xref: /openbmc/qemu/block/qcow2-refcount.c (revision 9c4888c9)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qcow2.h"
28 #include "qemu/range.h"
29 #include "qemu/bswap.h"
30 #include "qemu/cutils.h"
31 #include "qemu/memalign.h"
32 #include "trace.h"
33 
34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
35                                     uint64_t max);
36 
37 G_GNUC_WARN_UNUSED_RESULT
38 static int update_refcount(BlockDriverState *bs,
39                            int64_t offset, int64_t length, uint64_t addend,
40                            bool decrease, enum qcow2_discard_type type);
41 
42 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
46 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
47 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
48 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
49 
50 static void set_refcount_ro0(void *refcount_array, uint64_t index,
51                              uint64_t value);
52 static void set_refcount_ro1(void *refcount_array, uint64_t index,
53                              uint64_t value);
54 static void set_refcount_ro2(void *refcount_array, uint64_t index,
55                              uint64_t value);
56 static void set_refcount_ro3(void *refcount_array, uint64_t index,
57                              uint64_t value);
58 static void set_refcount_ro4(void *refcount_array, uint64_t index,
59                              uint64_t value);
60 static void set_refcount_ro5(void *refcount_array, uint64_t index,
61                              uint64_t value);
62 static void set_refcount_ro6(void *refcount_array, uint64_t index,
63                              uint64_t value);
64 
65 
66 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
67     &get_refcount_ro0,
68     &get_refcount_ro1,
69     &get_refcount_ro2,
70     &get_refcount_ro3,
71     &get_refcount_ro4,
72     &get_refcount_ro5,
73     &get_refcount_ro6
74 };
75 
76 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
77     &set_refcount_ro0,
78     &set_refcount_ro1,
79     &set_refcount_ro2,
80     &set_refcount_ro3,
81     &set_refcount_ro4,
82     &set_refcount_ro5,
83     &set_refcount_ro6
84 };
85 
86 
87 /*********************************************************/
88 /* refcount handling */
89 
90 static void update_max_refcount_table_index(BDRVQcow2State *s)
91 {
92     unsigned i = s->refcount_table_size - 1;
93     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
94         i--;
95     }
96     /* Set s->max_refcount_table_index to the index of the last used entry */
97     s->max_refcount_table_index = i;
98 }
99 
100 int qcow2_refcount_init(BlockDriverState *bs)
101 {
102     BDRVQcow2State *s = bs->opaque;
103     unsigned int refcount_table_size2, i;
104     int ret;
105 
106     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
107 
108     s->get_refcount = get_refcount_funcs[s->refcount_order];
109     s->set_refcount = set_refcount_funcs[s->refcount_order];
110 
111     assert(s->refcount_table_size <= INT_MAX / REFTABLE_ENTRY_SIZE);
112     refcount_table_size2 = s->refcount_table_size * REFTABLE_ENTRY_SIZE;
113     s->refcount_table = g_try_malloc(refcount_table_size2);
114 
115     if (s->refcount_table_size > 0) {
116         if (s->refcount_table == NULL) {
117             ret = -ENOMEM;
118             goto fail;
119         }
120         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
121         ret = bdrv_pread(bs->file, s->refcount_table_offset,
122                          s->refcount_table, refcount_table_size2);
123         if (ret < 0) {
124             goto fail;
125         }
126         for(i = 0; i < s->refcount_table_size; i++)
127             be64_to_cpus(&s->refcount_table[i]);
128         update_max_refcount_table_index(s);
129     }
130     return 0;
131  fail:
132     return ret;
133 }
134 
135 void qcow2_refcount_close(BlockDriverState *bs)
136 {
137     BDRVQcow2State *s = bs->opaque;
138     g_free(s->refcount_table);
139 }
140 
141 
142 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
143 {
144     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
145 }
146 
147 static void set_refcount_ro0(void *refcount_array, uint64_t index,
148                              uint64_t value)
149 {
150     assert(!(value >> 1));
151     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
152     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
153 }
154 
155 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
156 {
157     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
158            & 0x3;
159 }
160 
161 static void set_refcount_ro1(void *refcount_array, uint64_t index,
162                              uint64_t value)
163 {
164     assert(!(value >> 2));
165     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
166     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
167 }
168 
169 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
170 {
171     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
172            & 0xf;
173 }
174 
175 static void set_refcount_ro2(void *refcount_array, uint64_t index,
176                              uint64_t value)
177 {
178     assert(!(value >> 4));
179     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
180     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
181 }
182 
183 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
184 {
185     return ((const uint8_t *)refcount_array)[index];
186 }
187 
188 static void set_refcount_ro3(void *refcount_array, uint64_t index,
189                              uint64_t value)
190 {
191     assert(!(value >> 8));
192     ((uint8_t *)refcount_array)[index] = value;
193 }
194 
195 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
196 {
197     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
198 }
199 
200 static void set_refcount_ro4(void *refcount_array, uint64_t index,
201                              uint64_t value)
202 {
203     assert(!(value >> 16));
204     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
205 }
206 
207 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
208 {
209     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
210 }
211 
212 static void set_refcount_ro5(void *refcount_array, uint64_t index,
213                              uint64_t value)
214 {
215     assert(!(value >> 32));
216     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
217 }
218 
219 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
220 {
221     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
222 }
223 
224 static void set_refcount_ro6(void *refcount_array, uint64_t index,
225                              uint64_t value)
226 {
227     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
228 }
229 
230 
231 static int load_refcount_block(BlockDriverState *bs,
232                                int64_t refcount_block_offset,
233                                void **refcount_block)
234 {
235     BDRVQcow2State *s = bs->opaque;
236 
237     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
238     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
239                            refcount_block);
240 }
241 
242 /*
243  * Retrieves the refcount of the cluster given by its index and stores it in
244  * *refcount. Returns 0 on success and -errno on failure.
245  */
246 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
247                        uint64_t *refcount)
248 {
249     BDRVQcow2State *s = bs->opaque;
250     uint64_t refcount_table_index, block_index;
251     int64_t refcount_block_offset;
252     int ret;
253     void *refcount_block;
254 
255     refcount_table_index = cluster_index >> s->refcount_block_bits;
256     if (refcount_table_index >= s->refcount_table_size) {
257         *refcount = 0;
258         return 0;
259     }
260     refcount_block_offset =
261         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
262     if (!refcount_block_offset) {
263         *refcount = 0;
264         return 0;
265     }
266 
267     if (offset_into_cluster(s, refcount_block_offset)) {
268         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
269                                 " unaligned (reftable index: %#" PRIx64 ")",
270                                 refcount_block_offset, refcount_table_index);
271         return -EIO;
272     }
273 
274     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
275                           &refcount_block);
276     if (ret < 0) {
277         return ret;
278     }
279 
280     block_index = cluster_index & (s->refcount_block_size - 1);
281     *refcount = s->get_refcount(refcount_block, block_index);
282 
283     qcow2_cache_put(s->refcount_block_cache, &refcount_block);
284 
285     return 0;
286 }
287 
288 /* Checks if two offsets are described by the same refcount block */
289 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
290     uint64_t offset_b)
291 {
292     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
293     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
294 
295     return (block_a == block_b);
296 }
297 
298 /*
299  * Loads a refcount block. If it doesn't exist yet, it is allocated first
300  * (including growing the refcount table if needed).
301  *
302  * Returns 0 on success or -errno in error case
303  */
304 static int alloc_refcount_block(BlockDriverState *bs,
305                                 int64_t cluster_index, void **refcount_block)
306 {
307     BDRVQcow2State *s = bs->opaque;
308     unsigned int refcount_table_index;
309     int64_t ret;
310 
311     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
312 
313     /* Find the refcount block for the given cluster */
314     refcount_table_index = cluster_index >> s->refcount_block_bits;
315 
316     if (refcount_table_index < s->refcount_table_size) {
317 
318         uint64_t refcount_block_offset =
319             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
320 
321         /* If it's already there, we're done */
322         if (refcount_block_offset) {
323             if (offset_into_cluster(s, refcount_block_offset)) {
324                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
325                                         PRIx64 " unaligned (reftable index: "
326                                         "%#x)", refcount_block_offset,
327                                         refcount_table_index);
328                 return -EIO;
329             }
330 
331              return load_refcount_block(bs, refcount_block_offset,
332                                         refcount_block);
333         }
334     }
335 
336     /*
337      * If we came here, we need to allocate something. Something is at least
338      * a cluster for the new refcount block. It may also include a new refcount
339      * table if the old refcount table is too small.
340      *
341      * Note that allocating clusters here needs some special care:
342      *
343      * - We can't use the normal qcow2_alloc_clusters(), it would try to
344      *   increase the refcount and very likely we would end up with an endless
345      *   recursion. Instead we must place the refcount blocks in a way that
346      *   they can describe them themselves.
347      *
348      * - We need to consider that at this point we are inside update_refcounts
349      *   and potentially doing an initial refcount increase. This means that
350      *   some clusters have already been allocated by the caller, but their
351      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
352      *   need to return -EAGAIN to signal the caller that it needs to restart
353      *   the search for free clusters.
354      *
355      * - alloc_clusters_noref and qcow2_free_clusters may load a different
356      *   refcount block into the cache
357      */
358 
359     *refcount_block = NULL;
360 
361     /* We write to the refcount table, so we might depend on L2 tables */
362     ret = qcow2_cache_flush(bs, s->l2_table_cache);
363     if (ret < 0) {
364         return ret;
365     }
366 
367     /* Allocate the refcount block itself and mark it as used */
368     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX);
369     if (new_block < 0) {
370         return new_block;
371     }
372 
373     /* The offset must fit in the offset field of the refcount table entry */
374     assert((new_block & REFT_OFFSET_MASK) == new_block);
375 
376     /* If we're allocating the block at offset 0 then something is wrong */
377     if (new_block == 0) {
378         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
379                                 "allocation of refcount block at offset 0");
380         return -EIO;
381     }
382 
383 #ifdef DEBUG_ALLOC2
384     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
385         " at %" PRIx64 "\n",
386         refcount_table_index, cluster_index << s->cluster_bits, new_block);
387 #endif
388 
389     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
390         /* Zero the new refcount block before updating it */
391         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
392                                     refcount_block);
393         if (ret < 0) {
394             goto fail;
395         }
396 
397         memset(*refcount_block, 0, s->cluster_size);
398 
399         /* The block describes itself, need to update the cache */
400         int block_index = (new_block >> s->cluster_bits) &
401             (s->refcount_block_size - 1);
402         s->set_refcount(*refcount_block, block_index, 1);
403     } else {
404         /* Described somewhere else. This can recurse at most twice before we
405          * arrive at a block that describes itself. */
406         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
407                               QCOW2_DISCARD_NEVER);
408         if (ret < 0) {
409             goto fail;
410         }
411 
412         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
413         if (ret < 0) {
414             goto fail;
415         }
416 
417         /* Initialize the new refcount block only after updating its refcount,
418          * update_refcount uses the refcount cache itself */
419         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
420                                     refcount_block);
421         if (ret < 0) {
422             goto fail;
423         }
424 
425         memset(*refcount_block, 0, s->cluster_size);
426     }
427 
428     /* Now the new refcount block needs to be written to disk */
429     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
430     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
431     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
432     if (ret < 0) {
433         goto fail;
434     }
435 
436     /* If the refcount table is big enough, just hook the block up there */
437     if (refcount_table_index < s->refcount_table_size) {
438         uint64_t data64 = cpu_to_be64(new_block);
439         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
440         ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset +
441                                refcount_table_index * REFTABLE_ENTRY_SIZE,
442             &data64, sizeof(data64));
443         if (ret < 0) {
444             goto fail;
445         }
446 
447         s->refcount_table[refcount_table_index] = new_block;
448         /* If there's a hole in s->refcount_table then it can happen
449          * that refcount_table_index < s->max_refcount_table_index */
450         s->max_refcount_table_index =
451             MAX(s->max_refcount_table_index, refcount_table_index);
452 
453         /* The new refcount block may be where the caller intended to put its
454          * data, so let it restart the search. */
455         return -EAGAIN;
456     }
457 
458     qcow2_cache_put(s->refcount_block_cache, refcount_block);
459 
460     /*
461      * If we come here, we need to grow the refcount table. Again, a new
462      * refcount table needs some space and we can't simply allocate to avoid
463      * endless recursion.
464      *
465      * Therefore let's grab new refcount blocks at the end of the image, which
466      * will describe themselves and the new refcount table. This way we can
467      * reference them only in the new table and do the switch to the new
468      * refcount table at once without producing an inconsistent state in
469      * between.
470      */
471     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
472 
473     /* Calculate the number of refcount blocks needed so far; this will be the
474      * basis for calculating the index of the first cluster used for the
475      * self-describing refcount structures which we are about to create.
476      *
477      * Because we reached this point, there cannot be any refcount entries for
478      * cluster_index or higher indices yet. However, because new_block has been
479      * allocated to describe that cluster (and it will assume this role later
480      * on), we cannot use that index; also, new_block may actually have a higher
481      * cluster index than cluster_index, so it needs to be taken into account
482      * here (and 1 needs to be added to its value because that cluster is used).
483      */
484     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
485                                             (new_block >> s->cluster_bits) + 1),
486                                         s->refcount_block_size);
487 
488     /* Create the new refcount table and blocks */
489     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
490         s->cluster_size;
491 
492     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
493                               refcount_table_index, new_block);
494     if (ret < 0) {
495         return ret;
496     }
497 
498     ret = load_refcount_block(bs, new_block, refcount_block);
499     if (ret < 0) {
500         return ret;
501     }
502 
503     /* If we were trying to do the initial refcount update for some cluster
504      * allocation, we might have used the same clusters to store newly
505      * allocated metadata. Make the caller search some new space. */
506     return -EAGAIN;
507 
508 fail:
509     if (*refcount_block != NULL) {
510         qcow2_cache_put(s->refcount_block_cache, refcount_block);
511     }
512     return ret;
513 }
514 
515 /*
516  * Starting at @start_offset, this function creates new self-covering refcount
517  * structures: A new refcount table and refcount blocks which cover all of
518  * themselves, and a number of @additional_clusters beyond their end.
519  * @start_offset must be at the end of the image file, that is, there must be
520  * only empty space beyond it.
521  * If @exact_size is false, the refcount table will have 50 % more entries than
522  * necessary so it will not need to grow again soon.
523  * If @new_refblock_offset is not zero, it contains the offset of a refcount
524  * block that should be entered into the new refcount table at index
525  * @new_refblock_index.
526  *
527  * Returns: The offset after the new refcount structures (i.e. where the
528  *          @additional_clusters may be placed) on success, -errno on error.
