1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "qemu/range.h" 31 #include "qemu/bswap.h" 32 #include "qemu/cutils.h" 33 34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size); 35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs, 36 int64_t offset, int64_t length, uint64_t addend, 37 bool decrease, enum qcow2_discard_type type); 38 39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index); 40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index); 41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index); 42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index); 43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index); 44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index); 45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index); 46 47 static void set_refcount_ro0(void *refcount_array, uint64_t index, 48 uint64_t value); 49 static void set_refcount_ro1(void *refcount_array, uint64_t index, 50 uint64_t value); 51 static void set_refcount_ro2(void *refcount_array, uint64_t index, 52 uint64_t value); 53 static void set_refcount_ro3(void *refcount_array, uint64_t index, 54 uint64_t value); 55 static void set_refcount_ro4(void *refcount_array, uint64_t index, 56 uint64_t value); 57 static void set_refcount_ro5(void *refcount_array, uint64_t index, 58 uint64_t value); 59 static void set_refcount_ro6(void *refcount_array, uint64_t index, 60 uint64_t value); 61 62 63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = { 64 &get_refcount_ro0, 65 &get_refcount_ro1, 66 &get_refcount_ro2, 67 &get_refcount_ro3, 68 &get_refcount_ro4, 69 &get_refcount_ro5, 70 &get_refcount_ro6 71 }; 72 73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = { 74 &set_refcount_ro0, 75 &set_refcount_ro1, 76 &set_refcount_ro2, 77 &set_refcount_ro3, 78 &set_refcount_ro4, 79 &set_refcount_ro5, 80 &set_refcount_ro6 81 }; 82 83 84 /*********************************************************/ 85 /* refcount handling */ 86 87 static void update_max_refcount_table_index(BDRVQcow2State *s) 88 { 89 unsigned i = s->refcount_table_size - 1; 90 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) { 91 i--; 92 } 93 /* Set s->max_refcount_table_index to the index of the last used entry */ 94 s->max_refcount_table_index = i; 95 } 96 97 int qcow2_refcount_init(BlockDriverState *bs) 98 { 99 BDRVQcow2State *s = bs->opaque; 100 unsigned int refcount_table_size2, i; 101 int ret; 102 103 assert(s->refcount_order >= 0 && s->refcount_order <= 6); 104 105 s->get_refcount = get_refcount_funcs[s->refcount_order]; 106 s->set_refcount = set_refcount_funcs[s->refcount_order]; 107 108 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t)); 109 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t); 110 s->refcount_table = g_try_malloc(refcount_table_size2); 111 112 if (s->refcount_table_size > 0) { 113 if (s->refcount_table == NULL) { 114 ret = -ENOMEM; 115 goto fail; 116 } 117 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD); 118 ret = bdrv_pread(bs->file, s->refcount_table_offset, 119 s->refcount_table, refcount_table_size2); 120 if (ret < 0) { 121 goto fail; 122 } 123 for(i = 0; i < s->refcount_table_size; i++) 124 be64_to_cpus(&s->refcount_table[i]); 125 update_max_refcount_table_index(s); 126 } 127 return 0; 128 fail: 129 return ret; 130 } 131 132 void qcow2_refcount_close(BlockDriverState *bs) 133 { 134 BDRVQcow2State *s = bs->opaque; 135 g_free(s->refcount_table); 136 } 137 138 139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index) 140 { 141 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1; 142 } 143 144 static void set_refcount_ro0(void *refcount_array, uint64_t index, 145 uint64_t value) 146 { 147 assert(!(value >> 1)); 148 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8)); 149 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8); 150 } 151 152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index) 153 { 154 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4))) 155 & 0x3; 156 } 157 158 static void set_refcount_ro1(void *refcount_array, uint64_t index, 159 uint64_t value) 160 { 161 assert(!(value >> 2)); 162 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4))); 163 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4)); 164 } 165 166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index) 167 { 168 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2))) 169 & 0xf; 170 } 171 172 static void set_refcount_ro2(void *refcount_array, uint64_t index, 173 uint64_t value) 174 { 175 assert(!(value >> 4)); 176 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2))); 177 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2)); 178 } 179 180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index) 181 { 182 return ((const uint8_t *)refcount_array)[index]; 183 } 184 185 static void set_refcount_ro3(void *refcount_array, uint64_t index, 186 uint64_t value) 187 { 188 assert(!(value >> 8)); 189 ((uint8_t *)refcount_array)[index] = value; 190 } 191 192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index) 193 { 194 return be16_to_cpu(((const uint16_t *)refcount_array)[index]); 195 } 196 197 static void set_refcount_ro4(void *refcount_array, uint64_t index, 198 uint64_t value) 199 { 200 assert(!(value >> 16)); 201 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value); 202 } 203 204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index) 205 { 206 return be32_to_cpu(((const uint32_t *)refcount_array)[index]); 207 } 208 209 static void set_refcount_ro5(void *refcount_array, uint64_t index, 210 uint64_t value) 211 { 212 assert(!(value >> 32)); 213 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value); 214 } 215 216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index) 217 { 218 return be64_to_cpu(((const uint64_t *)refcount_array)[index]); 219 } 220 221 static void set_refcount_ro6(void *refcount_array, uint64_t index, 222 uint64_t value) 223 { 224 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value); 225 } 226 227 228 static int load_refcount_block(BlockDriverState *bs, 229 int64_t refcount_block_offset, 230 void **refcount_block) 231 { 232 BDRVQcow2State *s = bs->opaque; 233 234 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD); 235 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 236 refcount_block); 237 } 238 239 /* 240 * Retrieves the refcount of the cluster given by its index and stores it in 241 * *refcount. Returns 0 on success and -errno on failure. 242 */ 243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index, 244 uint64_t *refcount) 245 { 246 BDRVQcow2State *s = bs->opaque; 247 uint64_t refcount_table_index, block_index; 248 int64_t refcount_block_offset; 249 int ret; 250 void *refcount_block; 251 252 refcount_table_index = cluster_index >> s->refcount_block_bits; 253 if (refcount_table_index >= s->refcount_table_size) { 254 *refcount = 0; 255 return 0; 256 } 257 refcount_block_offset = 258 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 259 if (!refcount_block_offset) { 260 *refcount = 0; 261 return 0; 262 } 263 264 if (offset_into_cluster(s, refcount_block_offset)) { 265 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64 266 " unaligned (reftable index: %#" PRIx64 ")", 267 refcount_block_offset, refcount_table_index); 268 return -EIO; 269 } 270 271 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 272 &refcount_block); 273 if (ret < 0) { 274 return ret; 275 } 276 277 block_index = cluster_index & (s->refcount_block_size - 1); 278 *refcount = s->get_refcount(refcount_block, block_index); 279 280 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block); 281 282 return 0; 283 } 284 285 /* Checks if two offsets are described by the same refcount block */ 286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a, 287 uint64_t offset_b) 288 { 289 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits); 290 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits); 291 292 return (block_a == block_b); 293 } 294 295 /* 296 * Loads a refcount block. If it doesn't exist yet, it is allocated first 297 * (including growing the refcount table if needed). 298 * 299 * Returns 0 on success or -errno in error case 300 */ 301 static int alloc_refcount_block(BlockDriverState *bs, 302 int64_t cluster_index, void **refcount_block) 303 { 304 BDRVQcow2State *s = bs->opaque; 305 unsigned int refcount_table_index; 306 int64_t ret; 307 308 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC); 309 310 /* Find the refcount block for the given cluster */ 311 refcount_table_index = cluster_index >> s->refcount_block_bits; 312 313 if (refcount_table_index < s->refcount_table_size) { 314 315 uint64_t refcount_block_offset = 316 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 317 318 /* If it's already there, we're done */ 319 if (refcount_block_offset) { 320 if (offset_into_cluster(s, refcount_block_offset)) { 321 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 322 PRIx64 " unaligned (reftable index: " 323 "%#x)", refcount_block_offset, 324 refcount_table_index); 325 return -EIO; 326 } 327 328 return load_refcount_block(bs, refcount_block_offset, 329 refcount_block); 330 } 331 } 332 333 /* 334 * If we came here, we need to allocate something. Something is at least 335 * a cluster for the new refcount block. It may also include a new refcount 336 * table if the old refcount table is too small. 337 * 338 * Note that allocating clusters here needs some special care: 339 * 340 * - We can't use the normal qcow2_alloc_clusters(), it would try to 341 * increase the refcount and very likely we would end up with an endless 342 * recursion. Instead we must place the refcount blocks in a way that 343 * they can describe them themselves. 344 * 345 * - We need to consider that at this point we are inside update_refcounts 346 * and potentially doing an initial refcount increase. This means that 347 * some clusters have already been allocated by the caller, but their 348 * refcount isn't accurate yet. If we allocate clusters for metadata, we 349 * need to return -EAGAIN to signal the caller that it needs to restart 350 * the search for free clusters. 