1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qcow2.h" 28 #include "qemu/range.h" 29 #include "qemu/bswap.h" 30 #include "qemu/cutils.h" 31 #include "trace.h" 32 33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size, 34 uint64_t max); 35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs, 36 int64_t offset, int64_t length, uint64_t addend, 37 bool decrease, enum qcow2_discard_type type); 38 39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index); 40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index); 41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index); 42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index); 43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index); 44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index); 45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index); 46 47 static void set_refcount_ro0(void *refcount_array, uint64_t index, 48 uint64_t value); 49 static void set_refcount_ro1(void *refcount_array, uint64_t index, 50 uint64_t value); 51 static void set_refcount_ro2(void *refcount_array, uint64_t index, 52 uint64_t value); 53 static void set_refcount_ro3(void *refcount_array, uint64_t index, 54 uint64_t value); 55 static void set_refcount_ro4(void *refcount_array, uint64_t index, 56 uint64_t value); 57 static void set_refcount_ro5(void *refcount_array, uint64_t index, 58 uint64_t value); 59 static void set_refcount_ro6(void *refcount_array, uint64_t index, 60 uint64_t value); 61 62 63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = { 64 &get_refcount_ro0, 65 &get_refcount_ro1, 66 &get_refcount_ro2, 67 &get_refcount_ro3, 68 &get_refcount_ro4, 69 &get_refcount_ro5, 70 &get_refcount_ro6 71 }; 72 73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = { 74 &set_refcount_ro0, 75 &set_refcount_ro1, 76 &set_refcount_ro2, 77 &set_refcount_ro3, 78 &set_refcount_ro4, 79 &set_refcount_ro5, 80 &set_refcount_ro6 81 }; 82 83 84 /*********************************************************/ 85 /* refcount handling */ 86 87 static void update_max_refcount_table_index(BDRVQcow2State *s) 88 { 89 unsigned i = s->refcount_table_size - 1; 90 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) { 91 i--; 92 } 93 /* Set s->max_refcount_table_index to the index of the last used entry */ 94 s->max_refcount_table_index = i; 95 } 96 97 int qcow2_refcount_init(BlockDriverState *bs) 98 { 99 BDRVQcow2State *s = bs->opaque; 100 unsigned int refcount_table_size2, i; 101 int ret; 102 103 assert(s->refcount_order >= 0 && s->refcount_order <= 6); 104 105 s->get_refcount = get_refcount_funcs[s->refcount_order]; 106 s->set_refcount = set_refcount_funcs[s->refcount_order]; 107 108 assert(s->refcount_table_size <= INT_MAX / REFTABLE_ENTRY_SIZE); 109 refcount_table_size2 = s->refcount_table_size * REFTABLE_ENTRY_SIZE; 110 s->refcount_table = g_try_malloc(refcount_table_size2); 111 112 if (s->refcount_table_size > 0) { 113 if (s->refcount_table == NULL) { 114 ret = -ENOMEM; 115 goto fail; 116 } 117 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD); 118 ret = bdrv_pread(bs->file, s->refcount_table_offset, 119 s->refcount_table, refcount_table_size2); 120 if (ret < 0) { 121 goto fail; 122 } 123 for(i = 0; i < s->refcount_table_size; i++) 124 be64_to_cpus(&s->refcount_table[i]); 125 update_max_refcount_table_index(s); 126 } 127 return 0; 128 fail: 129 return ret; 130 } 131 132 void qcow2_refcount_close(BlockDriverState *bs) 133 { 134 BDRVQcow2State *s = bs->opaque; 135 g_free(s->refcount_table); 136 } 137 138 139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index) 140 { 141 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1; 142 } 143 144 static void set_refcount_ro0(void *refcount_array, uint64_t index, 145 uint64_t value) 146 { 147 assert(!(value >> 1)); 148 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8)); 149 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8); 150 } 151 152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index) 153 { 154 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4))) 155 & 0x3; 156 } 157 158 static void set_refcount_ro1(void *refcount_array, uint64_t index, 159 uint64_t value) 160 { 161 assert(!(value >> 2)); 162 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4))); 163 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4)); 164 } 165 166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index) 167 { 168 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2))) 169 & 0xf; 170 } 171 172 static void set_refcount_ro2(void *refcount_array, uint64_t index, 173 uint64_t value) 174 { 175 assert(!(value >> 4)); 176 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2))); 177 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2)); 178 } 179 180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index) 181 { 182 return ((const uint8_t *)refcount_array)[index]; 183 } 184 185 static void set_refcount_ro3(void *refcount_array, uint64_t index, 186 uint64_t value) 187 { 188 assert(!(value >> 8)); 189 ((uint8_t *)refcount_array)[index] = value; 190 } 191 192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index) 193 { 194 return be16_to_cpu(((const uint16_t *)refcount_array)[index]); 195 } 196 197 static void set_refcount_ro4(void *refcount_array, uint64_t index, 198 uint64_t value) 199 { 200 assert(!(value >> 16)); 201 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value); 202 } 203 204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index) 205 { 206 return be32_to_cpu(((const uint32_t *)refcount_array)[index]); 207 } 208 209 static void set_refcount_ro5(void *refcount_array, uint64_t index, 210 uint64_t value) 211 { 212 assert(!(value >> 32)); 213 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value); 214 } 215 216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index) 217 { 218 return be64_to_cpu(((const uint64_t *)refcount_array)[index]); 219 } 220 221 static void set_refcount_ro6(void *refcount_array, uint64_t index, 222 uint64_t value) 223 { 224 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value); 225 } 226 227 228 static int load_refcount_block(BlockDriverState *bs, 229 int64_t refcount_block_offset, 230 void **refcount_block) 231 { 232 BDRVQcow2State *s = bs->opaque; 233 234 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD); 235 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 236 refcount_block); 237 } 238 239 /* 240 * Retrieves the refcount of the cluster given by its index and stores it in 241 * *refcount. Returns 0 on success and -errno on failure. 242 */ 243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index, 244 uint64_t *refcount) 245 { 246 BDRVQcow2State *s = bs->opaque; 247 uint64_t refcount_table_index, block_index; 248 int64_t refcount_block_offset; 249 int ret; 250 void *refcount_block; 251 252 refcount_table_index = cluster_index >> s->refcount_block_bits; 253 if (refcount_table_index >= s->refcount_table_size) { 254 *refcount = 0; 255 return 0; 256 } 257 refcount_block_offset = 258 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 259 if (!refcount_block_offset) { 260 *refcount = 0; 261 return 0; 262 } 263 264 if (offset_into_cluster(s, refcount_block_offset)) { 265 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64 266 " unaligned (reftable index: %#" PRIx64 ")", 267 refcount_block_offset, refcount_table_index); 268 return -EIO; 269 } 270 271 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 272 &refcount_block); 273 if (ret < 0) { 274 return ret; 275 } 276 277 block_index = cluster_index & (s->refcount_block_size - 1); 278 *refcount = s->get_refcount(refcount_block, block_index); 279 280 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 281 282 return 0; 283 } 284 285 /* Checks if two offsets are described by the same refcount block */ 286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a, 287 uint64_t offset_b) 288 { 289 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits); 290 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits); 291 292 return (block_a == block_b); 293 } 294 295 /* 296 * Loads a refcount block. If it doesn't exist yet, it is allocated first 297 * (including growing the refcount table if needed). 298 * 299 * Returns 0 on success or -errno in error case 300 */ 301 static int alloc_refcount_block(BlockDriverState *bs, 302 int64_t cluster_index, void **refcount_block) 303 { 304 BDRVQcow2State *s = bs->opaque; 305 unsigned int refcount_table_index; 306 int64_t ret; 307 308 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC); 309 310 /* Find the refcount block for the given cluster */ 311 refcount_table_index = cluster_index >> s->refcount_block_bits; 312 313 if (refcount_table_index < s->refcount_table_size) { 314 315 uint64_t refcount_block_offset = 316 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 317 318 /* If it's already there, we're done */ 319 if (refcount_block_offset) { 320 if (offset_into_cluster(s, refcount_block_offset)) { 321 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 322 PRIx64 " unaligned (reftable index: " 323 "%#x)", refcount_block_offset, 324 refcount_table_index); 325 return -EIO; 326 } 327 328 return load_refcount_block(bs, refcount_block_offset, 329 refcount_block); 330 } 331 } 332 333 /* 334 * If we came here, we need to allocate something. Something is at least 335 * a cluster for the new refcount block. It may also include a new refcount 336 * table if the old refcount table is too small. 337 * 338 * Note that allocating clusters here needs some special care: 339 * 340 * - We can't use the normal qcow2_alloc_clusters(), it would try to 341 * increase the refcount and very likely we would end up with an endless 342 * recursion. Instead we must place the refcount blocks in a way that 343 * they can describe them themselves. 344 * 345 * - We need to consider that at this point we are inside update_refcounts 346 * and potentially doing an initial refcount increase. This means that 347 * some clusters have already been allocated by the caller, but their 348 * refcount isn't accurate yet. If we allocate clusters for metadata, we 349 * need to return -EAGAIN to signal the caller that it needs to restart 350 * the search for free clusters. 351 * 352 * - alloc_clusters_noref and qcow2_free_clusters may load a different 353 * refcount block into the cache 354 */ 355 356 *refcount_block = NULL; 357 358 /* We write to the refcount table, so we might depend on L2 tables */ 359 ret = qcow2_cache_flush(bs, s->l2_table_cache); 360 if (ret < 0) { 361 return ret; 362 } 363 364 /* Allocate the refcount block itself and mark it as used */ 365 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX); 366 if (new_block < 0) { 367 return new_block; 368 } 369 370 /* The offset must fit in the offset field of the refcount table entry */ 371 assert((new_block & REFT_OFFSET_MASK) == new_block); 372 373 /* If we're allocating the block at offset 0 then something is wrong */ 374 if (new_block == 0) { 375 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 376 "allocation of refcount block at offset 0"); 377 return -EIO; 378 } 379 380 #ifdef DEBUG_ALLOC2 381 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64 382 " at %" PRIx64 "\n", 383 refcount_table_index, cluster_index << s->cluster_bits, new_block); 384 #endif 385 386 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) { 387 /* Zero the new refcount block before updating it */ 388 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 389 refcount_block); 390 if (ret < 0) { 391 goto fail; 392 } 393 394 memset(*refcount_block, 0, s->cluster_size); 395 396 /* The block describes itself, need to update the cache */ 397 int block_index = (new_block >> s->cluster_bits) & 398 (s->refcount_block_size - 1); 399 s->set_refcount(*refcount_block, block_index, 1); 400 } else { 401 /* Described somewhere else. This can recurse at most twice before we 402 * arrive at a block that describes itself. */ 403 ret = update_refcount(bs, new_block, s->cluster_size, 1, false, 404 QCOW2_DISCARD_NEVER); 405 if (ret < 0) { 406 goto fail; 407 } 408 409 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 410 if (ret < 0) { 411 goto fail; 412 } 413 414 /* Initialize the new refcount block only after updating its refcount, 415 * update_refcount uses the refcount cache itself */ 416 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 417 refcount_block); 418 if (ret < 0) { 419 goto fail; 420 } 421 422 memset(*refcount_block, 0, s->cluster_size); 423 } 424 425 /* Now the new refcount block needs to be written to disk */ 426 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE); 427 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block); 428 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 429 if (ret < 0) { 430 goto fail; 431 } 432 433 /* If the refcount table is big enough, just hook the block up there */ 434 if (refcount_table_index < s->refcount_table_size) { 435 uint64_t data64 = cpu_to_be64(new_block); 436 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP); 437 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset + 438 refcount_table_index * REFTABLE_ENTRY_SIZE, 439 &data64, sizeof(data64)); 440 if (ret < 0) { 441 goto fail; 442 } 443 444 s->refcount_table[refcount_table_index] = new_block; 445 /* If there's a hole in s->refcount_table then it can happen 446 * that refcount_table_index < s->max_refcount_table_index */ 447 s->max_refcount_table_index = 448 MAX(s->max_refcount_table_index, refcount_table_index); 449 450 /* The new refcount block may be where the caller intended to put its 451 * data, so let it restart the search. */ 452 return -EAGAIN; 453 } 454 455 qcow2_cache_put(s->refcount_block_cache, refcount_block); 456 457 /* 458 * If we come here, we need to grow the refcount table. Again, a new 459 * refcount table needs some space and we can't simply allocate to avoid 460 * endless recursion. 