock_count; i++) {
681         cpu_to_be64s(&new_table[i]);
682     }
683 
684     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
685     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
686         table_size * sizeof(uint64_t));
687     if (ret < 0) {
688         goto fail;
689     }
690 
691     for (i = 0; i < total_refblock_count; i++) {
692         be64_to_cpus(&new_table[i]);
693     }
694 
695     /* Hook up the new refcount table in the qcow2 header */
696     struct QEMU_PACKED {
697         uint64_t d64;
698         uint32_t d32;
699     } data;
700     data.d64 = cpu_to_be64(table_offset);
701     data.d32 = cpu_to_be32(table_clusters);
702     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
703     ret = bdrv_pwrite_sync(bs->file,
704                            offsetof(QCowHeader, refcount_table_offset),
705                            &data, sizeof(data));
706     if (ret < 0) {
707         goto fail;
708     }
709 
710     /* And switch it in memory */
711     uint64_t old_table_offset = s->refcount_table_offset;
712     uint64_t old_table_size = s->refcount_table_size;
713 
714     g_free(s->refcount_table);
715     s->refcount_table = new_table;
716     s->refcount_table_size = table_size;
717     s->refcount_table_offset = table_offset;
718     update_max_refcount_table_index(s);
719 
720     /* Free old table. */
721     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
722                         QCOW2_DISCARD_OTHER);
723 
724     return end_offset;
725 
726 fail:
727     g_free(new_table);
728     return ret;
729 }
730 
731 void qcow2_process_discards(BlockDriverState *bs, int ret)
732 {
733     BDRVQcow2State *s = bs->opaque;
734     Qcow2DiscardRegion *d, *next;
735 
736     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
737         QTAILQ_REMOVE(&s->discards, d, next);
738 
739         /* Discard is optional, ignore the return value */
740         if (ret >= 0) {
741             bdrv_pdiscard(bs->file, d->offset, d->bytes);
742         }
743 
744         g_free(d);
745     }
746 }
747 
748 static void update_refcount_discard(BlockDriverState *bs,
749                                     uint64_t offset, uint64_t length)
750 {
751     BDRVQcow2State *s = bs->opaque;
752     Qcow2DiscardRegion *d, *p, *next;
753 
754     QTAILQ_FOREACH(d, &s->discards, next) {
755         uint64_t new_start = MIN(offset, d->offset);
756         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
757 
758         if (new_end - new_start <= length + d->bytes) {
759             /* There can't be any overlap, areas ending up here have no
760              * references any more and therefore shouldn't get freed another
761              * time. */
762             assert(d->bytes + length == new_end - new_start);
763             d->offset = new_start;
764             d->bytes = new_end - new_start;
765             goto found;
766         }
767     }
768 
769     d = g_malloc(sizeof(*d));
770     *d = (Qcow2DiscardRegion) {
771         .bs     = bs,
772         .offset = offset,
773         .bytes  = length,
774     };
775     QTAILQ_INSERT_TAIL(&s->discards, d, next);
776 
777 found:
778     /* Merge discard requests if they are adjacent now */
779     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
780         if (p == d
781             || p->offset > d->offset + d->bytes
782             || d->offset > p->offset + p->bytes)
783         {
784             continue;
785         }
786 
787         /* Still no overlap possible */
788         assert(p->offset == d->offset + d->bytes
789             || d->offset == p->offset + p->bytes);
790 
791         QTAILQ_REMOVE(&s->discards, p, next);
792         d->offset = MIN(d->offset, p->offset);
793         d->bytes += p->bytes;
794         g_free(p);
795     }
796 }
797 
798 /* XXX: cache several refcount block clusters ? */
799 /* @addend is the absolute value of the addend; if @decrease is set, @addend
800  * will be subtracted from the current refcount, otherwise it will be added */
801 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
802                                                    int64_t offset,
803                                                    int64_t length,
804                                                    uint64_t addend,
805                                                    bool decrease,
806                                                    enum qcow2_discard_type type)
807 {
808     BDRVQcow2State *s = bs->opaque;
809     int64_t start, last, cluster_offset;
810     void *refcount_block = NULL;
811     int64_t old_table_index = -1;
812     int ret;
813 
814 #ifdef DEBUG_ALLOC2
815     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
816             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
817             addend);
818 #endif
819     if (length < 0) {
820         return -EINVAL;
821     } else if (length == 0) {
822         return 0;
823     }
824 
825     if (decrease) {
826         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
827             s->l2_table_cache);
828     }
829 
830     start = start_of_cluster(s, offset);
831     last = start_of_cluster(s, offset + length - 1);
832     for(cluster_offset = start; cluster_offset <= last;
833         cluster_offset += s->cluster_size)
834     {
835         int block_index;
836         uint64_t refcount;
837         int64_t cluster_index = cluster_offset >> s->cluster_bits;
838         int64_t table_index = cluster_index >> s->refcount_block_bits;
839 
840         /* Load the refcount block and allocate it if needed */
841         if (table_index != old_table_index) {
842             if (refcount_block) {
843                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
844             }
845             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
846             /* If the caller needs to restart the search for free clusters,
847              * try the same ones first to see if they're still free. */
848             if (ret == -EAGAIN) {
849                 if (s->free_cluster_index > (start >> s->cluster_bits)) {
850                     s->free_cluster_index = (start >> s->cluster_bits);
851                 }
852             }
853             if (ret < 0) {
854                 goto fail;
855             }
856         }
857         old_table_index = table_index;
858 
859         qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
860 
861         /* we can update the count and save it */
862         block_index = cluster_index & (s->refcount_block_size - 1);
863 
864         refcount = s->get_refcount(refcount_block, block_index);
865         if (decrease ? (refcount - addend > refcount)
866                      : (refcount + addend < refcount ||
867                         refcount + addend > s->refcount_max))
868         {
869             ret = -EINVAL;
870             goto fail;
871         }
872         if (decrease) {
873             refcount -= addend;
874         } else {
875             refcount += addend;
876         }
877         if (refcount == 0 && cluster_index < s->free_cluster_index) {
878             s->free_cluster_index = cluster_index;
879         }
880         s->set_refcount(refcount_block, block_index, refcount);
881 
882         if (refcount == 0) {
883             void *table;
884 
885             table = qcow2_cache_is_table_offset(s->refcount_block_cache,
886                                                 offset);
887             if (table != NULL) {
888                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
889                 qcow2_cache_discard(s->refcount_block_cache, table);
890             }
891 
892             table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
893             if (table != NULL) {
894                 qcow2_cache_discard(s->l2_table_cache, table);
895             }
896 
897             if (s->discard_passthrough[type]) {
898                 update_refcount_discard(bs, cluster_offset, s->cluster_size);
899             }
900         }
901     }
902 
903     ret = 0;
904 fail:
905     if (!s->cache_discards) {
906         qcow2_process_discards(bs, ret);
907     }
908 
909     /* Write last changed block to disk */
910     if (refcount_block) {
911         qcow2_cache_put(s->refcount_block_cache, &refcount_block);
912     }
913 
914     /*
915      * Try do undo any updates if an error is returned (This may succeed in
916      * some cases like ENOSPC for allocating a new refcount block)
917      */
918     if (ret < 0) {
919         int dummy;
920         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
921                                 !decrease, QCOW2_DISCARD_NEVER);
922         (void)dummy;
923     }
924 
925     return ret;
926 }
927 
928 /*
929  * Increases or decreases the refcount of a given cluster.
930  *
931  * @addend is the absolute value of the addend; if @decrease is set, @addend
932  * will be subtracted from the current refcount, otherwise it will be added.
933  *
934  * On success 0 is returned; on failure -errno is returned.
935  */
936 int qcow2_update_cluster_refcount(BlockDriverState *bs,
937                                   int64_t cluster_index,
938                                   uint64_t addend, bool decrease,
939                                   enum qcow2_discard_type type)
940 {
941     BDRVQcow2State *s = bs->opaque;
942     int ret;
943 
944     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
945                           decrease, type);
946     if (ret < 0) {
947         return ret;
948     }
949 
950     return 0;
951 }
952 
953 
954 
955 /*********************************************************/
956 /* cluster allocation functions */
957 
958 
959 
960 /* return < 0 if error */
961 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
962                                     uint64_t max)
963 {
964     BDRVQcow2State *s = bs->opaque;
965     uint64_t i, nb_clusters, refcount;
966     int ret;
967 
968     /* We can't allocate clusters if they may still be queued for discard. */
969     if (s->cache_discards) {
970         qcow2_process_discards(bs, 0);
971     }
972 
973     nb_clusters = size_to_clusters(s, size);
974 retry:
975     for(i = 0; i < nb_clusters; i++) {
976         uint64_t next_cluster_index = s->free_cluster_index++;
977         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
978 
979         if (ret < 0) {
980             return ret;
981         } else if (refcount != 0) {
982             goto retry;
983         }
984     }
985 
986     /* Make sure that all offsets in the "allocated" range are representable
987      * in the requested max */
988     if (s->free_cluster_index > 0 &&
989         s->free_cluster_index - 1 > (max >> s->cluster_bits))
990     {
991         return -EFBIG;
992     }
993 
994 #ifdef DEBUG_ALLOC2
995     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
996             size,
997             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
998 #endif
999     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
1000 }
1001 
1002 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
1003 {
1004     int64_t offset;
1005     int ret;
1006 
1007     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
1008     do {
1009         offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET);
1010         if (offset < 0) {
1011             return offset;
1012         }
1013 
1014         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1015     } while (ret == -EAGAIN);
1016 
1017     if (ret < 0) {
1018         return ret;
1019     }
1020 
1021     return offset;
1022 }
1023 
1024 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1025                                 int64_t nb_clusters)
1026 {
1027     BDRVQcow2State *s = bs->opaque;
1028     uint64_t cluster_index, refcount;
1029     uint64_t i;
1030     int ret;
1031 
1032     assert(nb_clusters >= 0);
1033     if (nb_clusters == 0) {
1034         return 0;
1035     }
1036 
1037     do {
1038         /* Check how many clusters there are free */
1039         cluster_index = offset >> s->cluster_bits;
1040         for(i = 0; i < nb_clusters; i++) {
1041             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1042             if (ret < 0) {
1043                 return ret;
1044             } else if (refcount != 0) {
1045                 break;
1046             }
1047         }
1048 
1049         /* And then allocate them */
1050         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1051                               QCOW2_DISCARD_NEVER);
1052     } while (ret == -EAGAIN);
1053 
1054     if (ret < 0) {
1055         return ret;
1056     }
1057 
1058     return i;
1059 }
1060 
1061 /* only used to allocate compressed sectors. We try to allocate
1062    contiguous sectors. size must be <= cluster_size */
1063 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1064 {
1065     BDRVQcow2State *s = bs->opaque;
1066     int64_t offset;
1067     size_t free_in_cluster;
1068     int ret;
1069 
1070     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1071     assert(size > 0 && size <= s->cluster_size);
1072     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1073 
1074     offset = s->free_byte_offset;
1075 
1076     if (offset) {
1077         uint64_t refcount;
1078         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1079         if (ret < 0) {
1080             return ret;
1081         }
1082 
1083         if (refcount == s->refcount_max) {
1084             offset = 0;
1085         }
1086     }
1087 
1088     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1089     do {
1090         if (!offset || free_in_cluster < size) {
1091             int64_t new_cluster;
1092 
1093             new_cluster = alloc_clusters_noref(bs, s->cluster_size,
1094                                                MIN(s->cluster_offset_mask,
1095                                                    QCOW_MAX_CLUSTER_OFFSET));
1096             if (new_cluster < 0) {
1097                 return new_cluster;
1098             }
1099 
1100             if (new_cluster == 0) {
1101                 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1102                                         "allocation of compressed cluster "
1103                                         "at offset 0");
1104                 return -EIO;
1105             }
1106 
1107             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1108                 offset = new_cluster;
1109                 free_in_cluster = s->cluster_size;
1110             } else {
1111                 free_in_cluster += s->cluster_size;
1112             }
1113         }
1114 
1115         assert(offset);
1116         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1117         if (ret < 0) {
1118             offset = 0;
1119         }
1120     } while (ret == -EAGAIN);
1121     if (ret < 0) {
1122         return ret;
1123     }
1124 
1125     /* The cluster refcount was incremented; refcount blocks must be flushed
1126      * before the caller's L2 table updates. */
1127     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1128 
1129     s->free_byte_offset = offset + size;
1130     if (!offset_into_cluster(s, s->free_byte_offset)) {
1131         s->free_byte_offset = 0;
1132     }
1133 
1134     return offset;
1135 }
1136 
1137 void qcow2_free_clusters(BlockDriverState *bs,
1138                           int64_t offset, int64_t size,
1139                           enum qcow2_discard_type type)
1140 {
1141     int ret;
1142 
1143     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1144     ret = update_refcount(bs, offset, size, 1, true, type);
1145     if (ret < 0) {
1146         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1147         /* TODO Remember the clusters to free them later and avoid leaking */
1148     }
1149 }
1150 
1151 /*
1152  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1153  * normal cluster, compressed cluster, etc.)