529  */
530 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
531                             uint64_t additional_clusters, bool exact_size,
532                             int new_refblock_index,
533                             uint64_t new_refblock_offset)
534 {
535     BDRVQcow2State *s = bs->opaque;
536     uint64_t total_refblock_count_u64, additional_refblock_count;
537     int total_refblock_count, table_size, area_reftable_index, table_clusters;
538     int i;
539     uint64_t table_offset, block_offset, end_offset;
540     int ret;
541     uint64_t *new_table;
542 
543     assert(!(start_offset % s->cluster_size));
544 
545     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
546                                  additional_clusters,
547                                  s->cluster_size, s->refcount_order,
548                                  !exact_size, &total_refblock_count_u64);
549     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
550         return -EFBIG;
551     }
552     total_refblock_count = total_refblock_count_u64;
553 
554     /* Index in the refcount table of the first refcount block to cover the area
555      * of refcount structures we are about to create; we know that
556      * @total_refblock_count can cover @start_offset, so this will definitely
557      * fit into an int. */
558     area_reftable_index = (start_offset / s->cluster_size) /
559                           s->refcount_block_size;
560 
561     if (exact_size) {
562         table_size = total_refblock_count;
563     } else {
564         table_size = total_refblock_count +
565                      DIV_ROUND_UP(total_refblock_count, 2);
566     }
567     /* The qcow2 file can only store the reftable size in number of clusters */
568     table_size = ROUND_UP(table_size, s->cluster_size / REFTABLE_ENTRY_SIZE);
569     table_clusters = (table_size * REFTABLE_ENTRY_SIZE) / s->cluster_size;
570 
571     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
572         return -EFBIG;
573     }
574 
575     new_table = g_try_new0(uint64_t, table_size);
576 
577     assert(table_size > 0);
578     if (new_table == NULL) {
579         ret = -ENOMEM;
580         goto fail;
581     }
582 
583     /* Fill the new refcount table */
584     if (table_size > s->max_refcount_table_index) {
585         /* We're actually growing the reftable */
586         memcpy(new_table, s->refcount_table,
587                (s->max_refcount_table_index + 1) * REFTABLE_ENTRY_SIZE);
588     } else {
589         /* Improbable case: We're shrinking the reftable. However, the caller
590          * has assured us that there is only empty space beyond @start_offset,
591          * so we can simply drop all of the refblocks that won't fit into the
592          * new reftable. */
593         memcpy(new_table, s->refcount_table, table_size * REFTABLE_ENTRY_SIZE);
594     }
595 
596     if (new_refblock_offset) {
597         assert(new_refblock_index < total_refblock_count);
598         new_table[new_refblock_index] = new_refblock_offset;
599     }
600 
601     /* Count how many new refblocks we have to create */
602     additional_refblock_count = 0;
603     for (i = area_reftable_index; i < total_refblock_count; i++) {
604         if (!new_table[i]) {
605             additional_refblock_count++;
606         }
607     }
608 
609     table_offset = start_offset + additional_refblock_count * s->cluster_size;
610     end_offset = table_offset + table_clusters * s->cluster_size;
611 
612     /* Fill the refcount blocks, and create new ones, if necessary */
613     block_offset = start_offset;
614     for (i = area_reftable_index; i < total_refblock_count; i++) {
615         void *refblock_data;
616         uint64_t first_offset_covered;
617 
618         /* Reuse an existing refblock if possible, create a new one otherwise */
619         if (new_table[i]) {
620             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
621                                   &refblock_data);
622             if (ret < 0) {
623                 goto fail;
624             }
625         } else {
626             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
627                                         block_offset, &refblock_data);
628             if (ret < 0) {
629                 goto fail;
630             }
631             memset(refblock_data, 0, s->cluster_size);
632             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
633                                          refblock_data);
634 
635             new_table[i] = block_offset;
636             block_offset += s->cluster_size;
637         }
638 
639         /* First host offset covered by this refblock */
640         first_offset_covered = (uint64_t)i * s->refcount_block_size *
641                                s->cluster_size;
642         if (first_offset_covered < end_offset) {
643             int j, end_index;
644 
645             /* Set the refcount of all of the new refcount structures to 1 */
646 
647             if (first_offset_covered < start_offset) {
648                 assert(i == area_reftable_index);
649                 j = (start_offset - first_offset_covered) / s->cluster_size;
650                 assert(j < s->refcount_block_size);
651             } else {
652                 j = 0;
653             }
654 
655             end_index = MIN((end_offset - first_offset_covered) /
656                             s->cluster_size,
657                             s->refcount_block_size);
658 
659             for (; j < end_index; j++) {
660                 /* The caller guaranteed us this space would be empty */
661                 assert(s->get_refcount(refblock_data, j) == 0);
662                 s->set_refcount(refblock_data, j, 1);
663             }
664 
665             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
666                                          refblock_data);
667         }
668 
669         qcow2_cache_put(s->refcount_block_cache, &refblock_data);
670     }
671 
672     assert(block_offset == table_offset);
673 
674     /* Write refcount blocks to disk */
675     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
676     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
677     if (ret < 0) {
678         goto fail;
679     }
680 
681     /* Write refcount table to disk */
682     for (i = 0; i < total_refblock_count; i++) {
683         cpu_to_be64s(&new_table[i]);
684     }
685 
686     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
687     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
688         table_size * REFTABLE_ENTRY_SIZE);
689     if (ret < 0) {
690         goto fail;
691     }
692 
693     for (i = 0; i < total_refblock_count; i++) {
694         be64_to_cpus(&new_table[i]);
695     }
696 
697     /* Hook up the new refcount table in the qcow2 header */
698     struct QEMU_PACKED {
699         uint64_t d64;
700         uint32_t d32;
701     } data;
702     data.d64 = cpu_to_be64(table_offset);
703     data.d32 = cpu_to_be32(table_clusters);
704     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
705     ret = bdrv_pwrite_sync(bs->file,
706                            offsetof(QCowHeader, refcount_table_offset),
707                            &data, sizeof(data));
708     if (ret < 0) {
709         goto fail;
710     }
711 
712     /* And switch it in memory */
713     uint64_t old_table_offset = s->refcount_table_offset;
714     uint64_t old_table_size = s->refcount_table_size;
715 
716     g_free(s->refcount_table);
717     s->refcount_table = new_table;
718     s->refcount_table_size = table_size;
719     s->refcount_table_offset = table_offset;
720     update_max_refcount_table_index(s);
721 
722     /* Free old table. */
723     qcow2_free_clusters(bs, old_table_offset,
724                         old_table_size * REFTABLE_ENTRY_SIZE,
725                         QCOW2_DISCARD_OTHER);
726 
727     return end_offset;
728 
729 fail:
730     g_free(new_table);
731     return ret;
732 }
733 
734 void qcow2_process_discards(BlockDriverState *bs, int ret)
735 {
736     BDRVQcow2State *s = bs->opaque;
737     Qcow2DiscardRegion *d, *next;
738 
739     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
740         QTAILQ_REMOVE(&s->discards, d, next);
741 
742         /* Discard is optional, ignore the return value */
743         if (ret >= 0) {
744             int r2 = bdrv_pdiscard(bs->file, d->offset, d->bytes);
745             if (r2 < 0) {
746                 trace_qcow2_process_discards_failed_region(d->offset, d->bytes,
747                                                            r2);
748             }
749         }
750 
751         g_free(d);
752     }
753 }
754 
755 static void update_refcount_discard(BlockDriverState *bs,
756                                     uint64_t offset, uint64_t length)
757 {
758     BDRVQcow2State *s = bs->opaque;
759     Qcow2DiscardRegion *d, *p, *next;
760 
761     QTAILQ_FOREACH(d, &s->discards, next) {
762         uint64_t new_start = MIN(offset, d->offset);
763         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
764 
765         if (new_end - new_start <= length + d->bytes) {
766             /* There can't be any overlap, areas ending up here have no
767              * references any more and therefore shouldn't get freed another
768              * time. */
769             assert(d->bytes + length == new_end - new_start);
770             d->offset = new_start;
771             d->bytes = new_end - new_start;
772             goto found;
773         }
774     }
775 
776     d = g_malloc(sizeof(*d));
777     *d = (Qcow2DiscardRegion) {
778         .bs     = bs,
779         .offset = offset,
780         .bytes  = length,
781     };
782     QTAILQ_INSERT_TAIL(&s->discards, d, next);
783 
784 found:
785     /* Merge discard requests if they are adjacent now */
786     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
787         if (p == d
788             || p->offset > d->offset + d->bytes
789             || d->offset > p->offset + p->bytes)
790         {
791             continue;
792         }
793 
794         /* Still no overlap possible */
795         assert(p->offset == d->offset + d->bytes
796             || d->offset == p->offset + p->bytes);
797 
798         QTAILQ_REMOVE(&s->discards, p, next);
799         d->offset = MIN(d->offset, p->offset);
800         d->bytes += p->bytes;
801         g_free(p);
802     }
803 }
804 
805 /* XXX: cache several refcount block clusters ? */
806 /* @addend is the absolute value of the addend; if @decrease is set, @addend
807  * will be subtracted from the current refcount, otherwise it will be added */
808 static int update_refcount(BlockDriverState *bs,
809                            int64_t offset,
810                            int64_t length,
811                            uint64_t addend,
812                            bool decrease,
813                            enum qcow2_discard_type type)
814 {
815     BDRVQcow2State *s = bs->opaque;
816     int64_t start, last, cluster_offset;
817     void *refcount_block = NULL;
818     int64_t old_table_index = -1;
819     int ret;
820 
821 #ifdef DEBUG_ALLOC2
822     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
823             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
824             addend);
825 #endif
826     if (length < 0) {
827         return -EINVAL;
828     } else if (length == 0) {
829         return 0;
830     }
831 
832     if (decrease) {
833         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
834             s->l2_table_cache);
835     }
836 
837     start = start_of_cluster(s, offset);
838     last = start_of_cluster(s, offset + length - 1);
839     for(cluster_offset = start; cluster_offset <= last;
840         cluster_offset += s->cluster_size)
841     {
842         int block_index;
843         uint64_t refcount;
844         int64_t cluster_index = cluster_offset >> s->cluster_bits;
845         int64_t table_index = cluster_index >> s->refcount_block_bits;
846 
847         /* Load the refcount block and allocate it if needed */
848         if (table_index != old_table_index) {
849             if (refcount_block) {
850                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
851             }
852             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
853             /* If the caller needs to restart the search for free clusters,
854              * try the same ones first to see if they're still free. */
855             if (ret == -EAGAIN) {
856                 if (s->free_cluster_index > (start >> s->cluster_bits)) {
857                     s->free_cluster_index = (start >> s->cluster_bits);
858                 }
859             }
860             if (ret < 0) {
861                 goto fail;
862             }
863         }
864         old_table_index = table_index;
865 
866         qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
867 
868         /* we can update the count and save it */
869         block_index = cluster_index & (s->refcount_block_size - 1);
870 
871         refcount = s->get_refcount(refcount_block, block_index);
872         if (decrease ? (refcount - addend > refcount)
873                      : (refcount + addend < refcount ||
874                         refcount + addend > s->refcount_max))
875         {
876             ret = -EINVAL;
877             goto fail;
878         }
879         if (decrease) {
880             refcount -= addend;
881         } else {
882             refcount += addend;
883         }
884         if (refcount == 0 && cluster_index < s->free_cluster_index) {
885             s->free_cluster_index = cluster_index;
886         }
887         s->set_refcount(refcount_block, block_index, refcount);
888 
889         if (refcount == 0) {
890             void *table;
891 
892             table = qcow2_cache_is_table_offset(s->refcount_block_cache,
893                                                 offset);
894             if (table != NULL) {
895                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
896                 old_table_index = -1;
897                 qcow2_cache_discard(s->refcount_block_cache, table);
898             }
899 
900             table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
901             if (table != NULL) {
902                 qcow2_cache_discard(s->l2_table_cache, table);
903             }
904 
905             if (s->discard_passthrough[type]) {
906                 update_refcount_discard(bs, cluster_offset, s->cluster_size);
907             }
908         }
909     }
910 
911     ret = 0;
912 fail:
913     if (!s->cache_discards) {
914         qcow2_process_discards(bs, ret);
915     }
916 
917     /* Write last changed block to disk */
918     if (refcount_block) {
919         qcow2_cache_put(s->refcount_block_cache, &refcount_block);
920     }
921 
922     /*
923      * Try do undo any updates if an error is returned (This may succeed in
924      * some cases like ENOSPC for allocating a new refcount block)
925      */
926     if (ret < 0) {
927         int dummy;
928         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
929                                 !decrease, QCOW2_DISCARD_NEVER);
930         (void)dummy;
931     }
932 
933     return ret;
934 }
935 
936 /*
937  * Increases or decreases the refcount of a given cluster.
938  *
939  * @addend is the absolute value of the addend; if @decrease is set, @addend
940  * will be subtracted from the current refcount, otherwise it will be added.
941  *
942  * On success 0 is returned; on failure -errno is returned.
