xref: /openbmc/qemu/block/qcow2-refcount.c (revision 9c4218e9)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "block/block_int.h"
28 #include "block/qcow2.h"
29 #include "qemu/range.h"
30 
31 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
32 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
33                             int64_t offset, int64_t length, uint64_t addend,
34                             bool decrease, enum qcow2_discard_type type);
35 
36 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
37 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
38 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
43 
44 static void set_refcount_ro0(void *refcount_array, uint64_t index,
45                              uint64_t value);
46 static void set_refcount_ro1(void *refcount_array, uint64_t index,
47                              uint64_t value);
48 static void set_refcount_ro2(void *refcount_array, uint64_t index,
49                              uint64_t value);
50 static void set_refcount_ro3(void *refcount_array, uint64_t index,
51                              uint64_t value);
52 static void set_refcount_ro4(void *refcount_array, uint64_t index,
53                              uint64_t value);
54 static void set_refcount_ro5(void *refcount_array, uint64_t index,
55                              uint64_t value);
56 static void set_refcount_ro6(void *refcount_array, uint64_t index,
57                              uint64_t value);
58 
59 
60 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
61     &get_refcount_ro0,
62     &get_refcount_ro1,
63     &get_refcount_ro2,
64     &get_refcount_ro3,
65     &get_refcount_ro4,
66     &get_refcount_ro5,
67     &get_refcount_ro6
68 };
69 
70 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
71     &set_refcount_ro0,
72     &set_refcount_ro1,
73     &set_refcount_ro2,
74     &set_refcount_ro3,
75     &set_refcount_ro4,
76     &set_refcount_ro5,
77     &set_refcount_ro6
78 };
79 
80 
81 /*********************************************************/
82 /* refcount handling */
83 
84 int qcow2_refcount_init(BlockDriverState *bs)
85 {
86     BDRVQcow2State *s = bs->opaque;
87     unsigned int refcount_table_size2, i;
88     int ret;
89 
90     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
91 
92     s->get_refcount = get_refcount_funcs[s->refcount_order];
93     s->set_refcount = set_refcount_funcs[s->refcount_order];
94 
95     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
96     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
97     s->refcount_table = g_try_malloc(refcount_table_size2);
98 
99     if (s->refcount_table_size > 0) {
100         if (s->refcount_table == NULL) {
101             ret = -ENOMEM;
102             goto fail;
103         }
104         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
105         ret = bdrv_pread(bs->file->bs, s->refcount_table_offset,
106                          s->refcount_table, refcount_table_size2);
107         if (ret < 0) {
108             goto fail;
109         }
110         for(i = 0; i < s->refcount_table_size; i++)
111             be64_to_cpus(&s->refcount_table[i]);
112     }
113     return 0;
114  fail:
115     return ret;
116 }
117 
118 void qcow2_refcount_close(BlockDriverState *bs)
119 {
120     BDRVQcow2State *s = bs->opaque;
121     g_free(s->refcount_table);
122 }
123 
124 
125 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
126 {
127     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
128 }
129 
130 static void set_refcount_ro0(void *refcount_array, uint64_t index,
131                              uint64_t value)
132 {
133     assert(!(value >> 1));
134     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
135     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
136 }
137 
138 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
139 {
140     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
141            & 0x3;
142 }
143 
144 static void set_refcount_ro1(void *refcount_array, uint64_t index,
145                              uint64_t value)
146 {
147     assert(!(value >> 2));
148     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
149     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
150 }
151 
152 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
153 {
154     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
155            & 0xf;
156 }
157 
158 static void set_refcount_ro2(void *refcount_array, uint64_t index,
159                              uint64_t value)
160 {
161     assert(!(value >> 4));
162     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
163     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
164 }
165 
166 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
167 {
168     return ((const uint8_t *)refcount_array)[index];
169 }
170 
171 static void set_refcount_ro3(void *refcount_array, uint64_t index,
172                              uint64_t value)
173 {
174     assert(!(value >> 8));
175     ((uint8_t *)refcount_array)[index] = value;
176 }
177 
178 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
179 {
180     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
181 }
182 
183 static void set_refcount_ro4(void *refcount_array, uint64_t index,
184                              uint64_t value)
185 {
186     assert(!(value >> 16));
187     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
188 }
189 
190 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
191 {
192     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
193 }
194 
195 static void set_refcount_ro5(void *refcount_array, uint64_t index,
196                              uint64_t value)
197 {
198     assert(!(value >> 32));
199     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
200 }
201 
202 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
203 {
204     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
205 }
206 
207 static void set_refcount_ro6(void *refcount_array, uint64_t index,
208                              uint64_t value)
209 {
210     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
211 }
212 
213 
214 static int load_refcount_block(BlockDriverState *bs,
215                                int64_t refcount_block_offset,
216                                void **refcount_block)
217 {
218     BDRVQcow2State *s = bs->opaque;
219     int ret;
220 
221     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
222     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
223         refcount_block);
224 
225     return ret;
226 }
227 
228 /*
229  * Retrieves the refcount of the cluster given by its index and stores it in
230  * *refcount. Returns 0 on success and -errno on failure.
231  */
232 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
233                        uint64_t *refcount)
234 {
235     BDRVQcow2State *s = bs->opaque;
236     uint64_t refcount_table_index, block_index;
237     int64_t refcount_block_offset;
238     int ret;
239     void *refcount_block;
240 
241     refcount_table_index = cluster_index >> s->refcount_block_bits;
242     if (refcount_table_index >= s->refcount_table_size) {
243         *refcount = 0;
244         return 0;
245     }
246     refcount_block_offset =
247         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
248     if (!refcount_block_offset) {
249         *refcount = 0;
250         return 0;
251     }
252 
253     if (offset_into_cluster(s, refcount_block_offset)) {
254         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
255                                 " unaligned (reftable index: %#" PRIx64 ")",
256                                 refcount_block_offset, refcount_table_index);
257         return -EIO;
258     }
259 
260     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
261                           &refcount_block);
262     if (ret < 0) {
263         return ret;
264     }
265 
266     block_index = cluster_index & (s->refcount_block_size - 1);
267     *refcount = s->get_refcount(refcount_block, block_index);
268 
269     qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
270 
271     return 0;
272 }
273 
274 /*
275  * Rounds the refcount table size up to avoid growing the table for each single
276  * refcount block that is allocated.
277  */
278 static unsigned int next_refcount_table_size(BDRVQcow2State *s,
279     unsigned int min_size)
280 {
281     unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
282     unsigned int refcount_table_clusters =
283         MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
284 
285     while (min_clusters > refcount_table_clusters) {
286         refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
287     }
288 
289     return refcount_table_clusters << (s->cluster_bits - 3);
290 }
291 
292 
293 /* Checks if two offsets are described by the same refcount block */
294 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
295     uint64_t offset_b)
296 {
297     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
298     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
299 
300     return (block_a == block_b);
301 }
302 
303 /*
304  * Loads a refcount block. If it doesn't exist yet, it is allocated first
305  * (including growing the refcount table if needed).
306  *
307  * Returns 0 on success or -errno in error case
308  */
309 static int alloc_refcount_block(BlockDriverState *bs,
310                                 int64_t cluster_index, void **refcount_block)
311 {
312     BDRVQcow2State *s = bs->opaque;
313     unsigned int refcount_table_index;
314     int ret;
315 
316     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
317 
318     /* Find the refcount block for the given cluster */
319     refcount_table_index = cluster_index >> s->refcount_block_bits;
320 
321     if (refcount_table_index < s->refcount_table_size) {
322 
323         uint64_t refcount_block_offset =
324             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
325 
326         /* If it's already there, we're done */
327         if (refcount_block_offset) {
328             if (offset_into_cluster(s, refcount_block_offset)) {
329                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
330                                         PRIx64 " unaligned (reftable index: "
331                                         "%#x)", refcount_block_offset,
332                                         refcount_table_index);
333                 return -EIO;
334             }
335 
336              return load_refcount_block(bs, refcount_block_offset,
337                                         refcount_block);
338         }
339     }
340 
341     /*
342      * If we came here, we need to allocate something. Something is at least
343      * a cluster for the new refcount block. It may also include a new refcount
344      * table if the old refcount table is too small.
345      *
346      * Note that allocating clusters here needs some special care:
347      *
348      * - We can't use the normal qcow2_alloc_clusters(), it would try to
349      *   increase the refcount and very likely we would end up with an endless
350      *   recursion. Instead we must place the refcount blocks in a way that
351      *   they can describe them themselves.
352      *
353      * - We need to consider that at this point we are inside update_refcounts
354      *   and potentially doing an initial refcount increase. This means that
355      *   some clusters have already been allocated by the caller, but their
356      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
357      *   need to return -EAGAIN to signal the caller that it needs to restart
358      *   the search for free clusters.
359      *
360      * - alloc_clusters_noref and qcow2_free_clusters may load a different
361      *   refcount block into the cache
362      */
363 
364     *refcount_block = NULL;
365 
366     /* We write to the refcount table, so we might depend on L2 tables */
367     ret = qcow2_cache_flush(bs, s->l2_table_cache);
368     if (ret < 0) {
369         return ret;
370     }
371 
372     /* Allocate the refcount block itself and mark it as used */
373     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
374     if (new_block < 0) {
375         return new_block;
376     }
377 
378 #ifdef DEBUG_ALLOC2
379     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
380         " at %" PRIx64 "\n",
381         refcount_table_index, cluster_index << s->cluster_bits, new_block);
382 #endif
383 
384     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
385         /* Zero the new refcount block before updating it */
386         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
387                                     refcount_block);
388         if (ret < 0) {
389             goto fail_block;
390         }
391 
392         memset(*refcount_block, 0, s->cluster_size);
393 
394         /* The block describes itself, need to update the cache */
395         int block_index = (new_block >> s->cluster_bits) &
396             (s->refcount_block_size - 1);
397         s->set_refcount(*refcount_block, block_index, 1);
398     } else {
399         /* Described somewhere else. This can recurse at most twice before we
400          * arrive at a block that describes itself. */
401         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
402                               QCOW2_DISCARD_NEVER);
403         if (ret < 0) {
404             goto fail_block;
405         }
406 
407         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
408         if (ret < 0) {
409             goto fail_block;
410         }
411 
412         /* Initialize the new refcount block only after updating its refcount,
413          * update_refcount uses the refcount cache itself */
414         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
415                                     refcount_block);
416         if (ret < 0) {
417             goto fail_block;
418         }
419 
420         memset(*refcount_block, 0, s->cluster_size);
421     }
422 
423     /* Now the new refcount block needs to be written to disk */
424     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
425     qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
426     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
427     if (ret < 0) {
428         goto fail_block;
429     }
430 
431     /* If the refcount table is big enough, just hook the block up there */
432     if (refcount_table_index < s->refcount_table_size) {
433         uint64_t data64 = cpu_to_be64(new_block);
434         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
435         ret = bdrv_pwrite_sync(bs->file->bs,
436             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
437             &data64, sizeof(data64));
438         if (ret < 0) {
439             goto fail_block;
440         }
441 
442         s->refcount_table[refcount_table_index] = new_block;
443 
444         /* The new refcount block may be where the caller intended to put its
445          * data, so let it restart the search. */
446         return -EAGAIN;
447     }
448 
449     qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
450 
451     /*
452      * If we come here, we need to grow the refcount table. Again, a new
453      * refcount table needs some space and we can't simply allocate to avoid
454      * endless recursion.
