xref: /openbmc/qemu/block/qcow2-refcount.c (revision 91bfcdb0)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu-common.h"
26 #include "block/block_int.h"
27 #include "block/qcow2.h"
28 #include "qemu/range.h"
29 
30 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
31 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
32                             int64_t offset, int64_t length, uint64_t addend,
33                             bool decrease, enum qcow2_discard_type type);
34 
35 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
36 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
37 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
38 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
42 
43 static void set_refcount_ro0(void *refcount_array, uint64_t index,
44                              uint64_t value);
45 static void set_refcount_ro1(void *refcount_array, uint64_t index,
46                              uint64_t value);
47 static void set_refcount_ro2(void *refcount_array, uint64_t index,
48                              uint64_t value);
49 static void set_refcount_ro3(void *refcount_array, uint64_t index,
50                              uint64_t value);
51 static void set_refcount_ro4(void *refcount_array, uint64_t index,
52                              uint64_t value);
53 static void set_refcount_ro5(void *refcount_array, uint64_t index,
54                              uint64_t value);
55 static void set_refcount_ro6(void *refcount_array, uint64_t index,
56                              uint64_t value);
57 
58 
59 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
60     &get_refcount_ro0,
61     &get_refcount_ro1,
62     &get_refcount_ro2,
63     &get_refcount_ro3,
64     &get_refcount_ro4,
65     &get_refcount_ro5,
66     &get_refcount_ro6
67 };
68 
69 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
70     &set_refcount_ro0,
71     &set_refcount_ro1,
72     &set_refcount_ro2,
73     &set_refcount_ro3,
74     &set_refcount_ro4,
75     &set_refcount_ro5,
76     &set_refcount_ro6
77 };
78 
79 
80 /*********************************************************/
81 /* refcount handling */
82 
83 int qcow2_refcount_init(BlockDriverState *bs)
84 {
85     BDRVQcow2State *s = bs->opaque;
86     unsigned int refcount_table_size2, i;
87     int ret;
88 
89     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
90 
91     s->get_refcount = get_refcount_funcs[s->refcount_order];
92     s->set_refcount = set_refcount_funcs[s->refcount_order];
93 
94     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
95     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
96     s->refcount_table = g_try_malloc(refcount_table_size2);
97 
98     if (s->refcount_table_size > 0) {
99         if (s->refcount_table == NULL) {
100             ret = -ENOMEM;
101             goto fail;
102         }
103         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
104         ret = bdrv_pread(bs->file->bs, s->refcount_table_offset,
105                          s->refcount_table, refcount_table_size2);
106         if (ret < 0) {
107             goto fail;
108         }
109         for(i = 0; i < s->refcount_table_size; i++)
110             be64_to_cpus(&s->refcount_table[i]);
111     }
112     return 0;
113  fail:
114     return ret;
115 }
116 
117 void qcow2_refcount_close(BlockDriverState *bs)
118 {
119     BDRVQcow2State *s = bs->opaque;
120     g_free(s->refcount_table);
121 }
122 
123 
124 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
125 {
126     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
127 }
128 
129 static void set_refcount_ro0(void *refcount_array, uint64_t index,
130                              uint64_t value)
131 {
132     assert(!(value >> 1));
133     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
134     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
135 }
136 
137 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
138 {
139     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
140            & 0x3;
141 }
142 
143 static void set_refcount_ro1(void *refcount_array, uint64_t index,
144                              uint64_t value)
145 {
146     assert(!(value >> 2));
147     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
148     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
149 }
150 
151 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
152 {
153     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
154            & 0xf;
155 }
156 
157 static void set_refcount_ro2(void *refcount_array, uint64_t index,
158                              uint64_t value)
159 {
160     assert(!(value >> 4));
161     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
162     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
163 }
164 
165 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
166 {
167     return ((const uint8_t *)refcount_array)[index];
168 }
169 
170 static void set_refcount_ro3(void *refcount_array, uint64_t index,
171                              uint64_t value)
172 {
173     assert(!(value >> 8));
174     ((uint8_t *)refcount_array)[index] = value;
175 }
176 
177 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
178 {
179     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
180 }
181 
182 static void set_refcount_ro4(void *refcount_array, uint64_t index,
183                              uint64_t value)
184 {
185     assert(!(value >> 16));
186     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
187 }
188 
189 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
190 {
191     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
192 }
193 
194 static void set_refcount_ro5(void *refcount_array, uint64_t index,
195                              uint64_t value)
196 {
197     assert(!(value >> 32));
198     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
199 }
200 
201 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
202 {
203     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
204 }
205 
206 static void set_refcount_ro6(void *refcount_array, uint64_t index,
207                              uint64_t value)
208 {
209     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
210 }
211 
212 
213 static int load_refcount_block(BlockDriverState *bs,
214                                int64_t refcount_block_offset,
215                                void **refcount_block)
216 {
217     BDRVQcow2State *s = bs->opaque;
218     int ret;
219 
220     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
221     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
222         refcount_block);
223 
224     return ret;
225 }
226 
227 /*
228  * Retrieves the refcount of the cluster given by its index and stores it in
229  * *refcount. Returns 0 on success and -errno on failure.
230  */
231 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
232                        uint64_t *refcount)
233 {
234     BDRVQcow2State *s = bs->opaque;
235     uint64_t refcount_table_index, block_index;
236     int64_t refcount_block_offset;
237     int ret;
238     void *refcount_block;
239 
240     refcount_table_index = cluster_index >> s->refcount_block_bits;
241     if (refcount_table_index >= s->refcount_table_size) {
242         *refcount = 0;
243         return 0;
244     }
245     refcount_block_offset =
246         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
247     if (!refcount_block_offset) {
248         *refcount = 0;
249         return 0;
250     }
251 
252     if (offset_into_cluster(s, refcount_block_offset)) {
253         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
254                                 " unaligned (reftable index: %#" PRIx64 ")",
255                                 refcount_block_offset, refcount_table_index);
256         return -EIO;
257     }
258 
259     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
260                           &refcount_block);
261     if (ret < 0) {
262         return ret;
263     }
264 
265     block_index = cluster_index & (s->refcount_block_size - 1);
266     *refcount = s->get_refcount(refcount_block, block_index);
267 
268     qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
269 
270     return 0;
271 }
272 
273 /*
274  * Rounds the refcount table size up to avoid growing the table for each single
275  * refcount block that is allocated.
276  */
277 static unsigned int next_refcount_table_size(BDRVQcow2State *s,
278     unsigned int min_size)
279 {
280     unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
281     unsigned int refcount_table_clusters =
282         MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
283 
284     while (min_clusters > refcount_table_clusters) {
285         refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
286     }
287 
288     return refcount_table_clusters << (s->cluster_bits - 3);
289 }
290 
291 
292 /* Checks if two offsets are described by the same refcount block */
293 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
294     uint64_t offset_b)
295 {
296     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
297     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
298 
299     return (block_a == block_b);
300 }
301 
302 /*
303  * Loads a refcount block. If it doesn't exist yet, it is allocated first
304  * (including growing the refcount table if needed).
305  *
306  * Returns 0 on success or -errno in error case
307  */
308 static int alloc_refcount_block(BlockDriverState *bs,
309                                 int64_t cluster_index, void **refcount_block)
310 {
311     BDRVQcow2State *s = bs->opaque;
312     unsigned int refcount_table_index;
313     int ret;
314 
315     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
316 
317     /* Find the refcount block for the given cluster */
318     refcount_table_index = cluster_index >> s->refcount_block_bits;
319 
320     if (refcount_table_index < s->refcount_table_size) {
321 
322         uint64_t refcount_block_offset =
323             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
324 
325         /* If it's already there, we're done */
326         if (refcount_block_offset) {
327             if (offset_into_cluster(s, refcount_block_offset)) {
328                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
329                                         PRIx64 " unaligned (reftable index: "
330                                         "%#x)", refcount_block_offset,
331                                         refcount_table_index);
332                 return -EIO;
333             }
334 
335              return load_refcount_block(bs, refcount_block_offset,
336                                         refcount_block);
337         }
338     }
339 
340     /*
341      * If we came here, we need to allocate something. Something is at least
342      * a cluster for the new refcount block. It may also include a new refcount
343      * table if the old refcount table is too small.
344      *
345      * Note that allocating clusters here needs some special care:
346      *
347      * - We can't use the normal qcow2_alloc_clusters(), it would try to
348      *   increase the refcount and very likely we would end up with an endless
349      *   recursion. Instead we must place the refcount blocks in a way that
350      *   they can describe them themselves.
351      *
352      * - We need to consider that at this point we are inside update_refcounts
353      *   and potentially doing an initial refcount increase. This means that
354      *   some clusters have already been allocated by the caller, but their
355      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
356      *   need to return -EAGAIN to signal the caller that it needs to restart
357      *   the search for free clusters.