461 * 462 * Therefore let's grab new refcount blocks at the end of the image, which 463 * will describe themselves and the new refcount table. This way we can 464 * reference them only in the new table and do the switch to the new 465 * refcount table at once without producing an inconsistent state in 466 * between. 467 */ 468 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW); 469 470 /* Calculate the number of refcount blocks needed so far; this will be the 471 * basis for calculating the index of the first cluster used for the 472 * self-describing refcount structures which we are about to create. 473 * 474 * Because we reached this point, there cannot be any refcount entries for 475 * cluster_index or higher indices yet. However, because new_block has been 476 * allocated to describe that cluster (and it will assume this role later 477 * on), we cannot use that index; also, new_block may actually have a higher 478 * cluster index than cluster_index, so it needs to be taken into account 479 * here (and 1 needs to be added to its value because that cluster is used). 480 */ 481 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1, 482 (new_block >> s->cluster_bits) + 1), 483 s->refcount_block_size); 484 485 /* Create the new refcount table and blocks */ 486 uint64_t meta_offset = (blocks_used * s->refcount_block_size) * 487 s->cluster_size; 488 489 ret = qcow2_refcount_area(bs, meta_offset, 0, false, 490 refcount_table_index, new_block); 491 if (ret < 0) { 492 return ret; 493 } 494 495 ret = load_refcount_block(bs, new_block, refcount_block); 496 if (ret < 0) { 497 return ret; 498 } 499 500 /* If we were trying to do the initial refcount update for some cluster 501 * allocation, we might have used the same clusters to store newly 502 * allocated metadata. Make the caller search some new space. */ 503 return -EAGAIN; 504 505 fail: 506 if (*refcount_block != NULL) { 507 qcow2_cache_put(s->refcount_block_cache, refcount_block); 508 } 509 return ret; 510 } 511 512 /* 513 * Starting at @start_offset, this function creates new self-covering refcount 514 * structures: A new refcount table and refcount blocks which cover all of 515 * themselves, and a number of @additional_clusters beyond their end. 516 * @start_offset must be at the end of the image file, that is, there must be 517 * only empty space beyond it. 518 * If @exact_size is false, the refcount table will have 50 % more entries than 519 * necessary so it will not need to grow again soon. 520 * If @new_refblock_offset is not zero, it contains the offset of a refcount 521 * block that should be entered into the new refcount table at index 522 * @new_refblock_index. 523 * 524 * Returns: The offset after the new refcount structures (i.e. where the 525 * @additional_clusters may be placed) on success, -errno on error. 526 */ 527 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset, 528 uint64_t additional_clusters, bool exact_size, 529 int new_refblock_index, 530 uint64_t new_refblock_offset) 531 { 532 BDRVQcow2State *s = bs->opaque; 533 uint64_t total_refblock_count_u64, additional_refblock_count; 534 int total_refblock_count, table_size, area_reftable_index, table_clusters; 535 int i; 536 uint64_t table_offset, block_offset, end_offset; 537 int ret; 538 uint64_t *new_table; 539 540 assert(!(start_offset % s->cluster_size)); 541 542 qcow2_refcount_metadata_size(start_offset / s->cluster_size + 543 additional_clusters, 544 s->cluster_size, s->refcount_order, 545 !exact_size, &total_refblock_count_u64); 546 if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) { 547 return -EFBIG; 548 } 549 total_refblock_count = total_refblock_count_u64; 550 551 /* Index in the refcount table of the first refcount block to cover the area 552 * of refcount structures we are about to create; we know that 553 * @total_refblock_count can cover @start_offset, so this will definitely 554 * fit into an int. */ 555 area_reftable_index = (start_offset / s->cluster_size) / 556 s->refcount_block_size; 557 558 if (exact_size) { 559 table_size = total_refblock_count; 560 } else { 561 table_size = total_refblock_count + 562 DIV_ROUND_UP(total_refblock_count, 2); 563 } 564 /* The qcow2 file can only store the reftable size in number of clusters */ 565 table_size = ROUND_UP(table_size, s->cluster_size / REFTABLE_ENTRY_SIZE); 566 table_clusters = (table_size * REFTABLE_ENTRY_SIZE) / s->cluster_size; 567 568 if (table_size > QCOW_MAX_REFTABLE_SIZE) { 569 return -EFBIG; 570 } 571 572 new_table = g_try_new0(uint64_t, table_size); 573 574 assert(table_size > 0); 575 if (new_table == NULL) { 576 ret = -ENOMEM; 577 goto fail; 578 } 579 580 /* Fill the new refcount table */ 581 if (table_size > s->max_refcount_table_index) { 582 /* We're actually growing the reftable */ 583 memcpy(new_table, s->refcount_table, 584 (s->max_refcount_table_index + 1) * REFTABLE_ENTRY_SIZE); 585 } else { 586 /* Improbable case: We're shrinking the reftable. However, the caller 587 * has assured us that there is only empty space beyond @start_offset, 588 * so we can simply drop all of the refblocks that won't fit into the 589 * new reftable. */ 590 memcpy(new_table, s->refcount_table, table_size * REFTABLE_ENTRY_SIZE); 591 } 592 593 if (new_refblock_offset) { 594 assert(new_refblock_index < total_refblock_count); 595 new_table[new_refblock_index] = new_refblock_offset; 596 } 597 598 /* Count how many new refblocks we have to create */ 599 additional_refblock_count = 0; 600 for (i = area_reftable_index; i < total_refblock_count; i++) { 601 if (!new_table[i]) { 602 additional_refblock_count++; 603 } 604 } 605 606 table_offset = start_offset + additional_refblock_count * s->cluster_size; 607 end_offset = table_offset + table_clusters * s->cluster_size; 608 609 /* Fill the refcount blocks, and create new ones, if necessary */ 610 block_offset = start_offset; 611 for (i = area_reftable_index; i < total_refblock_count; i++) { 612 void *refblock_data; 613 uint64_t first_offset_covered; 614 615 /* Reuse an existing refblock if possible, create a new one otherwise */ 616 if (new_table[i]) { 617 ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i], 618 &refblock_data); 619 if (ret < 0) { 620 goto fail; 621 } 622 } else { 623 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, 624 block_offset, &refblock_data); 625 if (ret < 0) { 626 goto fail; 627 } 628 memset(refblock_data, 0, s->cluster_size); 629 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, 630 refblock_data); 631 632 new_table[i] = block_offset; 633 block_offset += s->cluster_size; 634 } 635 636 /* First host offset covered by this refblock */ 637 first_offset_covered = (uint64_t)i * s->refcount_block_size * 638 s->cluster_size; 639 if (first_offset_covered < end_offset) { 640 int j, end_index; 641 642 /* Set the refcount of all of the new refcount structures to 1 */ 643 644 if (first_offset_covered < start_offset) { 645 assert(i == area_reftable_index); 646 j = (start_offset - first_offset_covered) / s->cluster_size; 647 assert(j < s->refcount_block_size); 648 } else { 649 j = 0; 650 } 651 652 end_index = MIN((end_offset - first_offset_covered) / 653 s->cluster_size, 654 s->refcount_block_size); 655 656 for (; j < end_index; j++) { 657 /* The caller guaranteed us this space would be empty */ 658 assert(s->get_refcount(refblock_data, j) == 0); 659 s->set_refcount(refblock_data, j, 1); 660 } 661 662 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, 663 refblock_data); 664 } 665 666 qcow2_cache_put(s->refcount_block_cache, &refblock_data); 667 } 668 669 assert(block_offset == table_offset); 670 671 /* Write refcount blocks to disk */ 672 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS); 673 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 674 if (ret < 0) { 675 goto fail; 676 } 677 678 /* Write refcount table to disk */ 679 for (i = 0; i < total_refblock_count; i++) { 680 cpu_to_be64s(&new_table[i]); 681 } 682 683 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE); 684 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table, 685 table_size * REFTABLE_ENTRY_SIZE); 686 if (ret < 0) { 687 goto fail; 688 } 689 690 for (i = 0; i < total_refblock_count; i++) { 691 be64_to_cpus(&new_table[i]); 692 } 693 694 /* Hook up the new refcount table in the qcow2 header */ 695 struct QEMU_PACKED { 696 uint64_t d64; 697 uint32_t d32; 698 } data; 699 data.d64 = cpu_to_be64(table_offset); 700 data.d32 = cpu_to_be32(table_clusters); 701 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE); 702 ret = bdrv_pwrite_sync(bs->file, 703 offsetof(QCowHeader, refcount_table_offset), 704 &data, sizeof(data)); 705 if (ret < 0) { 706 goto fail; 707 } 708 709 /* And switch it in memory */ 710 uint64_t old_table_offset = s->refcount_table_offset; 711 uint64_t old_table_size = s->refcount_table_size; 712 713 g_free(s->refcount_table); 714 s->refcount_table = new_table; 715 s->refcount_table_size = table_size; 716 s->refcount_table_offset = table_offset; 717 update_max_refcount_table_index(s); 718 719 /* Free old table. */ 720 qcow2_free_clusters(bs, old_table_offset, 721 old_table_size * REFTABLE_ENTRY_SIZE, 722 QCOW2_DISCARD_OTHER); 723 724 return end_offset; 725 726 fail: 727 g_free(new_table); 728 return ret; 729 } 730 731 void qcow2_process_discards(BlockDriverState *bs, int ret) 732 { 733 BDRVQcow2State *s = bs->opaque; 734 Qcow2DiscardRegion *d, *next; 735 736 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) { 737 QTAILQ_REMOVE(&s->discards, d, next); 738 739 /* Discard is optional, ignore the return value */ 740 if (ret >= 0) { 741 int r2 = bdrv_pdiscard(bs->file, d->offset, d->bytes); 742 if (r2 < 0) { 743 trace_qcow2_process_discards_failed_region(d->offset, d->bytes, 744 r2); 745 } 746 } 747 748 g_free(d); 749 } 750 } 751 752 static void update_refcount_discard(BlockDriverState *bs, 753 uint64_t offset, uint64_t length) 754 { 755 BDRVQcow2State *s = bs->opaque; 756 Qcow2DiscardRegion *d, *p, *next; 757 758 QTAILQ_FOREACH(d, &s->discards, next) { 759 uint64_t new_start = MIN(offset, d->offset); 760 uint64_t new_end = MAX(offset + length, d->offset + d->bytes); 761 762 if (new_end - new_start <= length + d->bytes) { 763 /* There can't be any overlap, areas ending up here have no 764 * references any more and therefore shouldn't get freed another 765 * time. */ 766 assert(d->bytes + length == new_end - new_start); 767 d->offset = new_start; 768 d->bytes = new_end - new_start; 769 goto found; 770 } 771 } 772 773 d = g_malloc(sizeof(*d)); 774 *d = (Qcow2DiscardRegion) { 775 .bs = bs, 776 .offset = offset, 777 .bytes = length, 778 }; 779 QTAILQ_INSERT_TAIL(&s->discards, d, next); 780 781 found: 782 /* Merge discard requests if they are adjacent now */ 783 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) { 784 if (p == d 785 || p->offset > d->offset + d->bytes 786 || d->offset > p->offset + p->bytes) 787 { 788 continue; 789 } 790 791 /* Still no overlap possible */ 792 assert(p->offset == d->offset + d->bytes 793 || d->offset == p->offset + p->bytes); 794 795 QTAILQ_REMOVE(&s->discards, p, next); 796 d->offset = MIN(d->offset, p->offset); 797 d->bytes += p->bytes; 798 g_free(p); 799 } 800 } 801 802 /* XXX: cache several refcount block clusters ? */ 803 /* @addend is the absolute value of the addend; if @decrease is set, @addend 804 * will be subtracted from the current refcount, otherwise it will be added */ 805 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs, 806 int64_t offset, 807 int64_t length, 808 uint64_t addend, 809 bool decrease, 810 enum qcow2_discard_type type) 811 { 812 BDRVQcow2State *s = bs->opaque; 813 int64_t start, last, cluster_offset; 814 void *refcount_block = NULL; 815 int64_t old_table_index = -1; 816 int ret; 817 818 #ifdef DEBUG_ALLOC2 819 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64 820 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "", 821 addend); 822 #endif 823 if (length < 0) { 824 return -EINVAL; 825 } else if (length == 0) { 826 return 0; 827 } 828 829 if (decrease) { 830 qcow2_cache_set_dependency(bs, s->refcount_block_cache, 831 s->l2_table_cache); 832 } 833 834 start = start_of_cluster(s, offset); 835 last = start_of_cluster(s, offset + length - 1); 836 for(cluster_offset = start; cluster_offset <= last; 837 cluster_offset += s->cluster_size) 838 { 839 int block_index; 840 uint64_t refcount; 841 int64_t cluster_index = cluster_offset >> s->cluster_bits; 842 int64_t table_index = cluster_index >> s->refcount_block_bits; 843 844 /* Load the refcount block and allocate it if needed */ 845 if (table_index != old_table_index) { 846 if (refcount_block) { 847 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 848 } 849 ret = alloc_refcount_block(bs, cluster_index, &refcount_block); 850 /* If the caller needs to restart the search for free clusters, 851 * try the same ones first to see if they're still free. */ 852 if (ret == -EAGAIN) { 853 if (s->free_cluster_index > (start >> s->cluster_bits)) { 854 s->free_cluster_index = (start >> s->cluster_bits); 855 } 856 } 857 if (ret < 0) { 858 goto fail; 859 } 860 } 861 old_table_index = table_index; 862 863 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block); 864 865 /* we can update the count and save it */ 866 block_index = cluster_index & (s->refcount_block_size - 1); 867 868 refcount = s->get_refcount(refcount_block, block_index); 869 if (decrease ? (refcount - addend > refcount) 870 : (refcount + addend < refcount || 871 refcount + addend > s->refcount_max)) 872 { 873 ret = -EINVAL; 874 goto fail; 875 } 876 if (decrease) { 877 refcount -= addend; 878 } else { 879 refcount += addend; 880 } 881 if (refcount == 0 && cluster_index < s->free_cluster_index) { 882 s->free_cluster_index = cluster_index; 883 } 884 s->set_refcount(refcount_block, block_index, refcount); 885 886 if (refcount == 0) { 887 void *table; 888 889 table = qcow2_cache_is_table_offset(s->refcount_block_cache, 890 offset); 891 if (table != NULL) { 892 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 893 old_table_index = -1; 894 qcow2_cache_discard(s->refcount_block_cache, table); 895 } 896 897 table = qcow2_cache_is_table_offset(s->l2_table_cache, offset); 898 if (table != NULL) { 899 qcow2_cache_discard(s->l2_table_cache, table); 900 } 901 902 if (s->discard_passthrough[type]) { 903 update_refcount_discard(bs, cluster_offset, s->cluster_size); 904 } 905 } 906 } 907 908 ret = 0; 909 fail: 910 if (!s->cache_discards) { 911 qcow2_process_discards(bs, ret); 912 } 913 914 /* Write last changed block to disk */ 915 if (refcount_block) { 916 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 917 } 918 919 /* 920 * Try do undo any updates if an error is returned (This may succeed in 921 * some cases like ENOSPC for allocating a new refcount block) 922 */ 923 if (ret < 0) { 924 int dummy; 925 dummy = update_refcount(bs, offset, cluster_offset - offset, addend, 926 !decrease, QCOW2_DISCARD_NEVER); 927 (void)dummy; 928 } 929 930 return ret; 931 } 932 933 /* 934 * Increases or decreases the refcount of a given cluster. 