1154  */
1155 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1156                              int nb_clusters, enum qcow2_discard_type type)
1157 {
1158     BDRVQcow2State *s = bs->opaque;
1159     QCow2ClusterType ctype = qcow2_get_cluster_type(bs, l2_entry);
1160 
1161     if (has_data_file(bs)) {
1162         if (s->discard_passthrough[type] &&
1163             (ctype == QCOW2_CLUSTER_NORMAL ||
1164              ctype == QCOW2_CLUSTER_ZERO_ALLOC))
1165         {
1166             bdrv_pdiscard(s->data_file, l2_entry & L2E_OFFSET_MASK,
1167                           nb_clusters << s->cluster_bits);
1168         }
1169         return;
1170     }
1171 
1172     switch (ctype) {
1173     case QCOW2_CLUSTER_COMPRESSED:
1174         {
1175             int nb_csectors;
1176             nb_csectors = ((l2_entry >> s->csize_shift) &
1177                            s->csize_mask) + 1;
1178             qcow2_free_clusters(bs,
1179                 (l2_entry & s->cluster_offset_mask) & ~511,
1180                 nb_csectors * 512, type);
1181         }
1182         break;
1183     case QCOW2_CLUSTER_NORMAL:
1184     case QCOW2_CLUSTER_ZERO_ALLOC:
1185         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1186             qcow2_signal_corruption(bs, false, -1, -1,
1187                                     "Cannot free unaligned cluster %#llx",
1188                                     l2_entry & L2E_OFFSET_MASK);
1189         } else {
1190             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1191                                 nb_clusters << s->cluster_bits, type);
1192         }
1193         break;
1194     case QCOW2_CLUSTER_ZERO_PLAIN:
1195     case QCOW2_CLUSTER_UNALLOCATED:
1196         break;
1197     default:
1198         abort();
1199     }
1200 }
1201 
1202 int coroutine_fn qcow2_write_caches(BlockDriverState *bs)
1203 {
1204     BDRVQcow2State *s = bs->opaque;
1205     int ret;
1206 
1207     ret = qcow2_cache_write(bs, s->l2_table_cache);
1208     if (ret < 0) {
1209         return ret;
1210     }
1211 
1212     if (qcow2_need_accurate_refcounts(s)) {
1213         ret = qcow2_cache_write(bs, s->refcount_block_cache);
1214         if (ret < 0) {
1215             return ret;
1216         }
1217     }
1218 
1219     return 0;
1220 }
1221 
1222 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs)
1223 {
1224     int ret = qcow2_write_caches(bs);
1225     if (ret < 0) {
1226         return ret;
1227     }
1228 
1229     return bdrv_flush(bs->file->bs);
1230 }
1231 
1232 /*********************************************************/
1233 /* snapshots and image creation */
1234 
1235 
1236 
1237 /* update the refcounts of snapshots and the copied flag */
1238 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1239     int64_t l1_table_offset, int l1_size, int addend)
1240 {
1241     BDRVQcow2State *s = bs->opaque;
1242     uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1243     bool l1_allocated = false;
1244     int64_t old_entry, old_l2_offset;
1245     unsigned slice, slice_size2, n_slices;
1246     int i, j, l1_modified = 0, nb_csectors;
1247     int ret;
1248 
1249     assert(addend >= -1 && addend <= 1);
1250 
1251     l2_slice = NULL;
1252     l1_table = NULL;
1253     l1_size2 = l1_size * sizeof(uint64_t);
1254     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1255     n_slices = s->cluster_size / slice_size2;
1256 
1257     s->cache_discards = true;
1258 
1259     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1260      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1261      * when changing this! */
1262     if (l1_table_offset != s->l1_table_offset) {
1263         l1_table = g_try_malloc0(ROUND_UP(l1_size2, 512));
1264         if (l1_size2 && l1_table == NULL) {
1265             ret = -ENOMEM;
1266             goto fail;
1267         }
1268         l1_allocated = true;
1269 
1270         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1271         if (ret < 0) {
1272             goto fail;
1273         }
1274 
1275         for (i = 0; i < l1_size; i++) {
1276             be64_to_cpus(&l1_table[i]);
1277         }
1278     } else {
1279         assert(l1_size == s->l1_size);
1280         l1_table = s->l1_table;
1281         l1_allocated = false;
1282     }
1283 
1284     for (i = 0; i < l1_size; i++) {
1285         l2_offset = l1_table[i];
1286         if (l2_offset) {
1287             old_l2_offset = l2_offset;
1288             l2_offset &= L1E_OFFSET_MASK;
1289 
1290             if (offset_into_cluster(s, l2_offset)) {
1291                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1292                                         PRIx64 " unaligned (L1 index: %#x)",
1293                                         l2_offset, i);
1294                 ret = -EIO;
1295                 goto fail;
1296             }
1297 
1298             for (slice = 0; slice < n_slices; slice++) {
1299                 ret = qcow2_cache_get(bs, s->l2_table_cache,
1300                                       l2_offset + slice * slice_size2,
1301                                       (void **) &l2_slice);
1302                 if (ret < 0) {
1303                     goto fail;
1304                 }
1305 
1306                 for (j = 0; j < s->l2_slice_size; j++) {
1307                     uint64_t cluster_index;
1308                     uint64_t offset;
1309 
1310                     entry = be64_to_cpu(l2_slice[j]);
1311                     old_entry = entry;
1312                     entry &= ~QCOW_OFLAG_COPIED;
1313                     offset = entry & L2E_OFFSET_MASK;
1314 
1315                     switch (qcow2_get_cluster_type(bs, entry)) {
1316                     case QCOW2_CLUSTER_COMPRESSED:
1317                         nb_csectors = ((entry >> s->csize_shift) &
1318                                        s->csize_mask) + 1;
1319                         if (addend != 0) {
1320                             ret = update_refcount(
1321                                 bs, (entry & s->cluster_offset_mask) & ~511,
1322                                 nb_csectors * 512, abs(addend), addend < 0,
1323                                 QCOW2_DISCARD_SNAPSHOT);
1324                             if (ret < 0) {
1325                                 goto fail;
1326                             }
1327                         }
1328                         /* compressed clusters are never modified */
1329                         refcount = 2;
1330                         break;
1331 
1332                     case QCOW2_CLUSTER_NORMAL:
1333                     case QCOW2_CLUSTER_ZERO_ALLOC:
1334                         if (offset_into_cluster(s, offset)) {
1335                             /* Here l2_index means table (not slice) index */
1336                             int l2_index = slice * s->l2_slice_size + j;
1337                             qcow2_signal_corruption(
1338                                 bs, true, -1, -1, "Cluster "
1339                                 "allocation offset %#" PRIx64
1340                                 " unaligned (L2 offset: %#"
1341                                 PRIx64 ", L2 index: %#x)",
1342                                 offset, l2_offset, l2_index);
1343                             ret = -EIO;
1344                             goto fail;
1345                         }
1346 
1347                         cluster_index = offset >> s->cluster_bits;
1348                         assert(cluster_index);
1349                         if (addend != 0) {
1350                             ret = qcow2_update_cluster_refcount(
1351                                 bs, cluster_index, abs(addend), addend < 0,
1352                                 QCOW2_DISCARD_SNAPSHOT);
1353                             if (ret < 0) {
1354                                 goto fail;
1355                             }
1356                         }
1357 
1358                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1359                         if (ret < 0) {
1360                             goto fail;
1361                         }
1362                         break;
1363 
1364                     case QCOW2_CLUSTER_ZERO_PLAIN:
1365                     case QCOW2_CLUSTER_UNALLOCATED:
1366                         refcount = 0;
1367                         break;
1368 
1369                     default:
1370                         abort();
1371                     }
1372 
1373                     if (refcount == 1) {
1374                         entry |= QCOW_OFLAG_COPIED;
1375                     }
1376                     if (entry != old_entry) {
1377                         if (addend > 0) {
1378                             qcow2_cache_set_dependency(bs, s->l2_table_cache,
1379                                                        s->refcount_block_cache);
1380                         }
1381                         l2_slice[j] = cpu_to_be64(entry);
1382                         qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1383                                                      l2_slice);
1384                     }
1385                 }
1386 
1387                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1388             }
1389 
1390             if (addend != 0) {
1391                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1392                                                         s->cluster_bits,
1393                                                     abs(addend), addend < 0,
1394                                                     QCOW2_DISCARD_SNAPSHOT);
1395                 if (ret < 0) {
1396                     goto fail;
1397                 }
1398             }
1399             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1400                                      &refcount);
1401             if (ret < 0) {
1402                 goto fail;
1403             } else if (refcount == 1) {
1404                 l2_offset |= QCOW_OFLAG_COPIED;
1405             }
1406             if (l2_offset != old_l2_offset) {
1407                 l1_table[i] = l2_offset;
1408                 l1_modified = 1;
1409             }
1410         }
1411     }
1412 
1413     ret = bdrv_flush(bs);
1414 fail:
1415     if (l2_slice) {
1416         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1417     }
1418 
1419     s->cache_discards = false;
1420     qcow2_process_discards(bs, ret);
1421 
1422     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1423     if (ret == 0 && addend >= 0 && l1_modified) {
1424         for (i = 0; i < l1_size; i++) {
1425             cpu_to_be64s(&l1_table[i]);
1426         }
1427 
1428         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1429                                l1_table, l1_size2);
1430 
1431         for (i = 0; i < l1_size; i++) {
1432             be64_to_cpus(&l1_table[i]);
1433         }
1434     }
1435     if (l1_allocated)
1436         g_free(l1_table);
1437     return ret;
1438 }
1439 
1440 
1441 
1442 
1443 /*********************************************************/
1444 /* refcount checking functions */
1445 
1446 
1447 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1448 {
1449     /* This assertion holds because there is no way we can address more than
1450      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1451      * offsets have to be representable in bytes); due to every cluster
1452      * corresponding to one refcount entry, we are well below that limit */
1453     assert(entries < (UINT64_C(1) << (64 - 9)));
1454 
1455     /* Thanks to the assertion this will not overflow, because
1456      * s->refcount_order < 7.