358      *
359      * - alloc_clusters_noref and qcow2_free_clusters may load a different
360      *   refcount block into the cache
361      */
362 
363     *refcount_block = NULL;
364 
365     /* We write to the refcount table, so we might depend on L2 tables */
366     ret = qcow2_cache_flush(bs, s->l2_table_cache);
367     if (ret < 0) {
368         return ret;
369     }
370 
371     /* Allocate the refcount block itself and mark it as used */
372     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
373     if (new_block < 0) {
374         return new_block;
375     }
376 
377 #ifdef DEBUG_ALLOC2
378     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
379         " at %" PRIx64 "\n",
380         refcount_table_index, cluster_index << s->cluster_bits, new_block);
381 #endif
382 
383     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
384         /* Zero the new refcount block before updating it */
385         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
386                                     refcount_block);
387         if (ret < 0) {
388             goto fail_block;
389         }
390 
391         memset(*refcount_block, 0, s->cluster_size);
392 
393         /* The block describes itself, need to update the cache */
394         int block_index = (new_block >> s->cluster_bits) &
395             (s->refcount_block_size - 1);
396         s->set_refcount(*refcount_block, block_index, 1);
397     } else {
398         /* Described somewhere else. This can recurse at most twice before we
399          * arrive at a block that describes itself. */
400         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
401                               QCOW2_DISCARD_NEVER);
402         if (ret < 0) {
403             goto fail_block;
404         }
405 
406         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
407         if (ret < 0) {
408             goto fail_block;
409         }
410 
411         /* Initialize the new refcount block only after updating its refcount,
412          * update_refcount uses the refcount cache itself */
413         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
414                                     refcount_block);
415         if (ret < 0) {
416             goto fail_block;
417         }
418 
419         memset(*refcount_block, 0, s->cluster_size);
420     }
421 
422     /* Now the new refcount block needs to be written to disk */
423     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
424     qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
425     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
426     if (ret < 0) {
427         goto fail_block;
428     }
429 
430     /* If the refcount table is big enough, just hook the block up there */
431     if (refcount_table_index < s->refcount_table_size) {
432         uint64_t data64 = cpu_to_be64(new_block);
433         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
434         ret = bdrv_pwrite_sync(bs->file->bs,
435             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
436             &data64, sizeof(data64));
437         if (ret < 0) {
438             goto fail_block;
439         }
440 
441         s->refcount_table[refcount_table_index] = new_block;
442 
443         /* The new refcount block may be where the caller intended to put its
444          * data, so let it restart the search. */
445         return -EAGAIN;
446     }
447 
448     qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
449 
450     /*
451      * If we come here, we need to grow the refcount table. Again, a new
452      * refcount table needs some space and we can't simply allocate to avoid
453      * endless recursion.
454      *
455      * Therefore let's grab new refcount blocks at the end of the image, which
456      * will describe themselves and the new refcount table. This way we can
457      * reference them only in the new table and do the switch to the new
458      * refcount table at once without producing an inconsistent state in
459      * between.
460      */
461     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
462 
463     /* Calculate the number of refcount blocks needed so far; this will be the
464      * basis for calculating the index of the first cluster used for the
465      * self-describing refcount structures which we are about to create.
466      *
467      * Because we reached this point, there cannot be any refcount entries for
468      * cluster_index or higher indices yet. However, because new_block has been
469      * allocated to describe that cluster (and it will assume this role later
470      * on), we cannot use that index; also, new_block may actually have a higher
471      * cluster index than cluster_index, so it needs to be taken into account
472      * here (and 1 needs to be added to its value because that cluster is used).
473      */
474     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
475                                             (new_block >> s->cluster_bits) + 1),
476                                         s->refcount_block_size);
477 
478     if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
479         return -EFBIG;
480     }
481 
482     /* And now we need at least one block more for the new metadata */
483     uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
484     uint64_t last_table_size;
485     uint64_t blocks_clusters;
486     do {
487         uint64_t table_clusters =
488             size_to_clusters(s, table_size * sizeof(uint64_t));
489         blocks_clusters = 1 +
490             ((table_clusters + s->refcount_block_size - 1)
491             / s->refcount_block_size);
492         uint64_t meta_clusters = table_clusters + blocks_clusters;
493 
494         last_table_size = table_size;
495         table_size = next_refcount_table_size(s, blocks_used +
496             ((meta_clusters + s->refcount_block_size - 1)
497             / s->refcount_block_size));
498 
499     } while (last_table_size != table_size);
500 
501 #ifdef DEBUG_ALLOC2
502     fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
503         s->refcount_table_size, table_size);
504 #endif
505 
506     /* Create the new refcount table and blocks */
507     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
508         s->cluster_size;
509     uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
510     uint64_t *new_table = g_try_new0(uint64_t, table_size);
511     void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
512 
513     assert(table_size > 0 && blocks_clusters > 0);
514     if (new_table == NULL || new_blocks == NULL) {
515         ret = -ENOMEM;
516         goto fail_table;
517     }
518 
519     /* Fill the new refcount table */
520     memcpy(new_table, s->refcount_table,
521         s->refcount_table_size * sizeof(uint64_t));
522     new_table[refcount_table_index] = new_block;
523 
524     int i;
525     for (i = 0; i < blocks_clusters; i++) {
526         new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
527     }
528 
529     /* Fill the refcount blocks */
530     uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
531     int block = 0;
532     for (i = 0; i < table_clusters + blocks_clusters; i++) {
533         s->set_refcount(new_blocks, block++, 1);
534     }
535 
536     /* Write refcount blocks to disk */
537     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
538     ret = bdrv_pwrite_sync(bs->file->bs, meta_offset, new_blocks,
539         blocks_clusters * s->cluster_size);
540     g_free(new_blocks);
541     new_blocks = NULL;
542     if (ret < 0) {
543         goto fail_table;
544     }
545 
546     /* Write refcount table to disk */
547     for(i = 0; i < table_size; i++) {
548         cpu_to_be64s(&new_table[i]);
549     }
550 
551     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
552     ret = bdrv_pwrite_sync(bs->file->bs, table_offset, new_table,
553         table_size * sizeof(uint64_t));
554     if (ret < 0) {
555         goto fail_table;
556     }
557 
558     for(i = 0; i < table_size; i++) {
559         be64_to_cpus(&new_table[i]);
560     }
561 
562     /* Hook up the new refcount table in the qcow2 header */
563     uint8_t data[12];
564     cpu_to_be64w((uint64_t*)data, table_offset);
565     cpu_to_be32w((uint32_t*)(data + 8), table_clusters);
566     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
567     ret = bdrv_pwrite_sync(bs->file->bs,
568                            offsetof(QCowHeader, refcount_table_offset),
569                            data, sizeof(data));
570     if (ret < 0) {
571         goto fail_table;
572     }
573 
574     /* And switch it in memory */
575     uint64_t old_table_offset = s->refcount_table_offset;
576     uint64_t old_table_size = s->refcount_table_size;
577 
578     g_free(s->refcount_table);
579     s->refcount_table = new_table;
580     s->refcount_table_size = table_size;
581     s->refcount_table_offset = table_offset;
582 
583     /* Free old table. */
584     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
585                         QCOW2_DISCARD_OTHER);
586 
587     ret = load_refcount_block(bs, new_block, refcount_block);
588     if (ret < 0) {
589         return ret;
590     }
591 
592     /* If we were trying to do the initial refcount update for some cluster
593      * allocation, we might have used the same clusters to store newly
594      * allocated metadata. Make the caller search some new space. */
595     return -EAGAIN;
596 
597 fail_table:
598     g_free(new_blocks);
599     g_free(new_table);
600 fail_block:
601     if (*refcount_block != NULL) {
602         qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
603     }
604     return ret;
605 }
606 
607 void qcow2_process_discards(BlockDriverState *bs, int ret)
608 {
609     BDRVQcow2State *s = bs->opaque;
610     Qcow2DiscardRegion *d, *next;
611 
612     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
613         QTAILQ_REMOVE(&s->discards, d, next);
614 
615         /* Discard is optional, ignore the return value */
616         if (ret >= 0) {
617             bdrv_discard(bs->file->bs,
618                          d->offset >> BDRV_SECTOR_BITS,
619                          d->bytes >> BDRV_SECTOR_BITS);
620         }
621 
622         g_free(d);
623     }
624 }
625 
626 static void update_refcount_discard(BlockDriverState *bs,
627                                     uint64_t offset, uint64_t length)
628 {
629     BDRVQcow2State *s = bs->opaque;
630     Qcow2DiscardRegion *d, *p, *next;
631 
632     QTAILQ_FOREACH(d, &s->discards, next) {
633         uint64_t new_start = MIN(offset, d->offset);
634         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
635 
636         if (new_end - new_start <= length + d->bytes) {
637             /* There can't be any overlap, areas ending up here have no
638              * references any more and therefore shouldn't get freed another
639              * time. */
640             assert(d->bytes + length == new_end - new_start);
641             d->offset = new_start;
642             d->bytes = new_end - new_start;
643             goto found;
644         }
645     }
646 
647     d = g_malloc(sizeof(*d));
648     *d = (Qcow2DiscardRegion) {
649         .bs     = bs,
650         .offset = offset,