455      *
456      * Therefore let's grab new refcount blocks at the end of the image, which
457      * will describe themselves and the new refcount table. This way we can
458      * reference them only in the new table and do the switch to the new
459      * refcount table at once without producing an inconsistent state in
460      * between.
461      */
462     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
463 
464     /* Calculate the number of refcount blocks needed so far; this will be the
465      * basis for calculating the index of the first cluster used for the
466      * self-describing refcount structures which we are about to create.
467      *
468      * Because we reached this point, there cannot be any refcount entries for
469      * cluster_index or higher indices yet. However, because new_block has been
470      * allocated to describe that cluster (and it will assume this role later
471      * on), we cannot use that index; also, new_block may actually have a higher
472      * cluster index than cluster_index, so it needs to be taken into account
473      * here (and 1 needs to be added to its value because that cluster is used).
474      */
475     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
476                                             (new_block >> s->cluster_bits) + 1),
477                                         s->refcount_block_size);
478 
479     if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
480         return -EFBIG;
481     }
482 
483     /* And now we need at least one block more for the new metadata */
484     uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
485     uint64_t last_table_size;
486     uint64_t blocks_clusters;
487     do {
488         uint64_t table_clusters =
489             size_to_clusters(s, table_size * sizeof(uint64_t));
490         blocks_clusters = 1 +
491             ((table_clusters + s->refcount_block_size - 1)
492             / s->refcount_block_size);
493         uint64_t meta_clusters = table_clusters + blocks_clusters;
494 
495         last_table_size = table_size;
496         table_size = next_refcount_table_size(s, blocks_used +
497             ((meta_clusters + s->refcount_block_size - 1)
498             / s->refcount_block_size));
499 
500     } while (last_table_size != table_size);
501 
502 #ifdef DEBUG_ALLOC2
503     fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
504         s->refcount_table_size, table_size);
505 #endif
506 
507     /* Create the new refcount table and blocks */
508     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
509         s->cluster_size;
510     uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
511     uint64_t *new_table = g_try_new0(uint64_t, table_size);
512     void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
513 
514     assert(table_size > 0 && blocks_clusters > 0);
515     if (new_table == NULL || new_blocks == NULL) {
516         ret = -ENOMEM;
517         goto fail_table;
518     }
519 
520     /* Fill the new refcount table */
521     memcpy(new_table, s->refcount_table,
522         s->refcount_table_size * sizeof(uint64_t));
523     new_table[refcount_table_index] = new_block;
524 
525     int i;
526     for (i = 0; i < blocks_clusters; i++) {
527         new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
528     }
529 
530     /* Fill the refcount blocks */
531     uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
532     int block = 0;
533     for (i = 0; i < table_clusters + blocks_clusters; i++) {
534         s->set_refcount(new_blocks, block++, 1);
535     }
536 
537     /* Write refcount blocks to disk */
538     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
539     ret = bdrv_pwrite_sync(bs->file->bs, meta_offset, new_blocks,
540         blocks_clusters * s->cluster_size);
541     g_free(new_blocks);
542     new_blocks = NULL;
543     if (ret < 0) {
544         goto fail_table;
545     }
546 
547     /* Write refcount table to disk */
548     for(i = 0; i < table_size; i++) {
549         cpu_to_be64s(&new_table[i]);
550     }
551 
552     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
553     ret = bdrv_pwrite_sync(bs->file->bs, table_offset, new_table,
554         table_size * sizeof(uint64_t));
555     if (ret < 0) {
556         goto fail_table;
557     }
558 
559     for(i = 0; i < table_size; i++) {
560         be64_to_cpus(&new_table[i]);
561     }
562 
563     /* Hook up the new refcount table in the qcow2 header */
564     struct QEMU_PACKED {
565         uint64_t d64;
566         uint32_t d32;
567     } data;
568     cpu_to_be64w(&data.d64, table_offset);
569     cpu_to_be32w(&data.d32, table_clusters);
570     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
571     ret = bdrv_pwrite_sync(bs->file->bs,
572                            offsetof(QCowHeader, refcount_table_offset),
573                            &data, sizeof(data));
574     if (ret < 0) {
575         goto fail_table;
576     }
577 
578     /* And switch it in memory */
579     uint64_t old_table_offset = s->refcount_table_offset;
580     uint64_t old_table_size = s->refcount_table_size;
581 
582     g_free(s->refcount_table);
583     s->refcount_table = new_table;
584     s->refcount_table_size = table_size;
585     s->refcount_table_offset = table_offset;
586 
587     /* Free old table. */
588     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
589                         QCOW2_DISCARD_OTHER);
590 
591     ret = load_refcount_block(bs, new_block, refcount_block);
592     if (ret < 0) {
593         return ret;
594     }
595 
596     /* If we were trying to do the initial refcount update for some cluster
597      * allocation, we might have used the same clusters to store newly
598      * allocated metadata. Make the caller search some new space. */
599     return -EAGAIN;
600 
601 fail_table:
602     g_free(new_blocks);
603     g_free(new_table);
604 fail_block:
605     if (*refcount_block != NULL) {
606         qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
607     }
608     return ret;
609 }
610 
611 void qcow2_process_discards(BlockDriverState *bs, int ret)
612 {
613     BDRVQcow2State *s = bs->opaque;
614     Qcow2DiscardRegion *d, *next;
615 
616     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
617         QTAILQ_REMOVE(&s->discards, d, next);
618 
619         /* Discard is optional, ignore the return value */
620         if (ret >= 0) {
621             bdrv_discard(bs->file->bs,
622                          d->offset >> BDRV_SECTOR_BITS,
623                          d->bytes >> BDRV_SECTOR_BITS);
624         }
625 
626         g_free(d);
627     }
628 }
629 
630 static void update_refcount_discard(BlockDriverState *bs,
631                                     uint64_t offset, uint64_t length)
632 {
633     BDRVQcow2State *s = bs->opaque;
634     Qcow2DiscardRegion *d, *p, *next;
635 
636     QTAILQ_FOREACH(d, &s->discards, next) {
637         uint64_t new_start = MIN(offset, d->offset);
638         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
639 
640         if (new_end - new_start <= length + d->bytes) {
641             /* There can't be any overlap, areas ending up here have no
642              * references any more and therefore shouldn't get freed another
643              * time. */
644             assert(d->bytes + length == new_end - new_start);
645             d->offset = new_start;
646             d->bytes = new_end - new_start;
647             goto found;
648         }
649     }
650 
651     d = g_malloc(sizeof(*d));
652     *d = (Qcow2DiscardRegion) {
653         .bs     = bs,
654         .offset = offset,
655         .bytes  = length,
656     };
657     QTAILQ_INSERT_TAIL(&s->discards, d, next);
658 
659 found:
660     /* Merge discard requests if they are adjacent now */
661     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
662         if (p == d
663             || p->offset > d->offset + d->bytes
664             || d->offset > p->offset + p->bytes)
665         {
666             continue;
667         }
668 
669         /* Still no overlap possible */
670         assert(p->offset == d->offset + d->bytes
671             || d->offset == p->offset + p->bytes);
672 
673         QTAILQ_REMOVE(&s->discards, p, next);
674         d->offset = MIN(d->offset, p->offset);
675         d->bytes += p->bytes;
676         g_free(p);
677     }
678 }
679 
680 /* XXX: cache several refcount block clusters ? */
681 /* @addend is the absolute value of the addend; if @decrease is set, @addend
682  * will be subtracted from the current refcount, otherwise it will be added */
683 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
684                                                    int64_t offset,
685                                                    int64_t length,
686                                                    uint64_t addend,
687                                                    bool decrease,
688                                                    enum qcow2_discard_type type)
689 {
690     BDRVQcow2State *s = bs->opaque;
691     int64_t start, last, cluster_offset;
692     void *refcount_block = NULL;
693     int64_t old_table_index = -1;
694     int ret;
695 
696 #ifdef DEBUG_ALLOC2
697     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
698             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
699             addend);
700 #endif
701     if (length < 0) {
702         return -EINVAL;
703     } else if (length == 0) {
704         return 0;
705     }
706 
707     if (decrease) {
708         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
709             s->l2_table_cache);
710     }
711 
712     start = start_of_cluster(s, offset);
713     last = start_of_cluster(s, offset + length - 1);
714     for(cluster_offset = start; cluster_offset <= last;
715         cluster_offset += s->cluster_size)
716     {
717         int block_index;
718         uint64_t refcount;
719         int64_t cluster_index = cluster_offset >> s->cluster_bits;
720         int64_t table_index = cluster_index >> s->refcount_block_bits;
721 
722         /* Load the refcount block and allocate it if needed */
723         if (table_index != old_table_index) {
724             if (refcount_block) {
725                 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
726             }
727             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
728             if (ret < 0) {
729                 goto fail;
730             }
731         }
732         old_table_index = table_index;
733 
734         qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
735                                      refcount_block);
736 
737         /* we can update the count and save it */
738         block_index = cluster_index & (s->refcount_block_size - 1);
739 
740         refcount = s->get_refcount(refcount_block, block_index);
741         if (decrease ? (refcount - addend > refcount)
742                      : (refcount + addend < refcount ||
743                         refcount + addend > s->refcount_max))
744         {
745             ret = -EINVAL;
746             goto fail;
747         }
748         if (decrease) {
749             refcount -= addend;
750         } else {
751             refcount += addend;
752         }
753         if (refcount == 0 && cluster_index < s->free_cluster_index) {
754             s->free_cluster_index = cluster_index;
755         }
756         s->set_refcount(refcount_block, block_index, refcount);
757 
758         if (refcount == 0 && s->discard_passthrough[type]) {
759             update_refcount_discard(bs, cluster_offset, s->cluster_size);
760         }
761     }
762 
763     ret = 0;
764 fail:
765     if (!s->cache_discards) {
766         qcow2_process_discards(bs, ret);
767     }
768 
769     /* Write last changed block to disk */
770     if (refcount_block) {
771         qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
772     }
773 
774     /*
775      * Try do undo any updates if an error is returned (This may succeed in
776      * some cases like ENOSPC for allocating a new refcount block)
777      */
778     if (ret < 0) {
779         int dummy;
780         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
781                                 !decrease, QCOW2_DISCARD_NEVER);
782         (void)dummy;
783     }
784 
785     return ret;
786 }
787 
788 /*
789  * Increases or decreases the refcount of a given cluster.
790  *
791  * @addend is the absolute value of the addend; if @decrease is set, @addend
792  * will be subtracted from the current refcount, otherwise it will be added.