1457      * (note: x << s->refcount_order == x * s->refcount_bits) */
1458     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1459 }
1460 
1461 /**
1462  * Reallocates *array so that it can hold new_size entries. *size must contain
1463  * the current number of entries in *array. If the reallocation fails, *array
1464  * and *size will not be modified and -errno will be returned. If the
1465  * reallocation is successful, *array will be set to the new buffer, *size
1466  * will be set to new_size and 0 will be returned. The size of the reallocated
1467  * refcount array buffer will be aligned to a cluster boundary, and the newly
1468  * allocated area will be zeroed.
1469  */
1470 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1471                                   int64_t *size, int64_t new_size)
1472 {
1473     int64_t old_byte_size, new_byte_size;
1474     void *new_ptr;
1475 
1476     /* Round to clusters so the array can be directly written to disk */
1477     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1478                     * s->cluster_size;
1479     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1480                     * s->cluster_size;
1481 
1482     if (new_byte_size == old_byte_size) {
1483         *size = new_size;
1484         return 0;
1485     }
1486 
1487     assert(new_byte_size > 0);
1488 
1489     if (new_byte_size > SIZE_MAX) {
1490         return -ENOMEM;
1491     }
1492 
1493     new_ptr = g_try_realloc(*array, new_byte_size);
1494     if (!new_ptr) {
1495         return -ENOMEM;
1496     }
1497 
1498     if (new_byte_size > old_byte_size) {
1499         memset((char *)new_ptr + old_byte_size, 0,
1500                new_byte_size - old_byte_size);
1501     }
1502 
1503     *array = new_ptr;
1504     *size  = new_size;
1505 
1506     return 0;
1507 }
1508 
1509 /*
1510  * Increases the refcount for a range of clusters in a given refcount table.
1511  * This is used to construct a temporary refcount table out of L1 and L2 tables
1512  * which can be compared to the refcount table saved in the image.
1513  *
1514  * Modifies the number of errors in res.
1515  */
1516 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1517                              void **refcount_table,
1518                              int64_t *refcount_table_size,
1519                              int64_t offset, int64_t size)
1520 {
1521     BDRVQcow2State *s = bs->opaque;
1522     uint64_t start, last, cluster_offset, k, refcount;
1523     int ret;
1524 
1525     if (size <= 0) {
1526         return 0;
1527     }
1528 
1529     start = start_of_cluster(s, offset);
1530     last = start_of_cluster(s, offset + size - 1);
1531     for(cluster_offset = start; cluster_offset <= last;
1532         cluster_offset += s->cluster_size) {
1533         k = cluster_offset >> s->cluster_bits;
1534         if (k >= *refcount_table_size) {
1535             ret = realloc_refcount_array(s, refcount_table,
1536                                          refcount_table_size, k + 1);
1537             if (ret < 0) {
1538                 res->check_errors++;
1539                 return ret;
1540             }
1541         }
1542 
1543         refcount = s->get_refcount(*refcount_table, k);
1544         if (refcount == s->refcount_max) {
1545             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1546                     "\n", cluster_offset);
1547             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1548                     "width or qemu-img convert to create a clean copy if the "
1549                     "image cannot be opened for writing\n");
1550             res->corruptions++;
1551             continue;
1552         }
1553         s->set_refcount(*refcount_table, k, refcount + 1);
1554     }
1555 
1556     return 0;
1557 }
1558 
1559 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1560 enum {
1561     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1562 };
1563 
1564 /*
1565  * Increases the refcount in the given refcount table for the all clusters
1566  * referenced in the L2 table. While doing so, performs some checks on L2
1567  * entries.
1568  *
1569  * Returns the number of errors found by the checks or -errno if an internal
1570  * error occurred.
1571  */
1572 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1573                               void **refcount_table,
1574                               int64_t *refcount_table_size, int64_t l2_offset,
1575                               int flags, BdrvCheckMode fix)
1576 {
1577     BDRVQcow2State *s = bs->opaque;
1578     uint64_t *l2_table, l2_entry;
1579     uint64_t next_contiguous_offset = 0;
1580     int i, l2_size, nb_csectors, ret;
1581 
1582     /* Read L2 table from disk */
1583     l2_size = s->l2_size * sizeof(uint64_t);
1584     l2_table = g_malloc(l2_size);
1585 
1586     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1587     if (ret < 0) {
1588         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1589         res->check_errors++;
1590         goto fail;
1591     }
1592 
1593     /* Do the actual checks */
1594     for(i = 0; i < s->l2_size; i++) {
1595         l2_entry = be64_to_cpu(l2_table[i]);
1596 
1597         switch (qcow2_get_cluster_type(bs, l2_entry)) {
1598         case QCOW2_CLUSTER_COMPRESSED:
1599             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1600             if (l2_entry & QCOW_OFLAG_COPIED) {
1601                 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
1602                     "copied flag must never be set for compressed "
1603                     "clusters\n", l2_entry & s->cluster_offset_mask);
1604                 l2_entry &= ~QCOW_OFLAG_COPIED;
1605                 res->corruptions++;
1606             }
1607 
1608             if (has_data_file(bs)) {
1609                 fprintf(stderr, "ERROR compressed cluster %d with data file, "
1610                         "entry=0x%" PRIx64 "\n", i, l2_entry);
1611                 res->corruptions++;
1612                 break;
1613             }
1614 
1615             /* Mark cluster as used */
1616             nb_csectors = ((l2_entry >> s->csize_shift) &
1617                            s->csize_mask) + 1;
1618             l2_entry &= s->cluster_offset_mask;
1619             ret = qcow2_inc_refcounts_imrt(bs, res,
1620                                            refcount_table, refcount_table_size,
1621                                            l2_entry & ~511, nb_csectors * 512);
1622             if (ret < 0) {
1623                 goto fail;
1624             }
1625 
1626             if (flags & CHECK_FRAG_INFO) {
1627                 res->bfi.allocated_clusters++;
1628                 res->bfi.compressed_clusters++;
1629 
1630                 /* Compressed clusters are fragmented by nature.  Since they
1631                  * take up sub-sector space but we only have sector granularity
1632                  * I/O we need to re-read the same sectors even for adjacent
1633                  * compressed clusters.
1634                  */
1635                 res->bfi.fragmented_clusters++;
1636             }
1637             break;
1638 
1639         case QCOW2_CLUSTER_ZERO_ALLOC:
1640         case QCOW2_CLUSTER_NORMAL:
1641         {
1642             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1643 
1644             if (flags & CHECK_FRAG_INFO) {
1645                 res->bfi.allocated_clusters++;
1646                 if (next_contiguous_offset &&
1647                     offset != next_contiguous_offset) {
1648                     res->bfi.fragmented_clusters++;
1649                 }
1650                 next_contiguous_offset = offset + s->cluster_size;
1651             }
1652 
1653             /* Correct offsets are cluster aligned */
1654             if (offset_into_cluster(s, offset)) {
1655                 if (qcow2_get_cluster_type(bs, l2_entry) ==
1656                     QCOW2_CLUSTER_ZERO_ALLOC)
1657                 {
1658                     fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated zero "
1659                             "cluster is not properly aligned; L2 entry "
1660                             "corrupted.\n",
1661                             fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1662                             offset);
1663                     if (fix & BDRV_FIX_ERRORS) {
1664                         uint64_t l2e_offset =
1665                             l2_offset + (uint64_t)i * sizeof(uint64_t);
1666 
1667                         l2_entry = QCOW_OFLAG_ZERO;
1668                         l2_table[i] = cpu_to_be64(l2_entry);
1669                         ret = qcow2_pre_write_overlap_check(bs,
1670                                 QCOW2_OL_ACTIVE_L2 | QCOW2_OL_INACTIVE_L2,
1671                                 l2e_offset, sizeof(uint64_t), false);
1672                         if (ret < 0) {
1673                             fprintf(stderr, "ERROR: Overlap check failed\n");
1674                             res->check_errors++;
1675                             /* Something is seriously wrong, so abort checking
1676                              * this L2 table */
1677                             goto fail;
1678                         }
1679 
1680                         ret = bdrv_pwrite_sync(bs->file, l2e_offset,
1681                                                &l2_table[i], sizeof(uint64_t));
1682                         if (ret < 0) {
1683                             fprintf(stderr, "ERROR: Failed to overwrite L2 "
1684                                     "table entry: %s\n", strerror(-ret));
1685                             res->check_errors++;
1686                             /* Do not abort, continue checking the rest of this
1687                              * L2 table's entries */
1688                         } else {
1689                             res->corruptions_fixed++;
1690                             /* Skip marking the cluster as used
1691                              * (it is unused now) */
1692                             continue;
1693                         }
1694                     } else {
1695                         res->corruptions++;
1696                     }
1697                 } else {
1698                     fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1699                         "not properly aligned; L2 entry corrupted.\n", offset);
1700                     res->corruptions++;
1701                 }
1702             }
1703 
1704             /* Mark cluster as used */
1705             if (!has_data_file(bs)) {
1706                 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table,
1707                                                refcount_table_size,
1708                                                offset, s->cluster_size);
1709                 if (ret < 0) {
1710                     goto fail;
1711                 }
1712             }
1713             break;
1714         }
1715 
1716         case QCOW2_CLUSTER_ZERO_PLAIN:
1717         case QCOW2_CLUSTER_UNALLOCATED:
1718             break;
1719 
1720         default:
1721             abort();
1722         }
1723     }
1724 
1725     g_free(l2_table);
1726     return 0;
1727 
1728 fail:
1729     g_free(l2_table);
1730     return ret;
1731 }
1732 
1733 /*
1734  * Increases the refcount for the L1 table, its L2 tables and all referenced
1735  * clusters in the given refcount table. While doing so, performs some checks
1736  * on L1 and L2 entries.