651         .bytes  = length,
652     };
653     QTAILQ_INSERT_TAIL(&s->discards, d, next);
654 
655 found:
656     /* Merge discard requests if they are adjacent now */
657     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
658         if (p == d
659             || p->offset > d->offset + d->bytes
660             || d->offset > p->offset + p->bytes)
661         {
662             continue;
663         }
664 
665         /* Still no overlap possible */
666         assert(p->offset == d->offset + d->bytes
667             || d->offset == p->offset + p->bytes);
668 
669         QTAILQ_REMOVE(&s->discards, p, next);
670         d->offset = MIN(d->offset, p->offset);
671         d->bytes += p->bytes;
672         g_free(p);
673     }
674 }
675 
676 /* XXX: cache several refcount block clusters ? */
677 /* @addend is the absolute value of the addend; if @decrease is set, @addend
678  * will be subtracted from the current refcount, otherwise it will be added */
679 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
680                                                    int64_t offset,
681                                                    int64_t length,
682                                                    uint64_t addend,
683                                                    bool decrease,
684                                                    enum qcow2_discard_type type)
685 {
686     BDRVQcow2State *s = bs->opaque;
687     int64_t start, last, cluster_offset;
688     void *refcount_block = NULL;
689     int64_t old_table_index = -1;
690     int ret;
691 
692 #ifdef DEBUG_ALLOC2
693     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
694             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
695             addend);
696 #endif
697     if (length < 0) {
698         return -EINVAL;
699     } else if (length == 0) {
700         return 0;
701     }
702 
703     if (decrease) {
704         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
705             s->l2_table_cache);
706     }
707 
708     start = start_of_cluster(s, offset);
709     last = start_of_cluster(s, offset + length - 1);
710     for(cluster_offset = start; cluster_offset <= last;
711         cluster_offset += s->cluster_size)
712     {
713         int block_index;
714         uint64_t refcount;
715         int64_t cluster_index = cluster_offset >> s->cluster_bits;
716         int64_t table_index = cluster_index >> s->refcount_block_bits;
717 
718         /* Load the refcount block and allocate it if needed */
719         if (table_index != old_table_index) {
720             if (refcount_block) {
721                 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
722             }
723             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
724             if (ret < 0) {
725                 goto fail;
726             }
727         }
728         old_table_index = table_index;
729 
730         qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
731                                      refcount_block);
732 
733         /* we can update the count and save it */
734         block_index = cluster_index & (s->refcount_block_size - 1);
735 
736         refcount = s->get_refcount(refcount_block, block_index);
737         if (decrease ? (refcount - addend > refcount)
738                      : (refcount + addend < refcount ||
739                         refcount + addend > s->refcount_max))
740         {
741             ret = -EINVAL;
742             goto fail;
743         }
744         if (decrease) {
745             refcount -= addend;
746         } else {
747             refcount += addend;
748         }
749         if (refcount == 0 && cluster_index < s->free_cluster_index) {
750             s->free_cluster_index = cluster_index;
751         }
752         s->set_refcount(refcount_block, block_index, refcount);
753 
754         if (refcount == 0 && s->discard_passthrough[type]) {
755             update_refcount_discard(bs, cluster_offset, s->cluster_size);
756         }
757     }
758 
759     ret = 0;
760 fail:
761     if (!s->cache_discards) {
762         qcow2_process_discards(bs, ret);
763     }
764 
765     /* Write last changed block to disk */
766     if (refcount_block) {
767         qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
768     }
769 
770     /*
771      * Try do undo any updates if an error is returned (This may succeed in
772      * some cases like ENOSPC for allocating a new refcount block)
773      */
774     if (ret < 0) {
775         int dummy;
776         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
777                                 !decrease, QCOW2_DISCARD_NEVER);
778         (void)dummy;
779     }
780 
781     return ret;
782 }
783 
784 /*
785  * Increases or decreases the refcount of a given cluster.
786  *
787  * @addend is the absolute value of the addend; if @decrease is set, @addend
788  * will be subtracted from the current refcount, otherwise it will be added.
789  *
790  * On success 0 is returned; on failure -errno is returned.
791  */
792 int qcow2_update_cluster_refcount(BlockDriverState *bs,
793                                   int64_t cluster_index,
794                                   uint64_t addend, bool decrease,
795                                   enum qcow2_discard_type type)
796 {
797     BDRVQcow2State *s = bs->opaque;
798     int ret;
799 
800     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
801                           decrease, type);
802     if (ret < 0) {
803         return ret;
804     }
805 
806     return 0;
807 }
808 
809 
810 
811 /*********************************************************/
812 /* cluster allocation functions */
813 
814 
815 
816 /* return < 0 if error */
817 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
818 {
819     BDRVQcow2State *s = bs->opaque;
820     uint64_t i, nb_clusters, refcount;
821     int ret;
822 
823     /* We can't allocate clusters if they may still be queued for discard. */
824     if (s->cache_discards) {
825         qcow2_process_discards(bs, 0);
826     }
827 
828     nb_clusters = size_to_clusters(s, size);
829 retry:
830     for(i = 0; i < nb_clusters; i++) {
831         uint64_t next_cluster_index = s->free_cluster_index++;
832         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
833 
834         if (ret < 0) {
835             return ret;
836         } else if (refcount != 0) {
837             goto retry;
838         }
839     }
840 
841     /* Make sure that all offsets in the "allocated" range are representable
842      * in an int64_t */
843     if (s->free_cluster_index > 0 &&
844         s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
845     {
846         return -EFBIG;
847     }
848 
849 #ifdef DEBUG_ALLOC2
850     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
851             size,
852             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
853 #endif
854     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
855 }
856 
857 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
858 {
859     int64_t offset;
860     int ret;
861 
862     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
863     do {
864         offset = alloc_clusters_noref(bs, size);
865         if (offset < 0) {
866             return offset;
867         }
868 
869         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
870     } while (ret == -EAGAIN);
871 
872     if (ret < 0) {
873         return ret;
874     }
875 
876     return offset;
877 }
878 
879 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
880                                 int64_t nb_clusters)
881 {
882     BDRVQcow2State *s = bs->opaque;
883     uint64_t cluster_index, refcount;
884     uint64_t i;
885     int ret;
886 
887     assert(nb_clusters >= 0);
888     if (nb_clusters == 0) {
889         return 0;
890     }
891 
892     do {
893         /* Check how many clusters there are free */
894         cluster_index = offset >> s->cluster_bits;
895         for(i = 0; i < nb_clusters; i++) {
896             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
897             if (ret < 0) {
898                 return ret;
899             } else if (refcount != 0) {
900                 break;
901             }
902         }
903 
904         /* And then allocate them */
905         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
906                               QCOW2_DISCARD_NEVER);
907     } while (ret == -EAGAIN);
908 
909     if (ret < 0) {
910         return ret;
911     }
912 
913     return i;
914 }
915 
916 /* only used to allocate compressed sectors. We try to allocate
917    contiguous sectors. size must be <= cluster_size */
918 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
919 {
920     BDRVQcow2State *s = bs->opaque;
921     int64_t offset;
922     size_t free_in_cluster;
923     int ret;
924 
925     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
926     assert(size > 0 && size <= s->cluster_size);
927     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
928 
929     offset = s->free_byte_offset;
930 
931     if (offset) {
932         uint64_t refcount;
933         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
934         if (ret < 0) {
935             return ret;
936         }
937 
938         if (refcount == s->refcount_max) {
939             offset = 0;
940         }
941     }
942 
943     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
944     do {
945         if (!offset || free_in_cluster < size) {
946             int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
947             if (new_cluster < 0) {
948                 return new_cluster;
949             }
950 
951             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
952                 offset = new_cluster;
953                 free_in_cluster = s->cluster_size;
954             } else {
955                 free_in_cluster += s->cluster_size;
956             }
957         }
958 
959         assert(offset);
960         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
961         if (ret < 0) {
962             offset = 0;
963         }
964     } while (ret == -EAGAIN);
965     if (ret < 0) {
966         return ret;
967     }
968 
969     /* The cluster refcount was incremented; refcount blocks must be flushed
970      * before the caller's L2 table updates. */
971     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
972 
973     s->free_byte_offset = offset + size;
974     if (!offset_into_cluster(s, s->free_byte_offset)) {
975         s->free_byte_offset = 0;
976     }
977 
978     return offset;
979 }
980 
981 void qcow2_free_clusters(BlockDriverState *bs,
982                           int64_t offset, int64_t size,
983                           enum qcow2_discard_type type)
984 {
985     int ret;
986 
987     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
988     ret = update_refcount(bs, offset, size, 1, true, type);
989     if (ret < 0) {
990         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
991         /* TODO Remember the clusters to free them later and avoid leaking */
992     }
993 }
994 
995 /*
996  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
997  * normal cluster, compressed cluster, etc.)