943  */
944 int qcow2_update_cluster_refcount(BlockDriverState *bs,
945                                   int64_t cluster_index,
946                                   uint64_t addend, bool decrease,
947                                   enum qcow2_discard_type type)
948 {
949     BDRVQcow2State *s = bs->opaque;
950     int ret;
951 
952     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
953                           decrease, type);
954     if (ret < 0) {
955         return ret;
956     }
957 
958     return 0;
959 }
960 
961 
962 
963 /*********************************************************/
964 /* cluster allocation functions */
965 
966 
967 
968 /* return < 0 if error */
969 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
970                                     uint64_t max)
971 {
972     BDRVQcow2State *s = bs->opaque;
973     uint64_t i, nb_clusters, refcount;
974     int ret;
975 
976     /* We can't allocate clusters if they may still be queued for discard. */
977     if (s->cache_discards) {
978         qcow2_process_discards(bs, 0);
979     }
980 
981     nb_clusters = size_to_clusters(s, size);
982 retry:
983     for(i = 0; i < nb_clusters; i++) {
984         uint64_t next_cluster_index = s->free_cluster_index++;
985         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
986 
987         if (ret < 0) {
988             return ret;
989         } else if (refcount != 0) {
990             goto retry;
991         }
992     }
993 
994     /* Make sure that all offsets in the "allocated" range are representable
995      * in the requested max */
996     if (s->free_cluster_index > 0 &&
997         s->free_cluster_index - 1 > (max >> s->cluster_bits))
998     {
999         return -EFBIG;
1000     }
1001 
1002 #ifdef DEBUG_ALLOC2
1003     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
1004             size,
1005             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
1006 #endif
1007     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
1008 }
1009 
1010 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
1011 {
1012     int64_t offset;
1013     int ret;
1014 
1015     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
1016     do {
1017         offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET);
1018         if (offset < 0) {
1019             return offset;
1020         }
1021 
1022         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1023     } while (ret == -EAGAIN);
1024 
1025     if (ret < 0) {
1026         return ret;
1027     }
1028 
1029     return offset;
1030 }
1031 
1032 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1033                                 int64_t nb_clusters)
1034 {
1035     BDRVQcow2State *s = bs->opaque;
1036     uint64_t cluster_index, refcount;
1037     uint64_t i;
1038     int ret;
1039 
1040     assert(nb_clusters >= 0);
1041     if (nb_clusters == 0) {
1042         return 0;
1043     }
1044 
1045     do {
1046         /* Check how many clusters there are free */
1047         cluster_index = offset >> s->cluster_bits;
1048         for(i = 0; i < nb_clusters; i++) {
1049             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1050             if (ret < 0) {
1051                 return ret;
1052             } else if (refcount != 0) {
1053                 break;
1054             }
1055         }
1056 
1057         /* And then allocate them */
1058         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1059                               QCOW2_DISCARD_NEVER);
1060     } while (ret == -EAGAIN);
1061 
1062     if (ret < 0) {
1063         return ret;
1064     }
1065 
1066     return i;
1067 }
1068 
1069 /* only used to allocate compressed sectors. We try to allocate
1070    contiguous sectors. size must be <= cluster_size */
1071 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1072 {
1073     BDRVQcow2State *s = bs->opaque;
1074     int64_t offset;
1075     size_t free_in_cluster;
1076     int ret;
1077 
1078     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1079     assert(size > 0 && size <= s->cluster_size);
1080     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1081 
1082     offset = s->free_byte_offset;
1083 
1084     if (offset) {
1085         uint64_t refcount;
1086         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1087         if (ret < 0) {
1088             return ret;
1089         }
1090 
1091         if (refcount == s->refcount_max) {
1092             offset = 0;
1093         }
1094     }
1095 
1096     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1097     do {
1098         if (!offset || free_in_cluster < size) {
1099             int64_t new_cluster;
1100 
1101             new_cluster = alloc_clusters_noref(bs, s->cluster_size,
1102                                                MIN(s->cluster_offset_mask,
1103                                                    QCOW_MAX_CLUSTER_OFFSET));
1104             if (new_cluster < 0) {
1105                 return new_cluster;
1106             }
1107 
1108             if (new_cluster == 0) {
1109                 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1110                                         "allocation of compressed cluster "
1111                                         "at offset 0");
1112                 return -EIO;
1113             }
1114 
1115             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1116                 offset = new_cluster;
1117                 free_in_cluster = s->cluster_size;
1118             } else {
1119                 free_in_cluster += s->cluster_size;
1120             }
1121         }
1122 
1123         assert(offset);
1124         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1125         if (ret < 0) {
1126             offset = 0;
1127         }
1128     } while (ret == -EAGAIN);
1129     if (ret < 0) {
1130         return ret;
1131     }
1132 
1133     /* The cluster refcount was incremented; refcount blocks must be flushed
1134      * before the caller's L2 table updates. */
1135     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1136 
1137     s->free_byte_offset = offset + size;
1138     if (!offset_into_cluster(s, s->free_byte_offset)) {
1139         s->free_byte_offset = 0;
1140     }
1141 
1142     return offset;
1143 }
1144 
1145 void qcow2_free_clusters(BlockDriverState *bs,
1146                           int64_t offset, int64_t size,
1147                           enum qcow2_discard_type type)
1148 {
1149     int ret;
1150 
1151     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1152     ret = update_refcount(bs, offset, size, 1, true, type);
1153     if (ret < 0) {
1154         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1155         /* TODO Remember the clusters to free them later and avoid leaking */
1156     }
1157 }
1158 
1159 /*
1160  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1161  * normal cluster, compressed cluster, etc.)
1162  */
1163 void qcow2_free_any_cluster(BlockDriverState *bs, uint64_t l2_entry,
1164                             enum qcow2_discard_type type)
1165 {
1166     BDRVQcow2State *s = bs->opaque;
1167     QCow2ClusterType ctype = qcow2_get_cluster_type(bs, l2_entry);
1168 
1169     if (has_data_file(bs)) {
1170         if (s->discard_passthrough[type] &&
1171             (ctype == QCOW2_CLUSTER_NORMAL ||
1172              ctype == QCOW2_CLUSTER_ZERO_ALLOC))
1173         {
1174             bdrv_pdiscard(s->data_file, l2_entry & L2E_OFFSET_MASK,
1175                           s->cluster_size);
1176         }
1177         return;
1178     }
1179 
1180     switch (ctype) {
1181     case QCOW2_CLUSTER_COMPRESSED:
1182         {
1183             uint64_t coffset;
1184             int csize;
1185 
1186             qcow2_parse_compressed_l2_entry(bs, l2_entry, &coffset, &csize);
1187             qcow2_free_clusters(bs, coffset, csize, type);
1188         }
1189         break;
1190     case QCOW2_CLUSTER_NORMAL:
1191     case QCOW2_CLUSTER_ZERO_ALLOC:
1192         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1193             qcow2_signal_corruption(bs, false, -1, -1,
1194                                     "Cannot free unaligned cluster %#llx",
1195                                     l2_entry & L2E_OFFSET_MASK);
1196         } else {
1197             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1198                                 s->cluster_size, type);
1199         }
1200         break;
1201     case QCOW2_CLUSTER_ZERO_PLAIN:
1202     case QCOW2_CLUSTER_UNALLOCATED:
1203         break;
1204     default:
1205         abort();
1206     }
1207 }
1208 
1209 int coroutine_fn qcow2_write_caches(BlockDriverState *bs)
1210 {
1211     BDRVQcow2State *s = bs->opaque;
1212     int ret;
1213 
1214     ret = qcow2_cache_write(bs, s->l2_table_cache);
1215     if (ret < 0) {
1216         return ret;
1217     }
1218 
1219     if (qcow2_need_accurate_refcounts(s)) {
1220         ret = qcow2_cache_write(bs, s->refcount_block_cache);
1221         if (ret < 0) {
1222             return ret;
1223         }
1224     }
1225 
1226     return 0;
1227 }
1228 
1229 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs)
1230 {
1231     int ret = qcow2_write_caches(bs);
1232     if (ret < 0) {
1233         return ret;
1234     }
1235 
1236     return bdrv_flush(bs->file->bs);
1237 }
1238 
1239 /*********************************************************/
1240 /* snapshots and image creation */
1241 
1242 
1243 
1244 /* update the refcounts of snapshots and the copied flag */
1245 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1246     int64_t l1_table_offset, int l1_size, int addend)
1247 {
1248     BDRVQcow2State *s = bs->opaque;
1249     uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1250     bool l1_allocated = false;
1251     int64_t old_entry, old_l2_offset;
1252     unsigned slice, slice_size2, n_slices;
1253     int i, j, l1_modified = 0;
1254     int ret;
1255 
1256     assert(addend >= -1 && addend <= 1);
1257 
1258     l2_slice = NULL;
1259     l1_table = NULL;
1260     l1_size2 = l1_size * L1E_SIZE;
1261     slice_size2 = s->l2_slice_size * l2_entry_size(s);
1262     n_slices = s->cluster_size / slice_size2;
1263 
1264     s->cache_discards = true;
1265 
1266     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1267      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1268      * when changing this! */
1269     if (l1_table_offset != s->l1_table_offset) {
1270         l1_table = g_try_malloc0(l1_size2);
1271         if (l1_size2 && l1_table == NULL) {
1272             ret = -ENOMEM;
1273             goto fail;
1274         }
1275         l1_allocated = true;
1276 
1277         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1278         if (ret < 0) {
1279             goto fail;
1280         }
1281 
1282         for (i = 0; i < l1_size; i++) {
1283             be64_to_cpus(&l1_table[i]);
1284         }
1285     } else {
1286         assert(l1_size == s->l1_size);
1287         l1_table = s->l1_table;
1288         l1_allocated = false;
1289     }
1290 
1291     for (i = 0; i < l1_size; i++) {
1292         l2_offset = l1_table[i];
1293         if (l2_offset) {
1294             old_l2_offset = l2_offset;
1295             l2_offset &= L1E_OFFSET_MASK;
1296 
1297             if (offset_into_cluster(s, l2_offset)) {
1298                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1299                                         PRIx64 " unaligned (L1 index: %#x)",
1300                                         l2_offset, i);
1301                 ret = -EIO;
1302                 goto fail;
1303             }
1304 
1305             for (slice = 0; slice < n_slices; slice++) {
1306                 ret = qcow2_cache_get(bs, s->l2_table_cache,
1307                                       l2_offset + slice * slice_size2,
1308                                       (void **) &l2_slice);
1309                 if (ret < 0) {
1310                     goto fail;
1311                 }
1312 
1313                 for (j = 0; j < s->l2_slice_size; j++) {
1314                     uint64_t cluster_index;
1315                     uint64_t offset;
1316 
1317                     entry = get_l2_entry(s, l2_slice, j);
1318                     old_entry = entry;
1319                     entry &= ~QCOW_OFLAG_COPIED;
1320                     offset = entry & L2E_OFFSET_MASK;
1321 
1322                     switch (qcow2_get_cluster_type(bs, entry)) {
1323                     case QCOW2_CLUSTER_COMPRESSED:
1324                         if (addend != 0) {
1325                             uint64_t coffset;
1326                             int csize;
1327 
1328                             qcow2_parse_compressed_l2_entry(bs, entry,
1329                                                             &coffset, &csize);
1330                             ret = update_refcount(
1331                                 bs, coffset, csize,
1332                                 abs(addend), addend < 0,
1333                                 QCOW2_DISCARD_SNAPSHOT);
1334                             if (ret < 0) {
1335                                 goto fail;
1336                             }
1337                         }
1338                         /* compressed clusters are never modified */
1339                         refcount = 2;
1340                         break;
1341 
1342                     case QCOW2_CLUSTER_NORMAL:
1343                     case QCOW2_CLUSTER_ZERO_ALLOC:
1344                         if (offset_into_cluster(s, offset)) {
1345                             /* Here l2_index means table (not slice) index */
1346                             int l2_index = slice * s->l2_slice_size + j;
1347                             qcow2_signal_corruption(
1348                                 bs, true, -1, -1, "Cluster "
1349                                 "allocation offset %#" PRIx64
1350                                 " unaligned (L2 offset: %#"
1351                                 PRIx64 ", L2 index: %#x)",
1352                                 offset, l2_offset, l2_index);
1353                             ret = -EIO;
1354                             goto fail;
1355                         }
1356 
1357                         cluster_index = offset >> s->cluster_bits;
1358                         assert(cluster_index);
1359                         if (addend != 0) {
1360                             ret = qcow2_update_cluster_refcount(
1361                                 bs, cluster_index, abs(addend), addend < 0,
1362                                 QCOW2_DISCARD_SNAPSHOT);
1363                             if (ret < 0) {
1364                                 goto fail;
1365                             }
1366                         }
1367 
1368                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1369                         if (ret < 0) {
1370                             goto fail;
1371                         }
1372                         break;
1373 
1374                     case QCOW2_CLUSTER_ZERO_PLAIN:
1375                     case QCOW2_CLUSTER_UNALLOCATED:
1376                         refcount = 0;
1377                         break;
1378 
1379                     default:
1380                         abort();
1381                     }
1382 
1383                     if (refcount == 1) {
1384                         entry |= QCOW_OFLAG_COPIED;
1385                     }
1386                     if (entry != old_entry) {
1387                         if (addend > 0) {
1388                             qcow2_cache_set_dependency(bs, s->l2_table_cache,
1389                                                        s->refcount_block_cache);
1390                         }
1391                         set_l2_entry(s, l2_slice, j, entry);
1392                         qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1393                                                      l2_slice);
1394                     }
1395                 }
1396 
1397                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1398             }
1399 
1400             if (addend != 0) {
1401                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1402                                                         s->cluster_bits,
1403                                                     abs(addend), addend < 0,
1404                                                     QCOW2_DISCARD_SNAPSHOT);
1405                 if (ret < 0) {
1406                     goto fail;
1407                 }
1408             }
1409             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1410                                      &refcount);
1411             if (ret < 0) {
1412                 goto fail;
1413             } else if (refcount == 1) {
1414                 l2_offset |= QCOW_OFLAG_COPIED;
1415             }
1416             if (l2_offset != old_l2_offset) {
1417                 l1_table[i] = l2_offset;
1418                 l1_modified = 1;
1419             }
1420         }
1421     }
1422 
1423     ret = bdrv_flush(bs);
1424 fail:
1425     if (l2_slice) {
1426         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1427     }
1428 
1429     s->cache_discards = false;
1430     qcow2_process_discards(bs, ret);
1431 
1432     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1433     if (ret == 0 && addend >= 0 && l1_modified) {
1434         for (i = 0; i < l1_size; i++) {
1435             cpu_to_be64s(&l1_table[i]);
1436         }
1437 
1438         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1439                                l1_table, l1_size2);
1440 
1441         for (i = 0; i < l1_size; i++) {
1442             be64_to_cpus(&l1_table[i]);
1443         }
1444     }
1445     if (l1_allocated)
1446         g_free(l1_table);
1447     return ret;
1448 }
1449 
1450 
1451 
1452 
1453 /*********************************************************/
1454 /* refcount checking functions */
1455 
1456 
1457 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1458 {
1459     /* This assertion holds because there is no way we can address more than
1460      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1461      * offsets have to be representable in bytes); due to every cluster
1462      * corresponding to one refcount entry, we are well below that limit */
1463     assert(entries < (UINT64_C(1) << (64 - 9)));
1464 
1465     /* Thanks to the assertion this will not overflow, because
1466      * s->refcount_order < 7.
1467      * (note: x << s->refcount_order == x * s->refcount_bits) */
1468     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1469 }
1470 
1471 /**
1472  * Reallocates *array so that it can hold new_size entries. *size must contain
1473  * the current number of entries in *array. If the reallocation fails, *array
1474  * and *size will not be modified and -errno will be returned. If the
1475  * reallocation is successful, *array will be set to the new buffer, *size
1476  * will be set to new_size and 0 will be returned. The size of the reallocated
1477  * refcount array buffer will be aligned to a cluster boundary, and the newly
1478  * allocated area will be zeroed.
1479  */
1480 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1481                                   int64_t *size, int64_t new_size)
1482 {
1483     int64_t old_byte_size, new_byte_size;
1484     void *new_ptr;
1485 
1486     /* Round to clusters so the array can be directly written to disk */
1487     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1488                     * s->cluster_size;
1489     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1490                     * s->cluster_size;
1491 
1492     if (new_byte_size == old_byte_size) {
1493         *size = new_size;
1494         return 0;
1495     }
1496 
1497     assert(new_byte_size > 0);
1498 
1499     if (new_byte_size > SIZE_MAX) {
1500         return -ENOMEM;
1501     }
1502 
1503     new_ptr = g_try_realloc(*array, new_byte_size);
1504     if (!new_ptr) {
1505         return -ENOMEM;
1506     }
1507 
1508     if (new_byte_size > old_byte_size) {
1509         memset((char *)new_ptr + old_byte_size, 0,
1510                new_byte_size - old_byte_size);
1511     }
1512 
1513     *array = new_ptr;
1514     *size  = new_size;
1515 
1516     return 0;
1517 }
1518 
1519 /*
1520  * Increases the refcount for a range of clusters in a given refcount table.
1521  * This is used to construct a temporary refcount table out of L1 and L2 tables
1522  * which can be compared to the refcount table saved in the image.
1523  *
1524  * Modifies the number of errors in res.