351 * 352 * - alloc_clusters_noref and qcow2_free_clusters may load a different 353 * refcount block into the cache 354 */ 355 356 *refcount_block = NULL; 357 358 /* We write to the refcount table, so we might depend on L2 tables */ 359 ret = qcow2_cache_flush(bs, s->l2_table_cache); 360 if (ret < 0) { 361 return ret; 362 } 363 364 /* Allocate the refcount block itself and mark it as used */ 365 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size); 366 if (new_block < 0) { 367 return new_block; 368 } 369 370 /* If we're allocating the block at offset 0 then something is wrong */ 371 if (new_block == 0) { 372 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 373 "allocation of refcount block at offset 0"); 374 return -EIO; 375 } 376 377 #ifdef DEBUG_ALLOC2 378 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64 379 " at %" PRIx64 "\n", 380 refcount_table_index, cluster_index << s->cluster_bits, new_block); 381 #endif 382 383 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) { 384 /* Zero the new refcount block before updating it */ 385 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 386 refcount_block); 387 if (ret < 0) { 388 goto fail; 389 } 390 391 memset(*refcount_block, 0, s->cluster_size); 392 393 /* The block describes itself, need to update the cache */ 394 int block_index = (new_block >> s->cluster_bits) & 395 (s->refcount_block_size - 1); 396 s->set_refcount(*refcount_block, block_index, 1); 397 } else { 398 /* Described somewhere else. This can recurse at most twice before we 399 * arrive at a block that describes itself. */ 400 ret = update_refcount(bs, new_block, s->cluster_size, 1, false, 401 QCOW2_DISCARD_NEVER); 402 if (ret < 0) { 403 goto fail; 404 } 405 406 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 407 if (ret < 0) { 408 goto fail; 409 } 410 411 /* Initialize the new refcount block only after updating its refcount, 412 * update_refcount uses the refcount cache itself */ 413 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 414 refcount_block); 415 if (ret < 0) { 416 goto fail; 417 } 418 419 memset(*refcount_block, 0, s->cluster_size); 420 } 421 422 /* Now the new refcount block needs to be written to disk */ 423 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE); 424 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block); 425 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 426 if (ret < 0) { 427 goto fail; 428 } 429 430 /* If the refcount table is big enough, just hook the block up there */ 431 if (refcount_table_index < s->refcount_table_size) { 432 uint64_t data64 = cpu_to_be64(new_block); 433 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP); 434 ret = bdrv_pwrite_sync(bs->file, 435 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t), 436 &data64, sizeof(data64)); 437 if (ret < 0) { 438 goto fail; 439 } 440 441 s->refcount_table[refcount_table_index] = new_block; 442 /* If there's a hole in s->refcount_table then it can happen 443 * that refcount_table_index < s->max_refcount_table_index */ 444 s->max_refcount_table_index = 445 MAX(s->max_refcount_table_index, refcount_table_index); 446 447 /* The new refcount block may be where the caller intended to put its 448 * data, so let it restart the search. */ 449 return -EAGAIN; 450 } 451 452 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block); 453 454 /* 455 * If we come here, we need to grow the refcount table. Again, a new 456 * refcount table needs some space and we can't simply allocate to avoid 457 * endless recursion. 458 * 459 * Therefore let's grab new refcount blocks at the end of the image, which 460 * will describe themselves and the new refcount table. This way we can 461 * reference them only in the new table and do the switch to the new 462 * refcount table at once without producing an inconsistent state in 463 * between. 464 */ 465 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW); 466 467 /* Calculate the number of refcount blocks needed so far; this will be the 468 * basis for calculating the index of the first cluster used for the 469 * self-describing refcount structures which we are about to create. 470 * 471 * Because we reached this point, there cannot be any refcount entries for 472 * cluster_index or higher indices yet. However, because new_block has been 473 * allocated to describe that cluster (and it will assume this role later 474 * on), we cannot use that index; also, new_block may actually have a higher 475 * cluster index than cluster_index, so it needs to be taken into account 476 * here (and 1 needs to be added to its value because that cluster is used). 477 */ 478 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1, 479 (new_block >> s->cluster_bits) + 1), 480 s->refcount_block_size); 481 482 /* Create the new refcount table and blocks */ 483 uint64_t meta_offset = (blocks_used * s->refcount_block_size) * 484 s->cluster_size; 485 486 ret = qcow2_refcount_area(bs, meta_offset, 0, false, 487 refcount_table_index, new_block); 488 if (ret < 0) { 489 return ret; 490 } 491 492 ret = load_refcount_block(bs, new_block, refcount_block); 493 if (ret < 0) { 494 return ret; 495 } 496 497 /* If we were trying to do the initial refcount update for some cluster 498 * allocation, we might have used the same clusters to store newly 499 * allocated metadata. Make the caller search some new space. */ 500 return -EAGAIN; 501 502 fail: 503 if (*refcount_block != NULL) { 504 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block); 505 } 506 return ret; 507 } 508 509 /* 510 * Starting at @start_offset, this function creates new self-covering refcount 511 * structures: A new refcount table and refcount blocks which cover all of 512 * themselves, and a number of @additional_clusters beyond their end. 513 * @start_offset must be at the end of the image file, that is, there must be 514 * only empty space beyond it. 515 * If @exact_size is false, the refcount table will have 50 % more entries than 516 * necessary so it will not need to grow again soon. 517 * If @new_refblock_offset is not zero, it contains the offset of a refcount 518 * block that should be entered into the new refcount table at index 519 * @new_refblock_index. 520 * 521 * Returns: The offset after the new refcount structures (i.e. where the 522 * @additional_clusters may be placed) on success, -errno on error. 523 */ 524 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset, 525 uint64_t additional_clusters, bool exact_size, 526 int new_refblock_index, 527 uint64_t new_refblock_offset) 528 { 529 BDRVQcow2State *s = bs->opaque; 530 uint64_t total_refblock_count_u64, additional_refblock_count; 531 int total_refblock_count, table_size, area_reftable_index, table_clusters; 532 int i; 533 uint64_t table_offset, block_offset, end_offset; 534 int ret; 535 uint64_t *new_table; 536 537 assert(!(start_offset % s->cluster_size)); 538 539 qcow2_refcount_metadata_size(start_offset / s->cluster_size + 540 additional_clusters, 541 s->cluster_size, s->refcount_order, 542 !exact_size, &total_refblock_count_u64); 543 if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) { 544 return -EFBIG; 545 } 546 total_refblock_count = total_refblock_count_u64; 547 548 /* Index in the refcount table of the first refcount block to cover the area 549 * of refcount structures we are about to create; we know that 550 * @total_refblock_count can cover @start_offset, so this will definitely 551 * fit into an int. */ 552 area_reftable_index = (start_offset / s->cluster_size) / 553 s->refcount_block_size; 554 555 if (exact_size) { 556 table_size = total_refblock_count; 557 } else { 558 table_size = total_refblock_count + 559 DIV_ROUND_UP(total_refblock_count, 2); 560 } 561 /* The qcow2 file can only store the reftable size in number of clusters */ 562 table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t)); 563 table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size; 564 565 if (table_size > QCOW_MAX_REFTABLE_SIZE) { 566 return -EFBIG; 567 } 568 569 new_table = g_try_new0(uint64_t, table_size); 570 571 assert(table_size > 0); 572 if (new_table == NULL) { 573 ret = -ENOMEM; 574 goto fail; 575 } 576 577 /* Fill the new refcount table */ 578 if (table_size > s->max_refcount_table_index) { 579 /* We're actually growing the reftable */ 580 memcpy(new_table, s->refcount_table, 581 (s->max_refcount_table_index + 1) * sizeof(uint64_t)); 582 } else { 583 /* Improbable case: We're shrinking the reftable. However, the caller 584 * has assured us that there is only empty space beyond @start_offset, 585 * so we can simply drop all of the refblocks that won't fit into the 586 * new reftable. */ 587 memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t)); 588 } 589 590 if (new_refblock_offset) { 591 assert(new_refblock_index < total_refblock_count); 592 new_table[new_refblock_index] = new_refblock_offset; 593 } 594 595 /* Count how many new refblocks we have to create */ 596 additional_refblock_count = 0; 597 for (i = area_reftable_index; i < total_refblock_count; i++) { 598 if (!new_table[i]) { 599 additional_refblock_count++; 600 } 601 } 602 603 table_offset = start_offset + additional_refblock_count * s->cluster_size; 604 end_offset = table_offset + table_clusters * s->cluster_size; 605 606 /* Fill the refcount blocks, and create new ones, if necessary */ 607 block_offset = start_offset; 608 for (i = area_reftable_index; i < total_refblock_count; i++) { 609 void *refblock_data; 610 uint64_t first_offset_covered; 611 612 /* Reuse an existing refblock if possible, create a new one otherwise */ 613 if (new_table[i]) { 614 ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i], 615 &refblock_data); 616 if (ret < 0) { 617 goto fail; 618 } 619 } else { 620 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, 621 block_offset, &refblock_data); 622 if (ret < 0) { 623 goto fail; 624 } 625 memset(refblock_data, 0, s->cluster_size); 626 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, 627 refblock_data); 628 629 new_table[i] = block_offset; 630 block_offset += s->cluster_size; 631 } 632 633 /* First host offset covered by this refblock */ 634 first_offset_covered = (uint64_t)i * s->refcount_block_size * 635 s->cluster_size; 636 if (first_offset_covered < end_offset) { 637 int j, end_index; 638 639 /* Set the refcount of all of the new refcount structures to 