998  */
999 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1000                              int nb_clusters, enum qcow2_discard_type type)
1001 {
1002     BDRVQcow2State *s = bs->opaque;
1003 
1004     switch (qcow2_get_cluster_type(l2_entry)) {
1005     case QCOW2_CLUSTER_COMPRESSED:
1006         {
1007             int nb_csectors;
1008             nb_csectors = ((l2_entry >> s->csize_shift) &
1009                            s->csize_mask) + 1;
1010             qcow2_free_clusters(bs,
1011                 (l2_entry & s->cluster_offset_mask) & ~511,
1012                 nb_csectors * 512, type);
1013         }
1014         break;
1015     case QCOW2_CLUSTER_NORMAL:
1016     case QCOW2_CLUSTER_ZERO:
1017         if (l2_entry & L2E_OFFSET_MASK) {
1018             if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1019                 qcow2_signal_corruption(bs, false, -1, -1,
1020                                         "Cannot free unaligned cluster %#llx",
1021                                         l2_entry & L2E_OFFSET_MASK);
1022             } else {
1023                 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1024                                     nb_clusters << s->cluster_bits, type);
1025             }
1026         }
1027         break;
1028     case QCOW2_CLUSTER_UNALLOCATED:
1029         break;
1030     default:
1031         abort();
1032     }
1033 }
1034 
1035 
1036 
1037 /*********************************************************/
1038 /* snapshots and image creation */
1039 
1040 
1041 
1042 /* update the refcounts of snapshots and the copied flag */
1043 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1044     int64_t l1_table_offset, int l1_size, int addend)
1045 {
1046     BDRVQcow2State *s = bs->opaque;
1047     uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount;
1048     bool l1_allocated = false;
1049     int64_t old_offset, old_l2_offset;
1050     int i, j, l1_modified = 0, nb_csectors;
1051     int ret;
1052 
1053     assert(addend >= -1 && addend <= 1);
1054 
1055     l2_table = NULL;
1056     l1_table = NULL;
1057     l1_size2 = l1_size * sizeof(uint64_t);
1058 
1059     s->cache_discards = true;
1060 
1061     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1062      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1063      * when changing this! */
1064     if (l1_table_offset != s->l1_table_offset) {
1065         l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1066         if (l1_size2 && l1_table == NULL) {
1067             ret = -ENOMEM;
1068             goto fail;
1069         }
1070         l1_allocated = true;
1071 
1072         ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
1073         if (ret < 0) {
1074             goto fail;
1075         }
1076 
1077         for(i = 0;i < l1_size; i++)
1078             be64_to_cpus(&l1_table[i]);
1079     } else {
1080         assert(l1_size == s->l1_size);
1081         l1_table = s->l1_table;
1082         l1_allocated = false;
1083     }
1084 
1085     for(i = 0; i < l1_size; i++) {
1086         l2_offset = l1_table[i];
1087         if (l2_offset) {
1088             old_l2_offset = l2_offset;
1089             l2_offset &= L1E_OFFSET_MASK;
1090 
1091             if (offset_into_cluster(s, l2_offset)) {
1092                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1093                                         PRIx64 " unaligned (L1 index: %#x)",
1094                                         l2_offset, i);
1095                 ret = -EIO;
1096                 goto fail;
1097             }
1098 
1099             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1100                 (void**) &l2_table);
1101             if (ret < 0) {
1102                 goto fail;
1103             }
1104 
1105             for(j = 0; j < s->l2_size; j++) {
1106                 uint64_t cluster_index;
1107 
1108                 offset = be64_to_cpu(l2_table[j]);
1109                 old_offset = offset;
1110                 offset &= ~QCOW_OFLAG_COPIED;
1111 
1112                 switch (qcow2_get_cluster_type(offset)) {
1113                     case QCOW2_CLUSTER_COMPRESSED:
1114                         nb_csectors = ((offset >> s->csize_shift) &
1115                                        s->csize_mask) + 1;
1116                         if (addend != 0) {
1117                             ret = update_refcount(bs,
1118                                 (offset & s->cluster_offset_mask) & ~511,
1119                                 nb_csectors * 512, abs(addend), addend < 0,
1120                                 QCOW2_DISCARD_SNAPSHOT);
1121                             if (ret < 0) {
1122                                 goto fail;
1123                             }
1124                         }
1125                         /* compressed clusters are never modified */
1126                         refcount = 2;
1127                         break;
1128 
1129                     case QCOW2_CLUSTER_NORMAL:
1130                     case QCOW2_CLUSTER_ZERO:
1131                         if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) {
1132                             qcow2_signal_corruption(bs, true, -1, -1, "Data "
1133                                                     "cluster offset %#llx "
1134                                                     "unaligned (L2 offset: %#"
1135                                                     PRIx64 ", L2 index: %#x)",
1136                                                     offset & L2E_OFFSET_MASK,
1137                                                     l2_offset, j);
1138                             ret = -EIO;
1139                             goto fail;
1140                         }
1141 
1142                         cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits;
1143                         if (!cluster_index) {
1144                             /* unallocated */
1145                             refcount = 0;
1146                             break;
1147                         }
1148                         if (addend != 0) {
1149                             ret = qcow2_update_cluster_refcount(bs,
1150                                     cluster_index, abs(addend), addend < 0,
1151                                     QCOW2_DISCARD_SNAPSHOT);
1152                             if (ret < 0) {
1153                                 goto fail;
1154                             }
1155                         }
1156 
1157                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1158                         if (ret < 0) {
1159                             goto fail;
1160                         }
1161                         break;
1162 
1163                     case QCOW2_CLUSTER_UNALLOCATED:
1164                         refcount = 0;
1165                         break;
1166 
1167                     default:
1168                         abort();
1169                 }
1170 
1171                 if (refcount == 1) {
1172                     offset |= QCOW_OFLAG_COPIED;
1173                 }
1174                 if (offset != old_offset) {
1175                     if (addend > 0) {
1176                         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1177                             s->refcount_block_cache);
1178                     }
1179                     l2_table[j] = cpu_to_be64(offset);
1180                     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1181                                                  l2_table);
1182                 }
1183             }
1184 
1185             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1186 
1187             if (addend != 0) {
1188                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1189                                                         s->cluster_bits,
1190                                                     abs(addend), addend < 0,
1191                                                     QCOW2_DISCARD_SNAPSHOT);
1192                 if (ret < 0) {
1193                     goto fail;
1194                 }
1195             }
1196             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1197                                      &refcount);
1198             if (ret < 0) {
1199                 goto fail;
1200             } else if (refcount == 1) {
1201                 l2_offset |= QCOW_OFLAG_COPIED;
1202             }
1203             if (l2_offset != old_l2_offset) {
1204                 l1_table[i] = l2_offset;
1205                 l1_modified = 1;
1206             }
1207         }
1208     }
1209 
1210     ret = bdrv_flush(bs);
1211 fail:
1212     if (l2_table) {
1213         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1214     }
1215 
1216     s->cache_discards = false;
1217     qcow2_process_discards(bs, ret);
1218 
1219     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1220     if (ret == 0 && addend >= 0 && l1_modified) {
1221         for (i = 0; i < l1_size; i++) {
1222             cpu_to_be64s(&l1_table[i]);
1223         }
1224 
1225         ret = bdrv_pwrite_sync(bs->file->bs, l1_table_offset,
1226                                l1_table, l1_size2);
1227 
1228         for (i = 0; i < l1_size; i++) {
1229             be64_to_cpus(&l1_table[i]);
1230         }
1231     }
1232     if (l1_allocated)
1233         g_free(l1_table);
1234     return ret;
1235 }
1236 
1237 
1238 
1239 
1240 /*********************************************************/
1241 /* refcount checking functions */
1242 
1243 
1244 static size_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1245 {
1246     /* This assertion holds because there is no way we can address more than
1247      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1248      * offsets have to be representable in bytes); due to every cluster
1249      * corresponding to one refcount entry, we are well below that limit */
1250     assert(entries < (UINT64_C(1) << (64 - 9)));
1251 
1252     /* Thanks to the assertion this will not overflow, because
1253      * s->refcount_order < 7.
1254      * (note: x << s->refcount_order == x * s->refcount_bits) */
1255     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1256 }
1257 
1258 /**
1259  * Reallocates *array so that it can hold new_size entries. *size must contain
1260  * the current number of entries in *array. If the reallocation fails, *array
1261  * and *size will not be modified and -errno will be returned. If the
1262  * reallocation is successful, *array will be set to the new buffer, *size
1263  * will be set to new_size and 0 will be returned. The size of the reallocated
1264  * refcount array buffer will be aligned to a cluster boundary, and the newly
1265  * allocated area will be zeroed.
1266  */
1267 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1268                                   int64_t *size, int64_t new_size)
1269 {
1270     int64_t old_byte_size, new_byte_size;
1271     void *new_ptr;
1272 
1273     /* Round to clusters so the array can be directly written to disk */
1274     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1275                     * s->cluster_size;
1276     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1277                     * s->cluster_size;
1278 
1279     if (new_byte_size == old_byte_size) {
1280         *size = new_size;
1281         return 0;
1282     }
1283 
1284     assert(new_byte_size > 0);
1285 
1286     if (new_byte_size > SIZE_MAX) {
1287         return -ENOMEM;
1288     }
1289 
1290     new_ptr = g_try_realloc(*array, new_byte_size);
1291     if (!new_ptr) {
1292         return -ENOMEM;
1293     }
1294 
1295     if (new_byte_size > old_byte_size) {
1296         memset((char *)new_ptr + old_byte_size, 0,
1297                new_byte_size - old_byte_size);
1298     }
1299 
1300     *array = new_ptr;
1301     *size  = new_size;
1302 
1303     return 0;
1304 }
1305 
1306 /*
1307  * Increases the refcount for a range of clusters in a given refcount table.