935 * 936 * @addend is the absolute value of the addend; if @decrease is set, @addend 937 * will be subtracted from the current refcount, otherwise it will be added. 938 * 939 * On success 0 is returned; on failure -errno is returned. 940 */ 941 int qcow2_update_cluster_refcount(BlockDriverState *bs, 942 int64_t cluster_index, 943 uint64_t addend, bool decrease, 944 enum qcow2_discard_type type) 945 { 946 BDRVQcow2State *s = bs->opaque; 947 int ret; 948 949 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend, 950 decrease, type); 951 if (ret < 0) { 952 return ret; 953 } 954 955 return 0; 956 } 957 958 959 960 /*********************************************************/ 961 /* cluster allocation functions */ 962 963 964 965 /* return < 0 if error */ 966 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size, 967 uint64_t max) 968 { 969 BDRVQcow2State *s = bs->opaque; 970 uint64_t i, nb_clusters, refcount; 971 int ret; 972 973 /* We can't allocate clusters if they may still be queued for discard. */ 974 if (s->cache_discards) { 975 qcow2_process_discards(bs, 0); 976 } 977 978 nb_clusters = size_to_clusters(s, size); 979 retry: 980 for(i = 0; i < nb_clusters; i++) { 981 uint64_t next_cluster_index = s->free_cluster_index++; 982 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount); 983 984 if (ret < 0) { 985 return ret; 986 } else if (refcount != 0) { 987 goto retry; 988 } 989 } 990 991 /* Make sure that all offsets in the "allocated" range are representable 992 * in the requested max */ 993 if (s->free_cluster_index > 0 && 994 s->free_cluster_index - 1 > (max >> s->cluster_bits)) 995 { 996 return -EFBIG; 997 } 998 999 #ifdef DEBUG_ALLOC2 1000 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n", 1001 size, 1002 (s->free_cluster_index - nb_clusters) << s->cluster_bits); 1003 #endif 1004 return (s->free_cluster_index - nb_clusters) << s->cluster_bits; 1005 } 1006 1007 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size) 1008 { 1009 int64_t offset; 1010 int ret; 1011 1012 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC); 1013 do { 1014 offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET); 1015 if (offset < 0) { 1016 return offset; 1017 } 1018 1019 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 1020 } while (ret == -EAGAIN); 1021 1022 if (ret < 0) { 1023 return ret; 1024 } 1025 1026 return offset; 1027 } 1028 1029 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset, 1030 int64_t nb_clusters) 1031 { 1032 BDRVQcow2State *s = bs->opaque; 1033 uint64_t cluster_index, refcount; 1034 uint64_t i; 1035 int ret; 1036 1037 assert(nb_clusters >= 0); 1038 if (nb_clusters == 0) { 1039 return 0; 1040 } 1041 1042 do { 1043 /* Check how many clusters there are free */ 1044 cluster_index = offset >> s->cluster_bits; 1045 for(i = 0; i < nb_clusters; i++) { 1046 ret = qcow2_get_refcount(bs, cluster_index++, &refcount); 1047 if (ret < 0) { 1048 return ret; 1049 } else if (refcount != 0) { 1050 break; 1051 } 1052 } 1053 1054 /* And then allocate them */ 1055 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false, 1056 QCOW2_DISCARD_NEVER); 1057 } while (ret == -EAGAIN); 1058 1059 if (ret < 0) { 1060 return ret; 1061 } 1062 1063 return i; 1064 } 1065 1066 /* only used to allocate compressed sectors. We try to allocate 1067 contiguous sectors. size must be <= cluster_size */ 1068 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size) 1069 { 1070 BDRVQcow2State *s = bs->opaque; 1071 int64_t offset; 1072 size_t free_in_cluster; 1073 int ret; 1074 1075 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES); 1076 assert(size > 0 && size <= s->cluster_size); 1077 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset)); 1078 1079 offset = s->free_byte_offset; 1080 1081 if (offset) { 1082 uint64_t refcount; 1083 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount); 1084 if (ret < 0) { 1085 return ret; 1086 } 1087 1088 if (refcount == s->refcount_max) { 1089 offset = 0; 1090 } 1091 } 1092 1093 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset); 1094 do { 1095 if (!offset || free_in_cluster < size) { 1096 int64_t new_cluster; 1097 1098 new_cluster = alloc_clusters_noref(bs, s->cluster_size, 1099 MIN(s->cluster_offset_mask, 1100 QCOW_MAX_CLUSTER_OFFSET)); 1101 if (new_cluster < 0) { 1102 return new_cluster; 1103 } 1104 1105 if (new_cluster == 0) { 1106 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 1107 "allocation of compressed cluster " 1108 "at offset 0"); 1109 return -EIO; 1110 } 1111 1112 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) { 1113 offset = new_cluster; 1114 free_in_cluster = s->cluster_size; 1115 } else { 1116 free_in_cluster += s->cluster_size; 1117 } 1118 } 1119 1120 assert(offset); 1121 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 1122 if (ret < 0) { 1123 offset = 0; 1124 } 1125 } while (ret == -EAGAIN); 1126 if (ret < 0) { 1127 return ret; 1128 } 1129 1130 /* The cluster refcount was incremented; refcount blocks must be flushed 1131 * before the caller's L2 table updates. */ 1132 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache); 1133 1134 s->free_byte_offset = offset + size; 1135 if (!offset_into_cluster(s, s->free_byte_offset)) { 1136 s->free_byte_offset = 0; 1137 } 1138 1139 return offset; 1140 } 1141 1142 void qcow2_free_clusters(BlockDriverState *bs, 1143 int64_t offset, int64_t size, 1144 enum qcow2_discard_type type) 1145 { 1146 int ret; 1147 1148 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE); 1149 ret = update_refcount(bs, offset, size, 1, true, type); 1150 if (ret < 0) { 1151 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret)); 1152 /* TODO Remember the clusters to free them later and avoid leaking */ 1153 } 1154 } 1155 1156 /* 1157 * Free a cluster using its L2 entry (handles clusters of all types, e.g. 1158 * normal cluster, compressed cluster, etc.) 1159 */ 1160 void qcow2_free_any_cluster(BlockDriverState *bs, uint64_t l2_entry, 1161 enum qcow2_discard_type type) 1162 { 1163 BDRVQcow2State *s = bs->opaque; 1164 QCow2ClusterType ctype = qcow2_get_cluster_type(bs, l2_entry); 1165 1166 if (has_data_file(bs)) { 1167 if (s->discard_passthrough[type] && 1168 (ctype == QCOW2_CLUSTER_NORMAL || 1169 ctype == QCOW2_CLUSTER_ZERO_ALLOC)) 1170 { 1171 bdrv_pdiscard(s->data_file, l2_entry & L2E_OFFSET_MASK, 1172 s->cluster_size); 1173 } 1174 return; 1175 } 1176 1177 switch (ctype) { 1178 case QCOW2_CLUSTER_COMPRESSED: 1179 { 1180 uint64_t coffset; 1181 int csize; 1182 1183 qcow2_parse_compressed_l2_entry(bs, l2_entry, &coffset, &csize); 1184 qcow2_free_clusters(bs, coffset, csize, type); 1185 } 1186 break; 1187 case QCOW2_CLUSTER_NORMAL: 1188 case QCOW2_CLUSTER_ZERO_ALLOC: 1189 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) { 1190 qcow2_signal_corruption(bs, false, -1, -1, 1191 "Cannot free unaligned cluster %#llx", 1192 l2_entry & L2E_OFFSET_MASK); 1193 } else { 1194 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK, 1195 s->cluster_size, type); 1196 } 1197 break; 1198 case QCOW2_CLUSTER_ZERO_PLAIN: 1199 case QCOW2_CLUSTER_UNALLOCATED: 1200 break; 1201 default: 1202 abort(); 1203 } 1204 } 1205 1206 int coroutine_fn qcow2_write_caches(BlockDriverState *bs) 1207 { 1208 BDRVQcow2State *s = bs->opaque; 1209 int ret; 1210 1211 ret = qcow2_cache_write(bs, s->l2_table_cache); 1212 if (ret < 0) { 1213 return ret; 1214 } 1215 1216 if (qcow2_need_accurate_refcounts(s)) { 1217 ret = qcow2_cache_write(bs, s->refcount_block_cache); 1218 if (ret < 0) { 1219 return ret; 1220 } 1221 } 1222 1223 return 0; 1224 } 1225 1226 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs) 1227 { 1228 int ret = qcow2_write_caches(bs); 1229 if (ret < 0) { 1230 return ret; 1231 } 1232 1233 return bdrv_flush(bs->file->bs); 1234 } 1235 1236 /*********************************************************/ 1237 /* snapshots and image creation */ 1238 1239 1240 1241 /* update the refcounts of snapshots and the copied flag */ 1242 int qcow2_update_snapshot_refcount(BlockDriverState *bs, 1243 int64_t l1_table_offset, int l1_size, int addend) 1244 { 1245 BDRVQcow2State *s = bs->opaque; 1246 uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount; 1247 bool l1_allocated = false; 1248 int64_t old_entry, old_l2_offset; 1249 unsigned slice, slice_size2, n_slices; 1250 int i, j, l1_modified = 0; 1251 int ret; 1252 1253 assert(addend >= -1 && addend <= 1); 1254 1255 l2_slice = NULL; 1256 l1_table = NULL; 1257 l1_size2 = l1_size * L1E_SIZE; 1258 slice_size2 = s->l2_slice_size * l2_entry_size(s); 1259 n_slices = s->cluster_size / slice_size2; 1260 1261 s->cache_discards = true; 1262 1263 /* WARNING: qcow2_snapshot_goto relies on this function not using the 1264 * l1_table_offset when it is the current s->l1_table_offset! Be careful 1265 * when changing this! */ 1266 if (l1_table_offset != s->l1_table_offset) { 1267 l1_table = g_try_malloc0(l1_size2); 1268 if (l1_size2 && l1_table == NULL) { 1269 ret = -ENOMEM; 1270 goto fail; 1271 } 1272 l1_allocated = true; 1273 1274 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2); 1275 if (ret < 0) { 1276 goto fail; 1277 } 1278 1279 for (i = 0; i < l1_size; i++) { 1280 be64_to_cpus(&l1_table[i]); 1281 } 1282 } else { 1283 assert(l1_size == s->l1_size); 1284 l1_table = s->l1_table; 1285 l1_allocated = false; 1286 } 1287 1288 for (i = 0; i < l1_size; i++) { 1289 l2_offset = l1_table[i]; 1290 if (l2_offset) { 1291 old_l2_offset = l2_offset; 1292 l2_offset &= L1E_OFFSET_MASK; 1293 1294 if (offset_into_cluster(s, l2_offset)) { 1295 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1296 PRIx64 " unaligned (L1 index: %#x)", 1297 l2_offset, i); 1298 ret = -EIO; 1299 goto fail; 1300 } 1301 1302 for (slice = 0; slice < n_slices; slice++) { 1303 ret = qcow2_cache_get(bs, s->l2_table_cache, 1304 l2_offset + slice * slice_size2, 1305 (void **) &l2_slice); 1306 if (ret < 0) { 1307 goto fail; 1308 } 1309 1310 for (j = 0; j < s->l2_slice_size; j++) { 1311 uint64_t cluster_index; 1312 uint64_t offset; 1313 1314 entry = get_l2_entry(s, l2_slice, j); 1315 old_entry = entry; 1316 entry &= ~QCOW_OFLAG_COPIED; 1317 offset = entry & L2E_OFFSET_MASK; 1318 1319 switch (qcow2_get_cluster_type(bs, entry)) { 1320 case QCOW2_CLUSTER_COMPRESSED: 1321 if (addend != 0) { 1322 uint64_t coffset; 1323 int csize; 1324 1325 qcow2_parse_compressed_l2_entry(bs, entry, 1326 &coffset, &csize); 1327 ret = update_refcount( 1328 bs, coffset, csize, 1329 abs(addend), addend < 0, 1330 QCOW2_DISCARD_SNAPSHOT); 1331 if (ret < 0) { 1332 goto fail; 1333 } 1334 } 1335 /* compressed clusters are never modified */ 1336 refcount = 2; 1337 break; 1338 1339 case QCOW2_CLUSTER_NORMAL: 1340 case QCOW2_CLUSTER_ZERO_ALLOC: 1341 if (offset_into_cluster(s, offset)) { 1342 /* Here l2_index means table (not slice) index */ 1343 int l2_index = slice * s->l2_slice_size + j; 1344 qcow2_signal_corruption( 1345 bs, true, -1, -1, "Cluster " 1346 "allocation offset %#" PRIx64 1347 " unaligned (L2 offset: %#" 1348 PRIx64 ", L2 index: %#x)", 1349 offset, l2_offset, l2_index); 1350 ret = -EIO; 1351 goto fail; 1352 } 1353 1354 cluster_index = offset >> s->cluster_bits; 1355 assert(cluster_index); 1356 if (addend != 0) { 1357 ret = qcow2_update_cluster_refcount( 1358 bs, cluster_index, abs(addend), addend < 0, 1359 QCOW2_DISCARD_SNAPSHOT); 1360 if (ret < 0) { 1361 goto fail; 1362 } 1363 } 1364 1365 ret = qcow2_get_refcount(bs, cluster_index, &refcount); 1366 if (ret < 0) { 1367 goto fail; 1368 } 1369 break; 1370 1371 case QCOW2_CLUSTER_ZERO_PLAIN: 1372 case QCOW2_CLUSTER_UNALLOCATED: 1373 refcount = 0; 1374 break; 1375 1376 default: 1377 abort(); 1378 } 1379 1380 if (refcount == 1) { 1381 entry |= QCOW_OFLAG_COPIED; 1382 } 1383 if (entry != old_entry) { 1384 if (addend > 0) { 1385 qcow2_cache_set_dependency(bs, s->l2_table_cache, 1386 s->refcount_block_cache); 1387 } 1388 set_l2_entry(s, l2_slice, j, entry); 1389 qcow2_cache_entry_mark_dirty(s->l2_table_cache, 1390 l2_slice); 1391 } 1392 } 1393 1394 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1395 } 1396 1397 if (addend != 0) { 1398 ret = qcow2_update_cluster_refcount(bs, l2_offset >> 1399 s->cluster_bits, 1400 abs(addend), addend < 0, 1401 QCOW2_DISCARD_SNAPSHOT); 1402 if (ret < 0) { 1403 goto fail; 1404 } 1405 } 1406 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1407 &refcount); 1408 if (ret < 0) { 1409 goto fail; 1410 } else if (refcount == 1) { 1411 l2_offset |= QCOW_OFLAG_COPIED; 1412 } 1413 if (l2_offset != old_l2_offset) { 1414 l1_table[i] = l2_offset; 1415 l1_modified = 1; 1416 } 1417 } 1418 } 1419 1420 ret = bdrv_flush(bs); 1421 fail: 1422 if (l2_slice) { 1423 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1424 } 1425 1426 s->cache_discards = false; 1427 qcow2_process_discards(bs, ret); 1428 1429 /* Update L1 only if it isn't deleted anyway (addend = -1) */ 1430 if (ret == 0 && addend >= 0 && l1_modified) { 1431 for (i = 0; i < l1_size; i++) { 1432 cpu_to_be64s(&l1_table[i]); 1433 } 1434 1435 ret = bdrv_pwrite_sync(bs->file, l1_table_offset, 1436 l1_table, l1_size2); 1437 1438 for (i = 0; i < l1_size; i++) { 1439 be64_to_cpus(&l1_table[i]); 1440 } 1441 } 1442 if (l1_allocated) 1443 g_free(l1_table); 1444 return ret; 1445 } 1446 1447 1448 1449 1450 /*********************************************************/ 1451 /* refcount checking functions */ 1452 1453 1454 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries) 1455 { 1456 /* This assertion holds because there is no way we can address more than 1457 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because 1458 * offsets have to be representable in bytes); due to every cluster 1459 * corresponding to one refcount entry, we are well below that limit */ 1460 assert(entries < (UINT64_C(1) << (64 - 9))); 1461 1462 /* Thanks to the assertion this will not overflow, because 1463 * s->refcount_order < 7. 1464 * (note: x << s->refcount_order == x * s->refcount_bits) */ 1465 return DIV_ROUND_UP(entries << s->refcount_order, 8); 1466 } 1467 1468 /** 1469 * Reallocates *array so that it can hold new_size entries. *size must contain 1470 * the current number of entries in *array. If the reallocation fails, *array 1471 * and *size will not be modified and -errno will be returned. If the 1472 * reallocation is successful, *array will be set to the new buffer, *size 1473 * will be set to new_size and 0 will be returned. The size of the reallocated 1474 * refcount array buffer will be aligned to a cluster boundary, and the newly 1475 * allocated area will be zeroed. 1476 */ 1477 static int realloc_refcount_array(BDRVQcow2State *s, void **array, 1478 int64_t *size, int64_t new_size) 1479 { 1480 int64_t old_byte_size, new_byte_size; 1481 void *new_ptr; 1482 1483 /* Round to clusters so the array can be directly written to disk */ 1484 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size)) 1485 * s->cluster_size; 1486 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size)) 1487 * s->cluster_size; 1488 1489 if (new_byte_size == old_byte_size) { 1490 *size = new_size; 1491 return 0; 1492 } 1493 1494 assert(new_byte_size > 0); 1495 1496 if (new_byte_size > SIZE_MAX) { 1497 return -ENOMEM; 1498 } 1499 1500 new_ptr = g_try_realloc(*array, new_byte_size); 1501 if (!new_ptr) { 1502 return -ENOMEM; 1503 } 1504 1505 if (new_byte_size > old_byte_size) { 1506 memset((char *)new_ptr + old_byte_size, 0, 1507 new_byte_size - old_byte_size); 1508 } 1509 1510 *array = new_ptr; 1511 *size = new_size; 1512 1513 return 0; 1514 } 1515 1516 /* 1517 * Increases the refcount for a range of clusters in a given refcount table. 1518 * This is used to construct a temporary refcount table out of L1 and L2 tables 1519 * which can be compared to the refcount table saved in the image. 1520 * 1521 * Modifies the number of errors in res. 1522 */ 1523 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res, 1524 void **refcount_table, 1525 int64_t *refcount_table_size, 1526 int64_t offset, int64_t size) 1527 { 1528 BDRVQcow2State *s = bs->opaque; 1529 uint64_t start, last, cluster_offset, k, refcount; 1530 int64_t file_len; 1531 int ret; 1532 1533 if (size <= 0) { 1534 return 0; 1535 } 1536 1537 file_len = bdrv_getlength(bs->file->bs); 1538 if (file_len < 0) { 1539 return file_len; 1540 } 1541 1542 /* 1543 * Last cluster of qcow2 image may be semi-allocated, so it may be OK to 1544 * reference some space after file end but it should be less than one 1545 * cluster. 1546 */ 1547 if (offset + size - file_len >= s->cluster_size) { 1548 fprintf(stderr, "ERROR: counting reference for region exceeding the " 1549 "end of the file by one cluster or more: offset 0x%" PRIx64 1550 " size 0x%" PRIx64 "\n", offset, size); 1551 res->corruptions++; 1552 return 0; 1553 } 1554 1555 start = start_of_cluster(s, offset); 1556 last = start_of_cluster(s, offset + size - 1); 1557 for(cluster_offset = start; cluster_offset <= last; 1558 cluster_offset += s->cluster_size) { 1559 k = cluster_offset >> s->cluster_bits; 1560 if (k >= *refcount_table_size) { 1561 ret = realloc_refcount_array(s, refcount_table, 1562 refcount_table_size, k + 1); 1563 if (ret < 0) { 1564 res->check_errors++; 1565 return ret; 1566 } 1567 } 1568 1569 refcount = s->get_refcount(*refcount_table, k); 1570 if (refcount == s->refcount_max) { 1571 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64 1572 "\n", cluster_offset); 1573 fprintf(stderr, "Use qemu-img amend to increase the refcount entry " 1574 "width or qemu-img convert to create a clean copy if the " 1575 "image cannot be opened for writing\n"); 1576 res->corruptions++; 1577 continue; 1578 } 1579 s->set_refcount(*refcount_table, k, refcount + 1); 1580 } 1581 1582 return 0; 1583 } 1584 1585 /* Flags for check_refcounts_l1() and check_refcounts_l2() */ 1586 enum { 1587 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */ 1588 }; 1589 1590 /* 1591 * Fix L2 entry by making it QCOW2_CLUSTER_ZERO_PLAIN (or making all its present 1592 * subclusters QCOW2_SUBCLUSTER_ZERO_PLAIN). 1593 * 1594 * This function decrements res->corruptions on success, so the caller is 1595 * responsible to increment res->corruptions prior to the call. 1596 * 1597 * On failure in-memory @l2_table may be modified. 1598 */ 1599 static int fix_l2_entry_by_zero(BlockDriverState *bs, BdrvCheckResult *res, 1600 uint64_t l2_offset, 1601 uint64_t *l2_table, int l2_index, bool active, 1602 bool *metadata_overlap) 1603 { 1604 BDRVQcow2State *s = bs->opaque; 1605 int ret; 1606 int idx = l2_index * (l2_entry_size(s) / sizeof(uint64_t)); 1607 uint64_t l2e_offset = l2_offset + (uint64_t)l2_index * l2_entry_size(s); 1608 int ign = active ? QCOW2_OL_ACTIVE_L2 : QCOW2_OL_INACTIVE_L2; 1609 1610 if (has_subclusters(s)) { 1611 uint64_t l2_bitmap = get_l2_bitmap(s, l2_table, l2_index); 1612 1613 /* Allocated subclusters become zero */ 1614 l2_bitmap |= l2_bitmap << 32; 1615 l2_bitmap &= QCOW_L2_BITMAP_ALL_ZEROES; 1616 1617 set_l2_bitmap(s, l2_table, l2_index, l2_bitmap); 1618 set_l2_entry(s, l2_table, l2_index, 0); 1619 } else { 1620 set_l2_entry(s, l2_table, l2_index, QCOW_OFLAG_ZERO); 1621 } 1622 1623 ret = qcow2_pre_write_overlap_check(bs, ign, l2e_offset, l2_entry_size(s), 1624 false); 1625 if (metadata_overlap) { 1626 *metadata_overlap = ret < 0; 1627 } 1628 if (ret < 0) { 1629 fprintf(stderr, "ERROR: Overlap check failed\n"); 1630 goto fail; 1631 } 1632 1633 ret = bdrv_pwrite_sync(bs->file, l2e_offset, &l2_table[idx], 1634 l2_entry_size(s)); 1635 if (ret < 0) { 1636 fprintf(stderr, "ERROR: Failed to overwrite L2 " 1637 "table entry: %s\n", strerror(-ret)); 1638 goto fail; 1639 } 1640 1641 res->corruptions--; 1642 res->corruptions_fixed++; 1643 return 0; 1644 1645 fail: 1646 res->check_errors++; 1647 return ret; 1648 } 1649 1650 /* 1651 * Increases the refcount in the given refcount table for the all clusters 1652 * referenced in the L2 table. While doing so, performs some checks on L2 1653 * entries. 1654 * 1655 * Returns the number of errors found by the checks or -errno if an internal 1656 * error occurred. 1657 */ 1658 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res, 1659 void **refcount_table, 1660 int64_t *refcount_table_size, int64_t l2_offset, 1661 int flags, BdrvCheckMode fix, bool active) 1662 { 1663 BDRVQcow2State *s = bs->opaque; 1664 uint64_t l2_entry, l2_bitmap; 1665 uint64_t next_contiguous_offset = 0; 1666 int i, ret; 1667 size_t l2_size_bytes = s->l2_size * l2_entry_size(s); 1668 g_autofree uint64_t *l2_table = g_malloc(l2_size_bytes); 1669 bool metadata_overlap; 1670 1671 /* Read L2 table from disk */ 1672 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size_bytes); 1673 if (ret < 0) { 1674 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n"); 1675 res->check_errors++; 1676 return ret; 1677 } 1678 1679 /* Do the actual checks */ 1680 for (i = 0; i < s->l2_size; i++) { 1681 uint64_t coffset; 1682 int csize; 1683 QCow2ClusterType type; 1684 1685 l2_entry = get_l2_entry(s, l2_table, i); 1686 l2_bitmap = get_l2_bitmap(s, l2_table, i); 1687 type = qcow2_get_cluster_type(bs, l2_entry); 1688 1689 if (type != QCOW2_CLUSTER_COMPRESSED) { 1690 /* Check reserved bits of Standard Cluster Descriptor */ 1691 if (l2_entry & L2E_STD_RESERVED_MASK) { 1692 fprintf(stderr, "ERROR found l2 entry with reserved bits set: " 1693 "%" PRIx64 "\n", l2_entry); 1694 res->corruptions++; 1695 } 1696 } 1697 1698 switch (type) { 1699 case QCOW2_CLUSTER_COMPRESSED: 1700 /* Compressed clusters don't have QCOW_OFLAG_COPIED */ 1701 if (l2_entry & QCOW_OFLAG_COPIED) { 1702 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": " 1703 "copied flag must never be set for compressed " 1704 "clusters\n", l2_entry & s->cluster_offset_mask); 1705 l2_entry &= ~QCOW_OFLAG_COPIED; 1706 res->corruptions++; 1707 } 1708 1709 if (has_data_file(bs)) { 1710 fprintf(stderr, "ERROR compressed cluster %d with data file, " 1711 "entry=0x%" PRIx64 "\n", i, l2_entry); 1712 res->corruptions++; 1713 break; 1714 } 1715 1716 if (l2_bitmap) { 1717 fprintf(stderr, "ERROR compressed cluster %d with non-zero " 1718 "subcluster allocation bitmap, entry=0x%" PRIx64 "\n", 1719 i, l2_entry); 1720 res->corruptions++; 1721 break; 1722 } 1723 1724 /* Mark cluster as used */ 1725 qcow2_parse_compressed_l2_entry(bs, l2_entry, &coffset, &csize); 1726 ret = qcow2_inc_refcounts_imrt( 1727 bs, res, refcount_table, refcount_table_size, coffset, csize); 1728 if (ret < 0) { 1729 return ret; 1730 } 1731 1732 if (flags & CHECK_FRAG_INFO) { 1733 res->bfi.allocated_clusters++; 1734 res->bfi.compressed_clusters++; 1735 1736 /* 1737 * Compressed clusters are fragmented by nature. Since they 1738 * take up sub-sector space but we only have sector granularity 1739 * I/O we need to re-read the same sectors even for adjacent 1740 * compressed clusters. 1741 */ 1742 res->bfi.fragmented_clusters++; 1743 } 1744 break; 1745 1746 case QCOW2_CLUSTER_ZERO_ALLOC: 1747 case QCOW2_CLUSTER_NORMAL: 1748 { 1749 uint64_t offset = l2_entry & L2E_OFFSET_MASK; 1750 1751 if ((l2_bitmap >> 32) & l2_bitmap) { 1752 res->corruptions++; 1753 fprintf(stderr, "ERROR offset=%" PRIx64 ": Allocated " 1754 "cluster has corrupted subcluster allocation bitmap\n", 1755 offset); 1756 } 1757 1758 /* Correct offsets are cluster aligned */ 1759 if (offset_into_cluster(s, offset)) { 1760 bool contains_data; 1761 res->corruptions++; 1762 1763 if (has_subclusters(s)) { 1764 contains_data = (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC); 1765 } else { 1766 contains_data = !(l2_entry & QCOW_OFLAG_ZERO); 1767 } 1768 1769 if (!contains_data) { 1770 fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated " 1771 "cluster is not properly aligned; L2 entry " 1772 "corrupted.\n", 1773 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", 1774 offset); 1775 if (fix & BDRV_FIX_ERRORS) { 1776 ret = fix_l2_entry_by_zero(bs, res, l2_offset, 1777 l2_table, i, active, 1778 &metadata_overlap); 1779 if (metadata_overlap) { 1780 /* 1781 * Something is seriously wrong, so abort checking 1782 * this L2 table. 1783 */ 1784 return ret; 1785 } 1786 1787 if (ret == 0) { 1788 /* 1789 * Skip marking the cluster as used 1790 * (it is unused now). 1791 */ 1792 continue; 1793 } 1794 1795 /* 1796 * Failed to fix. 1797 * Do not abort, continue checking the rest of this 1798 * L2 table's entries. 1799 */ 1800 } 1801 } else { 1802 fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is " 1803 "not properly aligned; L2 entry corrupted.\n", offset); 1804 } 1805 } 1806 1807 if (flags & CHECK_FRAG_INFO) { 1808 res->bfi.allocated_clusters++; 1809 if (next_contiguous_offset && 1810 offset != next_contiguous_offset) { 1811 res->bfi.fragmented_clusters++; 1812 } 1813 next_contiguous_offset = offset + s->cluster_size; 1814 } 1815 1816 /* Mark cluster as used */ 1817 if (!has_data_file(bs)) { 1818 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, 1819 refcount_table_size, 1820 offset, s->cluster_size); 1821 if (ret < 0) { 1822 return ret; 1823 } 1824 } 1825 break; 1826 } 1827 1828 case QCOW2_CLUSTER_ZERO_PLAIN: 1829 /* Impossible when image has subclusters */ 1830 assert(!l2_bitmap); 1831 break; 1832 1833 case QCOW2_CLUSTER_UNALLOCATED: 1834 if (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC) { 1835 res->corruptions++; 1836 fprintf(stderr, "ERROR: Unallocated " 1837 "cluster has non-zero subcluster allocation map\n"); 1838 } 1839 break; 1840 1841 default: 1842 abort(); 1843 } 1844 } 1845 1846 return 0; 1847 } 1848 1849 /* 1850 * Increases the refcount for the L1 table, its L2 tables and all referenced 1851 * clusters in the given refcount table. While doing so, performs some checks 1852 * on L1 and L2 entries. 