1 */ 640 641 if (first_offset_covered < start_offset) { 642 assert(i == area_reftable_index); 643 j = (start_offset - first_offset_covered) / s->cluster_size; 644 assert(j < s->refcount_block_size); 645 } else { 646 j = 0; 647 } 648 649 end_index = MIN((end_offset - first_offset_covered) / 650 s->cluster_size, 651 s->refcount_block_size); 652 653 for (; j < end_index; j++) { 654 /* The caller guaranteed us this space would be empty */ 655 assert(s->get_refcount(refblock_data, j) == 0); 656 s->set_refcount(refblock_data, j, 1); 657 } 658 659 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, 660 refblock_data); 661 } 662 663 qcow2_cache_put(bs, s->refcount_block_cache, &refblock_data); 664 } 665 666 assert(block_offset == table_offset); 667 668 /* Write refcount blocks to disk */ 669 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS); 670 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 671 if (ret < 0) { 672 goto fail; 673 } 674 675 /* Write refcount table to disk */ 676 for (i = 0; i < total_refblock_count; i++) { 677 cpu_to_be64s(&new_table[i]); 678 } 679 680 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE); 681 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table, 682 table_size * sizeof(uint64_t)); 683 if (ret < 0) { 684 goto fail; 685 } 686 687 for (i = 0; i < total_refblock_count; i++) { 688 be64_to_cpus(&new_table[i]); 689 } 690 691 /* Hook up the new refcount table in the qcow2 header */ 692 struct QEMU_PACKED { 693 uint64_t d64; 694 uint32_t d32; 695 } data; 696 data.d64 = cpu_to_be64(table_offset); 697 data.d32 = cpu_to_be32(table_clusters); 698 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE); 699 ret = bdrv_pwrite_sync(bs->file, 700 offsetof(QCowHeader, refcount_table_offset), 701 &data, sizeof(data)); 702 if (ret < 0) { 703 goto fail; 704 } 705 706 /* And switch it in memory */ 707 uint64_t old_table_offset = s->refcount_table_offset; 708 uint64_t old_table_size = s->refcount_table_size; 709 710 g_free(s->refcount_table); 711 s->refcount_table = new_table; 712 s->refcount_table_size = table_size; 713 s->refcount_table_offset = table_offset; 714 update_max_refcount_table_index(s); 715 716 /* Free old table. */ 717 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t), 718 QCOW2_DISCARD_OTHER); 719 720 return end_offset; 721 722 fail: 723 g_free(new_table); 724 return ret; 725 } 726 727 void qcow2_process_discards(BlockDriverState *bs, int ret) 728 { 729 BDRVQcow2State *s = bs->opaque; 730 Qcow2DiscardRegion *d, *next; 731 732 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) { 733 QTAILQ_REMOVE(&s->discards, d, next); 734 735 /* Discard is optional, ignore the return value */ 736 if (ret >= 0) { 737 bdrv_pdiscard(bs->file->bs, d->offset, d->bytes); 738 } 739 740 g_free(d); 741 } 742 } 743 744 static void update_refcount_discard(BlockDriverState *bs, 745 uint64_t offset, uint64_t length) 746 { 747 BDRVQcow2State *s = bs->opaque; 748 Qcow2DiscardRegion *d, *p, *next; 749 750 QTAILQ_FOREACH(d, &s->discards, next) { 751 uint64_t new_start = MIN(offset, d->offset); 752 uint64_t new_end = MAX(offset + length, d->offset + d->bytes); 753 754 if (new_end - new_start <= length + d->bytes) { 755 /* There can't be any overlap, areas ending up here have no 756 * references any more and therefore shouldn't get freed another 757 * time. */ 758 assert(d->bytes + length == new_end - new_start); 759 d->offset = new_start; 760 d->bytes = new_end - new_start; 761 goto found; 762 } 763 } 764 765 d = g_malloc(sizeof(*d)); 766 *d = (Qcow2DiscardRegion) { 767 .bs = bs, 768 .offset = offset, 769 .bytes = length, 770 }; 771 QTAILQ_INSERT_TAIL(&s->discards, d, next); 772 773 found: 774 /* Merge discard requests if they are adjacent now */ 775 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) { 776 if (p == d 777 || p->offset > d->offset + d->bytes 778 || d->offset > p->offset + p->bytes) 779 { 780 continue; 781 } 782 783 /* Still no overlap possible */ 784 assert(p->offset == d->offset + d->bytes 785 || d->offset == p->offset + p->bytes); 786 787 QTAILQ_REMOVE(&s->discards, p, next); 788 d->offset = MIN(d->offset, p->offset); 789 d->bytes += p->bytes; 790 g_free(p); 791 } 792 } 793 794 /* XXX: cache several refcount block clusters ? */ 795 /* @addend is the absolute value of the addend; if @decrease is set, @addend 796 * will be subtracted from the current refcount, otherwise it will be added */ 797 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs, 798 int64_t offset, 799 int64_t length, 800 uint64_t addend, 801 bool decrease, 802 enum qcow2_discard_type type) 803 { 804 BDRVQcow2State *s = bs->opaque; 805 int64_t start, last, cluster_offset; 806 void *refcount_block = NULL; 807 int64_t old_table_index = -1; 808 int ret; 809 810 #ifdef DEBUG_ALLOC2 811 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64 812 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "", 813 addend); 814 #endif 815 if (length < 0) { 816 return -EINVAL; 817 } else if (length == 0) { 818 return 0; 819 } 820 821 if (decrease) { 822 qcow2_cache_set_dependency(bs, s->refcount_block_cache, 823 s->l2_table_cache); 824 } 825 826 start = start_of_cluster(s, offset); 827 last = start_of_cluster(s, offset + length - 1); 828 for(cluster_offset = start; cluster_offset <= last; 829 cluster_offset += s->cluster_size) 830 { 831 int block_index; 832 uint64_t refcount; 833 int64_t cluster_index = cluster_offset >> s->cluster_bits; 834 int64_t table_index = cluster_index >> s->refcount_block_bits; 835 836 /* Load the refcount block and allocate it if needed */ 837 if (table_index != old_table_index) { 838 if (refcount_block) { 839 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block); 840 } 841 ret = alloc_refcount_block(bs, cluster_index, &refcount_block); 842 if (ret < 0) { 843 goto fail; 844 } 845 } 846 old_table_index = table_index; 847 848 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, 849 refcount_block); 850 851 /* we can update the count and save it */ 852 block_index = cluster_index & (s->refcount_block_size - 1); 853 854 refcount = s->get_refcount(refcount_block, block_index); 855 if (decrease ? (refcount - addend > refcount) 856 : (refcount + addend < refcount || 857 refcount + addend > s->refcount_max)) 858 { 859 ret = -EINVAL; 860 goto fail; 861 } 862 if (decrease) { 863 refcount -= addend; 864 } else { 865 refcount += addend; 866 } 867 if (refcount == 0 && cluster_index < s->free_cluster_index) { 868 s->free_cluster_index = cluster_index; 869 } 870 s->set_refcount(refcount_block, block_index, refcount); 871 872 if (refcount == 0) { 873 void *table; 874 875 table = qcow2_cache_is_table_offset(bs, s->refcount_block_cache, 876 offset); 877 if (table != NULL) { 878 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block); 879 qcow2_cache_discard(bs, s->refcount_block_cache, table); 880 } 881 882 table = qcow2_cache_is_table_offset(bs, s->l2_table_cache, offset); 883 if (table != NULL) { 884 qcow2_cache_discard(bs, s->l2_table_cache, table); 885 } 886 887 if (s->discard_passthrough[type]) { 888 update_refcount_discard(bs, cluster_offset, s->cluster_size); 889 } 890 } 891 } 892 893 ret = 0; 894 fail: 895 if (!s->cache_discards) { 896 qcow2_process_discards(bs, ret); 897 } 898 899 /* Write last changed block to disk */ 900 if (refcount_block) { 901 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block); 902 } 903 904 /* 905 * Try do undo any updates if an error is returned (This may succeed in 906 * some cases like ENOSPC for allocating a new refcount block) 907 */ 908 if (ret < 0) { 909 int dummy; 910 dummy = update_refcount(bs, offset, cluster_offset - offset, addend, 911 !decrease, QCOW2_DISCARD_NEVER); 912 (void)dummy; 913 } 914 915 return ret; 916 } 917 918 /* 919 * Increases or decreases the refcount of a given cluster. 920 * 921 * @addend is the absolute value of the addend; if @decrease is set, @addend 922 * will be subtracted from the current refcount, otherwise it will be added. 923 * 924 * On success 0 is returned; on failure -errno is returned. 925 */ 926 int qcow2_update_cluster_refcount(BlockDriverState *bs, 927 int64_t cluster_index, 928 uint64_t addend, bool decrease, 929 enum qcow2_discard_type type) 930 { 931 BDRVQcow2State *s = bs->opaque; 932 int ret; 933 934 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend, 935 decrease, type); 936 if (ret < 0) { 937 return ret; 938 } 939 940 return 0; 941 } 942 943 944 945 /*********************************************************/ 946 /* cluster allocation functions */ 947 948 949 950 /* return < 0 if error */ 951 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size) 952 { 953 BDRVQcow2State *s = bs->opaque; 954 uint64_t i, nb_clusters, refcount; 955 int ret; 956 957 /* We can't allocate clusters if they may still be queued for discard. */ 958 if (s->cache_discards) { 959 qcow2_process_discards(bs, 0); 960 } 961 962 nb_clusters = size_to_clusters(s, size); 963 retry: 964 for(i = 0; i < nb_clusters; i++) { 965 uint64_t next_cluster_index = s->free_cluster_index++; 966 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount); 967 968 if (ret < 0) { 969 return ret; 970 } else if (refcount != 0) { 971 goto retry; 972 } 973 } 974 975 /* Make sure that all offsets in the "allocated" range are representable 976 * in an int64_t */ 977 if (s->free_cluster_index > 0 && 978 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits)) 979 { 980 return -EFBIG; 981 } 982 983 #ifdef DEBUG_ALLOC2 984 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n", 985 size, 986 (s->free_cluster_index - nb_clusters) << s->cluster_bits); 987 #endif 988 return (s->free_cluster_index - nb_clusters) << s->cluster_bits; 989 } 990 991 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size) 992 { 993 int64_t offset; 994 int ret; 995 996 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC); 997 do { 998 offset = alloc_clusters_noref(bs, size); 999 if (offset < 0) { 1000 return offset; 1001 } 1002 1003 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 1004 } while (ret == -EAGAIN); 1005 1006 if (ret < 0) { 1007 return ret; 1008 } 1009 1010 return offset; 1011 } 1012 1013 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset, 1014 int64_t nb_clusters) 1015 { 1016 BDRVQcow2State *s = bs->opaque; 1017 uint64_t cluster_index, refcount; 1018 uint64_t i; 1019 int ret; 1020 1021 assert(nb_clusters >= 0); 1022 if (nb_clusters == 0) { 1023 return 0; 1024 } 1025 1026 do { 1027 /* Check how many clusters there are free */ 1028 cluster_index = offset >> s->cluster_bits; 1029 for(i = 0; i < nb_clusters; i++) { 1030 ret = qcow2_get_refcount(bs, cluster_index++, &refcount); 1031 if (ret < 0) { 1032 return ret; 1033 } else if (refcount != 0) { 1034 break; 1035 } 1036 } 1037 1038 /* And then allocate them */ 1039 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false, 1040 QCOW2_DISCARD_NEVER); 1041 } while (ret == -EAGAIN); 1042 1043 if (ret < 0) { 1044 return ret; 1045 } 1046 1047 return i; 1048 } 1049 1050 /* only used to allocate compressed sectors. We try to allocate 1051 contiguous sectors. size must be <= cluster_size */ 1052 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size) 1053 { 1054 BDRVQcow2State *s = bs->opaque; 1055 int64_t offset; 1056 size_t free_in_cluster; 1057 int ret; 1058 1059 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES); 1060 assert(size > 0 && size <= s->cluster_size); 1061 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset)); 1062 1063 offset = s->free_byte_offset; 1064 1065 if (offset) { 1066 uint64_t refcount; 1067 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount); 1068 if (ret < 0) { 1069 return ret; 1070 } 1071 1072 if (refcount == s->refcount_max) { 1073 offset = 0; 1074 } 1075 } 1076 1077 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset); 1078 do { 1079 if (!offset || free_in_cluster < size) { 1080 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size); 1081 if (new_cluster < 0) { 1082 return new_cluster; 1083 } 1084 1085 if (new_cluster == 0) { 1086 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 1087 "allocation of compressed cluster " 1088 "at offset 0"); 1089 return -EIO; 1090 } 1091 1092 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) { 1093 offset = new_cluster; 1094 free_in_cluster = s->cluster_size; 1095 } else { 1096 free_in_cluster += s->cluster_size; 1097 } 1098 } 1099 1100 assert(offset); 1101 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 1102 if (ret < 0) { 1103 offset = 0; 1104 } 1105 } while (ret == -EAGAIN); 1106 if (ret < 0) { 1107 return ret; 1108 } 1109 1110 /* The cluster refcount was incremented; refcount blocks must be flushed 1111 * before the caller's L2 table updates. */ 1112 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache); 1113 1114 s->free_byte_offset = offset + size; 1115 if (!offset_into_cluster(s, s->free_byte_offset)) { 1116 s->free_byte_offset = 0; 1117 } 1118 1119 return offset; 1120 } 1121 1122 void qcow2_free_clusters(BlockDriverState *bs, 1123 int64_t offset, int64_t size, 1124 enum qcow2_discard_type type) 1125 { 1126 int ret; 1127 1128 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE); 1129 ret = update_refcount(bs, offset, size, 1, true, type); 1130 if (ret < 0) { 1131 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret)); 1132 /* TODO Remember the clusters to free them later and avoid leaking */ 1133 } 1134 } 1135 1136 /* 1137 * Free a cluster using its L2 entry (handles clusters of all types, e.g. 1138 * normal cluster, compressed cluster, etc.) 1139 */ 1140 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry, 1141 int nb_clusters, enum qcow2_discard_type type) 1142 { 1143 BDRVQcow2State *s = bs->opaque; 1144 1145 switch (qcow2_get_cluster_type(l2_entry)) { 1146 case QCOW2_CLUSTER_COMPRESSED: 1147 { 1148 int nb_csectors; 1149 nb_csectors = ((l2_entry >> s->csize_shift) & 1150 s->csize_mask) + 1; 1151 qcow2_free_clusters(bs, 1152 (l2_entry & s->cluster_offset_mask) & ~511, 1153 nb_csectors * 512, type); 1154 } 1155 break; 1156 case QCOW2_CLUSTER_NORMAL: 1157 case QCOW2_CLUSTER_ZERO_ALLOC: 1158 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) { 1159 qcow2_signal_corruption(bs, false, -1, -1, 1160 "Cannot free unaligned cluster %#llx", 1161 l2_entry & L2E_OFFSET_MASK); 1162 } else { 1163 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK, 1164 nb_clusters << s->cluster_bits, type); 1165 } 1166 break; 1167 case QCOW2_CLUSTER_ZERO_PLAIN: 1168 case QCOW2_CLUSTER_UNALLOCATED: 1169 break; 1170 default: 1171 abort(); 1172 } 1173 } 1174 1175 1176 1177 /*********************************************************/ 1178 /* snapshots and image creation */ 1179 1180 1181 1182 /* update the refcounts of snapshots and the copied flag */ 1183 int qcow2_update_snapshot_refcount(BlockDriverState *bs, 1184 int64_t l1_table_offset, int l1_size, int addend) 1185 { 1186 BDRVQcow2State *s = bs->opaque; 1187 uint64_t *l1_table, *l2_table, l2_offset, entry, l1_size2, refcount; 1188 bool l1_allocated = false; 1189 int64_t old_entry, old_l2_offset; 1190 int i, j, l1_modified = 0, nb_csectors; 1191 int ret; 1192 1193 assert(addend >= -1 && addend <= 1); 1194 1195 l2_table = NULL; 1196 l1_table = NULL; 1197 l1_size2 = l1_size * sizeof(uint64_t); 1198 1199 s->cache_discards = true; 1200 1201 /* WARNING: qcow2_snapshot_goto relies on this function not using the 1202 * l1_table_offset when it is the current s->l1_table_offset! Be careful 1203 * when changing this! */ 1204 if (l1_table_offset != s->l1_table_offset) { 1205 l1_table = g_try_malloc0(align_offset(l1_size2, 512)); 1206 if (l1_size2 && l1_table == NULL) { 1207 ret = -ENOMEM; 1208 goto fail; 1209 } 1210 l1_allocated = true; 1211 1212 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2); 1213 if (ret < 0) { 1214 goto fail; 1215 } 1216 1217 for (i = 0; i < l1_size; i++) { 1218 be64_to_cpus(&l1_table[i]); 1219 } 1220 } else { 1221 assert(l1_size == s->l1_size); 1222 l1_table = s->l1_table; 1223 l1_allocated = false; 1224 } 1225 1226 for (i = 0; i < l1_size; i++) { 1227 l2_offset = l1_table[i]; 1228 if (l2_offset) { 1229 old_l2_offset = l2_offset; 1230 l2_offset &= L1E_OFFSET_MASK; 1231 1232 if (offset_into_cluster(s, l2_offset)) { 1233 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1234 PRIx64 " unaligned (L1 index: %#x)", 1235 l2_offset, i); 1236 ret = -EIO; 1237 goto fail; 1238 } 1239 1240 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1241 (void**) &l2_table); 1242 if (ret < 0) { 1243 goto fail; 1244 } 1245 1246 for (j = 0; j < s->l2_size; j++) { 1247 uint64_t cluster_index; 1248 uint64_t offset; 1249 1250 entry = be64_to_cpu(l2_table[j]); 1251 old_entry = entry; 1252 entry &= ~QCOW_OFLAG_COPIED; 1253 offset = entry & L2E_OFFSET_MASK; 1254 1255 switch (qcow2_get_cluster_type(entry)) { 1256 case QCOW2_CLUSTER_COMPRESSED: 1257 nb_csectors = ((entry >> s->csize_shift) & 1258 s->csize_mask) + 1; 1259 if (addend != 0) { 1260 ret = update_refcount(bs, 1261 (entry & s->cluster_offset_mask) & ~511, 1262 nb_csectors * 512, abs(addend), addend < 0, 1263 QCOW2_DISCARD_SNAPSHOT); 1264 if (ret < 0) { 1265 goto fail; 1266 } 1267 } 1268 /* compressed clusters are never modified */ 1269 refcount = 2; 1270 break; 1271 1272 case QCOW2_CLUSTER_NORMAL: 1273 case QCOW2_CLUSTER_ZERO_ALLOC: 1274 if (offset_into_cluster(s, offset)) { 1275 qcow2_signal_corruption(bs, true, -1, -1, "Cluster " 1276 "allocation offset %#" PRIx64 1277 " unaligned (L2 offset: %#" 1278 PRIx64 ", L2 index: %#x)", 1279 offset, l2_offset, j); 1280 ret = -EIO; 1281 goto fail; 1282 } 1283 1284 cluster_index = offset >> s->cluster_bits; 1285 assert(cluster_index); 1286 if (addend != 0) { 1287 ret = qcow2_update_cluster_refcount(bs, 1288 cluster_index, abs(addend), addend < 0, 1289 QCOW2_DISCARD_SNAPSHOT); 1290 if (ret < 0) { 1291 goto fail; 1292 } 1293 } 1294 1295 ret = qcow2_get_refcount(bs, cluster_index, &refcount); 1296 if (ret < 0) { 1297 goto fail; 1298 } 1299 break; 1300 1301 case QCOW2_CLUSTER_ZERO_PLAIN: 1302 case QCOW2_CLUSTER_UNALLOCATED: 1303 refcount = 0; 1304 break; 1305 1306 default: 1307 abort(); 1308 } 1309 1310 if (refcount == 1) { 1311 entry |= QCOW_OFLAG_COPIED; 1312 } 1313 if (entry != old_entry) { 1314 if (addend > 0) { 1315 qcow2_cache_set_dependency(bs, s->l2_table_cache, 1316 s->refcount_block_cache); 1317 } 1318 l2_table[j] = cpu_to_be64(entry); 1319 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, 1320 l2_table); 1321 } 1322 } 1323 1324 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1325 1326 if (addend != 0) { 1327 ret = qcow2_update_cluster_refcount(bs, l2_offset >> 1328 s->cluster_bits, 1329 abs(addend), addend < 0, 1330 QCOW2_DISCARD_SNAPSHOT); 1331 if (ret < 0) { 1332 goto fail; 1333 } 1334 } 1335 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1336 &refcount); 1337 if (ret < 0) { 1338 goto fail; 1339 } else if (refcount == 1) { 1340 l2_offset |= QCOW_OFLAG_COPIED; 1341 } 1342 if (l2_offset != old_l2_offset) { 1343 l1_table[i] = l2_offset; 1344 l1_modified = 1; 1345 } 1346 } 1347 } 1348 1349 ret = bdrv_flush(bs); 1350 fail: 1351 if (l2_table) { 1352 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1353 } 1354 1355 s->cache_discards = false; 1356 qcow2_process_discards(bs, ret); 1357 1358 /* Update L1 only if it isn't deleted anyway (addend = -1) */ 1359 if (ret == 0 && addend >= 0 && l1_modified) { 1360 for (i = 0; i < l1_size; i++) { 1361 cpu_to_be64s(&l1_table[i]); 1362 } 1363 1364 ret = bdrv_pwrite_sync(bs->file, l1_table_offset, 1365 l1_table, l1_size2); 1366 1367 for (i = 0; i < l1_size; i++) { 1368 be64_to_cpus(&l1_table[i]); 1369 } 1370 } 1371 if (l1_allocated) 1372 g_free(l1_table); 1373 return ret; 1374 } 1375 1376 1377 1378 1379 /*********************************************************/ 1380 /* refcount checking functions */ 1381 1382 1383 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries) 1384 { 1385 /* This assertion holds because there is no way we can address more than 1386 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because 1387 * offsets have to be representable in bytes); due to every cluster 1388 * corresponding to one refcount entry, we are well below that limit */ 1389 assert(entries < (UINT64_C(1) << (64 - 9))); 1390 1391 /* Thanks to the assertion this will not overflow, because 1392 * s->refcount_order < 7. 