1308  * This is used to construct a temporary refcount table out of L1 and L2 tables
1309  * which can be compared to the refcount table saved in the image.
1310  *
1311  * Modifies the number of errors in res.
1312  */
1313 static int inc_refcounts(BlockDriverState *bs,
1314                          BdrvCheckResult *res,
1315                          void **refcount_table,
1316                          int64_t *refcount_table_size,
1317                          int64_t offset, int64_t size)
1318 {
1319     BDRVQcow2State *s = bs->opaque;
1320     uint64_t start, last, cluster_offset, k, refcount;
1321     int ret;
1322 
1323     if (size <= 0) {
1324         return 0;
1325     }
1326 
1327     start = start_of_cluster(s, offset);
1328     last = start_of_cluster(s, offset + size - 1);
1329     for(cluster_offset = start; cluster_offset <= last;
1330         cluster_offset += s->cluster_size) {
1331         k = cluster_offset >> s->cluster_bits;
1332         if (k >= *refcount_table_size) {
1333             ret = realloc_refcount_array(s, refcount_table,
1334                                          refcount_table_size, k + 1);
1335             if (ret < 0) {
1336                 res->check_errors++;
1337                 return ret;
1338             }
1339         }
1340 
1341         refcount = s->get_refcount(*refcount_table, k);
1342         if (refcount == s->refcount_max) {
1343             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1344                     "\n", cluster_offset);
1345             res->corruptions++;
1346             continue;
1347         }
1348         s->set_refcount(*refcount_table, k, refcount + 1);
1349     }
1350 
1351     return 0;
1352 }
1353 
1354 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1355 enum {
1356     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1357 };
1358 
1359 /*
1360  * Increases the refcount in the given refcount table for the all clusters
1361  * referenced in the L2 table. While doing so, performs some checks on L2
1362  * entries.
1363  *
1364  * Returns the number of errors found by the checks or -errno if an internal
1365  * error occurred.
1366  */
1367 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1368                               void **refcount_table,
1369                               int64_t *refcount_table_size, int64_t l2_offset,
1370                               int flags)
1371 {
1372     BDRVQcow2State *s = bs->opaque;
1373     uint64_t *l2_table, l2_entry;
1374     uint64_t next_contiguous_offset = 0;
1375     int i, l2_size, nb_csectors, ret;
1376 
1377     /* Read L2 table from disk */
1378     l2_size = s->l2_size * sizeof(uint64_t);
1379     l2_table = g_malloc(l2_size);
1380 
1381     ret = bdrv_pread(bs->file->bs, l2_offset, l2_table, l2_size);
1382     if (ret < 0) {
1383         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1384         res->check_errors++;
1385         goto fail;
1386     }
1387 
1388     /* Do the actual checks */
1389     for(i = 0; i < s->l2_size; i++) {
1390         l2_entry = be64_to_cpu(l2_table[i]);
1391 
1392         switch (qcow2_get_cluster_type(l2_entry)) {
1393         case QCOW2_CLUSTER_COMPRESSED:
1394             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1395             if (l2_entry & QCOW_OFLAG_COPIED) {
1396                 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1397                     "copied flag must never be set for compressed "
1398                     "clusters\n", l2_entry >> s->cluster_bits);
1399                 l2_entry &= ~QCOW_OFLAG_COPIED;
1400                 res->corruptions++;
1401             }
1402 
1403             /* Mark cluster as used */
1404             nb_csectors = ((l2_entry >> s->csize_shift) &
1405                            s->csize_mask) + 1;
1406             l2_entry &= s->cluster_offset_mask;
1407             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1408                                 l2_entry & ~511, nb_csectors * 512);
1409             if (ret < 0) {
1410                 goto fail;
1411             }
1412 
1413             if (flags & CHECK_FRAG_INFO) {
1414                 res->bfi.allocated_clusters++;
1415                 res->bfi.compressed_clusters++;
1416 
1417                 /* Compressed clusters are fragmented by nature.  Since they
1418                  * take up sub-sector space but we only have sector granularity
1419                  * I/O we need to re-read the same sectors even for adjacent
1420                  * compressed clusters.
1421                  */
1422                 res->bfi.fragmented_clusters++;
1423             }
1424             break;
1425 
1426         case QCOW2_CLUSTER_ZERO:
1427             if ((l2_entry & L2E_OFFSET_MASK) == 0) {
1428                 break;
1429             }
1430             /* fall through */
1431 
1432         case QCOW2_CLUSTER_NORMAL:
1433         {
1434             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1435 
1436             if (flags & CHECK_FRAG_INFO) {
1437                 res->bfi.allocated_clusters++;
1438                 if (next_contiguous_offset &&
1439                     offset != next_contiguous_offset) {
1440                     res->bfi.fragmented_clusters++;
1441                 }
1442                 next_contiguous_offset = offset + s->cluster_size;
1443             }
1444 
1445             /* Mark cluster as used */
1446             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1447                                 offset, s->cluster_size);
1448             if (ret < 0) {
1449                 goto fail;
1450             }
1451 
1452             /* Correct offsets are cluster aligned */
1453             if (offset_into_cluster(s, offset)) {
1454                 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1455                     "properly aligned; L2 entry corrupted.\n", offset);
1456                 res->corruptions++;
1457             }
1458             break;
1459         }
1460 
1461         case QCOW2_CLUSTER_UNALLOCATED:
1462             break;
1463 
1464         default:
1465             abort();
1466         }
1467     }
1468 
1469     g_free(l2_table);
1470     return 0;
1471 
1472 fail:
1473     g_free(l2_table);
1474     return ret;
1475 }
1476 
1477 /*
1478  * Increases the refcount for the L1 table, its L2 tables and all referenced
1479  * clusters in the given refcount table. While doing so, performs some checks
1480  * on L1 and L2 entries.
1481  *
1482  * Returns the number of errors found by the checks or -errno if an internal
1483  * error occurred.
1484  */
1485 static int check_refcounts_l1(BlockDriverState *bs,
1486                               BdrvCheckResult *res,
1487                               void **refcount_table,
1488                               int64_t *refcount_table_size,
1489                               int64_t l1_table_offset, int l1_size,
1490                               int flags)
1491 {
1492     BDRVQcow2State *s = bs->opaque;
1493     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1494     int i, ret;
1495 
1496     l1_size2 = l1_size * sizeof(uint64_t);
1497 
1498     /* Mark L1 table as used */
1499     ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1500                         l1_table_offset, l1_size2);
1501     if (ret < 0) {
1502         goto fail;
1503     }
1504 
1505     /* Read L1 table entries from disk */
1506     if (l1_size2 > 0) {
1507         l1_table = g_try_malloc(l1_size2);
1508         if (l1_table == NULL) {
1509             ret = -ENOMEM;
1510             res->check_errors++;
1511             goto fail;
1512         }
1513         ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
1514         if (ret < 0) {
1515             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1516             res->check_errors++;
1517             goto fail;
1518         }
1519         for(i = 0;i < l1_size; i++)
1520             be64_to_cpus(&l1_table[i]);
1521     }
1522 
1523     /* Do the actual checks */
1524     for(i = 0; i < l1_size; i++) {
1525         l2_offset = l1_table[i];
1526         if (l2_offset) {
1527             /* Mark L2 table as used */
1528             l2_offset &= L1E_OFFSET_MASK;
1529             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1530                                 l2_offset, s->cluster_size);
1531             if (ret < 0) {
1532                 goto fail;
1533             }
1534 
1535             /* L2 tables are cluster aligned */
1536             if (offset_into_cluster(s, l2_offset)) {
1537                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1538                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1539                 res->corruptions++;
1540             }
1541 
1542             /* Process and check L2 entries */
1543             ret = check_refcounts_l2(bs, res, refcount_table,
1544                                      refcount_table_size, l2_offset, flags);
1545             if (ret < 0) {
1546                 goto fail;
1547             }
1548         }
1549     }
1550     g_free(l1_table);
1551     return 0;
1552 
1553 fail:
1554     g_free(l1_table);
1555     return ret;
1556 }
1557 
1558 /*
1559  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1560  *
1561  * This function does not print an error message nor does it increment
1562  * check_errors if qcow2_get_refcount fails (this is because such an error will
1563  * have been already detected and sufficiently signaled by the calling function
1564  * (qcow2_check_refcounts) by the time this function is called).