1853 * 1854 * Returns the number of errors found by the checks or -errno if an internal 1855 * error occurred. 1856 */ 1857 static int check_refcounts_l1(BlockDriverState *bs, 1858 BdrvCheckResult *res, 1859 void **refcount_table, 1860 int64_t *refcount_table_size, 1861 int64_t l1_table_offset, int l1_size, 1862 int flags, BdrvCheckMode fix, bool active) 1863 { 1864 BDRVQcow2State *s = bs->opaque; 1865 size_t l1_size_bytes = l1_size * L1E_SIZE; 1866 g_autofree uint64_t *l1_table = NULL; 1867 uint64_t l2_offset; 1868 int i, ret; 1869 1870 if (!l1_size) { 1871 return 0; 1872 } 1873 1874 /* Mark L1 table as used */ 1875 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size, 1876 l1_table_offset, l1_size_bytes); 1877 if (ret < 0) { 1878 return ret; 1879 } 1880 1881 l1_table = g_try_malloc(l1_size_bytes); 1882 if (l1_table == NULL) { 1883 res->check_errors++; 1884 return -ENOMEM; 1885 } 1886 1887 /* Read L1 table entries from disk */ 1888 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size_bytes); 1889 if (ret < 0) { 1890 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n"); 1891 res->check_errors++; 1892 return ret; 1893 } 1894 1895 for (i = 0; i < l1_size; i++) { 1896 be64_to_cpus(&l1_table[i]); 1897 } 1898 1899 /* Do the actual checks */ 1900 for (i = 0; i < l1_size; i++) { 1901 if (!l1_table[i]) { 1902 continue; 1903 } 1904 1905 if (l1_table[i] & L1E_RESERVED_MASK) { 1906 fprintf(stderr, "ERROR found L1 entry with reserved bits set: " 1907 "%" PRIx64 "\n", l1_table[i]); 1908 res->corruptions++; 1909 } 1910 1911 l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1912 1913 /* Mark L2 table as used */ 1914 ret = qcow2_inc_refcounts_imrt(bs, res, 1915 refcount_table, refcount_table_size, 1916 l2_offset, s->cluster_size); 1917 if (ret < 0) { 1918 return ret; 1919 } 1920 1921 /* L2 tables are cluster aligned */ 1922 if (offset_into_cluster(s, l2_offset)) { 1923 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not " 1924 "cluster aligned; L1 entry corrupted\n", l2_offset); 1925 res->corruptions++; 1926 } 1927 1928 /* Process and check L2 entries */ 1929 ret = check_refcounts_l2(bs, res, refcount_table, 1930 refcount_table_size, l2_offset, flags, 1931 fix, active); 1932 if (ret < 0) { 1933 return ret; 1934 } 1935 } 1936 1937 return 0; 1938 } 1939 1940 /* 1941 * Checks the OFLAG_COPIED flag for all L1 and L2 entries. 1942 * 1943 * This function does not print an error message nor does it increment 1944 * check_errors if qcow2_get_refcount fails (this is because such an error will 1945 * have been already detected and sufficiently signaled by the calling function 1946 * (qcow2_check_refcounts) by the time this function is called). 1947 */ 1948 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res, 1949 BdrvCheckMode fix) 1950 { 1951 BDRVQcow2State *s = bs->opaque; 1952 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size); 1953 int ret; 1954 uint64_t refcount; 1955 int i, j; 1956 bool repair; 1957 1958 if (fix & BDRV_FIX_ERRORS) { 1959 /* Always repair */ 1960 repair = true; 1961 } else if (fix & BDRV_FIX_LEAKS) { 1962 /* Repair only if that seems safe: This function is always 1963 * called after the refcounts have been fixed, so the refcount 1964 * is accurate if that repair was successful */ 1965 repair = !res->check_errors && !res->corruptions && !res->leaks; 1966 } else { 1967 repair = false; 1968 } 1969 1970 for (i = 0; i < s->l1_size; i++) { 1971 uint64_t l1_entry = s->l1_table[i]; 1972 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK; 1973 int l2_dirty = 0; 1974 1975 if (!l2_offset) { 1976 continue; 1977 } 1978 1979 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1980 &refcount); 1981 if (ret < 0) { 1982 /* don't print message nor increment check_errors */ 1983 continue; 1984 } 1985 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) { 1986 res->corruptions++; 1987 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d " 1988 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 1989 repair ? "Repairing" : "ERROR", i, l1_entry, refcount); 1990 if (repair) { 1991 s->l1_table[i] = refcount == 1 1992 ? l1_entry | QCOW_OFLAG_COPIED 1993 : l1_entry & ~QCOW_OFLAG_COPIED; 1994 ret = qcow2_write_l1_entry(bs, i); 1995 if (ret < 0) { 1996 res->check_errors++; 1997 goto fail; 1998 } 1999 res->corruptions--; 2000 res->corruptions_fixed++; 2001 } 2002 } 2003 2004 ret = bdrv_pread(bs->file, l2_offset, l2_table, 2005 s->l2_size * l2_entry_size(s)); 2006 if (ret < 0) { 2007 fprintf(stderr, "ERROR: Could not read L2 table: %s\n", 2008 strerror(-ret)); 2009 res->check_errors++; 2010 goto fail; 2011 } 2012 2013 for (j = 0; j < s->l2_size; j++) { 2014 uint64_t l2_entry = get_l2_entry(s, l2_table, j); 2015 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK; 2016 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry); 2017 2018 if (cluster_type == QCOW2_CLUSTER_NORMAL || 2019 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) { 2020 if (has_data_file(bs)) { 2021 refcount = 1; 2022 } else { 2023 ret = qcow2_get_refcount(bs, 2024 data_offset >> s->cluster_bits, 2025 &refcount); 2026 if (ret < 0) { 2027 /* don't print message nor increment check_errors */ 2028 continue; 2029 } 2030 } 2031 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) { 2032 res->corruptions++; 2033 fprintf(stderr, "%s OFLAG_COPIED data cluster: " 2034 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 2035 repair ? "Repairing" : "ERROR", l2_entry, refcount); 2036 if (repair) { 2037 set_l2_entry(s, l2_table, j, 2038 refcount == 1 ? 2039 l2_entry | QCOW_OFLAG_COPIED : 2040 l2_entry & ~QCOW_OFLAG_COPIED); 2041 l2_dirty++; 2042 } 2043 } 2044 } 2045 } 2046 2047 if (l2_dirty > 0) { 2048 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2, 2049 l2_offset, s->cluster_size, 2050 false); 2051 if (ret < 0) { 2052 fprintf(stderr, "ERROR: Could not write L2 table; metadata " 2053 "overlap check failed: %s\n", strerror(-ret)); 2054 res->check_errors++; 2055 goto fail; 2056 } 2057 2058 ret = bdrv_pwrite(bs->file, l2_offset, l2_table, 2059 s->cluster_size); 2060 if (ret < 0) { 2061 fprintf(stderr, "ERROR: Could not write L2 table: %s\n", 2062 strerror(-ret)); 2063 res->check_errors++; 2064 goto fail; 2065 } 2066 res->corruptions -= l2_dirty; 2067 res->corruptions_fixed += l2_dirty; 2068 } 2069 } 2070 2071 ret = 0; 2072 2073 fail: 2074 qemu_vfree(l2_table); 2075 return ret; 2076 } 2077 2078 /* 2079 * Checks consistency of refblocks and accounts for each refblock in 2080 * *refcount_table. 2081 */ 2082 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res, 2083 BdrvCheckMode fix, bool *rebuild, 2084 void **refcount_table, int64_t *nb_clusters) 2085 { 2086 BDRVQcow2State *s = bs->opaque; 2087 int64_t i, size; 2088 int ret; 2089 2090 for(i = 0; i < s->refcount_table_size; i++) { 2091 uint64_t offset, cluster; 2092 offset = s->refcount_table[i] & REFT_OFFSET_MASK; 2093 cluster = offset >> s->cluster_bits; 2094 2095 if (s->refcount_table[i] & REFT_RESERVED_MASK) { 2096 fprintf(stderr, "ERROR refcount table entry %" PRId64 " has " 2097 "reserved bits set\n", i); 2098 res->corruptions++; 2099 *rebuild = true; 2100 continue; 2101 } 2102 2103 /* Refcount blocks are cluster aligned */ 2104 if (offset_into_cluster(s, offset)) { 2105 fprintf(stderr, "ERROR refcount block %" PRId64 " is not " 2106 "cluster aligned; refcount table entry corrupted\n", i); 2107 res->corruptions++; 2108 *rebuild = true; 2109 continue; 2110 } 2111 2112 if (cluster >= *nb_clusters) { 2113 res->corruptions++; 2114 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n", 2115 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i); 2116 2117 if (fix & BDRV_FIX_ERRORS) { 2118 int64_t new_nb_clusters; 2119 Error *local_err = NULL; 2120 2121 if (offset > INT64_MAX - s->cluster_size) { 2122 ret = -EINVAL; 2123 goto resize_fail; 2124 } 2125 2126 ret = bdrv_truncate(bs->file, offset + s->cluster_size, false, 2127 PREALLOC_MODE_OFF, 0, &local_err); 2128 if (ret < 0) { 2129 error_report_err(local_err); 2130 goto resize_fail; 2131 } 2132 size = bdrv_getlength(bs->file->bs); 2133 if (size < 0) { 2134 ret = size; 2135 goto resize_fail; 2136 } 2137 2138 new_nb_clusters = size_to_clusters(s, size); 2139 assert(new_nb_clusters >= *nb_clusters); 2140 2141 ret = realloc_refcount_array(s, refcount_table, 2142 nb_clusters, new_nb_clusters); 2143 if (ret < 0) { 2144 res->check_errors++; 2145 return ret; 2146 } 2147 2148 if (cluster >= *nb_clusters) { 2149 ret = -EINVAL; 2150 goto resize_fail; 2151 } 2152 2153 res->corruptions--; 2154 res->corruptions_fixed++; 2155 ret = qcow2_inc_refcounts_imrt(bs, res, 2156 refcount_table, nb_clusters, 2157 offset, s->cluster_size); 2158 if (ret < 0) { 2159 return ret; 2160 } 2161 /* No need to check whether the refcount is now greater than 1: 2162 * This area was just allocated and zeroed, so it can only be 2163 * exactly 1 after qcow2_inc_refcounts_imrt() */ 2164 continue; 2165 2166 resize_fail: 2167 *rebuild = true; 2168 fprintf(stderr, "ERROR could not resize image: %s\n", 2169 strerror(-ret)); 2170 } 2171 continue; 2172 } 2173 2174 if (offset != 0) { 2175 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2176 offset, s->cluster_size); 2177 if (ret < 0) { 2178 return ret; 2179 } 2180 if (s->get_refcount(*refcount_table, cluster) != 1) { 2181 fprintf(stderr, "ERROR refcount block %" PRId64 2182 " refcount=%" PRIu64 "\n", i, 2183 s->get_refcount(*refcount_table, cluster)); 2184 res->corruptions++; 2185 *rebuild = true; 2186 } 2187 } 2188 } 2189 2190 return 0; 2191 } 2192 2193 /* 2194 * Calculates an in-memory refcount table. 2195 */ 2196 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2197 BdrvCheckMode fix, bool *rebuild, 2198 void **refcount_table, int64_t *nb_clusters) 2199 { 2200 BDRVQcow2State *s = bs->opaque; 2201 int64_t i; 2202 QCowSnapshot *sn; 2203 int ret; 2204 2205 if (!*refcount_table) { 2206 int64_t old_size = 0; 2207 ret = realloc_refcount_array(s, refcount_table, 2208 &old_size, *nb_clusters); 2209 if (ret < 0) { 2210 res->check_errors++; 2211 return ret; 2212 } 2213 } 2214 2215 /* header */ 2216 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2217 0, s->cluster_size); 2218 if (ret < 0) { 2219 return ret; 2220 } 2221 2222 /* current L1 table */ 2223 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 2224 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO, 2225 fix, true); 2226 if (ret < 0) { 2227 return ret; 2228 } 2229 2230 /* snapshots */ 2231 if (has_data_file(bs) && s->nb_snapshots) { 2232 fprintf(stderr, "ERROR %d snapshots in image with data file\n", 2233 s->nb_snapshots); 2234 res->corruptions++; 2235 } 2236 2237 for (i = 0; i < s->nb_snapshots; i++) { 2238 sn = s->snapshots + i; 2239 if (offset_into_cluster(s, sn->l1_table_offset)) { 2240 fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": " 2241 "L1 table is not cluster aligned; snapshot table entry " 2242 "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset); 2243 res->corruptions++; 2244 continue; 2245 } 2246 if (sn->l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) { 2247 fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": " 2248 "L1 table is too large; snapshot table entry corrupted\n", 2249 sn->id_str, sn->name, sn->l1_size); 2250 res->corruptions++; 2251 continue; 2252 } 2253 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 2254 sn->l1_table_offset, sn->l1_size, 0, fix, 2255 false); 2256 if (ret < 0) { 2257 return ret; 2258 } 2259 } 2260 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2261 s->snapshots_offset, s->snapshots_size); 2262 if (ret < 0) { 2263 return ret; 2264 } 2265 2266 /* refcount data */ 2267 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2268 s->refcount_table_offset, 2269 s->refcount_table_size * 2270 REFTABLE_ENTRY_SIZE); 2271 if (ret < 0) { 2272 return ret; 2273 } 2274 2275 /* encryption */ 2276 if (s->crypto_header.length) { 2277 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2278 s->crypto_header.offset, 2279 s->crypto_header.length); 2280 if (ret < 0) { 2281 return ret; 2282 } 2283 } 2284 2285 /* bitmaps */ 2286 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters); 2287 if (ret < 0) { 2288 return ret; 2289 } 2290 2291 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters); 2292 } 2293 2294 /* 2295 * Compares the actual reference count for each cluster in the image against the 2296 * refcount as reported by the refcount structures on-disk. 2297 */ 2298 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2299 BdrvCheckMode fix, bool *rebuild, 2300 int64_t *highest_cluster, 2301 void *refcount_table, int64_t nb_clusters) 2302 { 2303 BDRVQcow2State *s = bs->opaque; 2304 int64_t i; 2305 uint64_t refcount1, refcount2; 2306 int ret; 2307 2308 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) { 2309 ret = qcow2_get_refcount(bs, i, &refcount1); 2310 if (ret < 0) { 2311 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 2312 i, strerror(-ret)); 2313 res->check_errors++; 2314 continue; 2315 } 2316 2317 refcount2 = s->get_refcount(refcount_table, i); 2318 2319 if (refcount1 > 0 || refcount2 > 0) { 2320 *highest_cluster = i; 2321 } 2322 2323 if (refcount1 != refcount2) { 2324 /* Check if we're allowed to fix the mismatch */ 2325 int *num_fixed = NULL; 2326 if (refcount1 == 0) { 2327 *rebuild = true; 2328 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) { 2329 num_fixed = &res->leaks_fixed; 2330 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) { 2331 num_fixed = &res->corruptions_fixed; 2332 } 2333 2334 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64 2335 " reference=%" PRIu64 "\n", 2336 num_fixed != NULL ? "Repairing" : 2337 refcount1 < refcount2 ? "ERROR" : 2338 "Leaked", 2339 i, refcount1, refcount2); 2340 2341 if (num_fixed) { 2342 ret = update_refcount(bs, i << s->cluster_bits, 1, 2343 refcount_diff(refcount1, refcount2), 2344 refcount1 > refcount2, 2345 QCOW2_DISCARD_ALWAYS); 2346 if (ret >= 0) { 2347 (*num_fixed)++; 2348 continue; 2349 } 2350 } 2351 2352 /* And if we couldn't, print an error */ 2353 if (refcount1 < refcount2) { 2354 res->corruptions++; 2355 } else { 2356 res->leaks++; 2357 } 2358 } 2359 } 2360 } 2361 2362 /* 2363 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to 2364 * the on-disk refcount structures. 