1393 * (note: x << s->refcount_order == x * s->refcount_bits) */ 1394 return DIV_ROUND_UP(entries << s->refcount_order, 8); 1395 } 1396 1397 /** 1398 * Reallocates *array so that it can hold new_size entries. *size must contain 1399 * the current number of entries in *array. If the reallocation fails, *array 1400 * and *size will not be modified and -errno will be returned. If the 1401 * reallocation is successful, *array will be set to the new buffer, *size 1402 * will be set to new_size and 0 will be returned. The size of the reallocated 1403 * refcount array buffer will be aligned to a cluster boundary, and the newly 1404 * allocated area will be zeroed. 1405 */ 1406 static int realloc_refcount_array(BDRVQcow2State *s, void **array, 1407 int64_t *size, int64_t new_size) 1408 { 1409 int64_t old_byte_size, new_byte_size; 1410 void *new_ptr; 1411 1412 /* Round to clusters so the array can be directly written to disk */ 1413 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size)) 1414 * s->cluster_size; 1415 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size)) 1416 * s->cluster_size; 1417 1418 if (new_byte_size == old_byte_size) { 1419 *size = new_size; 1420 return 0; 1421 } 1422 1423 assert(new_byte_size > 0); 1424 1425 if (new_byte_size > SIZE_MAX) { 1426 return -ENOMEM; 1427 } 1428 1429 new_ptr = g_try_realloc(*array, new_byte_size); 1430 if (!new_ptr) { 1431 return -ENOMEM; 1432 } 1433 1434 if (new_byte_size > old_byte_size) { 1435 memset((char *)new_ptr + old_byte_size, 0, 1436 new_byte_size - old_byte_size); 1437 } 1438 1439 *array = new_ptr; 1440 *size = new_size; 1441 1442 return 0; 1443 } 1444 1445 /* 1446 * Increases the refcount for a range of clusters in a given refcount table. 1447 * This is used to construct a temporary refcount table out of L1 and L2 tables 1448 * which can be compared to the refcount table saved in the image. 1449 * 1450 * Modifies the number of errors in res. 1451 */ 1452 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res, 1453 void **refcount_table, 1454 int64_t *refcount_table_size, 1455 int64_t offset, int64_t size) 1456 { 1457 BDRVQcow2State *s = bs->opaque; 1458 uint64_t start, last, cluster_offset, k, refcount; 1459 int ret; 1460 1461 if (size <= 0) { 1462 return 0; 1463 } 1464 1465 start = start_of_cluster(s, offset); 1466 last = start_of_cluster(s, offset + size - 1); 1467 for(cluster_offset = start; cluster_offset <= last; 1468 cluster_offset += s->cluster_size) { 1469 k = cluster_offset >> s->cluster_bits; 1470 if (k >= *refcount_table_size) { 1471 ret = realloc_refcount_array(s, refcount_table, 1472 refcount_table_size, k + 1); 1473 if (ret < 0) { 1474 res->check_errors++; 1475 return ret; 1476 } 1477 } 1478 1479 refcount = s->get_refcount(*refcount_table, k); 1480 if (refcount == s->refcount_max) { 1481 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64 1482 "\n", cluster_offset); 1483 fprintf(stderr, "Use qemu-img amend to increase the refcount entry " 1484 "width or qemu-img convert to create a clean copy if the " 1485 "image cannot be opened for writing\n"); 1486 res->corruptions++; 1487 continue; 1488 } 1489 s->set_refcount(*refcount_table, k, refcount + 1); 1490 } 1491 1492 return 0; 1493 } 1494 1495 /* Flags for check_refcounts_l1() and check_refcounts_l2() */ 1496 enum { 1497 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */ 1498 }; 1499 1500 /* 1501 * Increases the refcount in the given refcount table for the all clusters 1502 * referenced in the L2 table. While doing so, performs some checks on L2 1503 * entries. 1504 * 1505 * Returns the number of errors found by the checks or -errno if an internal 1506 * error occurred. 1507 */ 1508 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res, 1509 void **refcount_table, 1510 int64_t *refcount_table_size, int64_t l2_offset, 1511 int flags, BdrvCheckMode fix) 1512 { 1513 BDRVQcow2State *s = bs->opaque; 1514 uint64_t *l2_table, l2_entry; 1515 uint64_t next_contiguous_offset = 0; 1516 int i, l2_size, nb_csectors, ret; 1517 1518 /* Read L2 table from disk */ 1519 l2_size = s->l2_size * sizeof(uint64_t); 1520 l2_table = g_malloc(l2_size); 1521 1522 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size); 1523 if (ret < 0) { 1524 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n"); 1525 res->check_errors++; 1526 goto fail; 1527 } 1528 1529 /* Do the actual checks */ 1530 for(i = 0; i < s->l2_size; i++) { 1531 l2_entry = be64_to_cpu(l2_table[i]); 1532 1533 switch (qcow2_get_cluster_type(l2_entry)) { 1534 case QCOW2_CLUSTER_COMPRESSED: 1535 /* Compressed clusters don't have QCOW_OFLAG_COPIED */ 1536 if (l2_entry & QCOW_OFLAG_COPIED) { 1537 fprintf(stderr, "ERROR: cluster %" PRId64 ": " 1538 "copied flag must never be set for compressed " 1539 "clusters\n", l2_entry >> s->cluster_bits); 1540 l2_entry &= ~QCOW_OFLAG_COPIED; 1541 res->corruptions++; 1542 } 1543 1544 /* Mark cluster as used */ 1545 nb_csectors = ((l2_entry >> s->csize_shift) & 1546 s->csize_mask) + 1; 1547 l2_entry &= s->cluster_offset_mask; 1548 ret = qcow2_inc_refcounts_imrt(bs, res, 1549 refcount_table, refcount_table_size, 1550 l2_entry & ~511, nb_csectors * 512); 1551 if (ret < 0) { 1552 goto fail; 1553 } 1554 1555 if (flags & CHECK_FRAG_INFO) { 1556 res->bfi.allocated_clusters++; 1557 res->bfi.compressed_clusters++; 1558 1559 /* Compressed clusters are fragmented by nature. Since they 1560 * take up sub-sector space but we only have sector granularity 1561 * I/O we need to re-read the same sectors even for adjacent 1562 * compressed clusters. 1563 */ 1564 res->bfi.fragmented_clusters++; 1565 } 1566 break; 1567 1568 case QCOW2_CLUSTER_ZERO_ALLOC: 1569 case QCOW2_CLUSTER_NORMAL: 1570 { 1571 uint64_t offset = l2_entry & L2E_OFFSET_MASK; 1572 1573 if (flags & CHECK_FRAG_INFO) { 1574 res->bfi.allocated_clusters++; 1575 if (next_contiguous_offset && 1576 offset != next_contiguous_offset) { 1577 res->bfi.fragmented_clusters++; 1578 } 1579 next_contiguous_offset = offset + s->cluster_size; 1580 } 1581 1582 /* Correct offsets are cluster aligned */ 1583 if (offset_into_cluster(s, offset)) { 1584 if (qcow2_get_cluster_type(l2_entry) == 1585 QCOW2_CLUSTER_ZERO_ALLOC) 1586 { 1587 fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated zero " 1588 "cluster is not properly aligned; L2 entry " 1589 "corrupted.\n", 1590 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", 1591 offset); 1592 if (fix & BDRV_FIX_ERRORS) { 1593 uint64_t l2e_offset = 1594 l2_offset + (uint64_t)i * sizeof(uint64_t); 1595 1596 l2_entry = QCOW_OFLAG_ZERO; 1597 l2_table[i] = cpu_to_be64(l2_entry); 1598 ret = qcow2_pre_write_overlap_check(bs, 1599 QCOW2_OL_ACTIVE_L2 | QCOW2_OL_INACTIVE_L2, 1600 l2e_offset, sizeof(uint64_t)); 1601 if (ret < 0) { 1602 fprintf(stderr, "ERROR: Overlap check failed\n"); 1603 res->check_errors++; 1604 /* Something is seriously wrong, so abort checking 1605 * this L2 table */ 1606 goto fail; 1607 } 1608 1609 ret = bdrv_pwrite_sync(bs->file, l2e_offset, 1610 &l2_table[i], sizeof(uint64_t)); 1611 if (ret < 0) { 1612 fprintf(stderr, "ERROR: Failed to overwrite L2 " 1613 "table entry: %s\n", strerror(-ret)); 1614 res->check_errors++; 1615 /* Do not abort, continue checking the rest of this 1616 * L2 table's entries */ 1617 } else { 1618 res->corruptions_fixed++; 1619 /* Skip marking the cluster as used 1620 * (it is unused now) */ 1621 continue; 1622 } 1623 } else { 1624 res->corruptions++; 1625 } 1626 } else { 1627 fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is " 1628 "not properly aligned; L2 entry corrupted.\n", offset); 1629 res->corruptions++; 1630 } 1631 } 1632 1633 /* Mark cluster as used */ 1634 ret = qcow2_inc_refcounts_imrt(bs, res, 1635 refcount_table, refcount_table_size, 1636 offset, s->cluster_size); 1637 if (ret < 0) { 1638 goto fail; 1639 } 1640 break; 1641 } 1642 1643 case QCOW2_CLUSTER_ZERO_PLAIN: 1644 case QCOW2_CLUSTER_UNALLOCATED: 1645 break; 1646 1647 default: 1648 abort(); 1649 } 1650 } 1651 1652 g_free(l2_table); 1653 return 0; 1654 1655 fail: 1656 g_free(l2_table); 1657 return ret; 1658 } 1659 1660 /* 1661 * Increases the refcount for the L1 table, its L2 tables and all referenced 1662 * clusters in the given refcount table. While doing so, performs some checks 1663 * on L1 and L2 entries. 1664 * 1665 * Returns the number of errors found by the checks or -errno if an internal 1666 * error occurred. 1667 */ 1668 static int check_refcounts_l1(BlockDriverState *bs, 1669 BdrvCheckResult *res, 1670 void **refcount_table, 1671 int64_t *refcount_table_size, 1672 int64_t l1_table_offset, int l1_size, 1673 int flags, BdrvCheckMode fix) 1674 { 1675 BDRVQcow2State *s = bs->opaque; 1676 uint64_t *l1_table = NULL, l2_offset, l1_size2; 1677 int i, ret; 1678 1679 l1_size2 = l1_size * sizeof(uint64_t); 1680 1681 /* Mark L1 table as used */ 1682 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size, 1683 l1_table_offset, l1_size2); 1684 if (ret < 0) { 1685 goto fail; 1686 } 1687 1688 /* Read L1 table entries from disk */ 1689 if (l1_size2 > 0) { 1690 l1_table = g_try_malloc(l1_size2); 1691 if (l1_table == NULL) { 1692 ret = -ENOMEM; 1693 res->check_errors++; 1694 goto fail; 1695 } 1696 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2); 1697 if (ret < 0) { 1698 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n"); 1699 res->check_errors++; 1700 goto fail; 1701 } 1702 for(i = 0;i < l1_size; i++) 1703 be64_to_cpus(&l1_table[i]); 1704 } 1705 1706 /* Do the actual checks */ 1707 for(i = 0; i < l1_size; i++) { 1708 l2_offset = l1_table[i]; 1709 if (l2_offset) { 1710 /* Mark L2 table as used */ 1711 l2_offset &= L1E_OFFSET_MASK; 1712 ret = qcow2_inc_refcounts_imrt(bs, res, 1713 refcount_table, refcount_table_size, 1714 l2_offset, s->cluster_size); 1715 if (ret < 0) { 1716 goto fail; 1717 } 1718 1719 /* L2 tables are cluster aligned */ 1720 if (offset_into_cluster(s, l2_offset)) { 1721 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not " 1722 "cluster aligned; L1 entry corrupted\n", l2_offset); 1723 res->corruptions++; 1724 } 1725 1726 /* Process and check L2 entries */ 1727 ret = check_refcounts_l2(bs, res, refcount_table, 1728 refcount_table_size, l2_offset, flags, 1729 fix); 1730 if (ret < 0) { 1731 goto fail; 1732 } 1733 } 1734 } 1735 g_free(l1_table); 1736 return 0; 1737 1738 fail: 1739 g_free(l1_table); 1740 return ret; 1741 } 1742 1743 /* 1744 * Checks the OFLAG_COPIED flag for all L1 and L2 entries. 