1565  */
1566 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1567                               BdrvCheckMode fix)
1568 {
1569     BDRVQcow2State *s = bs->opaque;
1570     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1571     int ret;
1572     uint64_t refcount;
1573     int i, j;
1574 
1575     for (i = 0; i < s->l1_size; i++) {
1576         uint64_t l1_entry = s->l1_table[i];
1577         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1578         bool l2_dirty = false;
1579 
1580         if (!l2_offset) {
1581             continue;
1582         }
1583 
1584         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1585                                  &refcount);
1586         if (ret < 0) {
1587             /* don't print message nor increment check_errors */
1588             continue;
1589         }
1590         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1591             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1592                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1593                     fix & BDRV_FIX_ERRORS ? "Repairing" :
1594                                             "ERROR",
1595                     i, l1_entry, refcount);
1596             if (fix & BDRV_FIX_ERRORS) {
1597                 s->l1_table[i] = refcount == 1
1598                                ? l1_entry |  QCOW_OFLAG_COPIED
1599                                : l1_entry & ~QCOW_OFLAG_COPIED;
1600                 ret = qcow2_write_l1_entry(bs, i);
1601                 if (ret < 0) {
1602                     res->check_errors++;
1603                     goto fail;
1604                 }
1605                 res->corruptions_fixed++;
1606             } else {
1607                 res->corruptions++;
1608             }
1609         }
1610 
1611         ret = bdrv_pread(bs->file->bs, l2_offset, l2_table,
1612                          s->l2_size * sizeof(uint64_t));
1613         if (ret < 0) {
1614             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1615                     strerror(-ret));
1616             res->check_errors++;
1617             goto fail;
1618         }
1619 
1620         for (j = 0; j < s->l2_size; j++) {
1621             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1622             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1623             int cluster_type = qcow2_get_cluster_type(l2_entry);
1624 
1625             if ((cluster_type == QCOW2_CLUSTER_NORMAL) ||
1626                 ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) {
1627                 ret = qcow2_get_refcount(bs,
1628                                          data_offset >> s->cluster_bits,
1629                                          &refcount);
1630                 if (ret < 0) {
1631                     /* don't print message nor increment check_errors */
1632                     continue;
1633                 }
1634                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1635                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1636                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1637                             fix & BDRV_FIX_ERRORS ? "Repairing" :
1638                                                     "ERROR",
1639                             l2_entry, refcount);
1640                     if (fix & BDRV_FIX_ERRORS) {
1641                         l2_table[j] = cpu_to_be64(refcount == 1
1642                                     ? l2_entry |  QCOW_OFLAG_COPIED
1643                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1644                         l2_dirty = true;
1645                         res->corruptions_fixed++;
1646                     } else {
1647                         res->corruptions++;
1648                     }
1649                 }
1650             }
1651         }
1652 
1653         if (l2_dirty) {
1654             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1655                                                 l2_offset, s->cluster_size);
1656             if (ret < 0) {
1657                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1658                         "overlap check failed: %s\n", strerror(-ret));
1659                 res->check_errors++;
1660                 goto fail;
1661             }
1662 
1663             ret = bdrv_pwrite(bs->file->bs, l2_offset, l2_table,
1664                               s->cluster_size);
1665             if (ret < 0) {
1666                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1667                         strerror(-ret));
1668                 res->check_errors++;
1669                 goto fail;
1670             }
1671         }
1672     }
1673 
1674     ret = 0;
1675 
1676 fail:
1677     qemu_vfree(l2_table);
1678     return ret;
1679 }
1680 
1681 /*
1682  * Checks consistency of refblocks and accounts for each refblock in
1683  * *refcount_table.
1684  */
1685 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1686                            BdrvCheckMode fix, bool *rebuild,
1687                            void **refcount_table, int64_t *nb_clusters)
1688 {
1689     BDRVQcow2State *s = bs->opaque;
1690     int64_t i, size;
1691     int ret;
1692 
1693     for(i = 0; i < s->refcount_table_size; i++) {
1694         uint64_t offset, cluster;
1695         offset = s->refcount_table[i];
1696         cluster = offset >> s->cluster_bits;
1697 
1698         /* Refcount blocks are cluster aligned */
1699         if (offset_into_cluster(s, offset)) {
1700             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1701                 "cluster aligned; refcount table entry corrupted\n", i);
1702             res->corruptions++;
1703             *rebuild = true;
1704             continue;
1705         }
1706 
1707         if (cluster >= *nb_clusters) {
1708             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1709                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1710 
1711             if (fix & BDRV_FIX_ERRORS) {
1712                 int64_t new_nb_clusters;
1713 
1714                 if (offset > INT64_MAX - s->cluster_size) {
1715                     ret = -EINVAL;
1716                     goto resize_fail;
1717                 }
1718 
1719                 ret = bdrv_truncate(bs->file->bs, offset + s->cluster_size);
1720                 if (ret < 0) {
1721                     goto resize_fail;
1722                 }
1723                 size = bdrv_getlength(bs->file->bs);
1724                 if (size < 0) {
1725                     ret = size;
1726                     goto resize_fail;
1727                 }
1728 
1729                 new_nb_clusters = size_to_clusters(s, size);
1730                 assert(new_nb_clusters >= *nb_clusters);
1731 
1732                 ret = realloc_refcount_array(s, refcount_table,
1733                                              nb_clusters, new_nb_clusters);
1734                 if (ret < 0) {
1735                     res->check_errors++;
1736                     return ret;
1737                 }
1738 
1739                 if (cluster >= *nb_clusters) {
1740                     ret = -EINVAL;
1741                     goto resize_fail;
1742                 }
1743 
1744                 res->corruptions_fixed++;
1745                 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1746                                     offset, s->cluster_size);
1747                 if (ret < 0) {
1748                     return ret;
1749                 }
1750                 /* No need to check whether the refcount is now greater than 1:
1751                  * This area was just allocated and zeroed, so it can only be
1752                  * exactly 1 after inc_refcounts() */
1753                 continue;
1754 
1755 resize_fail:
1756                 res->corruptions++;
1757                 *rebuild = true;
1758                 fprintf(stderr, "ERROR could not resize image: %s\n",
1759                         strerror(-ret));
1760             } else {
1761                 res->corruptions++;
1762             }
1763             continue;
1764         }
1765 
1766         if (offset != 0) {
1767             ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1768                                 offset, s->cluster_size);
1769             if (ret < 0) {
1770                 return ret;
1771             }
1772             if (s->get_refcount(*refcount_table, cluster) != 1) {
1773                 fprintf(stderr, "ERROR refcount block %" PRId64
1774                         " refcount=%" PRIu64 "\n", i,
1775                         s->get_refcount(*refcount_table, cluster));
1776                 res->corruptions++;
1777                 *rebuild = true;
1778             }
1779         }
1780     }
1781 
1782     return 0;
1783 }
1784 
1785 /*
1786  * Calculates an in-memory refcount table.
1787  */
1788 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1789                                BdrvCheckMode fix, bool *rebuild,
1790                                void **refcount_table, int64_t *nb_clusters)
1791 {
1792     BDRVQcow2State *s = bs->opaque;
1793     int64_t i;
1794     QCowSnapshot *sn;
1795     int ret;
1796 
1797     if (!*refcount_table) {
1798         int64_t old_size = 0;
1799         ret = realloc_refcount_array(s, refcount_table,
1800                                      &old_size, *nb_clusters);
1801         if (ret < 0) {
1802             res->check_errors++;
1803             return ret;
1804         }
1805     }
1806 
1807     /* header */
1808     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1809                         0, s->cluster_size);
1810     if (ret < 0) {
1811         return ret;
1812     }
1813 
1814     /* current L1 table */
1815     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1816                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1817     if (ret < 0) {
1818         return ret;
1819     }
1820 
1821     /* snapshots */
1822     for (i = 0; i < s->nb_snapshots; i++) {
1823         sn = s->snapshots + i;
1824         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1825                                  sn->l1_table_offset, sn->l1_size, 0);
1826         if (ret < 0) {
1827             return ret;
1828         }
1829     }
1830     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1831                         s->snapshots_offset, s->snapshots_size);
1832     if (ret < 0) {
1833         return ret;
1834     }
1835 
1836     /* refcount data */
1837     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1838                         s->refcount_table_offset,
1839                         s->refcount_table_size * sizeof(uint64_t));
1840     if (ret < 0) {
1841         return ret;
1842     }
1843 
1844     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1845 }
1846 
1847 /*
1848  * Compares the actual reference count for each cluster in the image against the
1849  * refcount as reported by the refcount structures on-disk.
1850  */
1851 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1852                               BdrvCheckMode fix, bool *rebuild,
1853                               int64_t *highest_cluster,
1854                               void *refcount_table, int64_t nb_clusters)
1855 {
1856     BDRVQcow2State *s = bs->opaque;
1857     int64_t i;
1858     uint64_t refcount1, refcount2;
1859     int ret;
1860 
1861     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1862         ret = qcow2_get_refcount(bs, i, &refcount1);
1863         if (ret < 0) {
1864             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1865                     i, strerror(-ret));
1866             res->check_errors++;
1867             continue;
1868         }
1869 
1870         refcount2 = s->get_refcount(refcount_table, i);
1871 
1872         if (refcount1 > 0 || refcount2 > 0) {
1873             *highest_cluster = i;
1874         }
1875 
1876         if (refcount1 != refcount2) {
1877             /* Check if we're allowed to fix the mismatch */
1878             int *num_fixed = NULL;
1879             if (refcount1 == 0) {
1880                 *rebuild = true;
1881             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
1882                 num_fixed = &res->leaks_fixed;
1883             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
1884                 num_fixed = &res->corruptions_fixed;
1885             }
1886 
1887             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
1888                     " reference=%" PRIu64 "\n",
1889                    num_fixed != NULL     ? "Repairing" :
1890                    refcount1 < refcount2 ? "ERROR" :
1891                                            "Leaked",
1892                    i, refcount1, refcount2);
1893 
1894             if (num_fixed) {
1895                 ret = update_refcount(bs, i << s->cluster_bits, 1,
1896                                       refcount_diff(refcount1, refcount2),
1897                                       refcount1 > refcount2,
1898                                       QCOW2_DISCARD_ALWAYS);
1899                 if (ret >= 0) {
1900                     (*num_fixed)++;
1901                     continue;
1902                 }
1903             }
1904 
1905             /* And if we couldn't, print an error */
1906             if (refcount1 < refcount2) {
1907                 res->corruptions++;
1908             } else {
1909                 res->leaks++;
1910             }
1911         }
1912     }
1913 }
1914 
1915 /*
1916  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1917  * the on-disk refcount structures.