793  *
794  * On success 0 is returned; on failure -errno is returned.
795  */
796 int qcow2_update_cluster_refcount(BlockDriverState *bs,
797                                   int64_t cluster_index,
798                                   uint64_t addend, bool decrease,
799                                   enum qcow2_discard_type type)
800 {
801     BDRVQcow2State *s = bs->opaque;
802     int ret;
803 
804     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
805                           decrease, type);
806     if (ret < 0) {
807         return ret;
808     }
809 
810     return 0;
811 }
812 
813 
814 
815 /*********************************************************/
816 /* cluster allocation functions */
817 
818 
819 
820 /* return < 0 if error */
821 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
822 {
823     BDRVQcow2State *s = bs->opaque;
824     uint64_t i, nb_clusters, refcount;
825     int ret;
826 
827     /* We can't allocate clusters if they may still be queued for discard. */
828     if (s->cache_discards) {
829         qcow2_process_discards(bs, 0);
830     }
831 
832     nb_clusters = size_to_clusters(s, size);
833 retry:
834     for(i = 0; i < nb_clusters; i++) {
835         uint64_t next_cluster_index = s->free_cluster_index++;
836         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
837 
838         if (ret < 0) {
839             return ret;
840         } else if (refcount != 0) {
841             goto retry;
842         }
843     }
844 
845     /* Make sure that all offsets in the "allocated" range are representable
846      * in an int64_t */
847     if (s->free_cluster_index > 0 &&
848         s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
849     {
850         return -EFBIG;
851     }
852 
853 #ifdef DEBUG_ALLOC2
854     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
855             size,
856             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
857 #endif
858     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
859 }
860 
861 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
862 {
863     int64_t offset;
864     int ret;
865 
866     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
867     do {
868         offset = alloc_clusters_noref(bs, size);
869         if (offset < 0) {
870             return offset;
871         }
872 
873         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
874     } while (ret == -EAGAIN);
875 
876     if (ret < 0) {
877         return ret;
878     }
879 
880     return offset;
881 }
882 
883 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
884                                 int64_t nb_clusters)
885 {
886     BDRVQcow2State *s = bs->opaque;
887     uint64_t cluster_index, refcount;
888     uint64_t i;
889     int ret;
890 
891     assert(nb_clusters >= 0);
892     if (nb_clusters == 0) {
893         return 0;
894     }
895 
896     do {
897         /* Check how many clusters there are free */
898         cluster_index = offset >> s->cluster_bits;
899         for(i = 0; i < nb_clusters; i++) {
900             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
901             if (ret < 0) {
902                 return ret;
903             } else if (refcount != 0) {
904                 break;
905             }
906         }
907 
908         /* And then allocate them */
909         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
910                               QCOW2_DISCARD_NEVER);
911     } while (ret == -EAGAIN);
912 
913     if (ret < 0) {
914         return ret;
915     }
916 
917     return i;
918 }
919 
920 /* only used to allocate compressed sectors. We try to allocate
921    contiguous sectors. size must be <= cluster_size */
922 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
923 {
924     BDRVQcow2State *s = bs->opaque;
925     int64_t offset;
926     size_t free_in_cluster;
927     int ret;
928 
929     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
930     assert(size > 0 && size <= s->cluster_size);
931     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
932 
933     offset = s->free_byte_offset;
934 
935     if (offset) {
936         uint64_t refcount;
937         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
938         if (ret < 0) {
939             return ret;
940         }
941 
942         if (refcount == s->refcount_max) {
943             offset = 0;
944         }
945     }
946 
947     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
948     do {
949         if (!offset || free_in_cluster < size) {
950             int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
951             if (new_cluster < 0) {
952                 return new_cluster;
953             }
954 
955             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
956                 offset = new_cluster;
957                 free_in_cluster = s->cluster_size;
958             } else {
959                 free_in_cluster += s->cluster_size;
960             }
961         }
962 
963         assert(offset);
964         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
965         if (ret < 0) {
966             offset = 0;
967         }
968     } while (ret == -EAGAIN);
969     if (ret < 0) {
970         return ret;
971     }
972 
973     /* The cluster refcount was incremented; refcount blocks must be flushed
974      * before the caller's L2 table updates. */
975     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
976 
977     s->free_byte_offset = offset + size;
978     if (!offset_into_cluster(s, s->free_byte_offset)) {
979         s->free_byte_offset = 0;
980     }
981 
982     return offset;
983 }
984 
985 void qcow2_free_clusters(BlockDriverState *bs,
986                           int64_t offset, int64_t size,
987                           enum qcow2_discard_type type)
988 {
989     int ret;
990 
991     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
992     ret = update_refcount(bs, offset, size, 1, true, type);
993     if (ret < 0) {
994         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
995         /* TODO Remember the clusters to free them later and avoid leaking */
996     }
997 }
998 
999 /*
1000  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1001  * normal cluster, compressed cluster, etc.)
1002  */
1003 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1004                              int nb_clusters, enum qcow2_discard_type type)
1005 {
1006     BDRVQcow2State *s = bs->opaque;
1007 
1008     switch (qcow2_get_cluster_type(l2_entry)) {
1009     case QCOW2_CLUSTER_COMPRESSED:
1010         {
1011             int nb_csectors;
1012             nb_csectors = ((l2_entry >> s->csize_shift) &
1013                            s->csize_mask) + 1;
1014             qcow2_free_clusters(bs,
1015                 (l2_entry & s->cluster_offset_mask) & ~511,
1016                 nb_csectors * 512, type);
1017         }
1018         break;
1019     case QCOW2_CLUSTER_NORMAL:
1020     case QCOW2_CLUSTER_ZERO:
1021         if (l2_entry & L2E_OFFSET_MASK) {
1022             if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1023                 qcow2_signal_corruption(bs, false, -1, -1,
1024                                         "Cannot free unaligned cluster %#llx",
1025                                         l2_entry & L2E_OFFSET_MASK);
1026             } else {
1027                 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1028                                     nb_clusters << s->cluster_bits, type);
1029             }
1030         }
1031         break;
1032     case QCOW2_CLUSTER_UNALLOCATED:
1033         break;
1034     default:
1035         abort();
1036     }
1037 }
1038 
1039 
1040 
1041 /*********************************************************/
1042 /* snapshots and image creation */
1043 
1044 
1045 
1046 /* update the refcounts of snapshots and the copied flag */
1047 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1048     int64_t l1_table_offset, int l1_size, int addend)
1049 {
1050     BDRVQcow2State *s = bs->opaque;
1051     uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount;
1052     bool l1_allocated = false;
1053     int64_t old_offset, old_l2_offset;
1054     int i, j, l1_modified = 0, nb_csectors;
1055     int ret;
1056 
1057     assert(addend >= -1 && addend <= 1);
1058 
1059     l2_table = NULL;
1060     l1_table = NULL;
1061     l1_size2 = l1_size * sizeof(uint64_t);
1062 
1063     s->cache_discards = true;
1064 
1065     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1066      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1067      * when changing this! */
1068     if (l1_table_offset != s->l1_table_offset) {
1069         l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1070         if (l1_size2 && l1_table == NULL) {
1071             ret = -ENOMEM;
1072             goto fail;
1073         }
1074         l1_allocated = true;
1075 
1076         ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
1077         if (ret < 0) {
1078             goto fail;
1079         }
1080 
1081         for(i = 0;i < l1_size; i++)
1082             be64_to_cpus(&l1_table[i]);
1083     } else {
1084         assert(l1_size == s->l1_size);
1085         l1_table = s->l1_table;
1086         l1_allocated = false;
1087     }
1088 
1089     for(i = 0; i < l1_size; i++) {
1090         l2_offset = l1_table[i];
1091         if (l2_offset) {
1092             old_l2_offset = l2_offset;
1093             l2_offset &= L1E_OFFSET_MASK;
1094 
1095             if (offset_into_cluster(s, l2_offset)) {
1096                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1097                                         PRIx64 " unaligned (L1 index: %#x)",
1098                                         l2_offset, i);
1099                 ret = -EIO;
1100                 goto fail;
1101             }
1102 
1103             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1104                 (void**) &l2_table);
1105             if (ret < 0) {
1106                 goto fail;
1107             }
1108 
1109             for(j = 0; j < s->l2_size; j++) {
1110                 uint64_t cluster_index;
1111 
1112                 offset = be64_to_cpu(l2_table[j]);
1113                 old_offset = offset;
1114                 offset &= ~QCOW_OFLAG_COPIED;
1115 
1116                 switch (qcow2_get_cluster_type(offset)) {
1117                     case QCOW2_CLUSTER_COMPRESSED:
1118                         nb_csectors = ((offset >> s->csize_shift) &
1119                                        s->csize_mask) + 1;
1120                         if (addend != 0) {
1121                             ret = update_refcount(bs,
1122                                 (offset & s->cluster_offset_mask) & ~511,
1123                                 nb_csectors * 512, abs(addend), addend < 0,
1124                                 QCOW2_DISCARD_SNAPSHOT);
1125                             if (ret < 0) {
1126                                 goto fail;
1127                             }
1128                         }
1129                         /* compressed clusters are never modified */
1130                         refcount = 2;
1131                         break;
1132 
1133                     case QCOW2_CLUSTER_NORMAL:
1134                     case QCOW2_CLUSTER_ZERO:
1135                         if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) {
1136                             qcow2_signal_corruption(bs, true, -1, -1, "Data "
1137                                                     "cluster offset %#llx "
1138                                                     "unaligned (L2 offset: %#"
1139                                                     PRIx64 ", L2 index: %#x)",
1140                                                     offset & L2E_OFFSET_MASK,
1141                                                     l2_offset, j);
1142                             ret = -EIO;
1143                             goto fail;
1144                         }
1145 
1146                         cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits;
1147                         if (!cluster_index) {
1148                             /* unallocated */
1149                             refcount = 0;
1150                             break;
1151                         }
1152                         if (addend != 0) {
1153                             ret = qcow2_update_cluster_refcount(bs,
1154                                     cluster_index, abs(addend), addend < 0,
1155                                     QCOW2_DISCARD_SNAPSHOT);
1156                             if (ret < 0) {
1157                                 goto fail;
1158                             }
1159                         }
1160 
1161                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1162                         if (ret < 0) {
1163                             goto fail;
1164                         }
1165                         break;
1166 
1167                     case QCOW2_CLUSTER_UNALLOCATED:
1168                         refcount = 0;
1169                         break;
1170 
1171                     default:
1172                         abort();
1173                 }
1174 
1175                 if (refcount == 1) {
1176                     offset |= QCOW_OFLAG_COPIED;
1177                 }
1178                 if (offset != old_offset) {
1179                     if (addend > 0) {
1180                         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1181                             s->refcount_block_cache);
1182                     }
1183                     l2_table[j] = cpu_to_be64(offset);
1184                     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1185                                                  l2_table);
1186                 }
1187             }
1188 
1189             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1190 
1191             if (addend != 0) {
1192                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1193                                                         s->cluster_bits,
1194                                                     abs(addend), addend < 0,
1195                                                     QCOW2_DISCARD_SNAPSHOT);
1196                 if (ret < 0) {
1197                     goto fail;
1198                 }
1199             }
1200             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1201                                      &refcount);
1202             if (ret < 0) {
1203                 goto fail;
1204             } else if (refcount == 1) {
1205                 l2_offset |= QCOW_OFLAG_COPIED;
1206             }
1207             if (l2_offset != old_l2_offset) {
1208                 l1_table[i] = l2_offset;
1209                 l1_modified = 1;
1210             }
1211         }
1212     }
1213 
1214     ret = bdrv_flush(bs);
1215 fail:
1216     if (l2_table) {
1217         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1218     }
1219 
1220     s->cache_discards = false;
1221     qcow2_process_discards(bs, ret);
1222 
1223     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1224     if (ret == 0 && addend >= 0 && l1_modified) {
1225         for (i = 0; i < l1_size; i++) {
1226             cpu_to_be64s(&l1_table[i]);
1227         }
1228 
1229         ret = bdrv_pwrite_sync(bs->file->bs, l1_table_offset,
1230                                l1_table, l1_size2);
1231 
1232         for (i = 0; i < l1_size; i++) {
1233             be64_to_cpus(&l1_table[i]);
1234         }
1235     }
1236     if (l1_allocated)
1237         g_free(l1_table);
1238     return ret;
1239 }
1240 
1241 
1242 
1243 
1244 /*********************************************************/
1245 /* refcount checking functions */
1246 
1247 
1248 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1249 {
1250     /* This assertion holds because there is no way we can address more than
1251      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1252      * offsets have to be representable in bytes); due to every cluster
1253      * corresponding to one refcount entry, we are well below that limit */
1254     assert(entries < (UINT64_C(1) << (64 - 9)));
1255 
1256     /* Thanks to the assertion this will not overflow, because
1257      * s->refcount_order < 7.