1737  *
1738  * Returns the number of errors found by the checks or -errno if an internal
1739  * error occurred.
1740  */
1741 static int check_refcounts_l1(BlockDriverState *bs,
1742                               BdrvCheckResult *res,
1743                               void **refcount_table,
1744                               int64_t *refcount_table_size,
1745                               int64_t l1_table_offset, int l1_size,
1746                               int flags, BdrvCheckMode fix)
1747 {
1748     BDRVQcow2State *s = bs->opaque;
1749     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1750     int i, ret;
1751 
1752     l1_size2 = l1_size * sizeof(uint64_t);
1753 
1754     /* Mark L1 table as used */
1755     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1756                                    l1_table_offset, l1_size2);
1757     if (ret < 0) {
1758         goto fail;
1759     }
1760 
1761     /* Read L1 table entries from disk */
1762     if (l1_size2 > 0) {
1763         l1_table = g_try_malloc(l1_size2);
1764         if (l1_table == NULL) {
1765             ret = -ENOMEM;
1766             res->check_errors++;
1767             goto fail;
1768         }
1769         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1770         if (ret < 0) {
1771             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1772             res->check_errors++;
1773             goto fail;
1774         }
1775         for(i = 0;i < l1_size; i++)
1776             be64_to_cpus(&l1_table[i]);
1777     }
1778 
1779     /* Do the actual checks */
1780     for(i = 0; i < l1_size; i++) {
1781         l2_offset = l1_table[i];
1782         if (l2_offset) {
1783             /* Mark L2 table as used */
1784             l2_offset &= L1E_OFFSET_MASK;
1785             ret = qcow2_inc_refcounts_imrt(bs, res,
1786                                            refcount_table, refcount_table_size,
1787                                            l2_offset, s->cluster_size);
1788             if (ret < 0) {
1789                 goto fail;
1790             }
1791 
1792             /* L2 tables are cluster aligned */
1793             if (offset_into_cluster(s, l2_offset)) {
1794                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1795                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1796                 res->corruptions++;
1797             }
1798 
1799             /* Process and check L2 entries */
1800             ret = check_refcounts_l2(bs, res, refcount_table,
1801                                      refcount_table_size, l2_offset, flags,
1802                                      fix);
1803             if (ret < 0) {
1804                 goto fail;
1805             }
1806         }
1807     }
1808     g_free(l1_table);
1809     return 0;
1810 
1811 fail:
1812     g_free(l1_table);
1813     return ret;
1814 }
1815 
1816 /*
1817  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1818  *
1819  * This function does not print an error message nor does it increment
1820  * check_errors if qcow2_get_refcount fails (this is because such an error will
1821  * have been already detected and sufficiently signaled by the calling function
1822  * (qcow2_check_refcounts) by the time this function is called).
1823  */
1824 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1825                               BdrvCheckMode fix)
1826 {
1827     BDRVQcow2State *s = bs->opaque;
1828     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1829     int ret;
1830     uint64_t refcount;
1831     int i, j;
1832     bool repair;
1833 
1834     if (fix & BDRV_FIX_ERRORS) {
1835         /* Always repair */
1836         repair = true;
1837     } else if (fix & BDRV_FIX_LEAKS) {
1838         /* Repair only if that seems safe: This function is always
1839          * called after the refcounts have been fixed, so the refcount
1840          * is accurate if that repair was successful */
1841         repair = !res->check_errors && !res->corruptions && !res->leaks;
1842     } else {
1843         repair = false;
1844     }
1845 
1846     for (i = 0; i < s->l1_size; i++) {
1847         uint64_t l1_entry = s->l1_table[i];
1848         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1849         bool l2_dirty = false;
1850 
1851         if (!l2_offset) {
1852             continue;
1853         }
1854 
1855         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1856                                  &refcount);
1857         if (ret < 0) {
1858             /* don't print message nor increment check_errors */
1859             continue;
1860         }
1861         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1862             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1863                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1864                     repair ? "Repairing" : "ERROR", i, l1_entry, refcount);
1865             if (repair) {
1866                 s->l1_table[i] = refcount == 1
1867                                ? l1_entry |  QCOW_OFLAG_COPIED
1868                                : l1_entry & ~QCOW_OFLAG_COPIED;
1869                 ret = qcow2_write_l1_entry(bs, i);
1870                 if (ret < 0) {
1871                     res->check_errors++;
1872                     goto fail;
1873                 }
1874                 res->corruptions_fixed++;
1875             } else {
1876                 res->corruptions++;
1877             }
1878         }
1879 
1880         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1881                          s->l2_size * sizeof(uint64_t));
1882         if (ret < 0) {
1883             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1884                     strerror(-ret));
1885             res->check_errors++;
1886             goto fail;
1887         }
1888 
1889         for (j = 0; j < s->l2_size; j++) {
1890             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1891             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1892             QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1893 
1894             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1895                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1896                 if (has_data_file(bs)) {
1897                     refcount = 1;
1898                 } else {
1899                     ret = qcow2_get_refcount(bs,
1900                                              data_offset >> s->cluster_bits,
1901                                              &refcount);
1902                     if (ret < 0) {
1903                         /* don't print message nor increment check_errors */
1904                         continue;
1905                     }
1906                 }
1907                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1908                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1909                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1910                             repair ? "Repairing" : "ERROR", l2_entry, refcount);
1911                     if (repair) {
1912                         l2_table[j] = cpu_to_be64(refcount == 1
1913                                     ? l2_entry |  QCOW_OFLAG_COPIED
1914                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1915                         l2_dirty = true;
1916                         res->corruptions_fixed++;
1917                     } else {
1918                         res->corruptions++;
1919                     }
1920                 }
1921             }
1922         }
1923 
1924         if (l2_dirty) {
1925             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1926                                                 l2_offset, s->cluster_size,
1927                                                 false);
1928             if (ret < 0) {
1929                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1930                         "overlap check failed: %s\n", strerror(-ret));
1931                 res->check_errors++;
1932                 goto fail;
1933             }
1934 
1935             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1936                               s->cluster_size);
1937             if (ret < 0) {
1938                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1939                         strerror(-ret));
1940                 res->check_errors++;
1941                 goto fail;
1942             }
1943         }
1944     }
1945 
1946     ret = 0;
1947 
1948 fail:
1949     qemu_vfree(l2_table);
1950     return ret;
1951 }
1952 
1953 /*
1954  * Checks consistency of refblocks and accounts for each refblock in
1955  * *refcount_table.
1956  */
1957 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1958                            BdrvCheckMode fix, bool *rebuild,
1959                            void **refcount_table, int64_t *nb_clusters)
1960 {
1961     BDRVQcow2State *s = bs->opaque;
1962     int64_t i, size;
1963     int ret;
1964 
1965     for(i = 0; i < s->refcount_table_size; i++) {
1966         uint64_t offset, cluster;
1967         offset = s->refcount_table[i];
1968         cluster = offset >> s->cluster_bits;
1969 
1970         /* Refcount blocks are cluster aligned */
1971         if (offset_into_cluster(s, offset)) {
1972             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1973                 "cluster aligned; refcount table entry corrupted\n", i);
1974             res->corruptions++;
1975             *rebuild = true;
1976             continue;
1977         }
1978 
1979         if (cluster >= *nb_clusters) {
1980             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1981                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1982 
1983             if (fix & BDRV_FIX_ERRORS) {
1984                 int64_t new_nb_clusters;
1985                 Error *local_err = NULL;
1986 
1987                 if (offset > INT64_MAX - s->cluster_size) {
1988                     ret = -EINVAL;
1989                     goto resize_fail;
1990                 }
1991 
1992                 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1993                                     PREALLOC_MODE_OFF, &local_err);
1994                 if (ret < 0) {
1995                     error_report_err(local_err);
1996                     goto resize_fail;
1997                 }
1998                 size = bdrv_getlength(bs->file->bs);
1999                 if (size < 0) {
2000                     ret = size;
2001                     goto resize_fail;
2002                 }
2003 
2004                 new_nb_clusters = size_to_clusters(s, size);
2005                 assert(new_nb_clusters >= *nb_clusters);
2006 
2007                 ret = realloc_refcount_array(s, refcount_table,
2008                                              nb_clusters, new_nb_clusters);
2009                 if (ret < 0) {
2010                     res->check_errors++;
2011                     return ret;
2012                 }
2013 
2014                 if (cluster >= *nb_clusters) {
2015                     ret = -EINVAL;
2016                     goto resize_fail;
2017                 }
2018 
2019                 res->corruptions_fixed++;
2020                 ret = qcow2_inc_refcounts_imrt(bs, res,
2021                                                refcount_table, nb_clusters,
2022                                                offset, s->cluster_size);
2023                 if (ret < 0) {
2024                     return ret;
2025                 }
2026                 /* No need to check whether the refcount is now greater than 1:
2027                  * This area was just allocated and zeroed, so it can only be
2028                  * exactly 1 after qcow2_inc_refcounts_imrt() */
2029                 continue;
2030 
2031 resize_fail:
2032                 res->corruptions++;
2033                 *rebuild = true;
2034                 fprintf(stderr, "ERROR could not resize image: %s\n",
2035                         strerror(-ret));
2036             } else {
2037                 res->corruptions++;
2038             }
2039             continue;
2040         }
2041 
2042         if (offset != 0) {
2043             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2044                                            offset, s->cluster_size);
2045             if (ret < 0) {
2046                 return ret;
2047             }
2048             if (s->get_refcount(*refcount_table, cluster) != 1) {
2049                 fprintf(stderr, "ERROR refcount block %" PRId64
2050                         " refcount=%" PRIu64 "\n", i,
2051                         s->get_refcount(*refcount_table, cluster));
2052                 res->corruptions++;
2053                 *rebuild = true;
2054             }
2055         }
2056     }
2057 
2058     return 0;
2059 }
2060 
2061 /*
2062  * Calculates an in-memory refcount table.