1525  */
1526 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1527                              void **refcount_table,
1528                              int64_t *refcount_table_size,
1529                              int64_t offset, int64_t size)
1530 {
1531     BDRVQcow2State *s = bs->opaque;
1532     uint64_t start, last, cluster_offset, k, refcount;
1533     int64_t file_len;
1534     int ret;
1535 
1536     if (size <= 0) {
1537         return 0;
1538     }
1539 
1540     file_len = bdrv_getlength(bs->file->bs);
1541     if (file_len < 0) {
1542         return file_len;
1543     }
1544 
1545     /*
1546      * Last cluster of qcow2 image may be semi-allocated, so it may be OK to
1547      * reference some space after file end but it should be less than one
1548      * cluster.
1549      */
1550     if (offset + size - file_len >= s->cluster_size) {
1551         fprintf(stderr, "ERROR: counting reference for region exceeding the "
1552                 "end of the file by one cluster or more: offset 0x%" PRIx64
1553                 " size 0x%" PRIx64 "\n", offset, size);
1554         res->corruptions++;
1555         return 0;
1556     }
1557 
1558     start = start_of_cluster(s, offset);
1559     last = start_of_cluster(s, offset + size - 1);
1560     for(cluster_offset = start; cluster_offset <= last;
1561         cluster_offset += s->cluster_size) {
1562         k = cluster_offset >> s->cluster_bits;
1563         if (k >= *refcount_table_size) {
1564             ret = realloc_refcount_array(s, refcount_table,
1565                                          refcount_table_size, k + 1);
1566             if (ret < 0) {
1567                 res->check_errors++;
1568                 return ret;
1569             }
1570         }
1571 
1572         refcount = s->get_refcount(*refcount_table, k);
1573         if (refcount == s->refcount_max) {
1574             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1575                     "\n", cluster_offset);
1576             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1577                     "width or qemu-img convert to create a clean copy if the "
1578                     "image cannot be opened for writing\n");
1579             res->corruptions++;
1580             continue;
1581         }
1582         s->set_refcount(*refcount_table, k, refcount + 1);
1583     }
1584 
1585     return 0;
1586 }
1587 
1588 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1589 enum {
1590     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1591 };
1592 
1593 /*
1594  * Fix L2 entry by making it QCOW2_CLUSTER_ZERO_PLAIN (or making all its present
1595  * subclusters QCOW2_SUBCLUSTER_ZERO_PLAIN).
1596  *
1597  * This function decrements res->corruptions on success, so the caller is
1598  * responsible to increment res->corruptions prior to the call.
1599  *
1600  * On failure in-memory @l2_table may be modified.
1601  */
1602 static int fix_l2_entry_by_zero(BlockDriverState *bs, BdrvCheckResult *res,
1603                                 uint64_t l2_offset,
1604                                 uint64_t *l2_table, int l2_index, bool active,
1605                                 bool *metadata_overlap)
1606 {
1607     BDRVQcow2State *s = bs->opaque;
1608     int ret;
1609     int idx = l2_index * (l2_entry_size(s) / sizeof(uint64_t));
1610     uint64_t l2e_offset = l2_offset + (uint64_t)l2_index * l2_entry_size(s);
1611     int ign = active ? QCOW2_OL_ACTIVE_L2 : QCOW2_OL_INACTIVE_L2;
1612 
1613     if (has_subclusters(s)) {
1614         uint64_t l2_bitmap = get_l2_bitmap(s, l2_table, l2_index);
1615 
1616         /* Allocated subclusters become zero */
1617         l2_bitmap |= l2_bitmap << 32;
1618         l2_bitmap &= QCOW_L2_BITMAP_ALL_ZEROES;
1619 
1620         set_l2_bitmap(s, l2_table, l2_index, l2_bitmap);
1621         set_l2_entry(s, l2_table, l2_index, 0);
1622     } else {
1623         set_l2_entry(s, l2_table, l2_index, QCOW_OFLAG_ZERO);
1624     }
1625 
1626     ret = qcow2_pre_write_overlap_check(bs, ign, l2e_offset, l2_entry_size(s),
1627                                         false);
1628     if (metadata_overlap) {
1629         *metadata_overlap = ret < 0;
1630     }
1631     if (ret < 0) {
1632         fprintf(stderr, "ERROR: Overlap check failed\n");
1633         goto fail;
1634     }
1635 
1636     ret = bdrv_pwrite_sync(bs->file, l2e_offset, &l2_table[idx],
1637                            l2_entry_size(s));
1638     if (ret < 0) {
1639         fprintf(stderr, "ERROR: Failed to overwrite L2 "
1640                 "table entry: %s\n", strerror(-ret));
1641         goto fail;
1642     }
1643 
1644     res->corruptions--;
1645     res->corruptions_fixed++;
1646     return 0;
1647 
1648 fail:
1649     res->check_errors++;
1650     return ret;
1651 }
1652 
1653 /*
1654  * Increases the refcount in the given refcount table for the all clusters
1655  * referenced in the L2 table. While doing so, performs some checks on L2
1656  * entries.
1657  *
1658  * Returns the number of errors found by the checks or -errno if an internal
1659  * error occurred.
1660  */
1661 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1662                               void **refcount_table,
1663                               int64_t *refcount_table_size, int64_t l2_offset,
1664                               int flags, BdrvCheckMode fix, bool active)
1665 {
1666     BDRVQcow2State *s = bs->opaque;
1667     uint64_t l2_entry, l2_bitmap;
1668     uint64_t next_contiguous_offset = 0;
1669     int i, ret;
1670     size_t l2_size_bytes = s->l2_size * l2_entry_size(s);
1671     g_autofree uint64_t *l2_table = g_malloc(l2_size_bytes);
1672     bool metadata_overlap;
1673 
1674     /* Read L2 table from disk */
1675     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size_bytes);
1676     if (ret < 0) {
1677         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1678         res->check_errors++;
1679         return ret;
1680     }
1681 
1682     /* Do the actual checks */
1683     for (i = 0; i < s->l2_size; i++) {
1684         uint64_t coffset;
1685         int csize;
1686         QCow2ClusterType type;
1687 
1688         l2_entry = get_l2_entry(s, l2_table, i);
1689         l2_bitmap = get_l2_bitmap(s, l2_table, i);
1690         type = qcow2_get_cluster_type(bs, l2_entry);
1691 
1692         if (type != QCOW2_CLUSTER_COMPRESSED) {
1693             /* Check reserved bits of Standard Cluster Descriptor */
1694             if (l2_entry & L2E_STD_RESERVED_MASK) {
1695                 fprintf(stderr, "ERROR found l2 entry with reserved bits set: "
1696                         "%" PRIx64 "\n", l2_entry);
1697                 res->corruptions++;
1698             }
1699         }
1700 
1701         switch (type) {
1702         case QCOW2_CLUSTER_COMPRESSED:
1703             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1704             if (l2_entry & QCOW_OFLAG_COPIED) {
1705                 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
1706                     "copied flag must never be set for compressed "
1707                     "clusters\n", l2_entry & s->cluster_offset_mask);
1708                 l2_entry &= ~QCOW_OFLAG_COPIED;
1709                 res->corruptions++;
1710             }
1711 
1712             if (has_data_file(bs)) {
1713                 fprintf(stderr, "ERROR compressed cluster %d with data file, "
1714                         "entry=0x%" PRIx64 "\n", i, l2_entry);
1715                 res->corruptions++;
1716                 break;
1717             }
1718 
1719             if (l2_bitmap) {
1720                 fprintf(stderr, "ERROR compressed cluster %d with non-zero "
1721                         "subcluster allocation bitmap, entry=0x%" PRIx64 "\n",
1722                         i, l2_entry);
1723                 res->corruptions++;
1724                 break;
1725             }
1726 
1727             /* Mark cluster as used */
1728             qcow2_parse_compressed_l2_entry(bs, l2_entry, &coffset, &csize);
1729             ret = qcow2_inc_refcounts_imrt(
1730                 bs, res, refcount_table, refcount_table_size, coffset, csize);
1731             if (ret < 0) {
1732                 return ret;
1733             }
1734 
1735             if (flags & CHECK_FRAG_INFO) {
1736                 res->bfi.allocated_clusters++;
1737                 res->bfi.compressed_clusters++;
1738 
1739                 /*
1740                  * Compressed clusters are fragmented by nature.  Since they
1741                  * take up sub-sector space but we only have sector granularity
1742                  * I/O we need to re-read the same sectors even for adjacent
1743                  * compressed clusters.
1744                  */
1745                 res->bfi.fragmented_clusters++;
1746             }
1747             break;
1748 
1749         case QCOW2_CLUSTER_ZERO_ALLOC:
1750         case QCOW2_CLUSTER_NORMAL:
1751         {
1752             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1753 
1754             if ((l2_bitmap >> 32) & l2_bitmap) {
1755                 res->corruptions++;
1756                 fprintf(stderr, "ERROR offset=%" PRIx64 ": Allocated "
1757                         "cluster has corrupted subcluster allocation bitmap\n",
1758                         offset);
1759             }
1760 
1761             /* Correct offsets are cluster aligned */
1762             if (offset_into_cluster(s, offset)) {
1763                 bool contains_data;
1764                 res->corruptions++;
1765 
1766                 if (has_subclusters(s)) {
1767                     contains_data = (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC);
1768                 } else {
1769                     contains_data = !(l2_entry & QCOW_OFLAG_ZERO);
1770                 }
1771 
1772                 if (!contains_data) {
1773                     fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated "
1774                             "cluster is not properly aligned; L2 entry "
1775                             "corrupted.\n",
1776                             fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1777                             offset);
1778                     if (fix & BDRV_FIX_ERRORS) {
1779                         ret = fix_l2_entry_by_zero(bs, res, l2_offset,
1780                                                    l2_table, i, active,
1781                                                    &metadata_overlap);
1782                         if (metadata_overlap) {
1783                             /*
1784                              * Something is seriously wrong, so abort checking
1785                              * this L2 table.
1786                              */
1787                             return ret;
1788                         }
1789 
1790                         if (ret == 0) {
1791                             /*
1792                              * Skip marking the cluster as used
1793                              * (it is unused now).
1794                              */
1795                             continue;
1796                         }
1797 
1798                         /*
1799                          * Failed to fix.
1800                          * Do not abort, continue checking the rest of this
1801                          * L2 table's entries.
1802                          */
1803                     }
1804                 } else {
1805                     fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1806                         "not properly aligned; L2 entry corrupted.\n", offset);
1807                 }
1808             }
1809 
1810             if (flags & CHECK_FRAG_INFO) {
1811                 res->bfi.allocated_clusters++;
1812                 if (next_contiguous_offset &&
1813                     offset != next_contiguous_offset) {
1814                     res->bfi.fragmented_clusters++;
1815                 }
1816                 next_contiguous_offset = offset + s->cluster_size;
1817             }
1818 
1819             /* Mark cluster as used */
1820             if (!has_data_file(bs)) {
1821                 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table,
1822                                                refcount_table_size,
1823                                                offset, s->cluster_size);
1824                 if (ret < 0) {
1825                     return ret;
1826                 }
1827             }
1828             break;
1829         }
1830 
1831         case QCOW2_CLUSTER_ZERO_PLAIN:
1832             /* Impossible when image has subclusters */
1833             assert(!l2_bitmap);
1834             break;
1835 
1836         case QCOW2_CLUSTER_UNALLOCATED:
1837             if (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC) {
1838                 res->corruptions++;
1839                 fprintf(stderr, "ERROR: Unallocated "
1840                         "cluster has non-zero subcluster allocation map\n");
1841             }
1842             break;
1843 
1844         default:
1845             abort();
1846         }
1847     }
1848 
1849     return 0;
1850 }
1851 
1852 /*
1853  * Increases the refcount for the L1 table, its L2 tables and all referenced
1854  * clusters in the given refcount table. While doing so, performs some checks
1855  * on L1 and L2 entries.
1856  *
1857  * Returns the number of errors found by the checks or -errno if an internal
1858  * error occurred.
1859  */
1860 static int check_refcounts_l1(BlockDriverState *bs,
1861                               BdrvCheckResult *res,
1862                               void **refcount_table,
1863                               int64_t *refcount_table_size,
1864                               int64_t l1_table_offset, int l1_size,
1865                               int flags, BdrvCheckMode fix, bool active)
1866 {
1867     BDRVQcow2State *s = bs->opaque;
1868     size_t l1_size_bytes = l1_size * L1E_SIZE;
1869     g_autofree uint64_t *l1_table = NULL;
1870     uint64_t l2_offset;
1871     int i, ret;
1872 
1873     if (!l1_size) {
1874         return 0;
1875     }
1876 
1877     /* Mark L1 table as used */
1878     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1879                                    l1_table_offset, l1_size_bytes);
1880     if (ret < 0) {
1881         return ret;
1882     }
1883 
1884     l1_table = g_try_malloc(l1_size_bytes);
1885     if (l1_table == NULL) {
1886         res->check_errors++;
1887         return -ENOMEM;
1888     }
1889 
1890     /* Read L1 table entries from disk */
1891     ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size_bytes);
1892     if (ret < 0) {
1893         fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1894         res->check_errors++;
1895         return ret;
1896     }
1897 
1898     for (i = 0; i < l1_size; i++) {
1899         be64_to_cpus(&l1_table[i]);
1900     }
1901 
1902     /* Do the actual checks */
1903     for (i = 0; i < l1_size; i++) {
1904         if (!l1_table[i]) {
1905             continue;
1906         }
1907 
1908         if (l1_table[i] & L1E_RESERVED_MASK) {
1909             fprintf(stderr, "ERROR found L1 entry with reserved bits set: "
1910                     "%" PRIx64 "\n", l1_table[i]);
1911             res->corruptions++;
1912         }
1913 
1914         l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1915 
1916         /* Mark L2 table as used */
1917         ret = qcow2_inc_refcounts_imrt(bs, res,
1918                                        refcount_table, refcount_table_size,
1919                                        l2_offset, s->cluster_size);
1920         if (ret < 0) {
1921             return ret;
1922         }
1923 
1924         /* L2 tables are cluster aligned */
1925         if (offset_into_cluster(s, l2_offset)) {
1926             fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1927                 "cluster aligned; L1 entry corrupted\n", l2_offset);
1928             res->corruptions++;
1929         }
1930 
1931         /* Process and check L2 entries */
1932         ret = check_refcounts_l2(bs, res, refcount_table,
1933                                  refcount_table_size, l2_offset, flags,
1934                                  fix, active);
1935         if (ret < 0) {
1936             return ret;
1937         }
1938     }
1939 
1940     return 0;
1941 }
1942 
1943 /*
1944  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1945  *
1946  * This function does not print an error message nor does it increment
1947  * check_errors if qcow2_get_refcount fails (this is because such an error will
1948  * have been already detected and sufficiently signaled by the calling function
1949  * (qcow2_check_refcounts) by the time this function is called).