1258      * (note: x << s->refcount_order == x * s->refcount_bits) */
1259     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1260 }
1261 
1262 /**
1263  * Reallocates *array so that it can hold new_size entries. *size must contain
1264  * the current number of entries in *array. If the reallocation fails, *array
1265  * and *size will not be modified and -errno will be returned. If the
1266  * reallocation is successful, *array will be set to the new buffer, *size
1267  * will be set to new_size and 0 will be returned. The size of the reallocated
1268  * refcount array buffer will be aligned to a cluster boundary, and the newly
1269  * allocated area will be zeroed.
1270  */
1271 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1272                                   int64_t *size, int64_t new_size)
1273 {
1274     int64_t old_byte_size, new_byte_size;
1275     void *new_ptr;
1276 
1277     /* Round to clusters so the array can be directly written to disk */
1278     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1279                     * s->cluster_size;
1280     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1281                     * s->cluster_size;
1282 
1283     if (new_byte_size == old_byte_size) {
1284         *size = new_size;
1285         return 0;
1286     }
1287 
1288     assert(new_byte_size > 0);
1289 
1290     if (new_byte_size > SIZE_MAX) {
1291         return -ENOMEM;
1292     }
1293 
1294     new_ptr = g_try_realloc(*array, new_byte_size);
1295     if (!new_ptr) {
1296         return -ENOMEM;
1297     }
1298 
1299     if (new_byte_size > old_byte_size) {
1300         memset((char *)new_ptr + old_byte_size, 0,
1301                new_byte_size - old_byte_size);
1302     }
1303 
1304     *array = new_ptr;
1305     *size  = new_size;
1306 
1307     return 0;
1308 }
1309 
1310 /*
1311  * Increases the refcount for a range of clusters in a given refcount table.
1312  * This is used to construct a temporary refcount table out of L1 and L2 tables
1313  * which can be compared to the refcount table saved in the image.
1314  *
1315  * Modifies the number of errors in res.
1316  */
1317 static int inc_refcounts(BlockDriverState *bs,
1318                          BdrvCheckResult *res,
1319                          void **refcount_table,
1320                          int64_t *refcount_table_size,
1321                          int64_t offset, int64_t size)
1322 {
1323     BDRVQcow2State *s = bs->opaque;
1324     uint64_t start, last, cluster_offset, k, refcount;
1325     int ret;
1326 
1327     if (size <= 0) {
1328         return 0;
1329     }
1330 
1331     start = start_of_cluster(s, offset);
1332     last = start_of_cluster(s, offset + size - 1);
1333     for(cluster_offset = start; cluster_offset <= last;
1334         cluster_offset += s->cluster_size) {
1335         k = cluster_offset >> s->cluster_bits;
1336         if (k >= *refcount_table_size) {
1337             ret = realloc_refcount_array(s, refcount_table,
1338                                          refcount_table_size, k + 1);
1339             if (ret < 0) {
1340                 res->check_errors++;
1341                 return ret;
1342             }
1343         }
1344 
1345         refcount = s->get_refcount(*refcount_table, k);
1346         if (refcount == s->refcount_max) {
1347             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1348                     "\n", cluster_offset);
1349             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1350                     "width or qemu-img convert to create a clean copy if the "
1351                     "image cannot be opened for writing\n");
1352             res->corruptions++;
1353             continue;
1354         }
1355         s->set_refcount(*refcount_table, k, refcount + 1);
1356     }
1357 
1358     return 0;
1359 }
1360 
1361 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1362 enum {
1363     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1364 };
1365 
1366 /*
1367  * Increases the refcount in the given refcount table for the all clusters
1368  * referenced in the L2 table. While doing so, performs some checks on L2
1369  * entries.
1370  *
1371  * Returns the number of errors found by the checks or -errno if an internal
1372  * error occurred.
1373  */
1374 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1375                               void **refcount_table,
1376                               int64_t *refcount_table_size, int64_t l2_offset,
1377                               int flags)
1378 {
1379     BDRVQcow2State *s = bs->opaque;
1380     uint64_t *l2_table, l2_entry;
1381     uint64_t next_contiguous_offset = 0;
1382     int i, l2_size, nb_csectors, ret;
1383 
1384     /* Read L2 table from disk */
1385     l2_size = s->l2_size * sizeof(uint64_t);
1386     l2_table = g_malloc(l2_size);
1387 
1388     ret = bdrv_pread(bs->file->bs, l2_offset, l2_table, l2_size);
1389     if (ret < 0) {
1390         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1391         res->check_errors++;
1392         goto fail;
1393     }
1394 
1395     /* Do the actual checks */
1396     for(i = 0; i < s->l2_size; i++) {
1397         l2_entry = be64_to_cpu(l2_table[i]);
1398 
1399         switch (qcow2_get_cluster_type(l2_entry)) {
1400         case QCOW2_CLUSTER_COMPRESSED:
1401             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1402             if (l2_entry & QCOW_OFLAG_COPIED) {
1403                 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1404                     "copied flag must never be set for compressed "
1405                     "clusters\n", l2_entry >> s->cluster_bits);
1406                 l2_entry &= ~QCOW_OFLAG_COPIED;
1407                 res->corruptions++;
1408             }
1409 
1410             /* Mark cluster as used */
1411             nb_csectors = ((l2_entry >> s->csize_shift) &
1412                            s->csize_mask) + 1;
1413             l2_entry &= s->cluster_offset_mask;
1414             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1415                                 l2_entry & ~511, nb_csectors * 512);
1416             if (ret < 0) {
1417                 goto fail;
1418             }
1419 
1420             if (flags & CHECK_FRAG_INFO) {
1421                 res->bfi.allocated_clusters++;
1422                 res->bfi.compressed_clusters++;
1423 
1424                 /* Compressed clusters are fragmented by nature.  Since they
1425                  * take up sub-sector space but we only have sector granularity
1426                  * I/O we need to re-read the same sectors even for adjacent
1427                  * compressed clusters.
1428                  */
1429                 res->bfi.fragmented_clusters++;
1430             }
1431             break;
1432 
1433         case QCOW2_CLUSTER_ZERO:
1434             if ((l2_entry & L2E_OFFSET_MASK) == 0) {
1435                 break;
1436             }
1437             /* fall through */
1438 
1439         case QCOW2_CLUSTER_NORMAL:
1440         {
1441             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1442 
1443             if (flags & CHECK_FRAG_INFO) {
1444                 res->bfi.allocated_clusters++;
1445                 if (next_contiguous_offset &&
1446                     offset != next_contiguous_offset) {
1447                     res->bfi.fragmented_clusters++;
1448                 }
1449                 next_contiguous_offset = offset + s->cluster_size;
1450             }
1451 
1452             /* Mark cluster as used */
1453             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1454                                 offset, s->cluster_size);
1455             if (ret < 0) {
1456                 goto fail;
1457             }
1458 
1459             /* Correct offsets are cluster aligned */
1460             if (offset_into_cluster(s, offset)) {
1461                 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1462                     "properly aligned; L2 entry corrupted.\n", offset);
1463                 res->corruptions++;
1464             }
1465             break;
1466         }
1467 
1468         case QCOW2_CLUSTER_UNALLOCATED:
1469             break;
1470 
1471         default:
1472             abort();
1473         }
1474     }
1475 
1476     g_free(l2_table);
1477     return 0;
1478 
1479 fail:
1480     g_free(l2_table);
1481     return ret;
1482 }
1483 
1484 /*
1485  * Increases the refcount for the L1 table, its L2 tables and all referenced
1486  * clusters in the given refcount table. While doing so, performs some checks
1487  * on L1 and L2 entries.
1488  *
1489  * Returns the number of errors found by the checks or -errno if an internal
1490  * error occurred.
1491  */
1492 static int check_refcounts_l1(BlockDriverState *bs,
1493                               BdrvCheckResult *res,
1494                               void **refcount_table,
1495                               int64_t *refcount_table_size,
1496                               int64_t l1_table_offset, int l1_size,
1497                               int flags)
1498 {
1499     BDRVQcow2State *s = bs->opaque;
1500     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1501     int i, ret;
1502 
1503     l1_size2 = l1_size * sizeof(uint64_t);
1504 
1505     /* Mark L1 table as used */
1506     ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1507                         l1_table_offset, l1_size2);
1508     if (ret < 0) {
1509         goto fail;
1510     }
1511 
1512     /* Read L1 table entries from disk */
1513     if (l1_size2 > 0) {
1514         l1_table = g_try_malloc(l1_size2);
1515         if (l1_table == NULL) {
1516             ret = -ENOMEM;
1517             res->check_errors++;
1518             goto fail;
1519         }
1520         ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
1521         if (ret < 0) {
1522             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1523             res->check_errors++;
1524             goto fail;
1525         }
1526         for(i = 0;i < l1_size; i++)
1527             be64_to_cpus(&l1_table[i]);
1528     }
1529 
1530     /* Do the actual checks */
1531     for(i = 0; i < l1_size; i++) {
1532         l2_offset = l1_table[i];
1533         if (l2_offset) {
1534             /* Mark L2 table as used */
1535             l2_offset &= L1E_OFFSET_MASK;
1536             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1537                                 l2_offset, s->cluster_size);
1538             if (ret < 0) {
1539                 goto fail;
1540             }
1541 
1542             /* L2 tables are cluster aligned */
1543             if (offset_into_cluster(s, l2_offset)) {
1544                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1545                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1546                 res->corruptions++;
1547             }
1548 
1549             /* Process and check L2 entries */
1550             ret = check_refcounts_l2(bs, res, refcount_table,
1551                                      refcount_table_size, l2_offset, flags);
1552             if (ret < 0) {
1553                 goto fail;
1554             }
1555         }
1556     }
1557     g_free(l1_table);
1558     return 0;
1559 
1560 fail:
1561     g_free(l1_table);
1562     return ret;
1563 }
1564 
1565 /*
1566  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1567  *
1568  * This function does not print an error message nor does it increment
1569  * check_errors if qcow2_get_refcount fails (this is because such an error will
1570  * have been already detected and sufficiently signaled by the calling function
1571  * (qcow2_check_refcounts) by the time this function is called).