1918  *
1919  * On input, *first_free_cluster tells where to start looking, and need not
1920  * actually be a free cluster; the returned offset will not be before that
1921  * cluster.  On output, *first_free_cluster points to the first gap found, even
1922  * if that gap was too small to be used as the returned offset.
1923  *
1924  * Note that *first_free_cluster is a cluster index whereas the return value is
1925  * an offset.
1926  */
1927 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
1928                                    int cluster_count,
1929                                    void **refcount_table,
1930                                    int64_t *imrt_nb_clusters,
1931                                    int64_t *first_free_cluster)
1932 {
1933     BDRVQcow2State *s = bs->opaque;
1934     int64_t cluster = *first_free_cluster, i;
1935     bool first_gap = true;
1936     int contiguous_free_clusters;
1937     int ret;
1938 
1939     /* Starting at *first_free_cluster, find a range of at least cluster_count
1940      * continuously free clusters */
1941     for (contiguous_free_clusters = 0;
1942          cluster < *imrt_nb_clusters &&
1943          contiguous_free_clusters < cluster_count;
1944          cluster++)
1945     {
1946         if (!s->get_refcount(*refcount_table, cluster)) {
1947             contiguous_free_clusters++;
1948             if (first_gap) {
1949                 /* If this is the first free cluster found, update
1950                  * *first_free_cluster accordingly */
1951                 *first_free_cluster = cluster;
1952                 first_gap = false;
1953             }
1954         } else if (contiguous_free_clusters) {
1955             contiguous_free_clusters = 0;
1956         }
1957     }
1958 
1959     /* If contiguous_free_clusters is greater than zero, it contains the number
1960      * of continuously free clusters until the current cluster; the first free
1961      * cluster in the current "gap" is therefore
1962      * cluster - contiguous_free_clusters */
1963 
1964     /* If no such range could be found, grow the in-memory refcount table
1965      * accordingly to append free clusters at the end of the image */
1966     if (contiguous_free_clusters < cluster_count) {
1967         /* contiguous_free_clusters clusters are already empty at the image end;
1968          * we need cluster_count clusters; therefore, we have to allocate
1969          * cluster_count - contiguous_free_clusters new clusters at the end of
1970          * the image (which is the current value of cluster; note that cluster
1971          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1972          * the image end) */
1973         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
1974                                      cluster + cluster_count
1975                                      - contiguous_free_clusters);
1976         if (ret < 0) {
1977             return ret;
1978         }
1979     }
1980 
1981     /* Go back to the first free cluster */
1982     cluster -= contiguous_free_clusters;
1983     for (i = 0; i < cluster_count; i++) {
1984         s->set_refcount(*refcount_table, cluster + i, 1);
1985     }
1986 
1987     return cluster << s->cluster_bits;
1988 }
1989 
1990 /*
1991  * Creates a new refcount structure based solely on the in-memory information
1992  * given through *refcount_table. All necessary allocations will be reflected
1993  * in that array.
1994  *
1995  * On success, the old refcount structure is leaked (it will be covered by the
1996  * new refcount structure).
1997  */
1998 static int rebuild_refcount_structure(BlockDriverState *bs,
1999                                       BdrvCheckResult *res,
2000                                       void **refcount_table,
2001                                       int64_t *nb_clusters)
2002 {
2003     BDRVQcow2State *s = bs->opaque;
2004     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2005     int64_t refblock_offset, refblock_start, refblock_index;
2006     uint32_t reftable_size = 0;
2007     uint64_t *on_disk_reftable = NULL;
2008     void *on_disk_refblock;
2009     int ret = 0;
2010     struct {
2011         uint64_t reftable_offset;
2012         uint32_t reftable_clusters;
2013     } QEMU_PACKED reftable_offset_and_clusters;
2014 
2015     qcow2_cache_empty(bs, s->refcount_block_cache);
2016 
2017 write_refblocks:
2018     for (; cluster < *nb_clusters; cluster++) {
2019         if (!s->get_refcount(*refcount_table, cluster)) {
2020             continue;
2021         }
2022 
2023         refblock_index = cluster >> s->refcount_block_bits;
2024         refblock_start = refblock_index << s->refcount_block_bits;
2025 
2026         /* Don't allocate a cluster in a refblock already written to disk */
2027         if (first_free_cluster < refblock_start) {
2028             first_free_cluster = refblock_start;
2029         }
2030         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2031                                               nb_clusters, &first_free_cluster);
2032         if (refblock_offset < 0) {
2033             fprintf(stderr, "ERROR allocating refblock: %s\n",
2034                     strerror(-refblock_offset));
2035             res->check_errors++;
2036             ret = refblock_offset;
2037             goto fail;
2038         }
2039 
2040         if (reftable_size <= refblock_index) {
2041             uint32_t old_reftable_size = reftable_size;
2042             uint64_t *new_on_disk_reftable;
2043 
2044             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2045                                      s->cluster_size) / sizeof(uint64_t);
2046             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2047                                                  reftable_size *
2048                                                  sizeof(uint64_t));
2049             if (!new_on_disk_reftable) {
2050                 res->check_errors++;
2051                 ret = -ENOMEM;
2052                 goto fail;
2053             }
2054             on_disk_reftable = new_on_disk_reftable;
2055 
2056             memset(on_disk_reftable + old_reftable_size, 0,
2057                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2058 
2059             /* The offset we have for the reftable is now no longer valid;
2060              * this will leak that range, but we can easily fix that by running
2061              * a leak-fixing check after this rebuild operation */
2062             reftable_offset = -1;
2063         }
2064         on_disk_reftable[refblock_index] = refblock_offset;
2065 
2066         /* If this is apparently the last refblock (for now), try to squeeze the
2067          * reftable in */
2068         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2069             reftable_offset < 0)
2070         {
2071             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2072                                                           sizeof(uint64_t));
2073             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2074                                                   refcount_table, nb_clusters,
2075                                                   &first_free_cluster);
2076             if (reftable_offset < 0) {
2077                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2078                         strerror(-reftable_offset));
2079                 res->check_errors++;
2080                 ret = reftable_offset;
2081                 goto fail;
2082             }
2083         }
2084 
2085         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2086                                             s->cluster_size);
2087         if (ret < 0) {
2088             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2089             goto fail;
2090         }
2091 
2092         /* The size of *refcount_table is always cluster-aligned, therefore the
2093          * write operation will not overflow */
2094         on_disk_refblock = (void *)((char *) *refcount_table +
2095                                     refblock_index * s->cluster_size);
2096 
2097         ret = bdrv_write(bs->file->bs, refblock_offset / BDRV_SECTOR_SIZE,
2098                          on_disk_refblock, s->cluster_sectors);
2099         if (ret < 0) {
2100             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2101             goto fail;
2102         }
2103 
2104         /* Go to the end of this refblock */
2105         cluster = refblock_start + s->refcount_block_size - 1;
2106     }
2107 
2108     if (reftable_offset < 0) {
2109         uint64_t post_refblock_start, reftable_clusters;
2110 
2111         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2112         reftable_clusters = size_to_clusters(s,
2113                                              reftable_size * sizeof(uint64_t));
2114         /* Not pretty but simple */
2115         if (first_free_cluster < post_refblock_start) {
2116             first_free_cluster = post_refblock_start;
2117         }
2118         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2119                                               refcount_table, nb_clusters,
2120                                               &first_free_cluster);
2121         if (reftable_offset < 0) {
2122             fprintf(stderr, "ERROR allocating reftable: %s\n",
2123                     strerror(-reftable_offset));
2124             res->check_errors++;
2125             ret = reftable_offset;
2126             goto fail;
2127         }
2128 
2129         goto write_refblocks;
2130     }
2131 
2132     assert(on_disk_reftable);
2133 
2134     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2135         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2136     }
2137 
2138     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2139                                         reftable_size * sizeof(uint64_t));
2140     if (ret < 0) {
2141         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2142         goto fail;
2143     }
2144 
2145     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2146     ret = bdrv_pwrite(bs->file->bs, reftable_offset, on_disk_reftable,
2147                       reftable_size * sizeof(uint64_t));
2148     if (ret < 0) {
2149         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2150         goto fail;
2151     }
2152 
2153     /* Enter new reftable into the image header */
2154     cpu_to_be64w(&reftable_offset_and_clusters.reftable_offset,
2155                  reftable_offset);
2156     cpu_to_be32w(&reftable_offset_and_clusters.reftable_clusters,
2157                  size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2158     ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader,
2159                                                   refcount_table_offset),
2160                            &reftable_offset_and_clusters,
2161                            sizeof(reftable_offset_and_clusters));
2162     if (ret < 0) {
2163         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2164         goto fail;
2165     }
2166 
2167     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2168         be64_to_cpus(&on_disk_reftable[refblock_index]);
2169     }
2170     s->refcount_table = on_disk_reftable;
2171     s->refcount_table_offset = reftable_offset;
2172     s->refcount_table_size = reftable_size;
2173 
2174     return 0;
2175 
2176 fail:
2177     g_free(on_disk_reftable);
2178     return ret;
2179 }
2180 
2181 /*
2182  * Checks an image for refcount consistency.