2365 * 2366 * On input, *first_free_cluster tells where to start looking, and need not 2367 * actually be a free cluster; the returned offset will not be before that 2368 * cluster. On output, *first_free_cluster points to the first gap found, even 2369 * if that gap was too small to be used as the returned offset. 2370 * 2371 * Note that *first_free_cluster is a cluster index whereas the return value is 2372 * an offset. 2373 */ 2374 static int64_t alloc_clusters_imrt(BlockDriverState *bs, 2375 int cluster_count, 2376 void **refcount_table, 2377 int64_t *imrt_nb_clusters, 2378 int64_t *first_free_cluster) 2379 { 2380 BDRVQcow2State *s = bs->opaque; 2381 int64_t cluster = *first_free_cluster, i; 2382 bool first_gap = true; 2383 int contiguous_free_clusters; 2384 int ret; 2385 2386 /* Starting at *first_free_cluster, find a range of at least cluster_count 2387 * continuously free clusters */ 2388 for (contiguous_free_clusters = 0; 2389 cluster < *imrt_nb_clusters && 2390 contiguous_free_clusters < cluster_count; 2391 cluster++) 2392 { 2393 if (!s->get_refcount(*refcount_table, cluster)) { 2394 contiguous_free_clusters++; 2395 if (first_gap) { 2396 /* If this is the first free cluster found, update 2397 * *first_free_cluster accordingly */ 2398 *first_free_cluster = cluster; 2399 first_gap = false; 2400 } 2401 } else if (contiguous_free_clusters) { 2402 contiguous_free_clusters = 0; 2403 } 2404 } 2405 2406 /* If contiguous_free_clusters is greater than zero, it contains the number 2407 * of continuously free clusters until the current cluster; the first free 2408 * cluster in the current "gap" is therefore 2409 * cluster - contiguous_free_clusters */ 2410 2411 /* If no such range could be found, grow the in-memory refcount table 2412 * accordingly to append free clusters at the end of the image */ 2413 if (contiguous_free_clusters < cluster_count) { 2414 /* contiguous_free_clusters clusters are already empty at the image end; 2415 * we need cluster_count clusters; therefore, we have to allocate 2416 * cluster_count - contiguous_free_clusters new clusters at the end of 2417 * the image (which is the current value of cluster; note that cluster 2418 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond 2419 * the image end) */ 2420 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters, 2421 cluster + cluster_count 2422 - contiguous_free_clusters); 2423 if (ret < 0) { 2424 return ret; 2425 } 2426 } 2427 2428 /* Go back to the first free cluster */ 2429 cluster -= contiguous_free_clusters; 2430 for (i = 0; i < cluster_count; i++) { 2431 s->set_refcount(*refcount_table, cluster + i, 1); 2432 } 2433 2434 return cluster << s->cluster_bits; 2435 } 2436 2437 /* 2438 * Creates a new refcount structure based solely on the in-memory information 2439 * given through *refcount_table. All necessary allocations will be reflected 2440 * in that array. 2441 * 2442 * On success, the old refcount structure is leaked (it will be covered by the 2443 * new refcount structure). 2444 */ 2445 static int rebuild_refcount_structure(BlockDriverState *bs, 2446 BdrvCheckResult *res, 2447 void **refcount_table, 2448 int64_t *nb_clusters) 2449 { 2450 BDRVQcow2State *s = bs->opaque; 2451 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0; 2452 int64_t refblock_offset, refblock_start, refblock_index; 2453 uint32_t reftable_size = 0; 2454 uint64_t *on_disk_reftable = NULL; 2455 void *on_disk_refblock; 2456 int ret = 0; 2457 struct { 2458 uint64_t reftable_offset; 2459 uint32_t reftable_clusters; 2460 } QEMU_PACKED reftable_offset_and_clusters; 2461 2462 qcow2_cache_empty(bs, s->refcount_block_cache); 2463 2464 write_refblocks: 2465 for (; cluster < *nb_clusters; cluster++) { 2466 if (!s->get_refcount(*refcount_table, cluster)) { 2467 continue; 2468 } 2469 2470 refblock_index = cluster >> s->refcount_block_bits; 2471 refblock_start = refblock_index << s->refcount_block_bits; 2472 2473 /* Don't allocate a cluster in a refblock already written to disk */ 2474 if (first_free_cluster < refblock_start) { 2475 first_free_cluster = refblock_start; 2476 } 2477 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table, 2478 nb_clusters, &first_free_cluster); 2479 if (refblock_offset < 0) { 2480 fprintf(stderr, "ERROR allocating refblock: %s\n", 2481 strerror(-refblock_offset)); 2482 res->check_errors++; 2483 ret = refblock_offset; 2484 goto fail; 2485 } 2486 2487 if (reftable_size <= refblock_index) { 2488 uint32_t old_reftable_size = reftable_size; 2489 uint64_t *new_on_disk_reftable; 2490 2491 reftable_size = ROUND_UP((refblock_index + 1) * REFTABLE_ENTRY_SIZE, 2492 s->cluster_size) / REFTABLE_ENTRY_SIZE; 2493 new_on_disk_reftable = g_try_realloc(on_disk_reftable, 2494 reftable_size * 2495 REFTABLE_ENTRY_SIZE); 2496 if (!new_on_disk_reftable) { 2497 res->check_errors++; 2498 ret = -ENOMEM; 2499 goto fail; 2500 } 2501 on_disk_reftable = new_on_disk_reftable; 2502 2503 memset(on_disk_reftable + old_reftable_size, 0, 2504 (reftable_size - old_reftable_size) * REFTABLE_ENTRY_SIZE); 2505 2506 /* The offset we have for the reftable is now no longer valid; 2507 * this will leak that range, but we can easily fix that by running 2508 * a leak-fixing check after this rebuild operation */ 2509 reftable_offset = -1; 2510 } else { 2511 assert(on_disk_reftable); 2512 } 2513 on_disk_reftable[refblock_index] = refblock_offset; 2514 2515 /* If this is apparently the last refblock (for now), try to squeeze the 2516 * reftable in */ 2517 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits && 2518 reftable_offset < 0) 2519 { 2520 uint64_t reftable_clusters = size_to_clusters(s, reftable_size * 2521 REFTABLE_ENTRY_SIZE); 2522 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2523 refcount_table, nb_clusters, 2524 &first_free_cluster); 2525 if (reftable_offset < 0) { 2526 fprintf(stderr, "ERROR allocating reftable: %s\n", 2527 strerror(-reftable_offset)); 2528 res->check_errors++; 2529 ret = reftable_offset; 2530 goto fail; 2531 } 2532 } 2533 2534 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset, 2535 s->cluster_size, false); 2536 if (ret < 0) { 2537 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret)); 2538 goto fail; 2539 } 2540 2541 /* The size of *refcount_table is always cluster-aligned, therefore the 2542 * write operation will not overflow */ 2543 on_disk_refblock = (void *)((char *) *refcount_table + 2544 refblock_index * s->cluster_size); 2545 2546 ret = bdrv_pwrite(bs->file, refblock_offset, on_disk_refblock, 2547 s->cluster_size); 2548 if (ret < 0) { 2549 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret)); 2550 goto fail; 2551 } 2552 2553 /* Go to the end of this refblock */ 2554 cluster = refblock_start + s->refcount_block_size - 1; 2555 } 2556 2557 if (reftable_offset < 0) { 2558 uint64_t post_refblock_start, reftable_clusters; 2559 2560 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size); 2561 reftable_clusters = 2562 size_to_clusters(s, reftable_size * REFTABLE_ENTRY_SIZE); 2563 /* Not pretty but simple */ 2564 if (first_free_cluster < post_refblock_start) { 2565 first_free_cluster = post_refblock_start; 2566 } 2567 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2568 refcount_table, nb_clusters, 2569 &first_free_cluster); 2570 if (reftable_offset < 0) { 2571 fprintf(stderr, "ERROR allocating reftable: %s\n", 2572 strerror(-reftable_offset)); 2573 res->check_errors++; 2574 ret = reftable_offset; 2575 goto fail; 2576 } 2577 2578 goto write_refblocks; 2579 } 2580 2581 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) { 2582 cpu_to_be64s(&on_disk_reftable[refblock_index]); 2583 } 2584 2585 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset, 2586 reftable_size * REFTABLE_ENTRY_SIZE, 2587 false); 2588 if (ret < 0) { 2589 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret)); 2590 goto fail; 2591 } 2592 2593 assert(reftable_size < INT_MAX / REFTABLE_ENTRY_SIZE); 2594 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable, 2595 reftable_size * REFTABLE_ENTRY_SIZE); 2596 if (ret < 0) { 2597 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret)); 2598 goto fail; 2599 } 2600 2601 /* Enter new reftable into the image header */ 2602 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset); 2603 reftable_offset_and_clusters.reftable_clusters = 2604 cpu_to_be32(size_to_clusters(s, reftable_size * REFTABLE_ENTRY_SIZE)); 2605 ret = bdrv_pwrite_sync(bs->file, 2606 offsetof(QCowHeader, refcount_table_offset), 2607 &reftable_offset_and_clusters, 2608 sizeof(reftable_offset_and_clusters)); 2609 if (ret < 0) { 2610 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret)); 2611 goto fail; 2612 } 2613 2614 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) { 2615 be64_to_cpus(&on_disk_reftable[refblock_index]); 2616 } 2617 s->refcount_table = on_disk_reftable; 2618 s->refcount_table_offset = reftable_offset; 2619 s->refcount_table_size = reftable_size; 2620 update_max_refcount_table_index(s); 2621 2622 return 0; 2623 2624 fail: 2625 g_free(on_disk_reftable); 2626 return ret; 2627 } 2628 2629 /* 2630 * Checks an image for refcount consistency. 2631 * 2632 * Returns 0 if no errors are found, the number of errors in case the image is 2633 * detected as corrupted, and -errno when an internal error occurred. 2634 */ 2635 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2636 BdrvCheckMode fix) 2637 { 2638 BDRVQcow2State *s = bs->opaque; 2639 BdrvCheckResult pre_compare_res; 2640 int64_t size, highest_cluster, nb_clusters; 2641 void *refcount_table = NULL; 2642 bool rebuild = false; 2643 int ret; 2644 2645 size = bdrv_getlength(bs->file->bs); 2646 if (size < 0) { 2647 res->check_errors++; 2648 return size; 2649 } 2650 2651 nb_clusters = size_to_clusters(s, size); 2652 if (nb_clusters > INT_MAX) { 2653 res->check_errors++; 2654 return -EFBIG; 2655 } 2656 2657 res->bfi.total_clusters = 2658 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE); 2659 2660 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table, 2661 &nb_clusters); 2662 if (ret < 0) { 2663 goto fail; 2664 } 2665 2666 /* In case we don't need to rebuild the refcount structure (but want to fix 2667 * something), this function is immediately called again, in which case the 2668 * result should be ignored */ 2669 pre_compare_res = *res; 2670 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table, 2671 nb_clusters); 2672 2673 if (rebuild && (fix & BDRV_FIX_ERRORS)) { 2674 BdrvCheckResult old_res = *res; 2675 int fresh_leaks = 0; 2676 2677 fprintf(stderr, "Rebuilding refcount structure\n"); 2678 ret = rebuild_refcount_structure(bs, res, &refcount_table, 2679 &nb_clusters); 2680 if (ret < 0) { 2681 goto fail; 2682 } 2683 2684 res->corruptions = 0; 2685 res->leaks = 0; 2686 2687 /* Because the old reftable has been exchanged for a new one the 2688 * references have to be recalculated */ 2689 rebuild = false; 2690 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters)); 2691 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table, 2692 &nb_clusters); 2693 if (ret < 0) { 2694 goto fail; 2695 } 2696 2697 if (fix & BDRV_FIX_LEAKS) { 2698 /* The old refcount structures are now leaked, fix it; the result 2699 * can be ignored, aside from leaks which were introduced by 2700 * rebuild_refcount_structure() that could not be fixed */ 2701 BdrvCheckResult saved_res = *res; 2702 *res = (BdrvCheckResult){ 0 }; 2703 2704 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild, 2705 &highest_cluster, refcount_table, nb_clusters); 2706 if (rebuild) { 2707 fprintf(stderr, "ERROR rebuilt refcount structure is still " 2708 "broken\n"); 2709 } 2710 2711 /* Any leaks accounted for here were introduced by 2712 * rebuild_refcount_structure() because that function has created a 2713 * new refcount structure from scratch */ 2714 fresh_leaks = res->leaks; 2715 *res = saved_res; 2716 } 2717 2718 if (res->corruptions < old_res.corruptions) { 2719 res->corruptions_fixed += old_res.corruptions - res->corruptions; 2720 } 2721 if (res->leaks < old_res.leaks) { 2722 res->leaks_fixed += old_res.leaks - res->leaks; 2723 } 2724 res->leaks += fresh_leaks; 2725 } else if (fix) { 2726 if (rebuild) { 2727 fprintf(stderr, "ERROR need to rebuild refcount structures\n"); 2728 res->check_errors++; 2729 ret = -EIO; 2730 goto fail; 2731 } 2732 2733 if (res->leaks || res->corruptions) { 2734 *res = pre_compare_res; 2735 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster, 2736 refcount_table, nb_clusters); 2737 } 2738 } 2739 2740 /* check OFLAG_COPIED */ 2741 ret = check_oflag_copied(bs, res, fix); 2742 if (ret < 0) { 2743 goto fail; 2744 } 2745 2746 res->image_end_offset = (highest_cluster + 1) * s->cluster_size; 2747 ret = 0; 2748 2749 fail: 2750 g_free(refcount_table); 2751 2752 return ret; 2753 } 2754 2755 #define overlaps_with(ofs, sz) \ 2756 ranges_overlap(offset, size, ofs, sz) 2757 2758 /* 2759 * Checks if the given offset into the image file is actually free to use by 2760 * looking for overlaps with important metadata sections (L1/L2 tables etc.), 2761 * i.e. a sanity check without relying on the refcount tables. 