1572  */
1573 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1574                               BdrvCheckMode fix)
1575 {
1576     BDRVQcow2State *s = bs->opaque;
1577     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1578     int ret;
1579     uint64_t refcount;
1580     int i, j;
1581 
1582     for (i = 0; i < s->l1_size; i++) {
1583         uint64_t l1_entry = s->l1_table[i];
1584         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1585         bool l2_dirty = false;
1586 
1587         if (!l2_offset) {
1588             continue;
1589         }
1590 
1591         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1592                                  &refcount);
1593         if (ret < 0) {
1594             /* don't print message nor increment check_errors */
1595             continue;
1596         }
1597         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1598             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1599                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1600                     fix & BDRV_FIX_ERRORS ? "Repairing" :
1601                                             "ERROR",
1602                     i, l1_entry, refcount);
1603             if (fix & BDRV_FIX_ERRORS) {
1604                 s->l1_table[i] = refcount == 1
1605                                ? l1_entry |  QCOW_OFLAG_COPIED
1606                                : l1_entry & ~QCOW_OFLAG_COPIED;
1607                 ret = qcow2_write_l1_entry(bs, i);
1608                 if (ret < 0) {
1609                     res->check_errors++;
1610                     goto fail;
1611                 }
1612                 res->corruptions_fixed++;
1613             } else {
1614                 res->corruptions++;
1615             }
1616         }
1617 
1618         ret = bdrv_pread(bs->file->bs, l2_offset, l2_table,
1619                          s->l2_size * sizeof(uint64_t));
1620         if (ret < 0) {
1621             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1622                     strerror(-ret));
1623             res->check_errors++;
1624             goto fail;
1625         }
1626 
1627         for (j = 0; j < s->l2_size; j++) {
1628             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1629             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1630             int cluster_type = qcow2_get_cluster_type(l2_entry);
1631 
1632             if ((cluster_type == QCOW2_CLUSTER_NORMAL) ||
1633                 ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) {
1634                 ret = qcow2_get_refcount(bs,
1635                                          data_offset >> s->cluster_bits,
1636                                          &refcount);
1637                 if (ret < 0) {
1638                     /* don't print message nor increment check_errors */
1639                     continue;
1640                 }
1641                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1642                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1643                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1644                             fix & BDRV_FIX_ERRORS ? "Repairing" :
1645                                                     "ERROR",
1646                             l2_entry, refcount);
1647                     if (fix & BDRV_FIX_ERRORS) {
1648                         l2_table[j] = cpu_to_be64(refcount == 1
1649                                     ? l2_entry |  QCOW_OFLAG_COPIED
1650                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1651                         l2_dirty = true;
1652                         res->corruptions_fixed++;
1653                     } else {
1654                         res->corruptions++;
1655                     }
1656                 }
1657             }
1658         }
1659 
1660         if (l2_dirty) {
1661             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1662                                                 l2_offset, s->cluster_size);
1663             if (ret < 0) {
1664                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1665                         "overlap check failed: %s\n", strerror(-ret));
1666                 res->check_errors++;
1667                 goto fail;
1668             }
1669 
1670             ret = bdrv_pwrite(bs->file->bs, l2_offset, l2_table,
1671                               s->cluster_size);
1672             if (ret < 0) {
1673                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1674                         strerror(-ret));
1675                 res->check_errors++;
1676                 goto fail;
1677             }
1678         }
1679     }
1680 
1681     ret = 0;
1682 
1683 fail:
1684     qemu_vfree(l2_table);
1685     return ret;
1686 }
1687 
1688 /*
1689  * Checks consistency of refblocks and accounts for each refblock in
1690  * *refcount_table.
1691  */
1692 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1693                            BdrvCheckMode fix, bool *rebuild,
1694                            void **refcount_table, int64_t *nb_clusters)
1695 {
1696     BDRVQcow2State *s = bs->opaque;
1697     int64_t i, size;
1698     int ret;
1699 
1700     for(i = 0; i < s->refcount_table_size; i++) {
1701         uint64_t offset, cluster;
1702         offset = s->refcount_table[i];
1703         cluster = offset >> s->cluster_bits;
1704 
1705         /* Refcount blocks are cluster aligned */
1706         if (offset_into_cluster(s, offset)) {
1707             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1708                 "cluster aligned; refcount table entry corrupted\n", i);
1709             res->corruptions++;
1710             *rebuild = true;
1711             continue;
1712         }
1713 
1714         if (cluster >= *nb_clusters) {
1715             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1716                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1717 
1718             if (fix & BDRV_FIX_ERRORS) {
1719                 int64_t new_nb_clusters;
1720 
1721                 if (offset > INT64_MAX - s->cluster_size) {
1722                     ret = -EINVAL;
1723                     goto resize_fail;
1724                 }
1725 
1726                 ret = bdrv_truncate(bs->file->bs, offset + s->cluster_size);
1727                 if (ret < 0) {
1728                     goto resize_fail;
1729                 }
1730                 size = bdrv_getlength(bs->file->bs);
1731                 if (size < 0) {
1732                     ret = size;
1733                     goto resize_fail;
1734                 }
1735 
1736                 new_nb_clusters = size_to_clusters(s, size);
1737                 assert(new_nb_clusters >= *nb_clusters);
1738 
1739                 ret = realloc_refcount_array(s, refcount_table,
1740                                              nb_clusters, new_nb_clusters);
1741                 if (ret < 0) {
1742                     res->check_errors++;
1743                     return ret;
1744                 }
1745 
1746                 if (cluster >= *nb_clusters) {
1747                     ret = -EINVAL;
1748                     goto resize_fail;
1749                 }
1750 
1751                 res->corruptions_fixed++;
1752                 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1753                                     offset, s->cluster_size);
1754                 if (ret < 0) {
1755                     return ret;
1756                 }
1757                 /* No need to check whether the refcount is now greater than 1:
1758                  * This area was just allocated and zeroed, so it can only be
1759                  * exactly 1 after inc_refcounts() */
1760                 continue;
1761 
1762 resize_fail:
1763                 res->corruptions++;
1764                 *rebuild = true;
1765                 fprintf(stderr, "ERROR could not resize image: %s\n",
1766                         strerror(-ret));
1767             } else {
1768                 res->corruptions++;
1769             }
1770             continue;
1771         }
1772 
1773         if (offset != 0) {
1774             ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1775                                 offset, s->cluster_size);
1776             if (ret < 0) {
1777                 return ret;
1778             }
1779             if (s->get_refcount(*refcount_table, cluster) != 1) {
1780                 fprintf(stderr, "ERROR refcount block %" PRId64
1781                         " refcount=%" PRIu64 "\n", i,
1782                         s->get_refcount(*refcount_table, cluster));
1783                 res->corruptions++;
1784                 *rebuild = true;
1785             }
1786         }
1787     }
1788 
1789     return 0;
1790 }
1791 
1792 /*
1793  * Calculates an in-memory refcount table.
1794  */
1795 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1796                                BdrvCheckMode fix, bool *rebuild,
1797                                void **refcount_table, int64_t *nb_clusters)
1798 {
1799     BDRVQcow2State *s = bs->opaque;
1800     int64_t i;
1801     QCowSnapshot *sn;
1802     int ret;
1803 
1804     if (!*refcount_table) {
1805         int64_t old_size = 0;
1806         ret = realloc_refcount_array(s, refcount_table,
1807                                      &old_size, *nb_clusters);
1808         if (ret < 0) {
1809             res->check_errors++;
1810             return ret;
1811         }
1812     }
1813 
1814     /* header */
1815     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1816                         0, s->cluster_size);
1817     if (ret < 0) {
1818         return ret;
1819     }
1820 
1821     /* current L1 table */
1822     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1823                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1824     if (ret < 0) {
1825         return ret;
1826     }
1827 
1828     /* snapshots */
1829     for (i = 0; i < s->nb_snapshots; i++) {
1830         sn = s->snapshots + i;
1831         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1832                                  sn->l1_table_offset, sn->l1_size, 0);
1833         if (ret < 0) {
1834             return ret;
1835         }
1836     }
1837     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1838                         s->snapshots_offset, s->snapshots_size);
1839     if (ret < 0) {
1840         return ret;
1841     }
1842 
1843     /* refcount data */
1844     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1845                         s->refcount_table_offset,
1846                         s->refcount_table_size * sizeof(uint64_t));
1847     if (ret < 0) {
1848         return ret;
1849     }
1850 
1851     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1852 }
1853 
1854 /*
1855  * Compares the actual reference count for each cluster in the image against the
1856  * refcount as reported by the refcount structures on-disk.
1857  */
1858 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1859                               BdrvCheckMode fix, bool *rebuild,
1860                               int64_t *highest_cluster,
1861                               void *refcount_table, int64_t nb_clusters)
1862 {
1863     BDRVQcow2State *s = bs->opaque;
1864     int64_t i;
1865     uint64_t refcount1, refcount2;
1866     int ret;
1867 
1868     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1869         ret = qcow2_get_refcount(bs, i, &refcount1);
1870         if (ret < 0) {
1871             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1872                     i, strerror(-ret));
1873             res->check_errors++;
1874             continue;
1875         }
1876 
1877         refcount2 = s->get_refcount(refcount_table, i);
1878 
1879         if (refcount1 > 0 || refcount2 > 0) {
1880             *highest_cluster = i;
1881         }
1882 
1883         if (refcount1 != refcount2) {
1884             /* Check if we're allowed to fix the mismatch */
1885             int *num_fixed = NULL;
1886             if (refcount1 == 0) {
1887                 *rebuild = true;
1888             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
1889                 num_fixed = &res->leaks_fixed;
1890             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
1891                 num_fixed = &res->corruptions_fixed;
1892             }
1893 
1894             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
1895                     " reference=%" PRIu64 "\n",
1896                    num_fixed != NULL     ? "Repairing" :
1897                    refcount1 < refcount2 ? "ERROR" :
1898                                            "Leaked",
1899                    i, refcount1, refcount2);
1900 
1901             if (num_fixed) {
1902                 ret = update_refcount(bs, i << s->cluster_bits, 1,
1903                                       refcount_diff(refcount1, refcount2),
1904                                       refcount1 > refcount2,
1905                                       QCOW2_DISCARD_ALWAYS);
1906                 if (ret >= 0) {
1907                     (*num_fixed)++;
1908                     continue;
1909                 }
1910             }
1911 
1912             /* And if we couldn't, print an error */
1913             if (refcount1 < refcount2) {
1914                 res->corruptions++;
1915             } else {
1916                 res->leaks++;
1917             }
1918         }
1919     }
1920 }
1921 
1922 /*
1923  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1924  * the on-disk refcount structures.