2063  */
2064 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2065                                BdrvCheckMode fix, bool *rebuild,
2066                                void **refcount_table, int64_t *nb_clusters)
2067 {
2068     BDRVQcow2State *s = bs->opaque;
2069     int64_t i;
2070     QCowSnapshot *sn;
2071     int ret;
2072 
2073     if (!*refcount_table) {
2074         int64_t old_size = 0;
2075         ret = realloc_refcount_array(s, refcount_table,
2076                                      &old_size, *nb_clusters);
2077         if (ret < 0) {
2078             res->check_errors++;
2079             return ret;
2080         }
2081     }
2082 
2083     /* header */
2084     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2085                                    0, s->cluster_size);
2086     if (ret < 0) {
2087         return ret;
2088     }
2089 
2090     /* current L1 table */
2091     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2092                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2093                              fix);
2094     if (ret < 0) {
2095         return ret;
2096     }
2097 
2098     /* snapshots */
2099     if (has_data_file(bs) && s->nb_snapshots) {
2100         fprintf(stderr, "ERROR %d snapshots in image with data file\n",
2101                 s->nb_snapshots);
2102         res->corruptions++;
2103     }
2104 
2105     for (i = 0; i < s->nb_snapshots; i++) {
2106         sn = s->snapshots + i;
2107         if (offset_into_cluster(s, sn->l1_table_offset)) {
2108             fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": "
2109                     "L1 table is not cluster aligned; snapshot table entry "
2110                     "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset);
2111             res->corruptions++;
2112             continue;
2113         }
2114         if (sn->l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2115             fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": "
2116                     "L1 table is too large; snapshot table entry corrupted\n",
2117                     sn->id_str, sn->name, sn->l1_size);
2118             res->corruptions++;
2119             continue;
2120         }
2121         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2122                                  sn->l1_table_offset, sn->l1_size, 0, fix);
2123         if (ret < 0) {
2124             return ret;
2125         }
2126     }
2127     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2128                                    s->snapshots_offset, s->snapshots_size);
2129     if (ret < 0) {
2130         return ret;
2131     }
2132 
2133     /* refcount data */
2134     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2135                                    s->refcount_table_offset,
2136                                    s->refcount_table_size * sizeof(uint64_t));
2137     if (ret < 0) {
2138         return ret;
2139     }
2140 
2141     /* encryption */
2142     if (s->crypto_header.length) {
2143         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2144                                        s->crypto_header.offset,
2145                                        s->crypto_header.length);
2146         if (ret < 0) {
2147             return ret;
2148         }
2149     }
2150 
2151     /* bitmaps */
2152     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2153     if (ret < 0) {
2154         return ret;
2155     }
2156 
2157     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2158 }
2159 
2160 /*
2161  * Compares the actual reference count for each cluster in the image against the
2162  * refcount as reported by the refcount structures on-disk.
2163  */
2164 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2165                               BdrvCheckMode fix, bool *rebuild,
2166                               int64_t *highest_cluster,
2167                               void *refcount_table, int64_t nb_clusters)
2168 {
2169     BDRVQcow2State *s = bs->opaque;
2170     int64_t i;
2171     uint64_t refcount1, refcount2;
2172     int ret;
2173 
2174     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2175         ret = qcow2_get_refcount(bs, i, &refcount1);
2176         if (ret < 0) {
2177             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2178                     i, strerror(-ret));
2179             res->check_errors++;
2180             continue;
2181         }
2182 
2183         refcount2 = s->get_refcount(refcount_table, i);
2184 
2185         if (refcount1 > 0 || refcount2 > 0) {
2186             *highest_cluster = i;
2187         }
2188 
2189         if (refcount1 != refcount2) {
2190             /* Check if we're allowed to fix the mismatch */
2191             int *num_fixed = NULL;
2192             if (refcount1 == 0) {
2193                 *rebuild = true;
2194             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2195                 num_fixed = &res->leaks_fixed;
2196             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2197                 num_fixed = &res->corruptions_fixed;
2198             }
2199 
2200             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2201                     " reference=%" PRIu64 "\n",
2202                    num_fixed != NULL     ? "Repairing" :
2203                    refcount1 < refcount2 ? "ERROR" :
2204                                            "Leaked",
2205                    i, refcount1, refcount2);
2206 
2207             if (num_fixed) {
2208                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2209                                       refcount_diff(refcount1, refcount2),
2210                                       refcount1 > refcount2,
2211                                       QCOW2_DISCARD_ALWAYS);
2212                 if (ret >= 0) {
2213                     (*num_fixed)++;
2214                     continue;
2215                 }
2216             }
2217 
2218             /* And if we couldn't, print an error */
2219             if (refcount1 < refcount2) {
2220                 res->corruptions++;
2221             } else {
2222                 res->leaks++;
2223             }
2224         }
2225     }
2226 }
2227 
2228 /*
2229  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2230  * the on-disk refcount structures.
2231  *
2232  * On input, *first_free_cluster tells where to start looking, and need not
2233  * actually be a free cluster; the returned offset will not be before that
2234  * cluster.  On output, *first_free_cluster points to the first gap found, even
2235  * if that gap was too small to be used as the returned offset.
2236  *
2237  * Note that *first_free_cluster is a cluster index whereas the return value is
2238  * an offset.
2239  */
2240 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2241                                    int cluster_count,
2242                                    void **refcount_table,
2243                                    int64_t *imrt_nb_clusters,
2244                                    int64_t *first_free_cluster)
2245 {
2246     BDRVQcow2State *s = bs->opaque;
2247     int64_t cluster = *first_free_cluster, i;
2248     bool first_gap = true;
2249     int contiguous_free_clusters;
2250     int ret;
2251 
2252     /* Starting at *first_free_cluster, find a range of at least cluster_count
2253      * continuously free clusters */
2254     for (contiguous_free_clusters = 0;
2255          cluster < *imrt_nb_clusters &&
2256          contiguous_free_clusters < cluster_count;
2257          cluster++)
2258     {
2259         if (!s->get_refcount(*refcount_table, cluster)) {
2260             contiguous_free_clusters++;
2261             if (first_gap) {
2262                 /* If this is the first free cluster found, update
2263                  * *first_free_cluster accordingly */
2264                 *first_free_cluster = cluster;
2265                 first_gap = false;
2266             }
2267         } else if (contiguous_free_clusters) {
2268             contiguous_free_clusters = 0;
2269         }
2270     }
2271 
2272     /* If contiguous_free_clusters is greater than zero, it contains the number
2273      * of continuously free clusters until the current cluster; the first free
2274      * cluster in the current "gap" is therefore
2275      * cluster - contiguous_free_clusters */
2276 
2277     /* If no such range could be found, grow the in-memory refcount table
2278      * accordingly to append free clusters at the end of the image */
2279     if (contiguous_free_clusters < cluster_count) {
2280         /* contiguous_free_clusters clusters are already empty at the image end;
2281          * we need cluster_count clusters; therefore, we have to allocate
2282          * cluster_count - contiguous_free_clusters new clusters at the end of
2283          * the image (which is the current value of cluster; note that cluster
2284          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2285          * the image end) */
2286         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2287                                      cluster + cluster_count
2288                                      - contiguous_free_clusters);
2289         if (ret < 0) {
2290             return ret;
2291         }
2292     }
2293 
2294     /* Go back to the first free cluster */
2295     cluster -= contiguous_free_clusters;
2296     for (i = 0; i < cluster_count; i++) {
2297         s->set_refcount(*refcount_table, cluster + i, 1);
2298     }
2299 
2300     return cluster << s->cluster_bits;
2301 }
2302 
2303 /*
2304  * Creates a new refcount structure based solely on the in-memory information
2305  * given through *refcount_table. All necessary allocations will be reflected
2306  * in that array.
2307  *
2308  * On success, the old refcount structure is leaked (it will be covered by the
2309  * new refcount structure).
2310  */
2311 static int rebuild_refcount_structure(BlockDriverState *bs,
2312                                       BdrvCheckResult *res,
2313                                       void **refcount_table,
2314                                       int64_t *nb_clusters)
2315 {
2316     BDRVQcow2State *s = bs->opaque;
2317     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2318     int64_t refblock_offset, refblock_start, refblock_index;
2319     uint32_t reftable_size = 0;
2320     uint64_t *on_disk_reftable = NULL;
2321     void *on_disk_refblock;
2322     int ret = 0;
2323     struct {
2324         uint64_t reftable_offset;
2325         uint32_t reftable_clusters;
2326     } QEMU_PACKED reftable_offset_and_clusters;
2327 
2328     qcow2_cache_empty(bs, s->refcount_block_cache);
2329 
2330 write_refblocks:
2331     for (; cluster < *nb_clusters; cluster++) {
2332         if (!s->get_refcount(*refcount_table, cluster)) {
2333             continue;
2334         }
2335 
2336         refblock_index = cluster >> s->refcount_block_bits;
2337         refblock_start = refblock_index << s->refcount_block_bits;
2338 
2339         /* Don't allocate a cluster in a refblock already written to disk */
2340         if (first_free_cluster < refblock_start) {
2341             first_free_cluster = refblock_start;
2342         }
2343         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2344                                               nb_clusters, &first_free_cluster);
2345         if (refblock_offset < 0) {
2346             fprintf(stderr, "ERROR allocating refblock: %s\n",
2347                     strerror(-refblock_offset));
2348             res->check_errors++;
2349             ret = refblock_offset;
2350             goto fail;
2351         }
2352 
2353         if (reftable_size <= refblock_index) {
2354             uint32_t old_reftable_size = reftable_size;
2355             uint64_t *new_on_disk_reftable;
2356 
2357             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2358                                      s->cluster_size) / sizeof(uint64_t);
2359             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2360                                                  reftable_size *
2361                                                  sizeof(uint64_t));
2362             if (!new_on_disk_reftable) {
2363                 res->check_errors++;
2364                 ret = -ENOMEM;
2365                 goto fail;
2366             }
2367             on_disk_reftable = new_on_disk_reftable;
2368 
2369             memset(on_disk_reftable + old_reftable_size, 0,
2370                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2371 
2372             /* The offset we have for the reftable is now no longer valid;
2373              * this will leak that range, but we can easily fix that by running
2374              * a leak-fixing check after this rebuild operation */
2375             reftable_offset = -1;
2376         } else {
2377             assert(on_disk_reftable);
2378         }
2379         on_disk_reftable[refblock_index] = refblock_offset;
2380 
2381         /* If this is apparently the last refblock (for now), try to squeeze the
2382          * reftable in */
2383         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2384             reftable_offset < 0)
2385         {
2386             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2387                                                           sizeof(uint64_t));
2388             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2389                                                   refcount_table, nb_clusters,
2390                                                   &first_free_cluster);
2391             if (reftable_offset < 0) {
2392                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2393                         strerror(-reftable_offset));
2394                 res->check_errors++;
2395                 ret = reftable_offset;
2396                 goto fail;
2397             }
2398         }
2399 
2400         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2401                                             s->cluster_size, false);
2402         if (ret < 0) {
2403             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2404             goto fail;
2405         }
2406 
2407         /* The size of *refcount_table is always cluster-aligned, therefore the
2408          * write operation will not overflow */
2409         on_disk_refblock = (void *)((char *) *refcount_table +
2410                                     refblock_index * s->cluster_size);
2411 
2412         ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2413                          on_disk_refblock, s->cluster_sectors);
2414         if (ret < 0) {
2415             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2416             goto fail;
2417         }
2418 
2419         /* Go to the end of this refblock */
2420         cluster = refblock_start + s->refcount_block_size - 1;
2421     }
2422 
2423     if (reftable_offset < 0) {
2424         uint64_t post_refblock_start, reftable_clusters;
2425 
2426         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2427         reftable_clusters = size_to_clusters(s,
2428                                              reftable_size * sizeof(uint64_t));
2429         /* Not pretty but simple */
2430         if (first_free_cluster < post_refblock_start) {
2431             first_free_cluster = post_refblock_start;
2432         }
2433         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2434                                               refcount_table, nb_clusters,
2435                                               &first_free_cluster);
2436         if (reftable_offset < 0) {
2437             fprintf(stderr, "ERROR allocating reftable: %s\n",
2438                     strerror(-reftable_offset));
2439             res->check_errors++;
2440             ret = reftable_offset;
2441             goto fail;
2442         }
2443 
2444         goto write_refblocks;
2445     }
2446 
2447     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2448         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2449     }
2450 
2451     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2452                                         reftable_size * sizeof(uint64_t),
2453                                         false);
2454     if (ret < 0) {
2455         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2456         goto fail;
2457     }
2458 
2459     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2460     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2461                       reftable_size * sizeof(uint64_t));
2462     if (ret < 0) {
2463         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2464         goto fail;
2465     }
2466 
2467     /* Enter new reftable into the image header */
2468     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2469     reftable_offset_and_clusters.reftable_clusters =
2470         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2471     ret = bdrv_pwrite_sync(bs->file,
2472                            offsetof(QCowHeader, refcount_table_offset),
2473                            &reftable_offset_and_clusters,
2474                            sizeof(reftable_offset_and_clusters));
2475     if (ret < 0) {
2476         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2477         goto fail;
2478     }
2479 
2480     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2481         be64_to_cpus(&on_disk_reftable[refblock_index]);
2482     }
2483     s->refcount_table = on_disk_reftable;
2484     s->refcount_table_offset = reftable_offset;
2485     s->refcount_table_size = reftable_size;
2486     update_max_refcount_table_index(s);
2487 
2488     return 0;
2489 
2490 fail:
2491     g_free(on_disk_reftable);
2492     return ret;
2493 }
2494 
2495 /*
2496  * Checks an image for refcount consistency.