1950  */
1951 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1952                               BdrvCheckMode fix)
1953 {
1954     BDRVQcow2State *s = bs->opaque;
1955     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1956     int ret;
1957     uint64_t refcount;
1958     int i, j;
1959     bool repair;
1960 
1961     if (fix & BDRV_FIX_ERRORS) {
1962         /* Always repair */
1963         repair = true;
1964     } else if (fix & BDRV_FIX_LEAKS) {
1965         /* Repair only if that seems safe: This function is always
1966          * called after the refcounts have been fixed, so the refcount
1967          * is accurate if that repair was successful */
1968         repair = !res->check_errors && !res->corruptions && !res->leaks;
1969     } else {
1970         repair = false;
1971     }
1972 
1973     for (i = 0; i < s->l1_size; i++) {
1974         uint64_t l1_entry = s->l1_table[i];
1975         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1976         int l2_dirty = 0;
1977 
1978         if (!l2_offset) {
1979             continue;
1980         }
1981 
1982         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1983                                  &refcount);
1984         if (ret < 0) {
1985             /* don't print message nor increment check_errors */
1986             continue;
1987         }
1988         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1989             res->corruptions++;
1990             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1991                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1992                     repair ? "Repairing" : "ERROR", i, l1_entry, refcount);
1993             if (repair) {
1994                 s->l1_table[i] = refcount == 1
1995                                ? l1_entry |  QCOW_OFLAG_COPIED
1996                                : l1_entry & ~QCOW_OFLAG_COPIED;
1997                 ret = qcow2_write_l1_entry(bs, i);
1998                 if (ret < 0) {
1999                     res->check_errors++;
2000                     goto fail;
2001                 }
2002                 res->corruptions--;
2003                 res->corruptions_fixed++;
2004             }
2005         }
2006 
2007         ret = bdrv_pread(bs->file, l2_offset, l2_table,
2008                          s->l2_size * l2_entry_size(s));
2009         if (ret < 0) {
2010             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
2011                     strerror(-ret));
2012             res->check_errors++;
2013             goto fail;
2014         }
2015 
2016         for (j = 0; j < s->l2_size; j++) {
2017             uint64_t l2_entry = get_l2_entry(s, l2_table, j);
2018             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
2019             QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
2020 
2021             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
2022                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
2023                 if (has_data_file(bs)) {
2024                     refcount = 1;
2025                 } else {
2026                     ret = qcow2_get_refcount(bs,
2027                                              data_offset >> s->cluster_bits,
2028                                              &refcount);
2029                     if (ret < 0) {
2030                         /* don't print message nor increment check_errors */
2031                         continue;
2032                     }
2033                 }
2034                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
2035                     res->corruptions++;
2036                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
2037                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
2038                             repair ? "Repairing" : "ERROR", l2_entry, refcount);
2039                     if (repair) {
2040                         set_l2_entry(s, l2_table, j,
2041                                      refcount == 1 ?
2042                                      l2_entry |  QCOW_OFLAG_COPIED :
2043                                      l2_entry & ~QCOW_OFLAG_COPIED);
2044                         l2_dirty++;
2045                     }
2046                 }
2047             }
2048         }
2049 
2050         if (l2_dirty > 0) {
2051             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
2052                                                 l2_offset, s->cluster_size,
2053                                                 false);
2054             if (ret < 0) {
2055                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
2056                         "overlap check failed: %s\n", strerror(-ret));
2057                 res->check_errors++;
2058                 goto fail;
2059             }
2060 
2061             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
2062                               s->cluster_size);
2063             if (ret < 0) {
2064                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
2065                         strerror(-ret));
2066                 res->check_errors++;
2067                 goto fail;
2068             }
2069             res->corruptions -= l2_dirty;
2070             res->corruptions_fixed += l2_dirty;
2071         }
2072     }
2073 
2074     ret = 0;
2075 
2076 fail:
2077     qemu_vfree(l2_table);
2078     return ret;
2079 }
2080 
2081 /*
2082  * Checks consistency of refblocks and accounts for each refblock in
2083  * *refcount_table.
2084  */
2085 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
2086                            BdrvCheckMode fix, bool *rebuild,
2087                            void **refcount_table, int64_t *nb_clusters)
2088 {
2089     BDRVQcow2State *s = bs->opaque;
2090     int64_t i, size;
2091     int ret;
2092 
2093     for(i = 0; i < s->refcount_table_size; i++) {
2094         uint64_t offset, cluster;
2095         offset = s->refcount_table[i] & REFT_OFFSET_MASK;
2096         cluster = offset >> s->cluster_bits;
2097 
2098         if (s->refcount_table[i] & REFT_RESERVED_MASK) {
2099             fprintf(stderr, "ERROR refcount table entry %" PRId64 " has "
2100                     "reserved bits set\n", i);
2101             res->corruptions++;
2102             *rebuild = true;
2103             continue;
2104         }
2105 
2106         /* Refcount blocks are cluster aligned */
2107         if (offset_into_cluster(s, offset)) {
2108             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
2109                 "cluster aligned; refcount table entry corrupted\n", i);
2110             res->corruptions++;
2111             *rebuild = true;
2112             continue;
2113         }
2114 
2115         if (cluster >= *nb_clusters) {
2116             res->corruptions++;
2117             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
2118                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
2119 
2120             if (fix & BDRV_FIX_ERRORS) {
2121                 int64_t new_nb_clusters;
2122                 Error *local_err = NULL;
2123 
2124                 if (offset > INT64_MAX - s->cluster_size) {
2125                     ret = -EINVAL;
2126                     goto resize_fail;
2127                 }
2128 
2129                 ret = bdrv_truncate(bs->file, offset + s->cluster_size, false,
2130                                     PREALLOC_MODE_OFF, 0, &local_err);
2131                 if (ret < 0) {
2132                     error_report_err(local_err);
2133                     goto resize_fail;
2134                 }
2135                 size = bdrv_getlength(bs->file->bs);
2136                 if (size < 0) {
2137                     ret = size;
2138                     goto resize_fail;
2139                 }
2140 
2141                 new_nb_clusters = size_to_clusters(s, size);
2142                 assert(new_nb_clusters >= *nb_clusters);
2143 
2144                 ret = realloc_refcount_array(s, refcount_table,
2145                                              nb_clusters, new_nb_clusters);
2146                 if (ret < 0) {
2147                     res->check_errors++;
2148                     return ret;
2149                 }
2150 
2151                 if (cluster >= *nb_clusters) {
2152                     ret = -EINVAL;
2153                     goto resize_fail;
2154                 }
2155 
2156                 res->corruptions--;
2157                 res->corruptions_fixed++;
2158                 ret = qcow2_inc_refcounts_imrt(bs, res,
2159                                                refcount_table, nb_clusters,
2160                                                offset, s->cluster_size);
2161                 if (ret < 0) {
2162                     return ret;
2163                 }
2164                 /* No need to check whether the refcount is now greater than 1:
2165                  * This area was just allocated and zeroed, so it can only be
2166                  * exactly 1 after qcow2_inc_refcounts_imrt() */
2167                 continue;
2168 
2169 resize_fail:
2170                 *rebuild = true;
2171                 fprintf(stderr, "ERROR could not resize image: %s\n",
2172                         strerror(-ret));
2173             }
2174             continue;
2175         }
2176 
2177         if (offset != 0) {
2178             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2179                                            offset, s->cluster_size);
2180             if (ret < 0) {
2181                 return ret;
2182             }
2183             if (s->get_refcount(*refcount_table, cluster) != 1) {
2184                 fprintf(stderr, "ERROR refcount block %" PRId64
2185                         " refcount=%" PRIu64 "\n", i,
2186                         s->get_refcount(*refcount_table, cluster));
2187                 res->corruptions++;
2188                 *rebuild = true;
2189             }
2190         }
2191     }
2192 
2193     return 0;
2194 }
2195 
2196 /*
2197  * Calculates an in-memory refcount table.
2198  */
2199 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2200                                BdrvCheckMode fix, bool *rebuild,
2201                                void **refcount_table, int64_t *nb_clusters)
2202 {
2203     BDRVQcow2State *s = bs->opaque;
2204     int64_t i;
2205     QCowSnapshot *sn;
2206     int ret;
2207 
2208     if (!*refcount_table) {
2209         int64_t old_size = 0;
2210         ret = realloc_refcount_array(s, refcount_table,
2211                                      &old_size, *nb_clusters);
2212         if (ret < 0) {
2213             res->check_errors++;
2214             return ret;
2215         }
2216     }
2217 
2218     /* header */
2219     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2220                                    0, s->cluster_size);
2221     if (ret < 0) {
2222         return ret;
2223     }
2224 
2225     /* current L1 table */
2226     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2227                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2228                              fix, true);
2229     if (ret < 0) {
2230         return ret;
2231     }
2232 
2233     /* snapshots */
2234     if (has_data_file(bs) && s->nb_snapshots) {
2235         fprintf(stderr, "ERROR %d snapshots in image with data file\n",
2236                 s->nb_snapshots);
2237         res->corruptions++;
2238     }
2239 
2240     for (i = 0; i < s->nb_snapshots; i++) {
2241         sn = s->snapshots + i;
2242         if (offset_into_cluster(s, sn->l1_table_offset)) {
2243             fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": "
2244                     "L1 table is not cluster aligned; snapshot table entry "
2245                     "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset);
2246             res->corruptions++;
2247             continue;
2248         }
2249         if (sn->l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
2250             fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": "
2251                     "L1 table is too large; snapshot table entry corrupted\n",
2252                     sn->id_str, sn->name, sn->l1_size);
2253             res->corruptions++;
2254             continue;
2255         }
2256         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2257                                  sn->l1_table_offset, sn->l1_size, 0, fix,
2258                                  false);
2259         if (ret < 0) {
2260             return ret;
2261         }
2262     }
2263     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2264                                    s->snapshots_offset, s->snapshots_size);
2265     if (ret < 0) {
2266         return ret;
2267     }
2268 
2269     /* refcount data */
2270     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2271                                    s->refcount_table_offset,
2272                                    s->refcount_table_size *
2273                                    REFTABLE_ENTRY_SIZE);
2274     if (ret < 0) {
2275         return ret;
2276     }
2277 
2278     /* encryption */
2279     if (s->crypto_header.length) {
2280         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2281                                        s->crypto_header.offset,
2282                                        s->crypto_header.length);
2283         if (ret < 0) {
2284             return ret;
2285         }
2286     }
2287 
2288     /* bitmaps */
2289     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2290     if (ret < 0) {
2291         return ret;
2292     }
2293 
2294     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2295 }
2296 
2297 /*
2298  * Compares the actual reference count for each cluster in the image against the
2299  * refcount as reported by the refcount structures on-disk.
2300  */
2301 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2302                               BdrvCheckMode fix, bool *rebuild,
2303                               int64_t *highest_cluster,
2304                               void *refcount_table, int64_t nb_clusters)
2305 {
2306     BDRVQcow2State *s = bs->opaque;
2307     int64_t i;
2308     uint64_t refcount1, refcount2;
2309     int ret;
2310 
2311     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2312         ret = qcow2_get_refcount(bs, i, &refcount1);
2313         if (ret < 0) {
2314             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2315                     i, strerror(-ret));
2316             res->check_errors++;
2317             continue;
2318         }
2319 
2320         refcount2 = s->get_refcount(refcount_table, i);
2321 
2322         if (refcount1 > 0 || refcount2 > 0) {
2323             *highest_cluster = i;
2324         }
2325 
2326         if (refcount1 != refcount2) {
2327             /* Check if we're allowed to fix the mismatch */
2328             int *num_fixed = NULL;
2329             if (refcount1 == 0) {
2330                 *rebuild = true;
2331             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2332                 num_fixed = &res->leaks_fixed;
2333             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2334                 num_fixed = &res->corruptions_fixed;
2335             }
2336 
2337             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2338                     " reference=%" PRIu64 "\n",
2339                    num_fixed != NULL     ? "Repairing" :
2340                    refcount1 < refcount2 ? "ERROR" :
2341                                            "Leaked",
2342                    i, refcount1, refcount2);
2343 
2344             if (num_fixed) {
2345                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2346                                       refcount_diff(refcount1, refcount2),
2347                                       refcount1 > refcount2,
2348                                       QCOW2_DISCARD_ALWAYS);
2349                 if (ret >= 0) {
2350                     (*num_fixed)++;
2351                     continue;
2352                 }
2353             }
2354 
2355             /* And if we couldn't, print an error */
2356             if (refcount1 < refcount2) {
2357                 res->corruptions++;
2358             } else {
2359                 res->leaks++;
2360             }
2361         }
2362     }
2363 }
2364 
2365 /*
2366  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2367  * the on-disk refcount structures.
2368  *
2369  * On input, *first_free_cluster tells where to start looking, and need not
2370  * actually be a free cluster; the returned offset will not be before that
2371  * cluster.  On output, *first_free_cluster points to the first gap found, even
2372  * if that gap was too small to be used as the returned offset.
2373  *
2374  * Note that *first_free_cluster is a cluster index whereas the return value is
2375  * an offset.
2376  */
2377 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2378                                    int cluster_count,
2379                                    void **refcount_table,
2380                                    int64_t *imrt_nb_clusters,
2381                                    int64_t *first_free_cluster)
2382 {
2383     BDRVQcow2State *s = bs->opaque;
2384     int64_t cluster = *first_free_cluster, i;
2385     bool first_gap = true;
2386     int contiguous_free_clusters;
2387     int ret;
2388 
2389     /* Starting at *first_free_cluster, find a range of at least cluster_count
2390      * continuously free clusters */
2391     for (contiguous_free_clusters = 0;
2392          cluster < *imrt_nb_clusters &&
2393          contiguous_free_clusters < cluster_count;
2394          cluster++)
2395     {
2396         if (!s->get_refcount(*refcount_table, cluster)) {
2397             contiguous_free_clusters++;
2398             if (first_gap) {
2399                 /* If this is the first free cluster found, update
2400                  * *first_free_cluster accordingly */
2401                 *first_free_cluster = cluster;
2402                 first_gap = false;
2403             }
2404         } else if (contiguous_free_clusters) {
2405             contiguous_free_clusters = 0;
2406         }
2407     }
2408 
2409     /* If contiguous_free_clusters is greater than zero, it contains the number
2410      * of continuously free clusters until the current cluster; the first free
2411      * cluster in the current "gap" is therefore
2412      * cluster - contiguous_free_clusters */
2413 
2414     /* If no such range could be found, grow the in-memory refcount table
2415      * accordingly to append free clusters at the end of the image */
2416     if (contiguous_free_clusters < cluster_count) {
2417         /* contiguous_free_clusters clusters are already empty at the image end;
2418          * we need cluster_count clusters; therefore, we have to allocate
2419          * cluster_count - contiguous_free_clusters new clusters at the end of
2420          * the image (which is the current value of cluster; note that cluster
2421          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2422          * the image end) */
2423         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2424                                      cluster + cluster_count
2425                                      - contiguous_free_clusters);
2426         if (ret < 0) {
2427             return ret;
2428         }
2429     }
2430 
2431     /* Go back to the first free cluster */
2432     cluster -= contiguous_free_clusters;
2433     for (i = 0; i < cluster_count; i++) {
2434         s->set_refcount(*refcount_table, cluster + i, 1);
2435     }
2436 
2437     return cluster << s->cluster_bits;
2438 }
2439 
2440 /*
2441  * Helper function for rebuild_refcount_structure().