1925  *
1926  * On input, *first_free_cluster tells where to start looking, and need not
1927  * actually be a free cluster; the returned offset will not be before that
1928  * cluster.  On output, *first_free_cluster points to the first gap found, even
1929  * if that gap was too small to be used as the returned offset.
1930  *
1931  * Note that *first_free_cluster is a cluster index whereas the return value is
1932  * an offset.
1933  */
1934 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
1935                                    int cluster_count,
1936                                    void **refcount_table,
1937                                    int64_t *imrt_nb_clusters,
1938                                    int64_t *first_free_cluster)
1939 {
1940     BDRVQcow2State *s = bs->opaque;
1941     int64_t cluster = *first_free_cluster, i;
1942     bool first_gap = true;
1943     int contiguous_free_clusters;
1944     int ret;
1945 
1946     /* Starting at *first_free_cluster, find a range of at least cluster_count
1947      * continuously free clusters */
1948     for (contiguous_free_clusters = 0;
1949          cluster < *imrt_nb_clusters &&
1950          contiguous_free_clusters < cluster_count;
1951          cluster++)
1952     {
1953         if (!s->get_refcount(*refcount_table, cluster)) {
1954             contiguous_free_clusters++;
1955             if (first_gap) {
1956                 /* If this is the first free cluster found, update
1957                  * *first_free_cluster accordingly */
1958                 *first_free_cluster = cluster;
1959                 first_gap = false;
1960             }
1961         } else if (contiguous_free_clusters) {
1962             contiguous_free_clusters = 0;
1963         }
1964     }
1965 
1966     /* If contiguous_free_clusters is greater than zero, it contains the number
1967      * of continuously free clusters until the current cluster; the first free
1968      * cluster in the current "gap" is therefore
1969      * cluster - contiguous_free_clusters */
1970 
1971     /* If no such range could be found, grow the in-memory refcount table
1972      * accordingly to append free clusters at the end of the image */
1973     if (contiguous_free_clusters < cluster_count) {
1974         /* contiguous_free_clusters clusters are already empty at the image end;
1975          * we need cluster_count clusters; therefore, we have to allocate
1976          * cluster_count - contiguous_free_clusters new clusters at the end of
1977          * the image (which is the current value of cluster; note that cluster
1978          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1979          * the image end) */
1980         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
1981                                      cluster + cluster_count
1982                                      - contiguous_free_clusters);
1983         if (ret < 0) {
1984             return ret;
1985         }
1986     }
1987 
1988     /* Go back to the first free cluster */
1989     cluster -= contiguous_free_clusters;
1990     for (i = 0; i < cluster_count; i++) {
1991         s->set_refcount(*refcount_table, cluster + i, 1);
1992     }
1993 
1994     return cluster << s->cluster_bits;
1995 }
1996 
1997 /*
1998  * Creates a new refcount structure based solely on the in-memory information
1999  * given through *refcount_table. All necessary allocations will be reflected
2000  * in that array.
2001  *
2002  * On success, the old refcount structure is leaked (it will be covered by the
2003  * new refcount structure).
2004  */
2005 static int rebuild_refcount_structure(BlockDriverState *bs,
2006                                       BdrvCheckResult *res,
2007                                       void **refcount_table,
2008                                       int64_t *nb_clusters)
2009 {
2010     BDRVQcow2State *s = bs->opaque;
2011     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2012     int64_t refblock_offset, refblock_start, refblock_index;
2013     uint32_t reftable_size = 0;
2014     uint64_t *on_disk_reftable = NULL;
2015     void *on_disk_refblock;
2016     int ret = 0;
2017     struct {
2018         uint64_t reftable_offset;
2019         uint32_t reftable_clusters;
2020     } QEMU_PACKED reftable_offset_and_clusters;
2021 
2022     qcow2_cache_empty(bs, s->refcount_block_cache);
2023 
2024 write_refblocks:
2025     for (; cluster < *nb_clusters; cluster++) {
2026         if (!s->get_refcount(*refcount_table, cluster)) {
2027             continue;
2028         }
2029 
2030         refblock_index = cluster >> s->refcount_block_bits;
2031         refblock_start = refblock_index << s->refcount_block_bits;
2032 
2033         /* Don't allocate a cluster in a refblock already written to disk */
2034         if (first_free_cluster < refblock_start) {
2035             first_free_cluster = refblock_start;
2036         }
2037         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2038                                               nb_clusters, &first_free_cluster);
2039         if (refblock_offset < 0) {
2040             fprintf(stderr, "ERROR allocating refblock: %s\n",
2041                     strerror(-refblock_offset));
2042             res->check_errors++;
2043             ret = refblock_offset;
2044             goto fail;
2045         }
2046 
2047         if (reftable_size <= refblock_index) {
2048             uint32_t old_reftable_size = reftable_size;
2049             uint64_t *new_on_disk_reftable;
2050 
2051             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2052                                      s->cluster_size) / sizeof(uint64_t);
2053             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2054                                                  reftable_size *
2055                                                  sizeof(uint64_t));
2056             if (!new_on_disk_reftable) {
2057                 res->check_errors++;
2058                 ret = -ENOMEM;
2059                 goto fail;
2060             }
2061             on_disk_reftable = new_on_disk_reftable;
2062 
2063             memset(on_disk_reftable + old_reftable_size, 0,
2064                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2065 
2066             /* The offset we have for the reftable is now no longer valid;
2067              * this will leak that range, but we can easily fix that by running
2068              * a leak-fixing check after this rebuild operation */
2069             reftable_offset = -1;
2070         }
2071         on_disk_reftable[refblock_index] = refblock_offset;
2072 
2073         /* If this is apparently the last refblock (for now), try to squeeze the
2074          * reftable in */
2075         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2076             reftable_offset < 0)
2077         {
2078             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2079                                                           sizeof(uint64_t));
2080             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2081                                                   refcount_table, nb_clusters,
2082                                                   &first_free_cluster);
2083             if (reftable_offset < 0) {
2084                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2085                         strerror(-reftable_offset));
2086                 res->check_errors++;
2087                 ret = reftable_offset;
2088                 goto fail;
2089             }
2090         }
2091 
2092         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2093                                             s->cluster_size);
2094         if (ret < 0) {
2095             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2096             goto fail;
2097         }
2098 
2099         /* The size of *refcount_table is always cluster-aligned, therefore the
2100          * write operation will not overflow */
2101         on_disk_refblock = (void *)((char *) *refcount_table +
2102                                     refblock_index * s->cluster_size);
2103 
2104         ret = bdrv_write(bs->file->bs, refblock_offset / BDRV_SECTOR_SIZE,
2105                          on_disk_refblock, s->cluster_sectors);
2106         if (ret < 0) {
2107             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2108             goto fail;
2109         }
2110 
2111         /* Go to the end of this refblock */
2112         cluster = refblock_start + s->refcount_block_size - 1;
2113     }
2114 
2115     if (reftable_offset < 0) {
2116         uint64_t post_refblock_start, reftable_clusters;
2117 
2118         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2119         reftable_clusters = size_to_clusters(s,
2120                                              reftable_size * sizeof(uint64_t));
2121         /* Not pretty but simple */
2122         if (first_free_cluster < post_refblock_start) {
2123             first_free_cluster = post_refblock_start;
2124         }
2125         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2126                                               refcount_table, nb_clusters,
2127                                               &first_free_cluster);
2128         if (reftable_offset < 0) {
2129             fprintf(stderr, "ERROR allocating reftable: %s\n",
2130                     strerror(-reftable_offset));
2131             res->check_errors++;
2132             ret = reftable_offset;
2133             goto fail;
2134         }
2135 
2136         goto write_refblocks;
2137     }
2138 
2139     assert(on_disk_reftable);
2140 
2141     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2142         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2143     }
2144 
2145     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2146                                         reftable_size * sizeof(uint64_t));
2147     if (ret < 0) {
2148         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2149         goto fail;
2150     }
2151 
2152     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2153     ret = bdrv_pwrite(bs->file->bs, reftable_offset, on_disk_reftable,
2154                       reftable_size * sizeof(uint64_t));
2155     if (ret < 0) {
2156         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2157         goto fail;
2158     }
2159 
2160     /* Enter new reftable into the image header */
2161     cpu_to_be64w(&reftable_offset_and_clusters.reftable_offset,
2162                  reftable_offset);
2163     cpu_to_be32w(&reftable_offset_and_clusters.reftable_clusters,
2164                  size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2165     ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader,
2166                                                   refcount_table_offset),
2167                            &reftable_offset_and_clusters,
2168                            sizeof(reftable_offset_and_clusters));
2169     if (ret < 0) {
2170         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2171         goto fail;
2172     }
2173 
2174     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2175         be64_to_cpus(&on_disk_reftable[refblock_index]);
2176     }
2177     s->refcount_table = on_disk_reftable;
2178     s->refcount_table_offset = reftable_offset;
2179     s->refcount_table_size = reftable_size;
2180 
2181     return 0;
2182 
2183 fail:
2184     g_free(on_disk_reftable);
2185     return ret;
2186 }
2187 
2188 /*
2189  * Checks an image for refcount consistency.
2190  *
2191  * Returns 0 if no errors are found, the number of errors in case the image is
2192  * detected as corrupted, and -errno when an internal error occurred.