1745 * 1746 * This function does not print an error message nor does it increment 1747 * check_errors if qcow2_get_refcount fails (this is because such an error will 1748 * have been already detected and sufficiently signaled by the calling function 1749 * (qcow2_check_refcounts) by the time this function is called). 1750 */ 1751 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res, 1752 BdrvCheckMode fix) 1753 { 1754 BDRVQcow2State *s = bs->opaque; 1755 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size); 1756 int ret; 1757 uint64_t refcount; 1758 int i, j; 1759 1760 for (i = 0; i < s->l1_size; i++) { 1761 uint64_t l1_entry = s->l1_table[i]; 1762 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK; 1763 bool l2_dirty = false; 1764 1765 if (!l2_offset) { 1766 continue; 1767 } 1768 1769 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1770 &refcount); 1771 if (ret < 0) { 1772 /* don't print message nor increment check_errors */ 1773 continue; 1774 } 1775 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) { 1776 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d " 1777 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 1778 fix & BDRV_FIX_ERRORS ? "Repairing" : 1779 "ERROR", 1780 i, l1_entry, refcount); 1781 if (fix & BDRV_FIX_ERRORS) { 1782 s->l1_table[i] = refcount == 1 1783 ? l1_entry | QCOW_OFLAG_COPIED 1784 : l1_entry & ~QCOW_OFLAG_COPIED; 1785 ret = qcow2_write_l1_entry(bs, i); 1786 if (ret < 0) { 1787 res->check_errors++; 1788 goto fail; 1789 } 1790 res->corruptions_fixed++; 1791 } else { 1792 res->corruptions++; 1793 } 1794 } 1795 1796 ret = bdrv_pread(bs->file, l2_offset, l2_table, 1797 s->l2_size * sizeof(uint64_t)); 1798 if (ret < 0) { 1799 fprintf(stderr, "ERROR: Could not read L2 table: %s\n", 1800 strerror(-ret)); 1801 res->check_errors++; 1802 goto fail; 1803 } 1804 1805 for (j = 0; j < s->l2_size; j++) { 1806 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1807 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK; 1808 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry); 1809 1810 if (cluster_type == QCOW2_CLUSTER_NORMAL || 1811 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) { 1812 ret = qcow2_get_refcount(bs, 1813 data_offset >> s->cluster_bits, 1814 &refcount); 1815 if (ret < 0) { 1816 /* don't print message nor increment check_errors */ 1817 continue; 1818 } 1819 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) { 1820 fprintf(stderr, "%s OFLAG_COPIED data cluster: " 1821 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 1822 fix & BDRV_FIX_ERRORS ? "Repairing" : 1823 "ERROR", 1824 l2_entry, refcount); 1825 if (fix & BDRV_FIX_ERRORS) { 1826 l2_table[j] = cpu_to_be64(refcount == 1 1827 ? l2_entry | QCOW_OFLAG_COPIED 1828 : l2_entry & ~QCOW_OFLAG_COPIED); 1829 l2_dirty = true; 1830 res->corruptions_fixed++; 1831 } else { 1832 res->corruptions++; 1833 } 1834 } 1835 } 1836 } 1837 1838 if (l2_dirty) { 1839 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2, 1840 l2_offset, s->cluster_size); 1841 if (ret < 0) { 1842 fprintf(stderr, "ERROR: Could not write L2 table; metadata " 1843 "overlap check failed: %s\n", strerror(-ret)); 1844 res->check_errors++; 1845 goto fail; 1846 } 1847 1848 ret = bdrv_pwrite(bs->file, l2_offset, l2_table, 1849 s->cluster_size); 1850 if (ret < 0) { 1851 fprintf(stderr, "ERROR: Could not write L2 table: %s\n", 1852 strerror(-ret)); 1853 res->check_errors++; 1854 goto fail; 1855 } 1856 } 1857 } 1858 1859 ret = 0; 1860 1861 fail: 1862 qemu_vfree(l2_table); 1863 return ret; 1864 } 1865 1866 /* 1867 * Checks consistency of refblocks and accounts for each refblock in 1868 * *refcount_table. 1869 */ 1870 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res, 1871 BdrvCheckMode fix, bool *rebuild, 1872 void **refcount_table, int64_t *nb_clusters) 1873 { 1874 BDRVQcow2State *s = bs->opaque; 1875 int64_t i, size; 1876 int ret; 1877 1878 for(i = 0; i < s->refcount_table_size; i++) { 1879 uint64_t offset, cluster; 1880 offset = s->refcount_table[i]; 1881 cluster = offset >> s->cluster_bits; 1882 1883 /* Refcount blocks are cluster aligned */ 1884 if (offset_into_cluster(s, offset)) { 1885 fprintf(stderr, "ERROR refcount block %" PRId64 " is not " 1886 "cluster aligned; refcount table entry corrupted\n", i); 1887 res->corruptions++; 1888 *rebuild = true; 1889 continue; 1890 } 1891 1892 if (cluster >= *nb_clusters) { 1893 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n", 1894 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i); 1895 1896 if (fix & BDRV_FIX_ERRORS) { 1897 int64_t new_nb_clusters; 1898 Error *local_err = NULL; 1899 1900 if (offset > INT64_MAX - s->cluster_size) { 1901 ret = -EINVAL; 1902 goto resize_fail; 1903 } 1904 1905 ret = bdrv_truncate(bs->file, offset + s->cluster_size, 1906 PREALLOC_MODE_OFF, &local_err); 1907 if (ret < 0) { 1908 error_report_err(local_err); 1909 goto resize_fail; 1910 } 1911 size = bdrv_getlength(bs->file->bs); 1912 if (size < 0) { 1913 ret = size; 1914 goto resize_fail; 1915 } 1916 1917 new_nb_clusters = size_to_clusters(s, size); 1918 assert(new_nb_clusters >= *nb_clusters); 1919 1920 ret = realloc_refcount_array(s, refcount_table, 1921 nb_clusters, new_nb_clusters); 1922 if (ret < 0) { 1923 res->check_errors++; 1924 return ret; 1925 } 1926 1927 if (cluster >= *nb_clusters) { 1928 ret = -EINVAL; 1929 goto resize_fail; 1930 } 1931 1932 res->corruptions_fixed++; 1933 ret = qcow2_inc_refcounts_imrt(bs, res, 1934 refcount_table, nb_clusters, 1935 offset, s->cluster_size); 1936 if (ret < 0) { 1937 return ret; 1938 } 1939 /* No need to check whether the refcount is now greater than 1: 1940 * This area was just allocated and zeroed, so it can only be 1941 * exactly 1 after qcow2_inc_refcounts_imrt() */ 1942 continue; 1943 1944 resize_fail: 1945 res->corruptions++; 1946 *rebuild = true; 1947 fprintf(stderr, "ERROR could not resize image: %s\n", 1948 strerror(-ret)); 1949 } else { 1950 res->corruptions++; 1951 } 1952 continue; 1953 } 1954 1955 if (offset != 0) { 1956 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 1957 offset, s->cluster_size); 1958 if (ret < 0) { 1959 return ret; 1960 } 1961 if (s->get_refcount(*refcount_table, cluster) != 1) { 1962 fprintf(stderr, "ERROR refcount block %" PRId64 1963 " refcount=%" PRIu64 "\n", i, 1964 s->get_refcount(*refcount_table, cluster)); 1965 res->corruptions++; 1966 *rebuild = true; 1967 } 1968 } 1969 } 1970 1971 return 0; 1972 } 1973 1974 /* 1975 * Calculates an in-memory refcount table. 1976 */ 1977 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 1978 BdrvCheckMode fix, bool *rebuild, 1979 void **refcount_table, int64_t *nb_clusters) 1980 { 1981 BDRVQcow2State *s = bs->opaque; 1982 int64_t i; 1983 QCowSnapshot *sn; 1984 int ret; 1985 1986 if (!*refcount_table) { 1987 int64_t old_size = 0; 1988 ret = realloc_refcount_array(s, refcount_table, 1989 &old_size, *nb_clusters); 1990 if (ret < 0) { 1991 res->check_errors++; 1992 return ret; 1993 } 1994 } 1995 1996 /* header */ 1997 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 1998 0, s->cluster_size); 1999 if (ret < 0) { 2000 return ret; 2001 } 2002 2003 /* current L1 table */ 2004 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 2005 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO, 2006 fix); 2007 if (ret < 0) { 2008 return ret; 2009 } 2010 2011 /* snapshots */ 2012 for (i = 0; i < s->nb_snapshots; i++) { 2013 sn = s->snapshots + i; 2014 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 2015 sn->l1_table_offset, sn->l1_size, 0, fix); 2016 if (ret < 0) { 2017 return ret; 2018 } 2019 } 2020 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2021 s->snapshots_offset, s->snapshots_size); 2022 if (ret < 0) { 2023 return ret; 2024 } 2025 2026 /* refcount data */ 2027 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2028 s->refcount_table_offset, 2029 s->refcount_table_size * sizeof(uint64_t)); 2030 if (ret < 0) { 2031 return ret; 2032 } 2033 2034 /* encryption */ 2035 if (s->crypto_header.length) { 2036 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2037 s->crypto_header.offset, 2038 s->crypto_header.length); 2039 if (ret < 0) { 2040 return ret; 2041 } 2042 } 2043 2044 /* bitmaps */ 2045 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters); 2046 if (ret < 0) { 2047 return ret; 2048 } 2049 2050 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters); 2051 } 2052 2053 /* 2054 * Compares the actual reference count for each cluster in the image against the 2055 * refcount as reported by the refcount structures on-disk. 2056 */ 2057 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2058 BdrvCheckMode fix, bool *rebuild, 2059 int64_t *highest_cluster, 2060 void *refcount_table, int64_t nb_clusters) 2061 { 2062 BDRVQcow2State *s = bs->opaque; 2063 int64_t i; 2064 uint64_t refcount1, refcount2; 2065 int ret; 2066 2067 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) { 2068 ret = qcow2_get_refcount(bs, i, &refcount1); 2069 if (ret < 0) { 2070 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 2071 i, strerror(-ret)); 2072 res->check_errors++; 2073 continue; 2074 } 2075 2076 refcount2 = s->get_refcount(refcount_table, i); 2077 2078 if (refcount1 > 0 || refcount2 > 0) { 2079 *highest_cluster = i; 2080 } 2081 2082 if (refcount1 != refcount2) { 2083 /* Check if we're allowed to fix the mismatch */ 2084 int *num_fixed = NULL; 2085 if (refcount1 == 0) { 2086 *rebuild = true; 2087 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) { 2088 num_fixed = &res->leaks_fixed; 2089 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) { 2090 num_fixed = &res->corruptions_fixed; 2091 } 2092 2093 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64 2094 " reference=%" PRIu64 "\n", 2095 num_fixed != NULL ? "Repairing" : 2096 refcount1 < refcount2 ? "ERROR" : 2097 "Leaked", 2098 i, refcount1, refcount2); 2099 2100 if (num_fixed) { 2101 ret = update_refcount(bs, i << s->cluster_bits, 1, 2102 refcount_diff(refcount1, refcount2), 2103 refcount1 > refcount2, 2104 QCOW2_DISCARD_ALWAYS); 2105 if (ret >= 0) { 2106 (*num_fixed)++; 2107 continue; 2108 } 2109 } 2110 2111 /* And if we couldn't, print an error */ 2112 if (refcount1 < refcount2) { 2113 res->corruptions++; 2114 } else { 2115 res->leaks++; 2116 } 2117 } 2118 } 2119 } 2120 2121 /* 2122 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to 2123 * the on-disk refcount structures. 