2762 * 2763 * The ign parameter specifies what checks not to perform (being a bitmask of 2764 * QCow2MetadataOverlap values), i.e., what sections to ignore. 2765 * 2766 * Returns: 2767 * - 0 if writing to this offset will not affect the mentioned metadata 2768 * - a positive QCow2MetadataOverlap value indicating one overlapping section 2769 * - a negative value (-errno) indicating an error while performing a check, 2770 * e.g. when bdrv_pread failed on QCOW2_OL_INACTIVE_L2 2771 */ 2772 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset, 2773 int64_t size) 2774 { 2775 BDRVQcow2State *s = bs->opaque; 2776 int chk = s->overlap_check & ~ign; 2777 int i, j; 2778 2779 if (!size) { 2780 return 0; 2781 } 2782 2783 if (chk & QCOW2_OL_MAIN_HEADER) { 2784 if (offset < s->cluster_size) { 2785 return QCOW2_OL_MAIN_HEADER; 2786 } 2787 } 2788 2789 /* align range to test to cluster boundaries */ 2790 size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size); 2791 offset = start_of_cluster(s, offset); 2792 2793 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) { 2794 if (overlaps_with(s->l1_table_offset, s->l1_size * L1E_SIZE)) { 2795 return QCOW2_OL_ACTIVE_L1; 2796 } 2797 } 2798 2799 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) { 2800 if (overlaps_with(s->refcount_table_offset, 2801 s->refcount_table_size * REFTABLE_ENTRY_SIZE)) { 2802 return QCOW2_OL_REFCOUNT_TABLE; 2803 } 2804 } 2805 2806 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) { 2807 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) { 2808 return QCOW2_OL_SNAPSHOT_TABLE; 2809 } 2810 } 2811 2812 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) { 2813 for (i = 0; i < s->nb_snapshots; i++) { 2814 if (s->snapshots[i].l1_size && 2815 overlaps_with(s->snapshots[i].l1_table_offset, 2816 s->snapshots[i].l1_size * L1E_SIZE)) { 2817 return QCOW2_OL_INACTIVE_L1; 2818 } 2819 } 2820 } 2821 2822 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) { 2823 for (i = 0; i < s->l1_size; i++) { 2824 if ((s->l1_table[i] & L1E_OFFSET_MASK) && 2825 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK, 2826 s->cluster_size)) { 2827 return QCOW2_OL_ACTIVE_L2; 2828 } 2829 } 2830 } 2831 2832 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) { 2833 unsigned last_entry = s->max_refcount_table_index; 2834 assert(last_entry < s->refcount_table_size); 2835 assert(last_entry + 1 == s->refcount_table_size || 2836 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0); 2837 for (i = 0; i <= last_entry; i++) { 2838 if ((s->refcount_table[i] & REFT_OFFSET_MASK) && 2839 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK, 2840 s->cluster_size)) { 2841 return QCOW2_OL_REFCOUNT_BLOCK; 2842 } 2843 } 2844 } 2845 2846 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) { 2847 for (i = 0; i < s->nb_snapshots; i++) { 2848 uint64_t l1_ofs = s->snapshots[i].l1_table_offset; 2849 uint32_t l1_sz = s->snapshots[i].l1_size; 2850 uint64_t l1_sz2 = l1_sz * L1E_SIZE; 2851 uint64_t *l1; 2852 int ret; 2853 2854 ret = qcow2_validate_table(bs, l1_ofs, l1_sz, L1E_SIZE, 2855 QCOW_MAX_L1_SIZE, "", NULL); 2856 if (ret < 0) { 2857 return ret; 2858 } 2859 2860 l1 = g_try_malloc(l1_sz2); 2861 2862 if (l1_sz2 && l1 == NULL) { 2863 return -ENOMEM; 2864 } 2865 2866 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2); 2867 if (ret < 0) { 2868 g_free(l1); 2869 return ret; 2870 } 2871 2872 for (j = 0; j < l1_sz; j++) { 2873 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK; 2874 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) { 2875 g_free(l1); 2876 return QCOW2_OL_INACTIVE_L2; 2877 } 2878 } 2879 2880 g_free(l1); 2881 } 2882 } 2883 2884 if ((chk & QCOW2_OL_BITMAP_DIRECTORY) && 2885 (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS)) 2886 { 2887 if (overlaps_with(s->bitmap_directory_offset, 2888 s->bitmap_directory_size)) 2889 { 2890 return QCOW2_OL_BITMAP_DIRECTORY; 2891 } 2892 } 2893 2894 return 0; 2895 } 2896 2897 static const char *metadata_ol_names[] = { 2898 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header", 2899 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table", 2900 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table", 2901 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table", 2902 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block", 2903 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table", 2904 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table", 2905 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table", 2906 [QCOW2_OL_BITMAP_DIRECTORY_BITNR] = "bitmap directory", 2907 }; 2908 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names)); 2909 2910 /* 2911 * First performs a check for metadata overlaps (through 2912 * qcow2_check_metadata_overlap); if that fails with a negative value (error 2913 * while performing a check), that value is returned. If an impending overlap 2914 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt 2915 * and -EIO returned. 2916 * 2917 * Returns 0 if there were neither overlaps nor errors while checking for 2918 * overlaps; or a negative value (-errno) on error. 2919 */ 2920 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset, 2921 int64_t size, bool data_file) 2922 { 2923 int ret; 2924 2925 if (data_file && has_data_file(bs)) { 2926 return 0; 2927 } 2928 2929 ret = qcow2_check_metadata_overlap(bs, ign, offset, size); 2930 if (ret < 0) { 2931 return ret; 2932 } else if (ret > 0) { 2933 int metadata_ol_bitnr = ctz32(ret); 2934 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR); 2935 2936 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid " 2937 "write on metadata (overlaps with %s)", 2938 metadata_ol_names[metadata_ol_bitnr]); 2939 return -EIO; 2940 } 2941 2942 return 0; 2943 } 2944 2945 /* A pointer to a function of this type is given to walk_over_reftable(). That 2946 * function will create refblocks and pass them to a RefblockFinishOp once they 2947 * are completed (@refblock). @refblock_empty is set if the refblock is 2948 * completely empty. 2949 * 2950 * Along with the refblock, a corresponding reftable entry is passed, in the 2951 * reftable @reftable (which may be reallocated) at @reftable_index. 2952 * 2953 * @allocated should be set to true if a new cluster has been allocated. 2954 */ 2955 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable, 2956 uint64_t reftable_index, uint64_t *reftable_size, 2957 void *refblock, bool refblock_empty, 2958 bool *allocated, Error **errp); 2959 2960 /** 2961 * This "operation" for walk_over_reftable() allocates the refblock on disk (if 2962 * it is not empty) and inserts its offset into the new reftable. The size of 2963 * this new reftable is increased as required. 2964 */ 2965 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable, 2966 uint64_t reftable_index, uint64_t *reftable_size, 2967 void *refblock, bool refblock_empty, bool *allocated, 2968 Error **errp) 2969 { 2970 BDRVQcow2State *s = bs->opaque; 2971 int64_t offset; 2972 2973 if (!refblock_empty && reftable_index >= *reftable_size) { 2974 uint64_t *new_reftable; 2975 uint64_t new_reftable_size; 2976 2977 new_reftable_size = ROUND_UP(reftable_index + 1, 2978 s->cluster_size / REFTABLE_ENTRY_SIZE); 2979 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / REFTABLE_ENTRY_SIZE) { 2980 error_setg(errp, 2981 "This operation would make the refcount table grow " 2982 "beyond the maximum size supported by QEMU, aborting"); 2983 return -ENOTSUP; 2984 } 2985 2986 new_reftable = g_try_realloc(*reftable, new_reftable_size * 2987 REFTABLE_ENTRY_SIZE); 2988 if (!new_reftable) { 2989 error_setg(errp, "Failed to increase reftable buffer size"); 2990 return -ENOMEM; 2991 } 2992 2993 memset(new_reftable + *reftable_size, 0, 2994 (new_reftable_size - *reftable_size) * REFTABLE_ENTRY_SIZE); 2995 2996 *reftable = new_reftable; 2997 *reftable_size = new_reftable_size; 2998 } 2999 3000 if (!refblock_empty && !(*reftable)[reftable_index]) { 3001 offset = qcow2_alloc_clusters(bs, s->cluster_size); 3002 if (offset < 0) { 3003 error_setg_errno(errp, -offset, "Failed to allocate refblock"); 3004 return offset; 3005 } 3006 (*reftable)[reftable_index] = offset; 3007 *allocated = true; 3008 } 3009 3010 return 0; 3011 } 3012 3013 /** 3014 * This "operation" for walk_over_reftable() writes the refblock to disk at the 3015 * offset specified by the new reftable's entry. It does not modify the new 3016 * reftable or change any refcounts. 3017 */ 3018 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable, 3019 uint64_t reftable_index, uint64_t *reftable_size, 3020 void *refblock, bool refblock_empty, bool *allocated, 3021 Error **errp) 3022 { 3023 BDRVQcow2State *s = bs->opaque; 3024 int64_t offset; 3025 int ret; 3026 3027 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) { 3028 offset = (*reftable)[reftable_index]; 3029 3030 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size, 3031 false); 3032 if (ret < 0) { 3033 error_setg_errno(errp, -ret, "Overlap check failed"); 3034 return ret; 3035 } 3036 3037 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size); 3038 if (ret < 0) { 3039 error_setg_errno(errp, -ret, "Failed to write refblock"); 3040 return ret; 3041 } 3042 } else { 3043 assert(refblock_empty); 3044 } 3045 3046 return 0; 3047 } 3048 3049 /** 3050 * This function walks over the existing reftable and every referenced refblock; 3051 * if @new_set_refcount is non-NULL, it is called for every refcount entry to 3052 * create an equal new entry in the passed @new_refblock. Once that 3053 * @new_refblock is completely filled, @operation will be called. 3054 * 3055 * @status_cb and @cb_opaque are used for the amend operation's status callback. 3056 * @index is the index of the walk_over_reftable() calls and @total is the total 3057 * number of walk_over_reftable() calls per amend operation. Both are used for 3058 * calculating the parameters for the status callback. 3059 * 3060 * @allocated is set to true if a new cluster has been allocated. 3061 */ 3062 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable, 3063 uint64_t *new_reftable_index, 3064 uint64_t *new_reftable_size, 3065 void *new_refblock, int new_refblock_size, 3066 int new_refcount_bits, 3067 RefblockFinishOp *operation, bool *allocated, 3068 Qcow2SetRefcountFunc *new_set_refcount, 3069 BlockDriverAmendStatusCB *status_cb, 3070 void *cb_opaque, int index, int total, 3071 Error **errp) 3072 { 3073 BDRVQcow2State *s = bs->opaque; 3074 uint64_t reftable_index; 3075 bool new_refblock_empty = true; 3076 int refblock_index; 3077 int new_refblock_index = 0; 3078 int ret; 3079 3080 for (reftable_index = 0; reftable_index < s->refcount_table_size; 3081 reftable_index++) 3082 { 3083 uint64_t refblock_offset = s->refcount_table[reftable_index] 3084 & REFT_OFFSET_MASK; 3085 3086 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index, 3087 (uint64_t)total * s->refcount_table_size, cb_opaque); 3088 3089 if (refblock_offset) { 3090 void *refblock; 3091 3092 if (offset_into_cluster(s, refblock_offset)) { 3093 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 3094 PRIx64 " unaligned (reftable index: %#" 3095 PRIx64 ")", refblock_offset, 3096 reftable_index); 3097 error_setg(errp, 3098 "Image is corrupt (unaligned refblock offset)"); 3099 return -EIO; 3100 } 3101 3102 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset, 3103 &refblock); 3104 if (ret < 0) { 3105 error_setg_errno(errp, -ret, "Failed to retrieve refblock"); 3106 return ret; 3107 } 3108 3109 for (refblock_index = 0; refblock_index < s->refcount_block_size; 3110 refblock_index++) 3111 { 3112 uint64_t refcount; 3113 3114 if (new_refblock_index >= new_refblock_size) { 3115 /* new_refblock is now complete */ 3116 ret = operation(bs, new_reftable, *new_reftable_index, 3117 new_reftable_size, new_refblock, 3118 new_refblock_empty, allocated, errp); 3119 if (ret < 0) { 3120 qcow2_cache_put(s->refcount_block_cache, &refblock); 3121 return ret; 3122 } 3123 3124 (*new_reftable_index)++; 3125 new_refblock_index = 0; 3126 new_refblock_empty = true; 3127 } 3128 3129 refcount = s->get_refcount(refblock, refblock_index); 3130 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) { 3131 uint64_t offset; 3132 3133 qcow2_cache_put(s->refcount_block_cache, &refblock); 3134 3135 offset = ((reftable_index << s->refcount_block_bits) 3136 + refblock_index) << s->cluster_bits; 3137 3138 error_setg(errp, "Cannot decrease refcount entry width to " 3139 "%i bits: Cluster at offset %#" PRIx64 " has a " 3140 "refcount of %" PRIu64, new_refcount_bits, 3141 offset, refcount); 3142 return -EINVAL; 3143 } 3144 3145 if (new_set_refcount) { 3146 new_set_refcount(new_refblock, new_refblock_index++, 3147 refcount); 3148 } else { 3149 new_refblock_index++; 3150 } 3151 new_refblock_empty = new_refblock_empty && refcount == 0; 3152 } 3153 3154 qcow2_cache_put(s->refcount_block_cache, &refblock); 