2193  */
2194 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2195                           BdrvCheckMode fix)
2196 {
2197     BDRVQcow2State *s = bs->opaque;
2198     BdrvCheckResult pre_compare_res;
2199     int64_t size, highest_cluster, nb_clusters;
2200     void *refcount_table = NULL;
2201     bool rebuild = false;
2202     int ret;
2203 
2204     size = bdrv_getlength(bs->file->bs);
2205     if (size < 0) {
2206         res->check_errors++;
2207         return size;
2208     }
2209 
2210     nb_clusters = size_to_clusters(s, size);
2211     if (nb_clusters > INT_MAX) {
2212         res->check_errors++;
2213         return -EFBIG;
2214     }
2215 
2216     res->bfi.total_clusters =
2217         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2218 
2219     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2220                               &nb_clusters);
2221     if (ret < 0) {
2222         goto fail;
2223     }
2224 
2225     /* In case we don't need to rebuild the refcount structure (but want to fix
2226      * something), this function is immediately called again, in which case the
2227      * result should be ignored */
2228     pre_compare_res = *res;
2229     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2230                       nb_clusters);
2231 
2232     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2233         BdrvCheckResult old_res = *res;
2234         int fresh_leaks = 0;
2235 
2236         fprintf(stderr, "Rebuilding refcount structure\n");
2237         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2238                                          &nb_clusters);
2239         if (ret < 0) {
2240             goto fail;
2241         }
2242 
2243         res->corruptions = 0;
2244         res->leaks = 0;
2245 
2246         /* Because the old reftable has been exchanged for a new one the
2247          * references have to be recalculated */
2248         rebuild = false;
2249         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2250         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2251                                   &nb_clusters);
2252         if (ret < 0) {
2253             goto fail;
2254         }
2255 
2256         if (fix & BDRV_FIX_LEAKS) {
2257             /* The old refcount structures are now leaked, fix it; the result
2258              * can be ignored, aside from leaks which were introduced by
2259              * rebuild_refcount_structure() that could not be fixed */
2260             BdrvCheckResult saved_res = *res;
2261             *res = (BdrvCheckResult){ 0 };
2262 
2263             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2264                               &highest_cluster, refcount_table, nb_clusters);
2265             if (rebuild) {
2266                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2267                         "broken\n");
2268             }
2269 
2270             /* Any leaks accounted for here were introduced by
2271              * rebuild_refcount_structure() because that function has created a
2272              * new refcount structure from scratch */
2273             fresh_leaks = res->leaks;
2274             *res = saved_res;
2275         }
2276 
2277         if (res->corruptions < old_res.corruptions) {
2278             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2279         }
2280         if (res->leaks < old_res.leaks) {
2281             res->leaks_fixed += old_res.leaks - res->leaks;
2282         }
2283         res->leaks += fresh_leaks;
2284     } else if (fix) {
2285         if (rebuild) {
2286             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2287             res->check_errors++;
2288             ret = -EIO;
2289             goto fail;
2290         }
2291 
2292         if (res->leaks || res->corruptions) {
2293             *res = pre_compare_res;
2294             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2295                               refcount_table, nb_clusters);
2296         }
2297     }
2298 
2299     /* check OFLAG_COPIED */
2300     ret = check_oflag_copied(bs, res, fix);
2301     if (ret < 0) {
2302         goto fail;
2303     }
2304 
2305     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2306     ret = 0;
2307 
2308 fail:
2309     g_free(refcount_table);
2310 
2311     return ret;
2312 }
2313 
2314 #define overlaps_with(ofs, sz) \
2315     ranges_overlap(offset, size, ofs, sz)
2316 
2317 /*
2318  * Checks if the given offset into the image file is actually free to use by
2319  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2320  * i.e. a sanity check without relying on the refcount tables.
2321  *
2322  * The ign parameter specifies what checks not to perform (being a bitmask of
2323  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2324  *
2325  * Returns:
2326  * - 0 if writing to this offset will not affect the mentioned metadata
2327  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2328  * - a negative value (-errno) indicating an error while performing a check,
2329  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2330  */
2331 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2332                                  int64_t size)
2333 {
2334     BDRVQcow2State *s = bs->opaque;
2335     int chk = s->overlap_check & ~ign;
2336     int i, j;
2337 
2338     if (!size) {
2339         return 0;
2340     }
2341 
2342     if (chk & QCOW2_OL_MAIN_HEADER) {
2343         if (offset < s->cluster_size) {
2344             return QCOW2_OL_MAIN_HEADER;
2345         }
2346     }
2347 
2348     /* align range to test to cluster boundaries */
2349     size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2350     offset = start_of_cluster(s, offset);
2351 
2352     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2353         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2354             return QCOW2_OL_ACTIVE_L1;
2355         }
2356     }
2357 
2358     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2359         if (overlaps_with(s->refcount_table_offset,
2360             s->refcount_table_size * sizeof(uint64_t))) {
2361             return QCOW2_OL_REFCOUNT_TABLE;
2362         }
2363     }
2364 
2365     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2366         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2367             return QCOW2_OL_SNAPSHOT_TABLE;
2368         }
2369     }
2370 
2371     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2372         for (i = 0; i < s->nb_snapshots; i++) {
2373             if (s->snapshots[i].l1_size &&
2374                 overlaps_with(s->snapshots[i].l1_table_offset,
2375                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2376                 return QCOW2_OL_INACTIVE_L1;
2377             }
2378         }
2379     }
2380 
2381     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2382         for (i = 0; i < s->l1_size; i++) {
2383             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2384                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2385                 s->cluster_size)) {
2386                 return QCOW2_OL_ACTIVE_L2;
2387             }
2388         }
2389     }
2390 
2391     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2392         for (i = 0; i < s->refcount_table_size; i++) {
2393             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2394                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2395                 s->cluster_size)) {
2396                 return QCOW2_OL_REFCOUNT_BLOCK;
2397             }
2398         }
2399     }
2400 
2401     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2402         for (i = 0; i < s->nb_snapshots; i++) {
2403             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2404             uint32_t l1_sz  = s->snapshots[i].l1_size;
2405             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2406             uint64_t *l1 = g_try_malloc(l1_sz2);
2407             int ret;
2408 
2409             if (l1_sz2 && l1 == NULL) {
2410                 return -ENOMEM;
2411             }
2412 
2413             ret = bdrv_pread(bs->file->bs, l1_ofs, l1, l1_sz2);
2414             if (ret < 0) {
2415                 g_free(l1);
2416                 return ret;
2417             }
2418 
2419             for (j = 0; j < l1_sz; j++) {
2420                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2421                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2422                     g_free(l1);
2423                     return QCOW2_OL_INACTIVE_L2;
2424                 }
2425             }
2426 
2427             g_free(l1);
2428         }
2429     }
2430 
2431     return 0;
2432 }
2433 
2434 static const char *metadata_ol_names[] = {
2435     [QCOW2_OL_MAIN_HEADER_BITNR]    = "qcow2_header",
2436     [QCOW2_OL_ACTIVE_L1_BITNR]      = "active L1 table",
2437     [QCOW2_OL_ACTIVE_L2_BITNR]      = "active L2 table",
2438     [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2439     [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2440     [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2441     [QCOW2_OL_INACTIVE_L1_BITNR]    = "inactive L1 table",
2442     [QCOW2_OL_INACTIVE_L2_BITNR]    = "inactive L2 table",
2443 };
2444 
2445 /*
2446  * First performs a check for metadata overlaps (through
2447  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2448  * while performing a check), that value is returned. If an impending overlap
2449  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2450  * and -EIO returned.
2451  *
2452  * Returns 0 if there were neither overlaps nor errors while checking for
2453  * overlaps; or a negative value (-errno) on error.
2454  */
2455 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2456                                   int64_t size)
2457 {
2458     int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2459 
2460     if (ret < 0) {
2461         return ret;
2462     } else if (ret > 0) {
2463         int metadata_ol_bitnr = ctz32(ret);
2464         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2465 
2466         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2467                                 "write on metadata (overlaps with %s)",
2468                                 metadata_ol_names[metadata_ol_bitnr]);
2469         return -EIO;
2470     }
2471 
2472     return 0;
2473 }
2474 
2475 /* A pointer to a function of this type is given to walk_over_reftable(). That
2476  * function will create refblocks and pass them to a RefblockFinishOp once they
2477  * are completed (@refblock). @refblock_empty is set if the refblock is
2478  * completely empty.
2479  *
2480  * Along with the refblock, a corresponding reftable entry is passed, in the
2481  * reftable @reftable (which may be reallocated) at @reftable_index.
2482  *
2483  * @allocated should be set to true if a new cluster has been allocated.
2484  */
2485 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2486                                uint64_t reftable_index, uint64_t *reftable_size,
2487                                void *refblock, bool refblock_empty,
2488                                bool *allocated, Error **errp);
2489 
2490 /**
2491  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2492  * it is not empty) and inserts its offset into the new reftable. The size of
2493  * this new reftable is increased as required.
2494  */
2495 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2496                           uint64_t reftable_index, uint64_t *reftable_size,
2497                           void *refblock, bool refblock_empty, bool *allocated,
2498                           Error **errp)
2499 {
2500     BDRVQcow2State *s = bs->opaque;
2501     int64_t offset;
2502 
2503     if (!refblock_empty && reftable_index >= *reftable_size) {
2504         uint64_t *new_reftable;
2505         uint64_t new_reftable_size;
2506 
2507         new_reftable_size = ROUND_UP(reftable_index + 1,
2508                                      s->cluster_size / sizeof(uint64_t));
2509         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2510             error_setg(errp,
2511                        "This operation would make the refcount table grow "
2512                        "beyond the maximum size supported by QEMU, aborting");
2513             return -ENOTSUP;
2514         }
2515 
2516         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2517                                                 sizeof(uint64_t));
2518         if (!new_reftable) {
2519             error_setg(errp, "Failed to increase reftable buffer size");
2520             return -ENOMEM;
2521         }
2522 
2523         memset(new_reftable + *reftable_size, 0,
2524                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2525 
2526         *reftable      = new_reftable;
2527         *reftable_size = new_reftable_size;
2528     }
2529 
2530     if (!refblock_empty && !(*reftable)[reftable_index]) {
2531         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2532         if (offset < 0) {
2533             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2534             return offset;
2535         }
2536         (*reftable)[reftable_index] = offset;
2537         *allocated = true;
2538     }
2539 
2540     return 0;
2541 }
2542 
2543 /**
2544  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2545  * offset specified by the new reftable's entry. It does not modify the new
2546  * reftable or change any refcounts.
2547  */
2548 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2549                           uint64_t reftable_index, uint64_t *reftable_size,
2550                           void *refblock, bool refblock_empty, bool *allocated,
2551                           Error **errp)
2552 {
2553     BDRVQcow2State *s = bs->opaque;
2554     int64_t offset;
2555     int ret;
2556 
2557     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2558         offset = (*reftable)[reftable_index];
2559 
2560         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2561         if (ret < 0) {
2562             error_setg_errno(errp, -ret, "Overlap check failed");
2563             return ret;
2564         }
2565 
2566         ret = bdrv_pwrite(bs->file->bs, offset, refblock, s->cluster_size);
2567         if (ret < 0) {
2568             error_setg_errno(errp, -ret, "Failed to write refblock");
2569             return ret;
2570         }
2571     } else {
2572         assert(refblock_empty);
2573     }
2574 
2575     return 0;
2576 }
2577 
2578 /**
2579  * This function walks over the existing reftable and every referenced refblock;
2580  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2581  * create an equal new entry in the passed @new_refblock. Once that
2582  * @new_refblock is completely filled, @operation will be called.
2583  *
2584  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2585  * @index is the index of the walk_over_reftable() calls and @total is the total
2586  * number of walk_over_reftable() calls per amend operation. Both are used for
2587  * calculating the parameters for the status callback.
2588  *
2589  * @allocated is set to true if a new cluster has been allocated.