2183  *
2184  * Returns 0 if no errors are found, the number of errors in case the image is
2185  * detected as corrupted, and -errno when an internal error occurred.
2186  */
2187 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2188                           BdrvCheckMode fix)
2189 {
2190     BDRVQcow2State *s = bs->opaque;
2191     BdrvCheckResult pre_compare_res;
2192     int64_t size, highest_cluster, nb_clusters;
2193     void *refcount_table = NULL;
2194     bool rebuild = false;
2195     int ret;
2196 
2197     size = bdrv_getlength(bs->file->bs);
2198     if (size < 0) {
2199         res->check_errors++;
2200         return size;
2201     }
2202 
2203     nb_clusters = size_to_clusters(s, size);
2204     if (nb_clusters > INT_MAX) {
2205         res->check_errors++;
2206         return -EFBIG;
2207     }
2208 
2209     res->bfi.total_clusters =
2210         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2211 
2212     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2213                               &nb_clusters);
2214     if (ret < 0) {
2215         goto fail;
2216     }
2217 
2218     /* In case we don't need to rebuild the refcount structure (but want to fix
2219      * something), this function is immediately called again, in which case the
2220      * result should be ignored */
2221     pre_compare_res = *res;
2222     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2223                       nb_clusters);
2224 
2225     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2226         BdrvCheckResult old_res = *res;
2227         int fresh_leaks = 0;
2228 
2229         fprintf(stderr, "Rebuilding refcount structure\n");
2230         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2231                                          &nb_clusters);
2232         if (ret < 0) {
2233             goto fail;
2234         }
2235 
2236         res->corruptions = 0;
2237         res->leaks = 0;
2238 
2239         /* Because the old reftable has been exchanged for a new one the
2240          * references have to be recalculated */
2241         rebuild = false;
2242         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2243         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2244                                   &nb_clusters);
2245         if (ret < 0) {
2246             goto fail;
2247         }
2248 
2249         if (fix & BDRV_FIX_LEAKS) {
2250             /* The old refcount structures are now leaked, fix it; the result
2251              * can be ignored, aside from leaks which were introduced by
2252              * rebuild_refcount_structure() that could not be fixed */
2253             BdrvCheckResult saved_res = *res;
2254             *res = (BdrvCheckResult){ 0 };
2255 
2256             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2257                               &highest_cluster, refcount_table, nb_clusters);
2258             if (rebuild) {
2259                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2260                         "broken\n");
2261             }
2262 
2263             /* Any leaks accounted for here were introduced by
2264              * rebuild_refcount_structure() because that function has created a
2265              * new refcount structure from scratch */
2266             fresh_leaks = res->leaks;
2267             *res = saved_res;
2268         }
2269 
2270         if (res->corruptions < old_res.corruptions) {
2271             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2272         }
2273         if (res->leaks < old_res.leaks) {
2274             res->leaks_fixed += old_res.leaks - res->leaks;
2275         }
2276         res->leaks += fresh_leaks;
2277     } else if (fix) {
2278         if (rebuild) {
2279             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2280             res->check_errors++;
2281             ret = -EIO;
2282             goto fail;
2283         }
2284 
2285         if (res->leaks || res->corruptions) {
2286             *res = pre_compare_res;
2287             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2288                               refcount_table, nb_clusters);
2289         }
2290     }
2291 
2292     /* check OFLAG_COPIED */
2293     ret = check_oflag_copied(bs, res, fix);
2294     if (ret < 0) {
2295         goto fail;
2296     }
2297 
2298     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2299     ret = 0;
2300 
2301 fail:
2302     g_free(refcount_table);
2303 
2304     return ret;
2305 }
2306 
2307 #define overlaps_with(ofs, sz) \
2308     ranges_overlap(offset, size, ofs, sz)
2309 
2310 /*
2311  * Checks if the given offset into the image file is actually free to use by
2312  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2313  * i.e. a sanity check without relying on the refcount tables.
2314  *
2315  * The ign parameter specifies what checks not to perform (being a bitmask of
2316  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2317  *
2318  * Returns:
2319  * - 0 if writing to this offset will not affect the mentioned metadata
2320  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2321  * - a negative value (-errno) indicating an error while performing a check,
2322  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2323  */
2324 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2325                                  int64_t size)
2326 {
2327     BDRVQcow2State *s = bs->opaque;
2328     int chk = s->overlap_check & ~ign;
2329     int i, j;
2330 
2331     if (!size) {
2332         return 0;
2333     }
2334 
2335     if (chk & QCOW2_OL_MAIN_HEADER) {
2336         if (offset < s->cluster_size) {
2337             return QCOW2_OL_MAIN_HEADER;
2338         }
2339     }
2340 
2341     /* align range to test to cluster boundaries */
2342     size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2343     offset = start_of_cluster(s, offset);
2344 
2345     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2346         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2347             return QCOW2_OL_ACTIVE_L1;
2348         }
2349     }
2350 
2351     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2352         if (overlaps_with(s->refcount_table_offset,
2353             s->refcount_table_size * sizeof(uint64_t))) {
2354             return QCOW2_OL_REFCOUNT_TABLE;
2355         }
2356     }
2357 
2358     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2359         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2360             return QCOW2_OL_SNAPSHOT_TABLE;
2361         }
2362     }
2363 
2364     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2365         for (i = 0; i < s->nb_snapshots; i++) {
2366             if (s->snapshots[i].l1_size &&
2367                 overlaps_with(s->snapshots[i].l1_table_offset,
2368                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2369                 return QCOW2_OL_INACTIVE_L1;
2370             }
2371         }
2372     }
2373 
2374     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2375         for (i = 0; i < s->l1_size; i++) {
2376             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2377                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2378                 s->cluster_size)) {
2379                 return QCOW2_OL_ACTIVE_L2;
2380             }
2381         }
2382     }
2383 
2384     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2385         for (i = 0; i < s->refcount_table_size; i++) {
2386             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2387                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2388                 s->cluster_size)) {
2389                 return QCOW2_OL_REFCOUNT_BLOCK;
2390             }
2391         }
2392     }
2393 
2394     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2395         for (i = 0; i < s->nb_snapshots; i++) {
2396             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2397             uint32_t l1_sz  = s->snapshots[i].l1_size;
2398             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2399             uint64_t *l1 = g_try_malloc(l1_sz2);
2400             int ret;
2401 
2402             if (l1_sz2 && l1 == NULL) {
2403                 return -ENOMEM;
2404             }
2405 
2406             ret = bdrv_pread(bs->file->bs, l1_ofs, l1, l1_sz2);
2407             if (ret < 0) {
2408                 g_free(l1);
2409                 return ret;
2410             }
2411 
2412             for (j = 0; j < l1_sz; j++) {
2413                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2414                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2415                     g_free(l1);
2416                     return QCOW2_OL_INACTIVE_L2;
2417                 }
2418             }
2419 
2420             g_free(l1);
2421         }
2422     }
2423 
2424     return 0;
2425 }
2426 
2427 static const char *metadata_ol_names[] = {
2428     [QCOW2_OL_MAIN_HEADER_BITNR]    = "qcow2_header",
2429     [QCOW2_OL_ACTIVE_L1_BITNR]      = "active L1 table",
2430     [QCOW2_OL_ACTIVE_L2_BITNR]      = "active L2 table",
2431     [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2432     [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2433     [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2434     [QCOW2_OL_INACTIVE_L1_BITNR]    = "inactive L1 table",
2435     [QCOW2_OL_INACTIVE_L2_BITNR]    = "inactive L2 table",
2436 };
2437 
2438 /*
2439  * First performs a check for metadata overlaps (through
2440  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2441  * while performing a check), that value is returned. If an impending overlap
2442  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2443  * and -EIO returned.
2444  *
2445  * Returns 0 if there were neither overlaps nor errors while checking for
2446  * overlaps; or a negative value (-errno) on error.
2447  */
2448 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2449                                   int64_t size)
2450 {
2451     int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2452 
2453     if (ret < 0) {
2454         return ret;
2455     } else if (ret > 0) {
2456         int metadata_ol_bitnr = ctz32(ret);
2457         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2458 
2459         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2460                                 "write on metadata (overlaps with %s)",
2461                                 metadata_ol_names[metadata_ol_bitnr]);
2462         return -EIO;
2463     }
2464 
2465     return 0;
2466 }
2467