2442  *
2443  * Scan the range of clusters [first_cluster, end_cluster) for allocated
2444  * clusters and write all corresponding refblocks to disk.  The refblock
2445  * and allocation data is taken from the in-memory refcount table
2446  * *refcount_table[] (of size *nb_clusters), which is basically one big
2447  * (unlimited size) refblock for the whole image.
2448  *
2449  * For these refblocks, clusters are allocated using said in-memory
2450  * refcount table.  Care is taken that these allocations are reflected
2451  * in the refblocks written to disk.
2452  *
2453  * The refblocks' offsets are written into a reftable, which is
2454  * *on_disk_reftable_ptr[] (of size *on_disk_reftable_entries_ptr).  If
2455  * that reftable is of insufficient size, it will be resized to fit.
2456  * This reftable is not written to disk.
2457  *
2458  * (If *on_disk_reftable_ptr is not NULL, the entries within are assumed
2459  * to point to existing valid refblocks that do not need to be allocated
2460  * again.)
2461  *
2462  * Return whether the on-disk reftable array was resized (true/false),
2463  * or -errno on error.
2464  */
2465 static int rebuild_refcounts_write_refblocks(
2466         BlockDriverState *bs, void **refcount_table, int64_t *nb_clusters,
2467         int64_t first_cluster, int64_t end_cluster,
2468         uint64_t **on_disk_reftable_ptr, uint32_t *on_disk_reftable_entries_ptr,
2469         Error **errp
2470     )
2471 {
2472     BDRVQcow2State *s = bs->opaque;
2473     int64_t cluster;
2474     int64_t refblock_offset, refblock_start, refblock_index;
2475     int64_t first_free_cluster = 0;
2476     uint64_t *on_disk_reftable = *on_disk_reftable_ptr;
2477     uint32_t on_disk_reftable_entries = *on_disk_reftable_entries_ptr;
2478     void *on_disk_refblock;
2479     bool reftable_grown = false;
2480     int ret;
2481 
2482     for (cluster = first_cluster; cluster < end_cluster; cluster++) {
2483         /* Check all clusters to find refblocks that contain non-zero entries */
2484         if (!s->get_refcount(*refcount_table, cluster)) {
2485             continue;
2486         }
2487 
2488         /*
2489          * This cluster is allocated, so we need to create a refblock
2490          * for it.  The data we will write to disk is just the
2491          * respective slice from *refcount_table, so it will contain
2492          * accurate refcounts for all clusters belonging to this
2493          * refblock.  After we have written it, we will therefore skip
2494          * all remaining clusters in this refblock.
2495          */
2496 
2497         refblock_index = cluster >> s->refcount_block_bits;
2498         refblock_start = refblock_index << s->refcount_block_bits;
2499 
2500         if (on_disk_reftable_entries > refblock_index &&
2501             on_disk_reftable[refblock_index])
2502         {
2503             /*
2504              * We can get here after a `goto write_refblocks`: We have a
2505              * reftable from a previous run, and the refblock is already
2506              * allocated.  No need to allocate it again.
2507              */
2508             refblock_offset = on_disk_reftable[refblock_index];
2509         } else {
2510             int64_t refblock_cluster_index;
2511 
2512             /* Don't allocate a cluster in a refblock already written to disk */
2513             if (first_free_cluster < refblock_start) {
2514                 first_free_cluster = refblock_start;
2515             }
2516             refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2517                                                   nb_clusters,
2518                                                   &first_free_cluster);
2519             if (refblock_offset < 0) {
2520                 error_setg_errno(errp, -refblock_offset,
2521                                  "ERROR allocating refblock");
2522                 return refblock_offset;
2523             }
2524 
2525             refblock_cluster_index = refblock_offset / s->cluster_size;
2526             if (refblock_cluster_index >= end_cluster) {
2527                 /*
2528                  * We must write the refblock that holds this refblock's
2529                  * refcount
2530                  */
2531                 end_cluster = refblock_cluster_index + 1;
2532             }
2533 
2534             if (on_disk_reftable_entries <= refblock_index) {
2535                 on_disk_reftable_entries =
2536                     ROUND_UP((refblock_index + 1) * REFTABLE_ENTRY_SIZE,
2537                              s->cluster_size) / REFTABLE_ENTRY_SIZE;
2538                 on_disk_reftable =
2539                     g_try_realloc(on_disk_reftable,
2540                                   on_disk_reftable_entries *
2541                                   REFTABLE_ENTRY_SIZE);
2542                 if (!on_disk_reftable) {
2543                     error_setg(errp, "ERROR allocating reftable memory");
2544                     return -ENOMEM;
2545                 }
2546 
2547                 memset(on_disk_reftable + *on_disk_reftable_entries_ptr, 0,
2548                        (on_disk_reftable_entries -
2549                         *on_disk_reftable_entries_ptr) *
2550                        REFTABLE_ENTRY_SIZE);
2551 
2552                 *on_disk_reftable_ptr = on_disk_reftable;
2553                 *on_disk_reftable_entries_ptr = on_disk_reftable_entries;
2554 
2555                 reftable_grown = true;
2556             } else {
2557                 assert(on_disk_reftable);
2558             }
2559             on_disk_reftable[refblock_index] = refblock_offset;
2560         }
2561 
2562         /* Refblock is allocated, write it to disk */
2563 
2564         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2565                                             s->cluster_size, false);
2566         if (ret < 0) {
2567             error_setg_errno(errp, -ret, "ERROR writing refblock");
2568             return ret;
2569         }
2570 
2571         /*
2572          * The refblock is simply a slice of *refcount_table.
2573          * Note that the size of *refcount_table is always aligned to
2574          * whole clusters, so the write operation will not result in
2575          * out-of-bounds accesses.
2576          */
2577         on_disk_refblock = (void *)((char *) *refcount_table +
2578                                     refblock_index * s->cluster_size);
2579 
2580         ret = bdrv_pwrite(bs->file, refblock_offset, on_disk_refblock,
2581                           s->cluster_size);
2582         if (ret < 0) {
2583             error_setg_errno(errp, -ret, "ERROR writing refblock");
2584             return ret;
2585         }
2586 
2587         /* This refblock is done, skip to its end */
2588         cluster = refblock_start + s->refcount_block_size - 1;
2589     }
2590 
2591     return reftable_grown;
2592 }
2593 
2594 /*
2595  * Creates a new refcount structure based solely on the in-memory information
2596  * given through *refcount_table (this in-memory information is basically just
2597  * the concatenation of all refblocks).  All necessary allocations will be
2598  * reflected in that array.
2599  *
2600  * On success, the old refcount structure is leaked (it will be covered by the
2601  * new refcount structure).
2602  */
2603 static int rebuild_refcount_structure(BlockDriverState *bs,
2604                                       BdrvCheckResult *res,
2605                                       void **refcount_table,
2606                                       int64_t *nb_clusters,
2607                                       Error **errp)
2608 {
2609     BDRVQcow2State *s = bs->opaque;
2610     int64_t reftable_offset = -1;
2611     int64_t reftable_length = 0;
2612     int64_t reftable_clusters;
2613     int64_t refblock_index;
2614     uint32_t on_disk_reftable_entries = 0;
2615     uint64_t *on_disk_reftable = NULL;
2616     int ret = 0;
2617     int reftable_size_changed = 0;
2618     struct {
2619         uint64_t reftable_offset;
2620         uint32_t reftable_clusters;
2621     } QEMU_PACKED reftable_offset_and_clusters;
2622 
2623     qcow2_cache_empty(bs, s->refcount_block_cache);
2624 
2625     /*
2626      * For each refblock containing entries, we try to allocate a
2627      * cluster (in the in-memory refcount table) and write its offset
2628      * into on_disk_reftable[].  We then write the whole refblock to
2629      * disk (as a slice of the in-memory refcount table).
2630      * This is done by rebuild_refcounts_write_refblocks().
2631      *
2632      * Once we have scanned all clusters, we try to find space for the
2633      * reftable.  This will dirty the in-memory refcount table (i.e.
2634      * make it differ from the refblocks we have already written), so we
2635      * need to run rebuild_refcounts_write_refblocks() again for the
2636      * range of clusters where the reftable has been allocated.
2637      *
2638      * This second run might make the reftable grow again, in which case
2639      * we will need to allocate another space for it, which is why we
2640      * repeat all this until the reftable stops growing.
2641      *
2642      * (This loop will terminate, because with every cluster the
2643      * reftable grows, it can accomodate a multitude of more refcounts,
2644      * so that at some point this must be able to cover the reftable
2645      * and all refblocks describing it.)
2646      *
2647      * We then convert the reftable to big-endian and write it to disk.
2648      *
2649      * Note that we never free any reftable allocations.  Doing so would
2650      * needlessly complicate the algorithm: The eventual second check
2651      * run we do will clean up all leaks we have caused.
2652      */
2653 
2654     reftable_size_changed =
2655         rebuild_refcounts_write_refblocks(bs, refcount_table, nb_clusters,
2656                                           0, *nb_clusters,
2657                                           &on_disk_reftable,
2658                                           &on_disk_reftable_entries, errp);
2659     if (reftable_size_changed < 0) {
2660         res->check_errors++;
2661         ret = reftable_size_changed;
2662         goto fail;
2663     }
2664 
2665     /*
2666      * There was no reftable before, so rebuild_refcounts_write_refblocks()
2667      * must have increased its size (from 0 to something).
2668      */
2669     assert(reftable_size_changed);
2670 
2671     do {
2672         int64_t reftable_start_cluster, reftable_end_cluster;
2673         int64_t first_free_cluster = 0;
2674 
2675         reftable_length = on_disk_reftable_entries * REFTABLE_ENTRY_SIZE;
2676         reftable_clusters = size_to_clusters(s, reftable_length);
2677 
2678         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2679                                               refcount_table, nb_clusters,
2680                                               &first_free_cluster);
2681         if (reftable_offset < 0) {
2682             error_setg_errno(errp, -reftable_offset,
2683                              "ERROR allocating reftable");
2684             res->check_errors++;
2685             ret = reftable_offset;
2686             goto fail;
2687         }
2688 
2689         /*
2690          * We need to update the affected refblocks, so re-run the
2691          * write_refblocks loop for the reftable's range of clusters.
2692          */
2693         assert(offset_into_cluster(s, reftable_offset) == 0);
2694         reftable_start_cluster = reftable_offset / s->cluster_size;
2695         reftable_end_cluster = reftable_start_cluster + reftable_clusters;
2696         reftable_size_changed =
2697             rebuild_refcounts_write_refblocks(bs, refcount_table, nb_clusters,
2698                                               reftable_start_cluster,
2699                                               reftable_end_cluster,
2700                                               &on_disk_reftable,
2701                                               &on_disk_reftable_entries, errp);
2702         if (reftable_size_changed < 0) {
2703             res->check_errors++;
2704             ret = reftable_size_changed;
2705             goto fail;
2706         }
2707 
2708         /*
2709          * If the reftable size has changed, we will need to find a new
2710          * allocation, repeating the loop.
2711          */
2712     } while (reftable_size_changed);
2713 
2714     /* The above loop must have run at least once */
2715     assert(reftable_offset >= 0);
2716 
2717     /*
2718      * All allocations are done, all refblocks are written, convert the
2719      * reftable to big-endian and write it to disk.
2720      */
2721 
2722     for (refblock_index = 0; refblock_index < on_disk_reftable_entries;
2723          refblock_index++)
2724     {
2725         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2726     }
2727 
2728     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset, reftable_length,
2729                                         false);
2730     if (ret < 0) {
2731         error_setg_errno(errp, -ret, "ERROR writing reftable");
2732         goto fail;
2733     }
2734 
2735     assert(reftable_length < INT_MAX);
2736     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2737                       reftable_length);
2738     if (ret < 0) {
2739         error_setg_errno(errp, -ret, "ERROR writing reftable");
2740         goto fail;
2741     }
2742 
2743     /* Enter new reftable into the image header */
2744     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2745     reftable_offset_and_clusters.reftable_clusters =
2746         cpu_to_be32(reftable_clusters);
2747     ret = bdrv_pwrite_sync(bs->file,
2748                            offsetof(QCowHeader, refcount_table_offset),
2749                            &reftable_offset_and_clusters,
2750                            sizeof(reftable_offset_and_clusters));
2751     if (ret < 0) {
2752         error_setg_errno(errp, -ret, "ERROR setting reftable");
2753         goto fail;
2754     }
2755 
2756     for (refblock_index = 0; refblock_index < on_disk_reftable_entries;
2757          refblock_index++)
2758     {
2759         be64_to_cpus(&on_disk_reftable[refblock_index]);
2760     }
2761     s->refcount_table = on_disk_reftable;
2762     s->refcount_table_offset = reftable_offset;
2763     s->refcount_table_size = on_disk_reftable_entries;
2764     update_max_refcount_table_index(s);
2765 
2766     return 0;
2767 
2768 fail:
2769     g_free(on_disk_reftable);
2770     return ret;
2771 }
2772 
2773 /*
2774  * Checks an image for refcount consistency.
2775  *
2776  * Returns 0 if no errors are found, the number of errors in case the image is
2777  * detected as corrupted, and -errno when an internal error occurred.