2590  */
2591 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2592                               uint64_t *new_reftable_index,
2593                               uint64_t *new_reftable_size,
2594                               void *new_refblock, int new_refblock_size,
2595                               int new_refcount_bits,
2596                               RefblockFinishOp *operation, bool *allocated,
2597                               Qcow2SetRefcountFunc *new_set_refcount,
2598                               BlockDriverAmendStatusCB *status_cb,
2599                               void *cb_opaque, int index, int total,
2600                               Error **errp)
2601 {
2602     BDRVQcow2State *s = bs->opaque;
2603     uint64_t reftable_index;
2604     bool new_refblock_empty = true;
2605     int refblock_index;
2606     int new_refblock_index = 0;
2607     int ret;
2608 
2609     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2610          reftable_index++)
2611     {
2612         uint64_t refblock_offset = s->refcount_table[reftable_index]
2613                                  & REFT_OFFSET_MASK;
2614 
2615         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2616                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2617 
2618         if (refblock_offset) {
2619             void *refblock;
2620 
2621             if (offset_into_cluster(s, refblock_offset)) {
2622                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2623                                         PRIx64 " unaligned (reftable index: %#"
2624                                         PRIx64 ")", refblock_offset,
2625                                         reftable_index);
2626                 error_setg(errp,
2627                            "Image is corrupt (unaligned refblock offset)");
2628                 return -EIO;
2629             }
2630 
2631             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2632                                   &refblock);
2633             if (ret < 0) {
2634                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2635                 return ret;
2636             }
2637 
2638             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2639                  refblock_index++)
2640             {
2641                 uint64_t refcount;
2642 
2643                 if (new_refblock_index >= new_refblock_size) {
2644                     /* new_refblock is now complete */
2645                     ret = operation(bs, new_reftable, *new_reftable_index,
2646                                     new_reftable_size, new_refblock,
2647                                     new_refblock_empty, allocated, errp);
2648                     if (ret < 0) {
2649                         qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2650                         return ret;
2651                     }
2652 
2653                     (*new_reftable_index)++;
2654                     new_refblock_index = 0;
2655                     new_refblock_empty = true;
2656                 }
2657 
2658                 refcount = s->get_refcount(refblock, refblock_index);
2659                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2660                     uint64_t offset;
2661 
2662                     qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2663 
2664                     offset = ((reftable_index << s->refcount_block_bits)
2665                               + refblock_index) << s->cluster_bits;
2666 
2667                     error_setg(errp, "Cannot decrease refcount entry width to "
2668                                "%i bits: Cluster at offset %#" PRIx64 " has a "
2669                                "refcount of %" PRIu64, new_refcount_bits,
2670                                offset, refcount);
2671                     return -EINVAL;
2672                 }
2673 
2674                 if (new_set_refcount) {
2675                     new_set_refcount(new_refblock, new_refblock_index++,
2676                                      refcount);
2677                 } else {
2678                     new_refblock_index++;
2679                 }
2680                 new_refblock_empty = new_refblock_empty && refcount == 0;
2681             }
2682 
2683             qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2684         } else {
2685             /* No refblock means every refcount is 0 */
2686             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2687                  refblock_index++)
2688             {
2689                 if (new_refblock_index >= new_refblock_size) {
2690                     /* new_refblock is now complete */
2691                     ret = operation(bs, new_reftable, *new_reftable_index,
2692                                     new_reftable_size, new_refblock,
2693                                     new_refblock_empty, allocated, errp);
2694                     if (ret < 0) {
2695                         return ret;
2696                     }
2697 
2698                     (*new_reftable_index)++;
2699                     new_refblock_index = 0;
2700                     new_refblock_empty = true;
2701                 }
2702 
2703                 if (new_set_refcount) {
2704                     new_set_refcount(new_refblock, new_refblock_index++, 0);
2705                 } else {
2706                     new_refblock_index++;
2707                 }
2708             }
2709         }
2710     }
2711 
2712     if (new_refblock_index > 0) {
2713         /* Complete the potentially existing partially filled final refblock */
2714         if (new_set_refcount) {
2715             for (; new_refblock_index < new_refblock_size;
2716                  new_refblock_index++)
2717             {
2718                 new_set_refcount(new_refblock, new_refblock_index, 0);
2719             }
2720         }
2721 
2722         ret = operation(bs, new_reftable, *new_reftable_index,
2723                         new_reftable_size, new_refblock, new_refblock_empty,
2724                         allocated, errp);
2725         if (ret < 0) {
2726             return ret;
2727         }
2728 
2729         (*new_reftable_index)++;
2730     }
2731 
2732     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2733               (uint64_t)total * s->refcount_table_size, cb_opaque);
2734 
2735     return 0;
2736 }
2737 
2738 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2739                                 BlockDriverAmendStatusCB *status_cb,
2740                                 void *cb_opaque, Error **errp)
2741 {
2742     BDRVQcow2State *s = bs->opaque;
2743     Qcow2GetRefcountFunc *new_get_refcount;
2744     Qcow2SetRefcountFunc *new_set_refcount;
2745     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2746     uint64_t *new_reftable = NULL, new_reftable_size = 0;
2747     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2748     uint64_t new_reftable_index = 0;
2749     uint64_t i;
2750     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2751     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2752     int old_refcount_order;
2753     int walk_index = 0;
2754     int ret;
2755     bool new_allocation;
2756 
2757     assert(s->qcow_version >= 3);
2758     assert(refcount_order >= 0 && refcount_order <= 6);
2759 
2760     /* see qcow2_open() */
2761     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2762 
2763     new_get_refcount = get_refcount_funcs[refcount_order];
2764     new_set_refcount = set_refcount_funcs[refcount_order];
2765 
2766 
2767     do {
2768         int total_walks;
2769 
2770         new_allocation = false;
2771 
2772         /* At least we have to do this walk and the one which writes the
2773          * refblocks; also, at least we have to do this loop here at least
2774          * twice (normally), first to do the allocations, and second to
2775          * determine that everything is correctly allocated, this then makes
2776          * three walks in total */
2777         total_walks = MAX(walk_index + 2, 3);
2778 
2779         /* First, allocate the structures so they are present in the refcount
2780          * structures */
2781         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2782                                  &new_reftable_size, NULL, new_refblock_size,
2783                                  new_refcount_bits, &alloc_refblock,
2784                                  &new_allocation, NULL, status_cb, cb_opaque,
2785                                  walk_index++, total_walks, errp);
2786         if (ret < 0) {
2787             goto done;
2788         }
2789 
2790         new_reftable_index = 0;
2791 
2792         if (new_allocation) {
2793             if (new_reftable_offset) {
2794                 qcow2_free_clusters(bs, new_reftable_offset,
2795                                     allocated_reftable_size * sizeof(uint64_t),
2796                                     QCOW2_DISCARD_NEVER);
2797             }
2798 
2799             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2800                                                            sizeof(uint64_t));
2801             if (new_reftable_offset < 0) {
2802                 error_setg_errno(errp, -new_reftable_offset,
2803                                  "Failed to allocate the new reftable");
2804                 ret = new_reftable_offset;
2805                 goto done;
2806             }
2807             allocated_reftable_size = new_reftable_size;
2808         }
2809     } while (new_allocation);
2810 
2811     /* Second, write the new refblocks */
2812     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2813                              &new_reftable_size, new_refblock,
2814                              new_refblock_size, new_refcount_bits,
2815                              &flush_refblock, &new_allocation, new_set_refcount,
2816                              status_cb, cb_opaque, walk_index, walk_index + 1,
2817                              errp);
2818     if (ret < 0) {
2819         goto done;
2820     }
2821     assert(!new_allocation);
2822 
2823 
2824     /* Write the new reftable */
2825     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2826                                         new_reftable_size * sizeof(uint64_t));
2827     if (ret < 0) {
2828         error_setg_errno(errp, -ret, "Overlap check failed");
2829         goto done;
2830     }
2831 
2832     for (i = 0; i < new_reftable_size; i++) {
2833         cpu_to_be64s(&new_reftable[i]);
2834     }
2835 
2836     ret = bdrv_pwrite(bs->file->bs, new_reftable_offset, new_reftable,
2837                       new_reftable_size * sizeof(uint64_t));
2838 
2839     for (i = 0; i < new_reftable_size; i++) {
2840         be64_to_cpus(&new_reftable[i]);
2841     }
2842 
2843     if (ret < 0) {
2844         error_setg_errno(errp, -ret, "Failed to write the new reftable");
2845         goto done;
2846     }
2847 
2848 
2849     /* Empty the refcount cache */
2850     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2851     if (ret < 0) {
2852         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2853         goto done;
2854     }
2855 
2856     /* Update the image header to point to the new reftable; this only updates
2857      * the fields which are relevant to qcow2_update_header(); other fields
2858      * such as s->refcount_table or s->refcount_bits stay stale for now
2859      * (because we have to restore everything if qcow2_update_header() fails) */
2860     old_refcount_order  = s->refcount_order;
2861     old_reftable_size   = s->refcount_table_size;
2862     old_reftable_offset = s->refcount_table_offset;
2863 
2864     s->refcount_order        = refcount_order;
2865     s->refcount_table_size   = new_reftable_size;
2866     s->refcount_table_offset = new_reftable_offset;
2867 
2868     ret = qcow2_update_header(bs);
2869     if (ret < 0) {
2870         s->refcount_order        = old_refcount_order;
2871         s->refcount_table_size   = old_reftable_size;
2872         s->refcount_table_offset = old_reftable_offset;
2873         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
2874         goto done;
2875     }
2876 
2877     /* Now update the rest of the in-memory information */
2878     old_reftable = s->refcount_table;
2879     s->refcount_table = new_reftable;
2880 
2881     s->refcount_bits = 1 << refcount_order;
2882     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
2883     s->refcount_max += s->refcount_max - 1;
2884 
2885     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
2886     s->refcount_block_size = 1 << s->refcount_block_bits;
2887 
2888     s->get_refcount = new_get_refcount;
2889     s->set_refcount = new_set_refcount;
2890 
2891     /* For cleaning up all old refblocks and the old reftable below the "done"
2892      * label */
2893     new_reftable        = old_reftable;
2894     new_reftable_size   = old_reftable_size;
2895     new_reftable_offset = old_reftable_offset;
2896 
2897 done:
2898     if (new_reftable) {
2899         /* On success, new_reftable actually points to the old reftable (and
2900          * new_reftable_size is the old reftable's size); but that is just
2901          * fine */
2902         for (i = 0; i < new_reftable_size; i++) {
2903             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
2904             if (offset) {
2905                 qcow2_free_clusters(bs, offset, s->cluster_size,
2906                                     QCOW2_DISCARD_OTHER);
2907             }
2908         }
2909         g_free(new_reftable);
2910 
2911         if (new_reftable_offset > 0) {
2912             qcow2_free_clusters(bs, new_reftable_offset,
2913                                 new_reftable_size * sizeof(uint64_t),
2914                                 QCOW2_DISCARD_OTHER);
2915         }
2916     }
2917 
2918     qemu_vfree(new_refblock);
2919     return ret;
2920 }
2921