2497  *
2498  * Returns 0 if no errors are found, the number of errors in case the image is
2499  * detected as corrupted, and -errno when an internal error occurred.
2500  */
2501 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2502                           BdrvCheckMode fix)
2503 {
2504     BDRVQcow2State *s = bs->opaque;
2505     BdrvCheckResult pre_compare_res;
2506     int64_t size, highest_cluster, nb_clusters;
2507     void *refcount_table = NULL;
2508     bool rebuild = false;
2509     int ret;
2510 
2511     size = bdrv_getlength(bs->file->bs);
2512     if (size < 0) {
2513         res->check_errors++;
2514         return size;
2515     }
2516 
2517     nb_clusters = size_to_clusters(s, size);
2518     if (nb_clusters > INT_MAX) {
2519         res->check_errors++;
2520         return -EFBIG;
2521     }
2522 
2523     res->bfi.total_clusters =
2524         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2525 
2526     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2527                               &nb_clusters);
2528     if (ret < 0) {
2529         goto fail;
2530     }
2531 
2532     /* In case we don't need to rebuild the refcount structure (but want to fix
2533      * something), this function is immediately called again, in which case the
2534      * result should be ignored */
2535     pre_compare_res = *res;
2536     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2537                       nb_clusters);
2538 
2539     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2540         BdrvCheckResult old_res = *res;
2541         int fresh_leaks = 0;
2542 
2543         fprintf(stderr, "Rebuilding refcount structure\n");
2544         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2545                                          &nb_clusters);
2546         if (ret < 0) {
2547             goto fail;
2548         }
2549 
2550         res->corruptions = 0;
2551         res->leaks = 0;
2552 
2553         /* Because the old reftable has been exchanged for a new one the
2554          * references have to be recalculated */
2555         rebuild = false;
2556         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2557         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2558                                   &nb_clusters);
2559         if (ret < 0) {
2560             goto fail;
2561         }
2562 
2563         if (fix & BDRV_FIX_LEAKS) {
2564             /* The old refcount structures are now leaked, fix it; the result
2565              * can be ignored, aside from leaks which were introduced by
2566              * rebuild_refcount_structure() that could not be fixed */
2567             BdrvCheckResult saved_res = *res;
2568             *res = (BdrvCheckResult){ 0 };
2569 
2570             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2571                               &highest_cluster, refcount_table, nb_clusters);
2572             if (rebuild) {
2573                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2574                         "broken\n");
2575             }
2576 
2577             /* Any leaks accounted for here were introduced by
2578              * rebuild_refcount_structure() because that function has created a
2579              * new refcount structure from scratch */
2580             fresh_leaks = res->leaks;
2581             *res = saved_res;
2582         }
2583 
2584         if (res->corruptions < old_res.corruptions) {
2585             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2586         }
2587         if (res->leaks < old_res.leaks) {
2588             res->leaks_fixed += old_res.leaks - res->leaks;
2589         }
2590         res->leaks += fresh_leaks;
2591     } else if (fix) {
2592         if (rebuild) {
2593             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2594             res->check_errors++;
2595             ret = -EIO;
2596             goto fail;
2597         }
2598 
2599         if (res->leaks || res->corruptions) {
2600             *res = pre_compare_res;
2601             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2602                               refcount_table, nb_clusters);
2603         }
2604     }
2605 
2606     /* check OFLAG_COPIED */
2607     ret = check_oflag_copied(bs, res, fix);
2608     if (ret < 0) {
2609         goto fail;
2610     }
2611 
2612     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2613     ret = 0;
2614 
2615 fail:
2616     g_free(refcount_table);
2617 
2618     return ret;
2619 }
2620 
2621 #define overlaps_with(ofs, sz) \
2622     ranges_overlap(offset, size, ofs, sz)
2623 
2624 /*
2625  * Checks if the given offset into the image file is actually free to use by
2626  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2627  * i.e. a sanity check without relying on the refcount tables.
2628  *
2629  * The ign parameter specifies what checks not to perform (being a bitmask of
2630  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2631  *
2632  * Returns:
2633  * - 0 if writing to this offset will not affect the mentioned metadata
2634  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2635  * - a negative value (-errno) indicating an error while performing a check,
2636  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2637  */
2638 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2639                                  int64_t size)
2640 {
2641     BDRVQcow2State *s = bs->opaque;
2642     int chk = s->overlap_check & ~ign;
2643     int i, j;
2644 
2645     if (!size) {
2646         return 0;
2647     }
2648 
2649     if (chk & QCOW2_OL_MAIN_HEADER) {
2650         if (offset < s->cluster_size) {
2651             return QCOW2_OL_MAIN_HEADER;
2652         }
2653     }
2654 
2655     /* align range to test to cluster boundaries */
2656     size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2657     offset = start_of_cluster(s, offset);
2658 
2659     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2660         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2661             return QCOW2_OL_ACTIVE_L1;
2662         }
2663     }
2664 
2665     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2666         if (overlaps_with(s->refcount_table_offset,
2667             s->refcount_table_size * sizeof(uint64_t))) {
2668             return QCOW2_OL_REFCOUNT_TABLE;
2669         }
2670     }
2671 
2672     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2673         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2674             return QCOW2_OL_SNAPSHOT_TABLE;
2675         }
2676     }
2677 
2678     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2679         for (i = 0; i < s->nb_snapshots; i++) {
2680             if (s->snapshots[i].l1_size &&
2681                 overlaps_with(s->snapshots[i].l1_table_offset,
2682                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2683                 return QCOW2_OL_INACTIVE_L1;
2684             }
2685         }
2686     }
2687 
2688     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2689         for (i = 0; i < s->l1_size; i++) {
2690             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2691                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2692                 s->cluster_size)) {
2693                 return QCOW2_OL_ACTIVE_L2;
2694             }
2695         }
2696     }
2697 
2698     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2699         unsigned last_entry = s->max_refcount_table_index;
2700         assert(last_entry < s->refcount_table_size);
2701         assert(last_entry + 1 == s->refcount_table_size ||
2702                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2703         for (i = 0; i <= last_entry; i++) {
2704             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2705                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2706                 s->cluster_size)) {
2707                 return QCOW2_OL_REFCOUNT_BLOCK;
2708             }
2709         }
2710     }
2711 
2712     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2713         for (i = 0; i < s->nb_snapshots; i++) {
2714             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2715             uint32_t l1_sz  = s->snapshots[i].l1_size;
2716             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2717             uint64_t *l1;
2718             int ret;
2719 
2720             ret = qcow2_validate_table(bs, l1_ofs, l1_sz, sizeof(uint64_t),
2721                                        QCOW_MAX_L1_SIZE, "", NULL);
2722             if (ret < 0) {
2723                 return ret;
2724             }
2725 
2726             l1 = g_try_malloc(l1_sz2);
2727 
2728             if (l1_sz2 && l1 == NULL) {
2729                 return -ENOMEM;
2730             }
2731 
2732             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2733             if (ret < 0) {
2734                 g_free(l1);
2735                 return ret;
2736             }
2737 
2738             for (j = 0; j < l1_sz; j++) {
2739                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2740                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2741                     g_free(l1);
2742                     return QCOW2_OL_INACTIVE_L2;
2743                 }
2744             }
2745 
2746             g_free(l1);
2747         }
2748     }
2749 
2750     if ((chk & QCOW2_OL_BITMAP_DIRECTORY) &&
2751         (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS))
2752     {
2753         if (overlaps_with(s->bitmap_directory_offset,
2754                           s->bitmap_directory_size))
2755         {
2756             return QCOW2_OL_BITMAP_DIRECTORY;
2757         }
2758     }
2759 
2760     return 0;
2761 }
2762 
2763 static const char *metadata_ol_names[] = {
2764     [QCOW2_OL_MAIN_HEADER_BITNR]        = "qcow2_header",
2765     [QCOW2_OL_ACTIVE_L1_BITNR]          = "active L1 table",
2766     [QCOW2_OL_ACTIVE_L2_BITNR]          = "active L2 table",
2767     [QCOW2_OL_REFCOUNT_TABLE_BITNR]     = "refcount table",
2768     [QCOW2_OL_REFCOUNT_BLOCK_BITNR]     = "refcount block",
2769     [QCOW2_OL_SNAPSHOT_TABLE_BITNR]     = "snapshot table",
2770     [QCOW2_OL_INACTIVE_L1_BITNR]        = "inactive L1 table",
2771     [QCOW2_OL_INACTIVE_L2_BITNR]        = "inactive L2 table",
2772     [QCOW2_OL_BITMAP_DIRECTORY_BITNR]   = "bitmap directory",
2773 };
2774 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names));
2775 
2776 /*
2777  * First performs a check for metadata overlaps (through
2778  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2779  * while performing a check), that value is returned. If an impending overlap
2780  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2781  * and -EIO returned.