2778  */
2779 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2780                           BdrvCheckMode fix)
2781 {
2782     BDRVQcow2State *s = bs->opaque;
2783     BdrvCheckResult pre_compare_res;
2784     int64_t size, highest_cluster, nb_clusters;
2785     void *refcount_table = NULL;
2786     bool rebuild = false;
2787     int ret;
2788 
2789     size = bdrv_getlength(bs->file->bs);
2790     if (size < 0) {
2791         res->check_errors++;
2792         return size;
2793     }
2794 
2795     nb_clusters = size_to_clusters(s, size);
2796     if (nb_clusters > INT_MAX) {
2797         res->check_errors++;
2798         return -EFBIG;
2799     }
2800 
2801     res->bfi.total_clusters =
2802         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2803 
2804     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2805                               &nb_clusters);
2806     if (ret < 0) {
2807         goto fail;
2808     }
2809 
2810     /* In case we don't need to rebuild the refcount structure (but want to fix
2811      * something), this function is immediately called again, in which case the
2812      * result should be ignored */
2813     pre_compare_res = *res;
2814     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2815                       nb_clusters);
2816 
2817     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2818         BdrvCheckResult old_res = *res;
2819         int fresh_leaks = 0;
2820         Error *local_err = NULL;
2821 
2822         fprintf(stderr, "Rebuilding refcount structure\n");
2823         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2824                                          &nb_clusters, &local_err);
2825         if (ret < 0) {
2826             error_report_err(local_err);
2827             goto fail;
2828         }
2829 
2830         res->corruptions = 0;
2831         res->leaks = 0;
2832 
2833         /* Because the old reftable has been exchanged for a new one the
2834          * references have to be recalculated */
2835         rebuild = false;
2836         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2837         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2838                                   &nb_clusters);
2839         if (ret < 0) {
2840             goto fail;
2841         }
2842 
2843         if (fix & BDRV_FIX_LEAKS) {
2844             /* The old refcount structures are now leaked, fix it; the result
2845              * can be ignored, aside from leaks which were introduced by
2846              * rebuild_refcount_structure() that could not be fixed */
2847             BdrvCheckResult saved_res = *res;
2848             *res = (BdrvCheckResult){ 0 };
2849 
2850             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2851                               &highest_cluster, refcount_table, nb_clusters);
2852             if (rebuild) {
2853                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2854                         "broken\n");
2855             }
2856 
2857             /* Any leaks accounted for here were introduced by
2858              * rebuild_refcount_structure() because that function has created a
2859              * new refcount structure from scratch */
2860             fresh_leaks = res->leaks;
2861             *res = saved_res;
2862         }
2863 
2864         if (res->corruptions < old_res.corruptions) {
2865             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2866         }
2867         if (res->leaks < old_res.leaks) {
2868             res->leaks_fixed += old_res.leaks - res->leaks;
2869         }
2870         res->leaks += fresh_leaks;
2871     } else if (fix) {
2872         if (rebuild) {
2873             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2874             res->check_errors++;
2875             ret = -EIO;
2876             goto fail;
2877         }
2878 
2879         if (res->leaks || res->corruptions) {
2880             *res = pre_compare_res;
2881             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2882                               refcount_table, nb_clusters);
2883         }
2884     }
2885 
2886     /* check OFLAG_COPIED */
2887     ret = check_oflag_copied(bs, res, fix);
2888     if (ret < 0) {
2889         goto fail;
2890     }
2891 
2892     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2893     ret = 0;
2894 
2895 fail:
2896     g_free(refcount_table);
2897 
2898     return ret;
2899 }
2900 
2901 #define overlaps_with(ofs, sz) \
2902     ranges_overlap(offset, size, ofs, sz)
2903 
2904 /*
2905  * Checks if the given offset into the image file is actually free to use by
2906  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2907  * i.e. a sanity check without relying on the refcount tables.
2908  *
2909  * The ign parameter specifies what checks not to perform (being a bitmask of
2910  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2911  *
2912  * Returns:
2913  * - 0 if writing to this offset will not affect the mentioned metadata
2914  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2915  * - a negative value (-errno) indicating an error while performing a check,
2916  *   e.g. when bdrv_pread failed on QCOW2_OL_INACTIVE_L2
2917  */
2918 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2919                                  int64_t size)
2920 {
2921     BDRVQcow2State *s = bs->opaque;
2922     int chk = s->overlap_check & ~ign;
2923     int i, j;
2924 
2925     if (!size) {
2926         return 0;
2927     }
2928 
2929     if (chk & QCOW2_OL_MAIN_HEADER) {
2930         if (offset < s->cluster_size) {
2931             return QCOW2_OL_MAIN_HEADER;
2932         }
2933     }
2934 
2935     /* align range to test to cluster boundaries */
2936     size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2937     offset = start_of_cluster(s, offset);
2938 
2939     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2940         if (overlaps_with(s->l1_table_offset, s->l1_size * L1E_SIZE)) {
2941             return QCOW2_OL_ACTIVE_L1;
2942         }
2943     }
2944 
2945     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2946         if (overlaps_with(s->refcount_table_offset,
2947             s->refcount_table_size * REFTABLE_ENTRY_SIZE)) {
2948             return QCOW2_OL_REFCOUNT_TABLE;
2949         }
2950     }
2951 
2952     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2953         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2954             return QCOW2_OL_SNAPSHOT_TABLE;
2955         }
2956     }
2957 
2958     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2959         for (i = 0; i < s->nb_snapshots; i++) {
2960             if (s->snapshots[i].l1_size &&
2961                 overlaps_with(s->snapshots[i].l1_table_offset,
2962                 s->snapshots[i].l1_size * L1E_SIZE)) {
2963                 return QCOW2_OL_INACTIVE_L1;
2964             }
2965         }
2966     }
2967 
2968     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2969         for (i = 0; i < s->l1_size; i++) {
2970             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2971                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2972                 s->cluster_size)) {
2973                 return QCOW2_OL_ACTIVE_L2;
2974             }
2975         }
2976     }
2977 
2978     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2979         unsigned last_entry = s->max_refcount_table_index;
2980         assert(last_entry < s->refcount_table_size);
2981         assert(last_entry + 1 == s->refcount_table_size ||
2982                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2983         for (i = 0; i <= last_entry; i++) {
2984             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2985                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2986                 s->cluster_size)) {
2987                 return QCOW2_OL_REFCOUNT_BLOCK;
2988             }
2989         }
2990     }
2991 
2992     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2993         for (i = 0; i < s->nb_snapshots; i++) {
2994             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2995             uint32_t l1_sz  = s->snapshots[i].l1_size;
2996             uint64_t l1_sz2 = l1_sz * L1E_SIZE;
2997             uint64_t *l1;
2998             int ret;
2999 
3000             ret = qcow2_validate_table(bs, l1_ofs, l1_sz, L1E_SIZE,
3001                                        QCOW_MAX_L1_SIZE, "", NULL);
3002             if (ret < 0) {
3003                 return ret;
3004             }
3005 
3006             l1 = g_try_malloc(l1_sz2);
3007 
3008             if (l1_sz2 && l1 == NULL) {
3009                 return -ENOMEM;
3010             }
3011 
3012             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
3013             if (ret < 0) {
3014                 g_free(l1);
3015                 return ret;
3016             }
3017 
3018             for (j = 0; j < l1_sz; j++) {
3019                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
3020                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
3021                     g_free(l1);
3022                     return QCOW2_OL_INACTIVE_L2;
3023                 }
3024             }
3025 
3026             g_free(l1);
3027         }
3028     }
3029 
3030     if ((chk & QCOW2_OL_BITMAP_DIRECTORY) &&
3031         (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS))
3032     {
3033         if (overlaps_with(s->bitmap_directory_offset,
3034                           s->bitmap_directory_size))
3035         {
3036             return QCOW2_OL_BITMAP_DIRECTORY;
3037         }
3038     }
3039 
3040     return 0;
3041 }
3042 
3043 static const char *metadata_ol_names[] = {
3044     [QCOW2_OL_MAIN_HEADER_BITNR]        = "qcow2_header",
3045     [QCOW2_OL_ACTIVE_L1_BITNR]          = "active L1 table",
3046     [QCOW2_OL_ACTIVE_L2_BITNR]          = "active L2 table",
3047     [QCOW2_OL_REFCOUNT_TABLE_BITNR]     = "refcount table",
3048     [QCOW2_OL_REFCOUNT_BLOCK_BITNR]     = "refcount block",
3049     [QCOW2_OL_SNAPSHOT_TABLE_BITNR]     = "snapshot table",
3050     [QCOW2_OL_INACTIVE_L1_BITNR]        = "inactive L1 table",
3051     [QCOW2_OL_INACTIVE_L2_BITNR]        = "inactive L2 table",
3052     [QCOW2_OL_BITMAP_DIRECTORY_BITNR]   = "bitmap directory",
3053 };
3054 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names));
3055 
3056 /*
3057  * First performs a check for metadata overlaps (through
3058  * qcow2_check_metadata_overlap); if that fails with a negative value (error
3059  * while performing a check), that value is returned. If an impending overlap
3060  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
3061  * and -EIO returned.
3062  *
3063  * Returns 0 if there were neither overlaps nor errors while checking for
3064  * overlaps; or a negative value (-errno) on error.
3065  */
3066 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
3067                                   int64_t size, bool data_file)
3068 {
3069     int ret;
3070 
3071     if (data_file && has_data_file(bs)) {
3072         return 0;
3073     }
3074 
3075     ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
3076     if (ret < 0) {
3077         return ret;
3078     } else if (ret > 0) {
3079         int metadata_ol_bitnr = ctz32(ret);
3080         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
3081 
3082         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
3083                                 "write on metadata (overlaps with %s)",
3084                                 metadata_ol_names[metadata_ol_bitnr]);
3085         return -EIO;
3086     }
3087 
3088     return 0;
3089 }
3090 
3091 /* A pointer to a function of this type is given to walk_over_reftable(). That
3092  * function will create refblocks and pass them to a RefblockFinishOp once they
3093  * are completed (@refblock). @refblock_empty is set if the refblock is
3094  * completely empty.
3095  *
3096  * Along with the refblock, a corresponding reftable entry is passed, in the
3097  * reftable @reftable (which may be reallocated) at @reftable_index.
3098  *
3099  * @allocated should be set to true if a new cluster has been allocated.
3100  */
3101 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
3102                                uint64_t reftable_index, uint64_t *reftable_size,
3103                                void *refblock, bool refblock_empty,
3104                                bool *allocated, Error **errp);
3105 
3106 /**
3107  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
3108  * it is not empty) and inserts its offset into the new reftable. The size of
3109  * this new reftable is increased as required.
3110  */
3111 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
3112                           uint64_t reftable_index, uint64_t *reftable_size,
3113                           void *refblock, bool refblock_empty, bool *allocated,
3114                           Error **errp)
3115 {
3116     BDRVQcow2State *s = bs->opaque;
3117     int64_t offset;
3118 
3119     if (!refblock_empty && reftable_index >= *reftable_size) {
3120         uint64_t *new_reftable;
3121         uint64_t new_reftable_size;
3122 
3123         new_reftable_size = ROUND_UP(reftable_index + 1,
3124                                      s->cluster_size / REFTABLE_ENTRY_SIZE);
3125         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / REFTABLE_ENTRY_SIZE) {
3126             error_setg(errp,
3127                        "This operation would make the refcount table grow "
3128                        "beyond the maximum size supported by QEMU, aborting");
3129             return -ENOTSUP;
3130         }
3131 
3132         new_reftable = g_try_realloc(*reftable, new_reftable_size *
3133                                                 REFTABLE_ENTRY_SIZE);
3134         if (!new_reftable) {
3135             error_setg(errp, "Failed to increase reftable buffer size");
3136             return -ENOMEM;
3137         }
3138 
3139         memset(new_reftable + *reftable_size, 0,
3140                (new_reftable_size - *reftable_size) * REFTABLE_ENTRY_SIZE);
3141 
3142         *reftable      = new_reftable;
3143         *reftable_size = new_reftable_size;
3144     }
3145 
3146     if (!refblock_empty && !(*reftable)[reftable_index]) {
3147         offset = qcow2_alloc_clusters(bs, s->cluster_size);
3148         if (offset < 0) {
3149             error_setg_errno(errp, -offset, "Failed to allocate refblock");
3150             return offset;
3151         }
3152         (*reftable)[reftable_index] = offset;
3153         *allocated = true;
3154     }
3155 
3156     return 0;
3157 }
3158 
3159 /**
3160  * This "operation" for walk_over_reftable() writes the refblock to disk at the
3161  * offset specified by the new reftable's entry. It does not modify the new
3162  * reftable or change any refcounts.
3163  */
3164 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
3165                           uint64_t reftable_index, uint64_t *reftable_size,
3166                           void *refblock, bool refblock_empty, bool *allocated,
3167                           Error **errp)
3168 {
3169     BDRVQcow2State *s = bs->opaque;
3170     int64_t offset;
3171     int ret;
3172 
3173     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
3174         offset = (*reftable)[reftable_index];
3175 
3176         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size,
3177                                             false);
3178         if (ret < 0) {
3179             error_setg_errno(errp, -ret, "Overlap check failed");
3180             return ret;
3181         }
3182 
3183         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
3184         if (ret < 0) {
3185             error_setg_errno(errp, -ret, "Failed to write refblock");
3186             return ret;
3187         }
3188     } else {
3189         assert(refblock_empty);
3190     }
3191 
3192     return 0;
3193 }
3194 
3195 /**
3196  * This function walks over the existing reftable and every referenced refblock;
3197  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
3198  * create an equal new entry in the passed @new_refblock. Once that
3199  * @new_refblock is completely filled, @operation will be called.
3200  *
3201  * @status_cb and @cb_opaque are used for the amend operation's status callback.
3202  * @index is the index of the walk_over_reftable() calls and @total is the total
3203  * number of walk_over_reftable() calls per amend operation. Both are used for
3204  * calculating the parameters for the status callback.
3205  *
3206  * @allocated is set to true if a new cluster has been allocated.