3155 } else { 3156 /* No refblock means every refcount is 0 */ 3157 for (refblock_index = 0; refblock_index < s->refcount_block_size; 3158 refblock_index++) 3159 { 3160 if (new_refblock_index >= new_refblock_size) { 3161 /* new_refblock is now complete */ 3162 ret = operation(bs, new_reftable, *new_reftable_index, 3163 new_reftable_size, new_refblock, 3164 new_refblock_empty, allocated, errp); 3165 if (ret < 0) { 3166 return ret; 3167 } 3168 3169 (*new_reftable_index)++; 3170 new_refblock_index = 0; 3171 new_refblock_empty = true; 3172 } 3173 3174 if (new_set_refcount) { 3175 new_set_refcount(new_refblock, new_refblock_index++, 0); 3176 } else { 3177 new_refblock_index++; 3178 } 3179 } 3180 } 3181 } 3182 3183 if (new_refblock_index > 0) { 3184 /* Complete the potentially existing partially filled final refblock */ 3185 if (new_set_refcount) { 3186 for (; new_refblock_index < new_refblock_size; 3187 new_refblock_index++) 3188 { 3189 new_set_refcount(new_refblock, new_refblock_index, 0); 3190 } 3191 } 3192 3193 ret = operation(bs, new_reftable, *new_reftable_index, 3194 new_reftable_size, new_refblock, new_refblock_empty, 3195 allocated, errp); 3196 if (ret < 0) { 3197 return ret; 3198 } 3199 3200 (*new_reftable_index)++; 3201 } 3202 3203 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size, 3204 (uint64_t)total * s->refcount_table_size, cb_opaque); 3205 3206 return 0; 3207 } 3208 3209 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order, 3210 BlockDriverAmendStatusCB *status_cb, 3211 void *cb_opaque, Error **errp) 3212 { 3213 BDRVQcow2State *s = bs->opaque; 3214 Qcow2GetRefcountFunc *new_get_refcount; 3215 Qcow2SetRefcountFunc *new_set_refcount; 3216 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size); 3217 uint64_t *new_reftable = NULL, new_reftable_size = 0; 3218 uint64_t *old_reftable, old_reftable_size, old_reftable_offset; 3219 uint64_t new_reftable_index = 0; 3220 uint64_t i; 3221 int64_t new_reftable_offset = 0, allocated_reftable_size = 0; 3222 int new_refblock_size, new_refcount_bits = 1 << refcount_order; 3223 int old_refcount_order; 3224 int walk_index = 0; 3225 int ret; 3226 bool new_allocation; 3227 3228 assert(s->qcow_version >= 3); 3229 assert(refcount_order >= 0 && refcount_order <= 6); 3230 3231 /* see qcow2_open() */ 3232 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3)); 3233 3234 new_get_refcount = get_refcount_funcs[refcount_order]; 3235 new_set_refcount = set_refcount_funcs[refcount_order]; 3236 3237 3238 do { 3239 int total_walks; 3240 3241 new_allocation = false; 3242 3243 /* At least we have to do this walk and the one which writes the 3244 * refblocks; also, at least we have to do this loop here at least 3245 * twice (normally), first to do the allocations, and second to 3246 * determine that everything is correctly allocated, this then makes 3247 * three walks in total */ 3248 total_walks = MAX(walk_index + 2, 3); 3249 3250 /* First, allocate the structures so they are present in the refcount 3251 * structures */ 3252 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 3253 &new_reftable_size, NULL, new_refblock_size, 3254 new_refcount_bits, &alloc_refblock, 3255 &new_allocation, NULL, status_cb, cb_opaque, 3256 walk_index++, total_walks, errp); 3257 if (ret < 0) { 3258 goto done; 3259 } 3260 3261 new_reftable_index = 0; 3262 3263 if (new_allocation) { 3264 if (new_reftable_offset) { 3265 qcow2_free_clusters( 3266 bs, new_reftable_offset, 3267 allocated_reftable_size * REFTABLE_ENTRY_SIZE, 3268 QCOW2_DISCARD_NEVER); 3269 } 3270 3271 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size * 3272 REFTABLE_ENTRY_SIZE); 3273 if (new_reftable_offset < 0) { 3274 error_setg_errno(errp, -new_reftable_offset, 3275 "Failed to allocate the new reftable"); 3276 ret = new_reftable_offset; 3277 goto done; 3278 } 3279 allocated_reftable_size = new_reftable_size; 3280 } 3281 } while (new_allocation); 3282 3283 /* Second, write the new refblocks */ 3284 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 3285 &new_reftable_size, new_refblock, 3286 new_refblock_size, new_refcount_bits, 3287 &flush_refblock, &new_allocation, new_set_refcount, 3288 status_cb, cb_opaque, walk_index, walk_index + 1, 3289 errp); 3290 if (ret < 0) { 3291 goto done; 3292 } 3293 assert(!new_allocation); 3294 3295 3296 /* Write the new reftable */ 3297 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset, 3298 new_reftable_size * REFTABLE_ENTRY_SIZE, 3299 false); 3300 if (ret < 0) { 3301 error_setg_errno(errp, -ret, "Overlap check failed"); 3302 goto done; 3303 } 3304 3305 for (i = 0; i < new_reftable_size; i++) { 3306 cpu_to_be64s(&new_reftable[i]); 3307 } 3308 3309 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable, 3310 new_reftable_size * REFTABLE_ENTRY_SIZE); 3311 3312 for (i = 0; i < new_reftable_size; i++) { 3313 be64_to_cpus(&new_reftable[i]); 3314 } 3315 3316 if (ret < 0) { 3317 error_setg_errno(errp, -ret, "Failed to write the new reftable"); 3318 goto done; 3319 } 3320 3321 3322 /* Empty the refcount cache */ 3323 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 3324 if (ret < 0) { 3325 error_setg_errno(errp, -ret, "Failed to flush the refblock cache"); 3326 goto done; 3327 } 3328 3329 /* Update the image header to point to the new reftable; this only updates 3330 * the fields which are relevant to qcow2_update_header(); other fields 3331 * such as s->refcount_table or s->refcount_bits stay stale for now 3332 * (because we have to restore everything if qcow2_update_header() fails) */ 3333 old_refcount_order = s->refcount_order; 3334 old_reftable_size = s->refcount_table_size; 3335 old_reftable_offset = s->refcount_table_offset; 3336 3337 s->refcount_order = refcount_order; 3338 s->refcount_table_size = new_reftable_size; 3339 s->refcount_table_offset = new_reftable_offset; 3340 3341 ret = qcow2_update_header(bs); 3342 if (ret < 0) { 3343 s->refcount_order = old_refcount_order; 3344 s->refcount_table_size = old_reftable_size; 3345 s->refcount_table_offset = old_reftable_offset; 3346 error_setg_errno(errp, -ret, "Failed to update the qcow2 header"); 3347 goto done; 3348 } 3349 3350 /* Now update the rest of the in-memory information */ 3351 old_reftable = s->refcount_table; 3352 s->refcount_table = new_reftable; 3353 update_max_refcount_table_index(s); 3354 3355 s->refcount_bits = 1 << refcount_order; 3356 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1); 3357 s->refcount_max += s->refcount_max - 1; 3358 3359 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3); 3360 s->refcount_block_size = 1 << s->refcount_block_bits; 3361 3362 s->get_refcount = new_get_refcount; 3363 s->set_refcount = new_set_refcount; 3364 3365 /* For cleaning up all old refblocks and the old reftable below the "done" 3366 * label */ 3367 new_reftable = old_reftable; 3368 new_reftable_size = old_reftable_size; 3369 new_reftable_offset = old_reftable_offset; 3370 3371 done: 3372 if (new_reftable) { 3373 /* On success, new_reftable actually points to the old reftable (and 3374 * new_reftable_size is the old reftable's size); but that is just 3375 * fine */ 3376 for (i = 0; i < new_reftable_size; i++) { 3377 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK; 3378 if (offset) { 3379 qcow2_free_clusters(bs, offset, s->cluster_size, 3380 QCOW2_DISCARD_OTHER); 3381 } 3382 } 3383 g_free(new_reftable); 3384 3385 if (new_reftable_offset > 0) { 3386 qcow2_free_clusters(bs, new_reftable_offset, 3387 new_reftable_size * REFTABLE_ENTRY_SIZE, 3388 QCOW2_DISCARD_OTHER); 3389 } 3390 } 3391 3392 qemu_vfree(new_refblock); 3393 return ret; 3394 } 3395 3396 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset) 3397 { 3398 BDRVQcow2State *s = bs->opaque; 3399 uint32_t index = offset_to_reftable_index(s, offset); 3400 int64_t covering_refblock_offset = 0; 3401 3402 if (index < s->refcount_table_size) { 3403 covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK; 3404 } 3405 if (!covering_refblock_offset) { 3406 qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is " 3407 "not covered by the refcount structures", 3408 offset); 3409 return -EIO; 3410 } 3411 3412 return covering_refblock_offset; 3413 } 3414 3415 static int qcow2_discard_refcount_block(BlockDriverState *bs, 3416 uint64_t discard_block_offs) 3417 { 3418 BDRVQcow2State *s = bs->opaque; 3419 int64_t refblock_offs; 3420 uint64_t cluster_index = discard_block_offs >> s->cluster_bits; 3421 uint32_t block_index = cluster_index & (s->refcount_block_size - 1); 3422 void *refblock; 3423 int ret; 3424 3425 refblock_offs = get_refblock_offset(bs, discard_block_offs); 3426 if (refblock_offs < 0) { 3427 return refblock_offs; 3428 } 3429 3430 assert(discard_block_offs != 0); 3431 3432 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs, 3433 &refblock); 3434 if (ret < 0) { 3435 return ret; 3436 } 3437 3438 if (s->get_refcount(refblock, block_index) != 1) { 3439 qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:" 3440 " refblock offset %#" PRIx64 3441 ", reftable index %u" 3442 ", block offset %#" PRIx64 3443 ", refcount %#" PRIx64, 3444 refblock_offs, 3445 offset_to_reftable_index(s, discard_block_offs), 3446 discard_block_offs, 3447 s->get_refcount(refblock, block_index)); 3448 qcow2_cache_put(s->refcount_block_cache, &refblock); 3449 return -EINVAL; 3450 } 3451 s->set_refcount(refblock, block_index, 0); 3452 3453 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock); 3454 3455 qcow2_cache_put(s->refcount_block_cache, &refblock); 3456 3457 if (cluster_index < s->free_cluster_index) { 3458 s->free_cluster_index = cluster_index; 3459 } 3460 3461 refblock = qcow2_cache_is_table_offset(s->refcount_block_cache, 3462 discard_block_offs); 3463 if (refblock) { 3464 /* discard refblock from the cache if refblock is cached */ 3465 qcow2_cache_discard(s->refcount_block_cache, refblock); 3466 } 3467 update_refcount_discard(bs, discard_block_offs, s->cluster_size); 3468 3469 return 0; 3470 } 3471 3472 int qcow2_shrink_reftable(BlockDriverState *bs) 3473 { 3474 BDRVQcow2State *s = bs->opaque; 3475 uint64_t *reftable_tmp = 3476 g_malloc(s->refcount_table_size * REFTABLE_ENTRY_SIZE); 3477 int i, ret; 3478 3479 for (i = 0; i < s->refcount_table_size; i++) { 3480 int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK; 3481 void *refblock; 3482 bool unused_block; 3483 3484 if (refblock_offs == 0) { 3485 reftable_tmp[i] = 0; 3486 continue; 3487 } 3488 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs, 3489 &refblock); 3490 if (ret < 0) { 3491 goto out; 3492 } 3493 3494 /* the refblock has own reference */ 3495 if (i == offset_to_reftable_index(s, refblock_offs)) { 3496 uint64_t block_index = (refblock_offs >> s->cluster_bits) & 3497 (s->refcount_block_size - 1); 3498 uint64_t refcount = s->get_refcount(refblock, block_index); 3499 3500 s->set_refcount(refblock, block_index, 0); 3501 3502 unused_block = buffer_is_zero(refblock, s->cluster_size); 3503 3504 s->set_refcount(refblock, block_index, refcount); 3505 } else { 3506 unused_block = buffer_is_zero(refblock, s->cluster_size); 3507 } 3508 qcow2_cache_put(s->refcount_block_cache, &refblock); 3509 3510 reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]); 3511 } 3512 3513 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp, 3514 s->refcount_table_size * REFTABLE_ENTRY_SIZE); 3515 /* 3516 * If the write in the reftable failed the image may contain a partially 3517 * overwritten reftable. In this case it would be better to clear the 3518 * reftable in memory to avoid possible image corruption. 3519 */ 3520 for (i = 0; i < s->refcount_table_size; i++) { 3521 if (s->refcount_table[i] && !reftable_tmp[i]) { 3522 if (ret == 0) { 3523 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] & 3524 REFT_OFFSET_MASK); 3525 } 3526 s->refcount_table[i] = 0; 3527 } 3528 } 3529 3530 if (!s->cache_discards) { 3531 qcow2_process_discards(bs, ret); 3532 } 3533 3534 out: 3535 g_free(reftable_tmp); 3536 return ret; 3537 } 3538 3539 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size) 3540 { 3541 BDRVQcow2State *s = bs->opaque; 3542 int64_t i; 3543 3544 for (i = size_to_clusters(s, size) - 1; i >= 0; i--) { 3545 uint64_t refcount; 3546 int ret = qcow2_get_refcount(bs, i, &refcount); 3547 if (ret < 0) { 3548 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 3549 i, strerror(-ret)); 3550 return ret; 3551 } 3552 if (refcount > 0) { 3553 return i; 3554 } 3555 } 3556 qcow2_signal_corruption(bs, true, -1, -1, 3557 "There are no references in the refcount table."); 3558 return -EIO; 3559 } 3560 3561 int qcow2_detect_metadata_preallocation(BlockDriverState *bs) 3562 { 3563 BDRVQcow2State *s = bs->opaque; 3564 int64_t i, end_cluster, cluster_count = 0, threshold; 3565 int64_t file_length, real_allocation, real_clusters; 3566 3567 qemu_co_mutex_assert_locked(&s->lock); 3568 3569 file_length = bdrv_getlength(bs->file->bs); 3570 if (file_length < 0) { 3571 return file_length; 3572 } 3573 3574 real_allocation = bdrv_get_allocated_file_size(bs->file->bs); 3575 if (real_allocation < 0) { 3576 return real_allocation; 3577 } 3578 3579 real_clusters = real_allocation / s->cluster_size; 3580 threshold = MAX(real_clusters * 10 / 9, real_clusters + 2); 3581 3582 end_cluster = size_to_clusters(s, file_length); 3583 for (i = 0; i < end_cluster && cluster_count < threshold; i++) { 3584 uint64_t refcount; 3585 int ret = qcow2_get_refcount(bs, i, &refcount); 3586 if (ret < 0) { 3587 return ret; 3588 } 3589 cluster_count += !!refcount; 3590 } 3591 3592 return cluster_count >= threshold; 3593 } 3594