2124 * 2125 * On input, *first_free_cluster tells where to start looking, and need not 2126 * actually be a free cluster; the returned offset will not be before that 2127 * cluster. On output, *first_free_cluster points to the first gap found, even 2128 * if that gap was too small to be used as the returned offset. 2129 * 2130 * Note that *first_free_cluster is a cluster index whereas the return value is 2131 * an offset. 2132 */ 2133 static int64_t alloc_clusters_imrt(BlockDriverState *bs, 2134 int cluster_count, 2135 void **refcount_table, 2136 int64_t *imrt_nb_clusters, 2137 int64_t *first_free_cluster) 2138 { 2139 BDRVQcow2State *s = bs->opaque; 2140 int64_t cluster = *first_free_cluster, i; 2141 bool first_gap = true; 2142 int contiguous_free_clusters; 2143 int ret; 2144 2145 /* Starting at *first_free_cluster, find a range of at least cluster_count 2146 * continuously free clusters */ 2147 for (contiguous_free_clusters = 0; 2148 cluster < *imrt_nb_clusters && 2149 contiguous_free_clusters < cluster_count; 2150 cluster++) 2151 { 2152 if (!s->get_refcount(*refcount_table, cluster)) { 2153 contiguous_free_clusters++; 2154 if (first_gap) { 2155 /* If this is the first free cluster found, update 2156 * *first_free_cluster accordingly */ 2157 *first_free_cluster = cluster; 2158 first_gap = false; 2159 } 2160 } else if (contiguous_free_clusters) { 2161 contiguous_free_clusters = 0; 2162 } 2163 } 2164 2165 /* If contiguous_free_clusters is greater than zero, it contains the number 2166 * of continuously free clusters until the current cluster; the first free 2167 * cluster in the current "gap" is therefore 2168 * cluster - contiguous_free_clusters */ 2169 2170 /* If no such range could be found, grow the in-memory refcount table 2171 * accordingly to append free clusters at the end of the image */ 2172 if (contiguous_free_clusters < cluster_count) { 2173 /* contiguous_free_clusters clusters are already empty at the image end; 2174 * we need cluster_count clusters; therefore, we have to allocate 2175 * cluster_count - contiguous_free_clusters new clusters at the end of 2176 * the image (which is the current value of cluster; note that cluster 2177 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond 2178 * the image end) */ 2179 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters, 2180 cluster + cluster_count 2181 - contiguous_free_clusters); 2182 if (ret < 0) { 2183 return ret; 2184 } 2185 } 2186 2187 /* Go back to the first free cluster */ 2188 cluster -= contiguous_free_clusters; 2189 for (i = 0; i < cluster_count; i++) { 2190 s->set_refcount(*refcount_table, cluster + i, 1); 2191 } 2192 2193 return cluster << s->cluster_bits; 2194 } 2195 2196 /* 2197 * Creates a new refcount structure based solely on the in-memory information 2198 * given through *refcount_table. All necessary allocations will be reflected 2199 * in that array. 2200 * 2201 * On success, the old refcount structure is leaked (it will be covered by the 2202 * new refcount structure). 2203 */ 2204 static int rebuild_refcount_structure(BlockDriverState *bs, 2205 BdrvCheckResult *res, 2206 void **refcount_table, 2207 int64_t *nb_clusters) 2208 { 2209 BDRVQcow2State *s = bs->opaque; 2210 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0; 2211 int64_t refblock_offset, refblock_start, refblock_index; 2212 uint32_t reftable_size = 0; 2213 uint64_t *on_disk_reftable = NULL; 2214 void *on_disk_refblock; 2215 int ret = 0; 2216 struct { 2217 uint64_t reftable_offset; 2218 uint32_t reftable_clusters; 2219 } QEMU_PACKED reftable_offset_and_clusters; 2220 2221 qcow2_cache_empty(bs, s->refcount_block_cache); 2222 2223 write_refblocks: 2224 for (; cluster < *nb_clusters; cluster++) { 2225 if (!s->get_refcount(*refcount_table, cluster)) { 2226 continue; 2227 } 2228 2229 refblock_index = cluster >> s->refcount_block_bits; 2230 refblock_start = refblock_index << s->refcount_block_bits; 2231 2232 /* Don't allocate a cluster in a refblock already written to disk */ 2233 if (first_free_cluster < refblock_start) { 2234 first_free_cluster = refblock_start; 2235 } 2236 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table, 2237 nb_clusters, &first_free_cluster); 2238 if (refblock_offset < 0) { 2239 fprintf(stderr, "ERROR allocating refblock: %s\n", 2240 strerror(-refblock_offset)); 2241 res->check_errors++; 2242 ret = refblock_offset; 2243 goto fail; 2244 } 2245 2246 if (reftable_size <= refblock_index) { 2247 uint32_t old_reftable_size = reftable_size; 2248 uint64_t *new_on_disk_reftable; 2249 2250 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t), 2251 s->cluster_size) / sizeof(uint64_t); 2252 new_on_disk_reftable = g_try_realloc(on_disk_reftable, 2253 reftable_size * 2254 sizeof(uint64_t)); 2255 if (!new_on_disk_reftable) { 2256 res->check_errors++; 2257 ret = -ENOMEM; 2258 goto fail; 2259 } 2260 on_disk_reftable = new_on_disk_reftable; 2261 2262 memset(on_disk_reftable + old_reftable_size, 0, 2263 (reftable_size - old_reftable_size) * sizeof(uint64_t)); 2264 2265 /* The offset we have for the reftable is now no longer valid; 2266 * this will leak that range, but we can easily fix that by running 2267 * a leak-fixing check after this rebuild operation */ 2268 reftable_offset = -1; 2269 } else { 2270 assert(on_disk_reftable); 2271 } 2272 on_disk_reftable[refblock_index] = refblock_offset; 2273 2274 /* If this is apparently the last refblock (for now), try to squeeze the 2275 * reftable in */ 2276 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits && 2277 reftable_offset < 0) 2278 { 2279 uint64_t reftable_clusters = size_to_clusters(s, reftable_size * 2280 sizeof(uint64_t)); 2281 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2282 refcount_table, nb_clusters, 2283 &first_free_cluster); 2284 if (reftable_offset < 0) { 2285 fprintf(stderr, "ERROR allocating reftable: %s\n", 2286 strerror(-reftable_offset)); 2287 res->check_errors++; 2288 ret = reftable_offset; 2289 goto fail; 2290 } 2291 } 2292 2293 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset, 2294 s->cluster_size); 2295 if (ret < 0) { 2296 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret)); 2297 goto fail; 2298 } 2299 2300 /* The size of *refcount_table is always cluster-aligned, therefore the 2301 * write operation will not overflow */ 2302 on_disk_refblock = (void *)((char *) *refcount_table + 2303 refblock_index * s->cluster_size); 2304 2305 ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE, 2306 on_disk_refblock, s->cluster_sectors); 2307 if (ret < 0) { 2308 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret)); 2309 goto fail; 2310 } 2311 2312 /* Go to the end of this refblock */ 2313 cluster = refblock_start + s->refcount_block_size - 1; 2314 } 2315 2316 if (reftable_offset < 0) { 2317 uint64_t post_refblock_start, reftable_clusters; 2318 2319 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size); 2320 reftable_clusters = size_to_clusters(s, 2321 reftable_size * sizeof(uint64_t)); 2322 /* Not pretty but simple */ 2323 if (first_free_cluster < post_refblock_start) { 2324 first_free_cluster = post_refblock_start; 2325 } 2326 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2327 refcount_table, nb_clusters, 2328 &first_free_cluster); 2329 if (reftable_offset < 0) { 2330 fprintf(stderr, "ERROR allocating reftable: %s\n", 2331 strerror(-reftable_offset)); 2332 res->check_errors++; 2333 ret = reftable_offset; 2334 goto fail; 2335 } 2336 2337 goto write_refblocks; 2338 } 2339 2340 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) { 2341 cpu_to_be64s(&on_disk_reftable[refblock_index]); 2342 } 2343 2344 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset, 2345 reftable_size * sizeof(uint64_t)); 2346 if (ret < 0) { 2347 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret)); 2348 goto fail; 2349 } 2350 2351 assert(reftable_size < INT_MAX / sizeof(uint64_t)); 2352 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable, 2353 reftable_size * sizeof(uint64_t)); 2354 if (ret < 0) { 2355 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret)); 2356 goto fail; 2357 } 2358 2359 /* Enter new reftable into the image header */ 2360 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset); 2361 reftable_offset_and_clusters.reftable_clusters = 2362 cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t))); 2363 ret = bdrv_pwrite_sync(bs->file, 2364 offsetof(QCowHeader, refcount_table_offset), 2365 &reftable_offset_and_clusters, 2366 sizeof(reftable_offset_and_clusters)); 2367 if (ret < 0) { 2368 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret)); 2369 goto fail; 2370 } 2371 2372 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) { 2373 be64_to_cpus(&on_disk_reftable[refblock_index]); 2374 } 2375 s->refcount_table = on_disk_reftable; 2376 s->refcount_table_offset = reftable_offset; 2377 s->refcount_table_size = reftable_size; 2378 update_max_refcount_table_index(s); 2379 2380 return 0; 2381 2382 fail: 2383 g_free(on_disk_reftable); 2384 return ret; 2385 } 2386 2387 /* 2388 * Checks an image for refcount consistency. 2389 * 2390 * Returns 0 if no errors are found, the number of errors in case the image is 2391 * detected as corrupted, and -errno when an internal error occurred. 