3207  */
3208 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
3209                               uint64_t *new_reftable_index,
3210                               uint64_t *new_reftable_size,
3211                               void *new_refblock, int new_refblock_size,
3212                               int new_refcount_bits,
3213                               RefblockFinishOp *operation, bool *allocated,
3214                               Qcow2SetRefcountFunc *new_set_refcount,
3215                               BlockDriverAmendStatusCB *status_cb,
3216                               void *cb_opaque, int index, int total,
3217                               Error **errp)
3218 {
3219     BDRVQcow2State *s = bs->opaque;
3220     uint64_t reftable_index;
3221     bool new_refblock_empty = true;
3222     int refblock_index;
3223     int new_refblock_index = 0;
3224     int ret;
3225 
3226     for (reftable_index = 0; reftable_index < s->refcount_table_size;
3227          reftable_index++)
3228     {
3229         uint64_t refblock_offset = s->refcount_table[reftable_index]
3230                                  & REFT_OFFSET_MASK;
3231 
3232         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
3233                   (uint64_t)total * s->refcount_table_size, cb_opaque);
3234 
3235         if (refblock_offset) {
3236             void *refblock;
3237 
3238             if (offset_into_cluster(s, refblock_offset)) {
3239                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
3240                                         PRIx64 " unaligned (reftable index: %#"
3241                                         PRIx64 ")", refblock_offset,
3242                                         reftable_index);
3243                 error_setg(errp,
3244                            "Image is corrupt (unaligned refblock offset)");
3245                 return -EIO;
3246             }
3247 
3248             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
3249                                   &refblock);
3250             if (ret < 0) {
3251                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
3252                 return ret;
3253             }
3254 
3255             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3256                  refblock_index++)
3257             {
3258                 uint64_t refcount;
3259 
3260                 if (new_refblock_index >= new_refblock_size) {
3261                     /* new_refblock is now complete */
3262                     ret = operation(bs, new_reftable, *new_reftable_index,
3263                                     new_reftable_size, new_refblock,
3264                                     new_refblock_empty, allocated, errp);
3265                     if (ret < 0) {
3266                         qcow2_cache_put(s->refcount_block_cache, &refblock);
3267                         return ret;
3268                     }
3269 
3270                     (*new_reftable_index)++;
3271                     new_refblock_index = 0;
3272                     new_refblock_empty = true;
3273                 }
3274 
3275                 refcount = s->get_refcount(refblock, refblock_index);
3276                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
3277                     uint64_t offset;
3278 
3279                     qcow2_cache_put(s->refcount_block_cache, &refblock);
3280 
3281                     offset = ((reftable_index << s->refcount_block_bits)
3282                               + refblock_index) << s->cluster_bits;
3283 
3284                     error_setg(errp, "Cannot decrease refcount entry width to "
3285                                "%i bits: Cluster at offset %#" PRIx64 " has a "
3286                                "refcount of %" PRIu64, new_refcount_bits,
3287                                offset, refcount);
3288                     return -EINVAL;
3289                 }
3290 
3291                 if (new_set_refcount) {
3292                     new_set_refcount(new_refblock, new_refblock_index++,
3293                                      refcount);
3294                 } else {
3295                     new_refblock_index++;
3296                 }
3297                 new_refblock_empty = new_refblock_empty && refcount == 0;
3298             }
3299 
3300             qcow2_cache_put(s->refcount_block_cache, &refblock);
3301         } else {
3302             /* No refblock means every refcount is 0 */
3303             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3304                  refblock_index++)
3305             {
3306                 if (new_refblock_index >= new_refblock_size) {
3307                     /* new_refblock is now complete */
3308                     ret = operation(bs, new_reftable, *new_reftable_index,
3309                                     new_reftable_size, new_refblock,
3310                                     new_refblock_empty, allocated, errp);
3311                     if (ret < 0) {
3312                         return ret;
3313                     }
3314 
3315                     (*new_reftable_index)++;
3316                     new_refblock_index = 0;
3317                     new_refblock_empty = true;
3318                 }
3319 
3320                 if (new_set_refcount) {
3321                     new_set_refcount(new_refblock, new_refblock_index++, 0);
3322                 } else {
3323                     new_refblock_index++;
3324                 }
3325             }
3326         }
3327     }
3328 
3329     if (new_refblock_index > 0) {
3330         /* Complete the potentially existing partially filled final refblock */
3331         if (new_set_refcount) {
3332             for (; new_refblock_index < new_refblock_size;
3333                  new_refblock_index++)
3334             {
3335                 new_set_refcount(new_refblock, new_refblock_index, 0);
3336             }
3337         }
3338 
3339         ret = operation(bs, new_reftable, *new_reftable_index,
3340                         new_reftable_size, new_refblock, new_refblock_empty,
3341                         allocated, errp);
3342         if (ret < 0) {
3343             return ret;
3344         }
3345 
3346         (*new_reftable_index)++;
3347     }
3348 
3349     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
3350               (uint64_t)total * s->refcount_table_size, cb_opaque);
3351 
3352     return 0;
3353 }
3354 
3355 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
3356                                 BlockDriverAmendStatusCB *status_cb,
3357                                 void *cb_opaque, Error **errp)
3358 {
3359     BDRVQcow2State *s = bs->opaque;
3360     Qcow2GetRefcountFunc *new_get_refcount;
3361     Qcow2SetRefcountFunc *new_set_refcount;
3362     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
3363     uint64_t *new_reftable = NULL, new_reftable_size = 0;
3364     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
3365     uint64_t new_reftable_index = 0;
3366     uint64_t i;
3367     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
3368     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
3369     int old_refcount_order;
3370     int walk_index = 0;
3371     int ret;
3372     bool new_allocation;
3373 
3374     assert(s->qcow_version >= 3);
3375     assert(refcount_order >= 0 && refcount_order <= 6);
3376 
3377     /* see qcow2_open() */
3378     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3379 
3380     new_get_refcount = get_refcount_funcs[refcount_order];
3381     new_set_refcount = set_refcount_funcs[refcount_order];
3382 
3383 
3384     do {
3385         int total_walks;
3386 
3387         new_allocation = false;
3388 
3389         /* At least we have to do this walk and the one which writes the
3390          * refblocks; also, at least we have to do this loop here at least
3391          * twice (normally), first to do the allocations, and second to
3392          * determine that everything is correctly allocated, this then makes
3393          * three walks in total */
3394         total_walks = MAX(walk_index + 2, 3);
3395 
3396         /* First, allocate the structures so they are present in the refcount
3397          * structures */
3398         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3399                                  &new_reftable_size, NULL, new_refblock_size,
3400                                  new_refcount_bits, &alloc_refblock,
3401                                  &new_allocation, NULL, status_cb, cb_opaque,
3402                                  walk_index++, total_walks, errp);
3403         if (ret < 0) {
3404             goto done;
3405         }
3406 
3407         new_reftable_index = 0;
3408 
3409         if (new_allocation) {
3410             if (new_reftable_offset) {
3411                 qcow2_free_clusters(
3412                     bs, new_reftable_offset,
3413                     allocated_reftable_size * REFTABLE_ENTRY_SIZE,
3414                     QCOW2_DISCARD_NEVER);
3415             }
3416 
3417             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3418                                                            REFTABLE_ENTRY_SIZE);
3419             if (new_reftable_offset < 0) {
3420                 error_setg_errno(errp, -new_reftable_offset,
3421                                  "Failed to allocate the new reftable");
3422                 ret = new_reftable_offset;
3423                 goto done;
3424             }
3425             allocated_reftable_size = new_reftable_size;
3426         }
3427     } while (new_allocation);
3428 
3429     /* Second, write the new refblocks */
3430     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3431                              &new_reftable_size, new_refblock,
3432                              new_refblock_size, new_refcount_bits,
3433                              &flush_refblock, &new_allocation, new_set_refcount,
3434                              status_cb, cb_opaque, walk_index, walk_index + 1,
3435                              errp);
3436     if (ret < 0) {
3437         goto done;
3438     }
3439     assert(!new_allocation);
3440 
3441 
3442     /* Write the new reftable */
3443     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3444                                         new_reftable_size * REFTABLE_ENTRY_SIZE,
3445                                         false);
3446     if (ret < 0) {
3447         error_setg_errno(errp, -ret, "Overlap check failed");
3448         goto done;
3449     }
3450 
3451     for (i = 0; i < new_reftable_size; i++) {
3452         cpu_to_be64s(&new_reftable[i]);
3453     }
3454 
3455     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
3456                       new_reftable_size * REFTABLE_ENTRY_SIZE);
3457 
3458     for (i = 0; i < new_reftable_size; i++) {
3459         be64_to_cpus(&new_reftable[i]);
3460     }
3461 
3462     if (ret < 0) {
3463         error_setg_errno(errp, -ret, "Failed to write the new reftable");
3464         goto done;
3465     }
3466 
3467 
3468     /* Empty the refcount cache */
3469     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3470     if (ret < 0) {
3471         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3472         goto done;
3473     }
3474 
3475     /* Update the image header to point to the new reftable; this only updates
3476      * the fields which are relevant to qcow2_update_header(); other fields
3477      * such as s->refcount_table or s->refcount_bits stay stale for now
3478      * (because we have to restore everything if qcow2_update_header() fails) */
3479     old_refcount_order  = s->refcount_order;
3480     old_reftable_size   = s->refcount_table_size;
3481     old_reftable_offset = s->refcount_table_offset;
3482 
3483     s->refcount_order        = refcount_order;
3484     s->refcount_table_size   = new_reftable_size;
3485     s->refcount_table_offset = new_reftable_offset;
3486 
3487     ret = qcow2_update_header(bs);
3488     if (ret < 0) {
3489         s->refcount_order        = old_refcount_order;
3490         s->refcount_table_size   = old_reftable_size;
3491         s->refcount_table_offset = old_reftable_offset;
3492         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3493         goto done;
3494     }
3495 
3496     /* Now update the rest of the in-memory information */
3497     old_reftable = s->refcount_table;
3498     s->refcount_table = new_reftable;
3499     update_max_refcount_table_index(s);
3500 
3501     s->refcount_bits = 1 << refcount_order;
3502     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3503     s->refcount_max += s->refcount_max - 1;
3504 
3505     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3506     s->refcount_block_size = 1 << s->refcount_block_bits;
3507 
3508     s->get_refcount = new_get_refcount;
3509     s->set_refcount = new_set_refcount;
3510 
3511     /* For cleaning up all old refblocks and the old reftable below the "done"
3512      * label */
3513     new_reftable        = old_reftable;
3514     new_reftable_size   = old_reftable_size;
3515     new_reftable_offset = old_reftable_offset;
3516 
3517 done:
3518     if (new_reftable) {
3519         /* On success, new_reftable actually points to the old reftable (and
3520          * new_reftable_size is the old reftable's size); but that is just
3521          * fine */
3522         for (i = 0; i < new_reftable_size; i++) {
3523             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3524             if (offset) {
3525                 qcow2_free_clusters(bs, offset, s->cluster_size,
3526                                     QCOW2_DISCARD_OTHER);
3527             }
3528         }
3529         g_free(new_reftable);
3530 
3531         if (new_reftable_offset > 0) {
3532             qcow2_free_clusters(bs, new_reftable_offset,
3533                                 new_reftable_size * REFTABLE_ENTRY_SIZE,
3534                                 QCOW2_DISCARD_OTHER);
3535         }
3536     }
3537 
3538     qemu_vfree(new_refblock);
3539     return ret;
3540 }
3541 
3542 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3543 {
3544     BDRVQcow2State *s = bs->opaque;
3545     uint32_t index = offset_to_reftable_index(s, offset);
3546     int64_t covering_refblock_offset = 0;
3547 
3548     if (index < s->refcount_table_size) {
3549         covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3550     }
3551     if (!covering_refblock_offset) {
3552         qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3553                                 "not covered by the refcount structures",
3554                                 offset);
3555         return -EIO;
3556     }
3557 
3558     return covering_refblock_offset;
3559 }
3560 
3561 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3562                                         uint64_t discard_block_offs)
3563 {
3564     BDRVQcow2State *s = bs->opaque;
3565     int64_t refblock_offs;
3566     uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3567     uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3568     void *refblock;
3569     int ret;
3570 
3571     refblock_offs = get_refblock_offset(bs, discard_block_offs);
3572     if (refblock_offs < 0) {
3573         return refblock_offs;
3574     }
3575 
3576     assert(discard_block_offs != 0);
3577 
3578     ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3579                           &refblock);
3580     if (ret < 0) {
3581         return ret;
3582     }
3583 
3584     if (s->get_refcount(refblock, block_index) != 1) {
3585         qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3586                                 " refblock offset %#" PRIx64
3587                                 ", reftable index %u"
3588                                 ", block offset %#" PRIx64
3589                                 ", refcount %#" PRIx64,
3590                                 refblock_offs,
3591                                 offset_to_reftable_index(s, discard_block_offs),
3592                                 discard_block_offs,
3593                                 s->get_refcount(refblock, block_index));
3594         qcow2_cache_put(s->refcount_block_cache, &refblock);
3595         return -EINVAL;
3596     }
3597     s->set_refcount(refblock, block_index, 0);
3598 
3599     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3600 
3601     qcow2_cache_put(s->refcount_block_cache, &refblock);
3602 
3603     if (cluster_index < s->free_cluster_index) {
3604         s->free_cluster_index = cluster_index;
3605     }
3606 
3607     refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3608                                            discard_block_offs);
3609     if (refblock) {
3610         /* discard refblock from the cache if refblock is cached */
3611         qcow2_cache_discard(s->refcount_block_cache, refblock);
3612     }
3613     update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3614 
3615     return 0;
3616 }
3617 
3618 int qcow2_shrink_reftable(BlockDriverState *bs)
3619 {
3620     BDRVQcow2State *s = bs->opaque;
3621     uint64_t *reftable_tmp =
3622         g_malloc(s->refcount_table_size * REFTABLE_ENTRY_SIZE);
3623     int i, ret;
3624 
3625     for (i = 0; i < s->refcount_table_size; i++) {
3626         int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3627         void *refblock;
3628         bool unused_block;
3629 
3630         if (refblock_offs == 0) {
3631             reftable_tmp[i] = 0;
3632             continue;
3633         }
3634         ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3635                               &refblock);
3636         if (ret < 0) {
3637             goto out;
3638         }
3639 
3640         /* the refblock has own reference */
3641         if (i == offset_to_reftable_index(s, refblock_offs)) {
3642             uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3643                                    (s->refcount_block_size - 1);
3644             uint64_t refcount = s->get_refcount(refblock, block_index);
3645 
3646             s->set_refcount(refblock, block_index, 0);
3647 
3648             unused_block = buffer_is_zero(refblock, s->cluster_size);
3649 
3650             s->set_refcount(refblock, block_index, refcount);
3651         } else {
3652             unused_block = buffer_is_zero(refblock, s->cluster_size);
3653         }
3654         qcow2_cache_put(s->refcount_block_cache, &refblock);
3655 
3656         reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3657     }
3658 
3659     ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3660                            s->refcount_table_size * REFTABLE_ENTRY_SIZE);
3661     /*
3662      * If the write in the reftable failed the image may contain a partially
3663      * overwritten reftable. In this case it would be better to clear the
3664      * reftable in memory to avoid possible image corruption.
3665      */
3666     for (i = 0; i < s->refcount_table_size; i++) {
3667         if (s->refcount_table[i] && !reftable_tmp[i]) {
3668             if (ret == 0) {
3669                 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3670                                                        REFT_OFFSET_MASK);
3671             }
3672             s->refcount_table[i] = 0;
3673         }
3674     }
3675 
3676     if (!s->cache_discards) {
3677         qcow2_process_discards(bs, ret);
3678     }
3679 
3680 out:
3681     g_free(reftable_tmp);
3682     return ret;
3683 }
3684 
3685 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3686 {
3687     BDRVQcow2State *s = bs->opaque;
3688     int64_t i;
3689 
3690     for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3691         uint64_t refcount;
3692         int ret = qcow2_get_refcount(bs, i, &refcount);
3693         if (ret < 0) {
3694             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3695                     i, strerror(-ret));
3696             return ret;
3697         }
3698         if (refcount > 0) {
3699             return i;
3700         }
3701     }
3702     qcow2_signal_corruption(bs, true, -1, -1,
3703                             "There are no references in the refcount table.");
3704     return -EIO;
3705 }
3706 
3707 int qcow2_detect_metadata_preallocation(BlockDriverState *bs)
3708 {
3709     BDRVQcow2State *s = bs->opaque;
3710     int64_t i, end_cluster, cluster_count = 0, threshold;
3711     int64_t file_length, real_allocation, real_clusters;
3712 
3713     qemu_co_mutex_assert_locked(&s->lock);
3714 
3715     file_length = bdrv_getlength(bs->file->bs);
3716     if (file_length < 0) {
3717         return file_length;
3718     }
3719 
3720     real_allocation = bdrv_get_allocated_file_size(bs->file->bs);
3721     if (real_allocation < 0) {
3722         return real_allocation;
3723     }
3724 
3725     real_clusters = real_allocation / s->cluster_size;
3726     threshold = MAX(real_clusters * 10 / 9, real_clusters + 2);
3727 
3728     end_cluster = size_to_clusters(s, file_length);
3729     for (i = 0; i < end_cluster && cluster_count < threshold; i++) {
3730         uint64_t refcount;
3731         int ret = qcow2_get_refcount(bs, i, &refcount);
3732         if (ret < 0) {
3733             return ret;
3734         }
3735         cluster_count += !!refcount;
3736     }
3737 
3738     return cluster_count >= threshold;
3739 }
3740