2782  *
2783  * Returns 0 if there were neither overlaps nor errors while checking for
2784  * overlaps; or a negative value (-errno) on error.
2785  */
2786 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2787                                   int64_t size, bool data_file)
2788 {
2789     int ret;
2790 
2791     if (data_file && has_data_file(bs)) {
2792         return 0;
2793     }
2794 
2795     ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2796     if (ret < 0) {
2797         return ret;
2798     } else if (ret > 0) {
2799         int metadata_ol_bitnr = ctz32(ret);
2800         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2801 
2802         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2803                                 "write on metadata (overlaps with %s)",
2804                                 metadata_ol_names[metadata_ol_bitnr]);
2805         return -EIO;
2806     }
2807 
2808     return 0;
2809 }
2810 
2811 /* A pointer to a function of this type is given to walk_over_reftable(). That
2812  * function will create refblocks and pass them to a RefblockFinishOp once they
2813  * are completed (@refblock). @refblock_empty is set if the refblock is
2814  * completely empty.
2815  *
2816  * Along with the refblock, a corresponding reftable entry is passed, in the
2817  * reftable @reftable (which may be reallocated) at @reftable_index.
2818  *
2819  * @allocated should be set to true if a new cluster has been allocated.
2820  */
2821 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2822                                uint64_t reftable_index, uint64_t *reftable_size,
2823                                void *refblock, bool refblock_empty,
2824                                bool *allocated, Error **errp);
2825 
2826 /**
2827  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2828  * it is not empty) and inserts its offset into the new reftable. The size of
2829  * this new reftable is increased as required.
2830  */
2831 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2832                           uint64_t reftable_index, uint64_t *reftable_size,
2833                           void *refblock, bool refblock_empty, bool *allocated,
2834                           Error **errp)
2835 {
2836     BDRVQcow2State *s = bs->opaque;
2837     int64_t offset;
2838 
2839     if (!refblock_empty && reftable_index >= *reftable_size) {
2840         uint64_t *new_reftable;
2841         uint64_t new_reftable_size;
2842 
2843         new_reftable_size = ROUND_UP(reftable_index + 1,
2844                                      s->cluster_size / sizeof(uint64_t));
2845         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2846             error_setg(errp,
2847                        "This operation would make the refcount table grow "
2848                        "beyond the maximum size supported by QEMU, aborting");
2849             return -ENOTSUP;
2850         }
2851 
2852         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2853                                                 sizeof(uint64_t));
2854         if (!new_reftable) {
2855             error_setg(errp, "Failed to increase reftable buffer size");
2856             return -ENOMEM;
2857         }
2858 
2859         memset(new_reftable + *reftable_size, 0,
2860                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2861 
2862         *reftable      = new_reftable;
2863         *reftable_size = new_reftable_size;
2864     }
2865 
2866     if (!refblock_empty && !(*reftable)[reftable_index]) {
2867         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2868         if (offset < 0) {
2869             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2870             return offset;
2871         }
2872         (*reftable)[reftable_index] = offset;
2873         *allocated = true;
2874     }
2875 
2876     return 0;
2877 }
2878 
2879 /**
2880  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2881  * offset specified by the new reftable's entry. It does not modify the new
2882  * reftable or change any refcounts.
2883  */
2884 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2885                           uint64_t reftable_index, uint64_t *reftable_size,
2886                           void *refblock, bool refblock_empty, bool *allocated,
2887                           Error **errp)
2888 {
2889     BDRVQcow2State *s = bs->opaque;
2890     int64_t offset;
2891     int ret;
2892 
2893     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2894         offset = (*reftable)[reftable_index];
2895 
2896         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size,
2897                                             false);
2898         if (ret < 0) {
2899             error_setg_errno(errp, -ret, "Overlap check failed");
2900             return ret;
2901         }
2902 
2903         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2904         if (ret < 0) {
2905             error_setg_errno(errp, -ret, "Failed to write refblock");
2906             return ret;
2907         }
2908     } else {
2909         assert(refblock_empty);
2910     }
2911 
2912     return 0;
2913 }
2914 
2915 /**
2916  * This function walks over the existing reftable and every referenced refblock;
2917  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2918  * create an equal new entry in the passed @new_refblock. Once that
2919  * @new_refblock is completely filled, @operation will be called.
2920  *
2921  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2922  * @index is the index of the walk_over_reftable() calls and @total is the total
2923  * number of walk_over_reftable() calls per amend operation. Both are used for
2924  * calculating the parameters for the status callback.
2925  *
2926  * @allocated is set to true if a new cluster has been allocated.
2927  */
2928 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2929                               uint64_t *new_reftable_index,
2930                               uint64_t *new_reftable_size,
2931                               void *new_refblock, int new_refblock_size,
2932                               int new_refcount_bits,
2933                               RefblockFinishOp *operation, bool *allocated,
2934                               Qcow2SetRefcountFunc *new_set_refcount,
2935                               BlockDriverAmendStatusCB *status_cb,
2936                               void *cb_opaque, int index, int total,
2937                               Error **errp)
2938 {
2939     BDRVQcow2State *s = bs->opaque;
2940     uint64_t reftable_index;
2941     bool new_refblock_empty = true;
2942     int refblock_index;
2943     int new_refblock_index = 0;
2944     int ret;
2945 
2946     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2947          reftable_index++)
2948     {
2949         uint64_t refblock_offset = s->refcount_table[reftable_index]
2950                                  & REFT_OFFSET_MASK;
2951 
2952         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2953                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2954 
2955         if (refblock_offset) {
2956             void *refblock;
2957 
2958             if (offset_into_cluster(s, refblock_offset)) {
2959                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2960                                         PRIx64 " unaligned (reftable index: %#"
2961                                         PRIx64 ")", refblock_offset,
2962                                         reftable_index);
2963                 error_setg(errp,
2964                            "Image is corrupt (unaligned refblock offset)");
2965                 return -EIO;
2966             }
2967 
2968             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2969                                   &refblock);
2970             if (ret < 0) {
2971                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2972                 return ret;
2973             }
2974 
2975             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2976                  refblock_index++)
2977             {
2978                 uint64_t refcount;
2979 
2980                 if (new_refblock_index >= new_refblock_size) {
2981                     /* new_refblock is now complete */
2982                     ret = operation(bs, new_reftable, *new_reftable_index,
2983                                     new_reftable_size, new_refblock,
2984                                     new_refblock_empty, allocated, errp);
2985                     if (ret < 0) {
2986                         qcow2_cache_put(s->refcount_block_cache, &refblock);
2987                         return ret;
2988                     }
2989 
2990                     (*new_reftable_index)++;
2991                     new_refblock_index = 0;
2992                     new_refblock_empty = true;
2993                 }
2994 
2995                 refcount = s->get_refcount(refblock, refblock_index);
2996                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2997                     uint64_t offset;
2998 
2999                     qcow2_cache_put(s->refcount_block_cache, &refblock);
3000 
3001                     offset = ((reftable_index << s->refcount_block_bits)
3002                               + refblock_index) << s->cluster_bits;
3003 
3004                     error_setg(errp, "Cannot decrease refcount entry width to "
3005                                "%i bits: Cluster at offset %#" PRIx64 " has a "
3006                                "refcount of %" PRIu64, new_refcount_bits,
3007                                offset, refcount);
3008                     return -EINVAL;
3009                 }
3010 
3011                 if (new_set_refcount) {
3012                     new_set_refcount(new_refblock, new_refblock_index++,
3013                                      refcount);
3014                 } else {
3015                     new_refblock_index++;
3016                 }
3017                 new_refblock_empty = new_refblock_empty && refcount == 0;
3018             }
3019 
3020             qcow2_cache_put(s->refcount_block_cache, &refblock);
3021         } else {
3022             /* No refblock means every refcount is 0 */
3023             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3024                  refblock_index++)
3025             {
3026                 if (new_refblock_index >= new_refblock_size) {
3027                     /* new_refblock is now complete */
3028                     ret = operation(bs, new_reftable, *new_reftable_index,
3029                                     new_reftable_size, new_refblock,
3030                                     new_refblock_empty, allocated, errp);
3031                     if (ret < 0) {
3032                         return ret;
3033                     }
3034 
3035                     (*new_reftable_index)++;
3036                     new_refblock_index = 0;
3037                     new_refblock_empty = true;
3038                 }
3039 
3040                 if (new_set_refcount) {
3041                     new_set_refcount(new_refblock, new_refblock_index++, 0);
3042                 } else {
3043                     new_refblock_index++;
3044                 }
3045             }
3046         }
3047     }
3048 
3049     if (new_refblock_index > 0) {
3050         /* Complete the potentially existing partially filled final refblock */
3051         if (new_set_refcount) {
3052             for (; new_refblock_index < new_refblock_size;
3053                  new_refblock_index++)
3054             {
3055                 new_set_refcount(new_refblock, new_refblock_index, 0);
3056             }
3057         }
3058 
3059         ret = operation(bs, new_reftable, *new_reftable_index,
3060                         new_reftable_size, new_refblock, new_refblock_empty,
3061                         allocated, errp);
3062         if (ret < 0) {
3063             return ret;
3064         }
3065 
3066         (*new_reftable_index)++;
3067     }
3068 
3069     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
3070               (uint64_t)total * s->refcount_table_size, cb_opaque);
3071 
3072     return 0;
3073 }
3074 
3075 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
3076                                 BlockDriverAmendStatusCB *status_cb,
3077                                 void *cb_opaque, Error **errp)
3078 {
3079     BDRVQcow2State *s = bs->opaque;
3080     Qcow2GetRefcountFunc *new_get_refcount;
3081     Qcow2SetRefcountFunc *new_set_refcount;
3082     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
3083     uint64_t *new_reftable = NULL, new_reftable_size = 0;
3084     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
3085     uint64_t new_reftable_index = 0;
3086     uint64_t i;
3087     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
3088     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
3089     int old_refcount_order;
3090     int walk_index = 0;
3091     int ret;
3092     bool new_allocation;
3093 
3094     assert(s->qcow_version >= 3);
3095     assert(refcount_order >= 0 && refcount_order <= 6);
3096 
3097     /* see qcow2_open() */
3098     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3099 
3100     new_get_refcount = get_refcount_funcs[refcount_order];
3101     new_set_refcount = set_refcount_funcs[refcount_order];
3102 
3103 
3104     do {
3105         int total_walks;
3106 
3107         new_allocation = false;
3108 
3109         /* At least we have to do this walk and the one which writes the
3110          * refblocks; also, at least we have to do this loop here at least
3111          * twice (normally), first to do the allocations, and second to
3112          * determine that everything is correctly allocated, this then makes
3113          * three walks in total */
3114         total_walks = MAX(walk_index + 2, 3);
3115 
3116         /* First, allocate the structures so they are present in the refcount
3117          * structures */
3118         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3119                                  &new_reftable_size, NULL, new_refblock_size,
3120                                  new_refcount_bits, &alloc_refblock,
3121                                  &new_allocation, NULL, status_cb, cb_opaque,
3122                                  walk_index++, total_walks, errp);
3123         if (ret < 0) {
3124             goto done;
3125         }
3126 
3127         new_reftable_index = 0;
3128 
3129         if (new_allocation) {
3130             if (new_reftable_offset) {
3131                 qcow2_free_clusters(bs, new_reftable_offset,
3132                                     allocated_reftable_size * sizeof(uint64_t),
3133                                     QCOW2_DISCARD_NEVER);
3134             }
3135 
3136             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3137                                                            sizeof(uint64_t));
3138             if (new_reftable_offset < 0) {
3139                 error_setg_errno(errp, -new_reftable_offset,
3140                                  "Failed to allocate the new reftable");
3141                 ret = new_reftable_offset;
3142                 goto done;
3143             }
3144             allocated_reftable_size = new_reftable_size;
3145         }
3146     } while (new_allocation);
3147 
3148     /* Second, write the new refblocks */
3149     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3150                              &new_reftable_size, new_refblock,
3151                              new_refblock_size, new_refcount_bits,
3152                              &flush_refblock, &new_allocation, new_set_refcount,
3153                              status_cb, cb_opaque, walk_index, walk_index + 1,
3154                              errp);
3155     if (ret < 0) {
3156         goto done;
3157     }
3158     assert(!new_allocation);
3159 
3160 
3161     /* Write the new reftable */
3162     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3163                                         new_reftable_size * sizeof(uint64_t),
3164                                         false);
3165     if (ret < 0) {
3166         error_setg_errno(errp, -ret, "Overlap check failed");
3167         goto done;
3168     }
3169 
3170     for (i = 0; i < new_reftable_size; i++) {
3171         cpu_to_be64s(&new_reftable[i]);
3172     }
3173 
3174     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
3175                       new_reftable_size * sizeof(uint64_t));
3176 
3177     for (i = 0; i < new_reftable_size; i++) {
3178         be64_to_cpus(&new_reftable[i]);
3179     }
3180 
3181     if (ret < 0) {
3182         error_setg_errno(errp, -ret, "Failed to write the new reftable");
3183         goto done;
3184     }
3185 
3186 
3187     /* Empty the refcount cache */
3188     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3189     if (ret < 0) {
3190         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3191         goto done;
3192     }
3193 
3194     /* Update the image header to point to the new reftable; this only updates
3195      * the fields which are relevant to qcow2_update_header(); other fields
3196      * such as s->refcount_table or s->refcount_bits stay stale for now
3197      * (because we have to restore everything if qcow2_update_header() fails) */
3198     old_refcount_order  = s->refcount_order;
3199     old_reftable_size   = s->refcount_table_size;
3200     old_reftable_offset = s->refcount_table_offset;
3201 
3202     s->refcount_order        = refcount_order;
3203     s->refcount_table_size   = new_reftable_size;
3204     s->refcount_table_offset = new_reftable_offset;
3205 
3206     ret = qcow2_update_header(bs);
3207     if (ret < 0) {
3208         s->refcount_order        = old_refcount_order;
3209         s->refcount_table_size   = old_reftable_size;
3210         s->refcount_table_offset = old_reftable_offset;
3211         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3212         goto done;
3213     }
3214 
3215     /* Now update the rest of the in-memory information */
3216     old_reftable = s->refcount_table;
3217     s->refcount_table = new_reftable;
3218     update_max_refcount_table_index(s);
3219 
3220     s->refcount_bits = 1 << refcount_order;
3221     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3222     s->refcount_max += s->refcount_max - 1;
3223 
3224     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3225     s->refcount_block_size = 1 << s->refcount_block_bits;
3226 
3227     s->get_refcount = new_get_refcount;
3228     s->set_refcount = new_set_refcount;
3229 
3230     /* For cleaning up all old refblocks and the old reftable below the "done"
3231      * label */
3232     new_reftable        = old_reftable;
3233     new_reftable_size   = old_reftable_size;
3234     new_reftable_offset = old_reftable_offset;
3235 
3236 done:
3237     if (new_reftable) {
3238         /* On success, new_reftable actually points to the old reftable (and
3239          * new_reftable_size is the old reftable's size); but that is just
3240          * fine */
3241         for (i = 0; i < new_reftable_size; i++) {
3242             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3243             if (offset) {
3244                 qcow2_free_clusters(bs, offset, s->cluster_size,
3245                                     QCOW2_DISCARD_OTHER);
3246             }
3247         }
3248         g_free(new_reftable);
3249 
3250         if (new_reftable_offset > 0) {
3251             qcow2_free_clusters(bs, new_reftable_offset,
3252                                 new_reftable_size * sizeof(uint64_t),
3253                                 QCOW2_DISCARD_OTHER);
3254         }
3255     }
3256 
3257     qemu_vfree(new_refblock);
3258     return ret;
3259 }
3260 
3261 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3262 {
3263     BDRVQcow2State *s = bs->opaque;
3264     uint32_t index = offset_to_reftable_index(s, offset);
3265     int64_t covering_refblock_offset = 0;
3266 
3267     if (index < s->refcount_table_size) {
3268         covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3269     }
3270     if (!covering_refblock_offset) {
3271         qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3272                                 "not covered by the refcount structures",
3273                                 offset);
3274         return -EIO;
3275     }
3276 
3277     return covering_refblock_offset;
3278 }
3279 
3280 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3281                                         uint64_t discard_block_offs)
3282 {
3283     BDRVQcow2State *s = bs->opaque;
3284     int64_t refblock_offs;
3285     uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3286     uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3287     void *refblock;
3288     int ret;
3289 
3290     refblock_offs = get_refblock_offset(bs, discard_block_offs);
3291     if (refblock_offs < 0) {
3292         return refblock_offs;
3293     }
3294 
3295     assert(discard_block_offs != 0);
3296 
3297     ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3298                           &refblock);
3299     if (ret < 0) {
3300         return ret;
3301     }
3302 
3303     if (s->get_refcount(refblock, block_index) != 1) {
3304         qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3305                                 " refblock offset %#" PRIx64
3306                                 ", reftable index %u"
3307                                 ", block offset %#" PRIx64
3308                                 ", refcount %#" PRIx64,
3309                                 refblock_offs,
3310                                 offset_to_reftable_index(s, discard_block_offs),
3311                                 discard_block_offs,
3312                                 s->get_refcount(refblock, block_index));
3313         qcow2_cache_put(s->refcount_block_cache, &refblock);
3314         return -EINVAL;
3315     }
3316     s->set_refcount(refblock, block_index, 0);
3317 
3318     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3319 
3320     qcow2_cache_put(s->refcount_block_cache, &refblock);
3321 
3322     if (cluster_index < s->free_cluster_index) {
3323         s->free_cluster_index = cluster_index;
3324     }
3325 
3326     refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3327                                            discard_block_offs);
3328     if (refblock) {
3329         /* discard refblock from the cache if refblock is cached */
3330         qcow2_cache_discard(s->refcount_block_cache, refblock);
3331     }
3332     update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3333 
3334     return 0;
3335 }
3336 
3337 int qcow2_shrink_reftable(BlockDriverState *bs)
3338 {
3339     BDRVQcow2State *s = bs->opaque;
3340     uint64_t *reftable_tmp =
3341         g_malloc(s->refcount_table_size * sizeof(uint64_t));
3342     int i, ret;
3343 
3344     for (i = 0; i < s->refcount_table_size; i++) {
3345         int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3346         void *refblock;
3347         bool unused_block;
3348 
3349         if (refblock_offs == 0) {
3350             reftable_tmp[i] = 0;
3351             continue;
3352         }
3353         ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3354                               &refblock);
3355         if (ret < 0) {
3356             goto out;
3357         }
3358 
3359         /* the refblock has own reference */
3360         if (i == offset_to_reftable_index(s, refblock_offs)) {
3361             uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3362                                    (s->refcount_block_size - 1);
3363             uint64_t refcount = s->get_refcount(refblock, block_index);
3364 
3365             s->set_refcount(refblock, block_index, 0);
3366 
3367             unused_block = buffer_is_zero(refblock, s->cluster_size);
3368 
3369             s->set_refcount(refblock, block_index, refcount);
3370         } else {
3371             unused_block = buffer_is_zero(refblock, s->cluster_size);
3372         }
3373         qcow2_cache_put(s->refcount_block_cache, &refblock);
3374 
3375         reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3376     }
3377 
3378     ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3379                            s->refcount_table_size * sizeof(uint64_t));
3380     /*
3381      * If the write in the reftable failed the image may contain a partially
3382      * overwritten reftable. In this case it would be better to clear the
3383      * reftable in memory to avoid possible image corruption.
3384      */
3385     for (i = 0; i < s->refcount_table_size; i++) {
3386         if (s->refcount_table[i] && !reftable_tmp[i]) {
3387             if (ret == 0) {
3388                 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3389                                                        REFT_OFFSET_MASK);
3390             }
3391             s->refcount_table[i] = 0;
3392         }
3393     }
3394 
3395     if (!s->cache_discards) {
3396         qcow2_process_discards(bs, ret);
3397     }
3398 
3399 out:
3400     g_free(reftable_tmp);
3401     return ret;
3402 }
3403 
3404 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3405 {
3406     BDRVQcow2State *s = bs->opaque;
3407     int64_t i;
3408 
3409     for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3410         uint64_t refcount;
3411         int ret = qcow2_get_refcount(bs, i, &refcount);
3412         if (ret < 0) {
3413             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3414                     i, strerror(-ret));
3415             return ret;
3416         }
3417         if (refcount > 0) {
3418             return i;
3419         }
3420     }
3421     qcow2_signal_corruption(bs, true, -1, -1,
3422                             "There are no references in the refcount table.");
3423     return -EIO;
3424 }
3425