2392 */ 2393 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2394 BdrvCheckMode fix) 2395 { 2396 BDRVQcow2State *s = bs->opaque; 2397 BdrvCheckResult pre_compare_res; 2398 int64_t size, highest_cluster, nb_clusters; 2399 void *refcount_table = NULL; 2400 bool rebuild = false; 2401 int ret; 2402 2403 size = bdrv_getlength(bs->file->bs); 2404 if (size < 0) { 2405 res->check_errors++; 2406 return size; 2407 } 2408 2409 nb_clusters = size_to_clusters(s, size); 2410 if (nb_clusters > INT_MAX) { 2411 res->check_errors++; 2412 return -EFBIG; 2413 } 2414 2415 res->bfi.total_clusters = 2416 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE); 2417 2418 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table, 2419 &nb_clusters); 2420 if (ret < 0) { 2421 goto fail; 2422 } 2423 2424 /* In case we don't need to rebuild the refcount structure (but want to fix 2425 * something), this function is immediately called again, in which case the 2426 * result should be ignored */ 2427 pre_compare_res = *res; 2428 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table, 2429 nb_clusters); 2430 2431 if (rebuild && (fix & BDRV_FIX_ERRORS)) { 2432 BdrvCheckResult old_res = *res; 2433 int fresh_leaks = 0; 2434 2435 fprintf(stderr, "Rebuilding refcount structure\n"); 2436 ret = rebuild_refcount_structure(bs, res, &refcount_table, 2437 &nb_clusters); 2438 if (ret < 0) { 2439 goto fail; 2440 } 2441 2442 res->corruptions = 0; 2443 res->leaks = 0; 2444 2445 /* Because the old reftable has been exchanged for a new one the 2446 * references have to be recalculated */ 2447 rebuild = false; 2448 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters)); 2449 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table, 2450 &nb_clusters); 2451 if (ret < 0) { 2452 goto fail; 2453 } 2454 2455 if (fix & BDRV_FIX_LEAKS) { 2456 /* The old refcount structures are now leaked, fix it; the result 2457 * can be ignored, aside from leaks which were introduced by 2458 * rebuild_refcount_structure() that could not be fixed */ 2459 BdrvCheckResult saved_res = *res; 2460 *res = (BdrvCheckResult){ 0 }; 2461 2462 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild, 2463 &highest_cluster, refcount_table, nb_clusters); 2464 if (rebuild) { 2465 fprintf(stderr, "ERROR rebuilt refcount structure is still " 2466 "broken\n"); 2467 } 2468 2469 /* Any leaks accounted for here were introduced by 2470 * rebuild_refcount_structure() because that function has created a 2471 * new refcount structure from scratch */ 2472 fresh_leaks = res->leaks; 2473 *res = saved_res; 2474 } 2475 2476 if (res->corruptions < old_res.corruptions) { 2477 res->corruptions_fixed += old_res.corruptions - res->corruptions; 2478 } 2479 if (res->leaks < old_res.leaks) { 2480 res->leaks_fixed += old_res.leaks - res->leaks; 2481 } 2482 res->leaks += fresh_leaks; 2483 } else if (fix) { 2484 if (rebuild) { 2485 fprintf(stderr, "ERROR need to rebuild refcount structures\n"); 2486 res->check_errors++; 2487 ret = -EIO; 2488 goto fail; 2489 } 2490 2491 if (res->leaks || res->corruptions) { 2492 *res = pre_compare_res; 2493 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster, 2494 refcount_table, nb_clusters); 2495 } 2496 } 2497 2498 /* check OFLAG_COPIED */ 2499 ret = check_oflag_copied(bs, res, fix); 2500 if (ret < 0) { 2501 goto fail; 2502 } 2503 2504 res->image_end_offset = (highest_cluster + 1) * s->cluster_size; 2505 ret = 0; 2506 2507 fail: 2508 g_free(refcount_table); 2509 2510 return ret; 2511 } 2512 2513 #define overlaps_with(ofs, sz) \ 2514 ranges_overlap(offset, size, ofs, sz) 2515 2516 /* 2517 * Checks if the given offset into the image file is actually free to use by 2518 * looking for overlaps with important metadata sections (L1/L2 tables etc.), 2519 * i.e. a sanity check without relying on the refcount tables. 2520 * 2521 * The ign parameter specifies what checks not to perform (being a bitmask of 2522 * QCow2MetadataOverlap values), i.e., what sections to ignore. 2523 * 2524 * Returns: 2525 * - 0 if writing to this offset will not affect the mentioned metadata 2526 * - a positive QCow2MetadataOverlap value indicating one overlapping section 2527 * - a negative value (-errno) indicating an error while performing a check, 2528 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2 2529 */ 2530 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset, 2531 int64_t size) 2532 { 2533 BDRVQcow2State *s = bs->opaque; 2534 int chk = s->overlap_check & ~ign; 2535 int i, j; 2536 2537 if (!size) { 2538 return 0; 2539 } 2540 2541 if (chk & QCOW2_OL_MAIN_HEADER) { 2542 if (offset < s->cluster_size) { 2543 return QCOW2_OL_MAIN_HEADER; 2544 } 2545 } 2546 2547 /* align range to test to cluster boundaries */ 2548 size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size); 2549 offset = start_of_cluster(s, offset); 2550 2551 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) { 2552 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) { 2553 return QCOW2_OL_ACTIVE_L1; 2554 } 2555 } 2556 2557 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) { 2558 if (overlaps_with(s->refcount_table_offset, 2559 s->refcount_table_size * sizeof(uint64_t))) { 2560 return QCOW2_OL_REFCOUNT_TABLE; 2561 } 2562 } 2563 2564 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) { 2565 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) { 2566 return QCOW2_OL_SNAPSHOT_TABLE; 2567 } 2568 } 2569 2570 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) { 2571 for (i = 0; i < s->nb_snapshots; i++) { 2572 if (s->snapshots[i].l1_size && 2573 overlaps_with(s->snapshots[i].l1_table_offset, 2574 s->snapshots[i].l1_size * sizeof(uint64_t))) { 2575 return QCOW2_OL_INACTIVE_L1; 2576 } 2577 } 2578 } 2579 2580 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) { 2581 for (i = 0; i < s->l1_size; i++) { 2582 if ((s->l1_table[i] & L1E_OFFSET_MASK) && 2583 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK, 2584 s->cluster_size)) { 2585 return QCOW2_OL_ACTIVE_L2; 2586 } 2587 } 2588 } 2589 2590 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) { 2591 unsigned last_entry = s->max_refcount_table_index; 2592 assert(last_entry < s->refcount_table_size); 2593 assert(last_entry + 1 == s->refcount_table_size || 2594 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0); 2595 for (i = 0; i <= last_entry; i++) { 2596 if ((s->refcount_table[i] & REFT_OFFSET_MASK) && 2597 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK, 2598 s->cluster_size)) { 2599 return QCOW2_OL_REFCOUNT_BLOCK; 2600 } 2601 } 2602 } 2603 2604 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) { 2605 for (i = 0; i < s->nb_snapshots; i++) { 2606 uint64_t l1_ofs = s->snapshots[i].l1_table_offset; 2607 uint32_t l1_sz = s->snapshots[i].l1_size; 2608 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t); 2609 uint64_t *l1 = g_try_malloc(l1_sz2); 2610 int ret; 2611 2612 if (l1_sz2 && l1 == NULL) { 2613 return -ENOMEM; 2614 } 2615 2616 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2); 2617 if (ret < 0) { 2618 g_free(l1); 2619 return ret; 2620 } 2621 2622 for (j = 0; j < l1_sz; j++) { 2623 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK; 2624 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) { 2625 g_free(l1); 2626 return QCOW2_OL_INACTIVE_L2; 2627 } 2628 } 2629 2630 g_free(l1); 2631 } 2632 } 2633 2634 return 0; 2635 } 2636 2637 static const char *metadata_ol_names[] = { 2638 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header", 2639 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table", 2640 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table", 2641 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table", 2642 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block", 2643 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table", 2644 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table", 2645 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table", 2646 }; 2647 2648 /* 2649 * First performs a check for metadata overlaps (through 2650 * qcow2_check_metadata_overlap); if that fails with a negative value (error 2651 * while performing a check), that value is returned. If an impending overlap 2652 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt 2653 * and -EIO returned. 2654 * 2655 * Returns 0 if there were neither overlaps nor errors while checking for 2656 * overlaps; or a negative value (-errno) on error. 2657 */ 2658 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset, 2659 int64_t size) 2660 { 2661 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size); 2662 2663 if (ret < 0) { 2664 return ret; 2665 } else if (ret > 0) { 2666 int metadata_ol_bitnr = ctz32(ret); 2667 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR); 2668 2669 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid " 2670 "write on metadata (overlaps with %s)", 2671 metadata_ol_names[metadata_ol_bitnr]); 2672 return -EIO; 2673 } 2674 2675 return 0; 2676 } 2677 2678 /* A pointer to a function of this type is given to walk_over_reftable(). That 2679 * function will create refblocks and pass them to a RefblockFinishOp once they 2680 * are completed (@refblock). @refblock_empty is set if the refblock is 2681 * completely empty. 2682 * 2683 * Along with the refblock, a corresponding reftable entry is passed, in the 2684 * reftable @reftable (which may be reallocated) at @reftable_index. 2685 * 2686 * @allocated should be set to true if a new cluster has been allocated. 2687 */ 2688 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable, 2689 uint64_t reftable_index, uint64_t *reftable_size, 2690 void *refblock, bool refblock_empty, 2691 bool *allocated, Error **errp); 2692 2693 /** 2694 * This "operation" for walk_over_reftable() allocates the refblock on disk (if 2695 * it is not empty) and inserts its offset into the new reftable. The size of 2696 * this new reftable is increased as required. 2697 */ 2698 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable, 2699 uint64_t reftable_index, uint64_t *reftable_size, 2700 void *refblock, bool refblock_empty, bool *allocated, 2701 Error **errp) 2702 { 2703 BDRVQcow2State *s = bs->opaque; 2704 int64_t offset; 2705 2706 if (!refblock_empty && reftable_index >= *reftable_size) { 2707 uint64_t *new_reftable; 2708 uint64_t new_reftable_size; 2709 2710 new_reftable_size = ROUND_UP(reftable_index + 1, 2711 s->cluster_size / sizeof(uint64_t)); 2712 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) { 2713 error_setg(errp, 2714 "This operation would make the refcount table grow " 2715 "beyond the maximum size supported by QEMU, aborting"); 2716 return -ENOTSUP; 2717 } 2718 2719 new_reftable = g_try_realloc(*reftable, new_reftable_size * 2720 sizeof(uint64_t)); 2721 if (!new_reftable) { 2722 error_setg(errp, "Failed to increase reftable buffer size"); 2723 return -ENOMEM; 2724 } 2725 2726 memset(new_reftable + *reftable_size, 0, 2727 (new_reftable_size - *reftable_size) * sizeof(uint64_t)); 2728 2729 *reftable = new_reftable; 2730 *reftable_size = new_reftable_size; 2731 } 2732 2733 if (!refblock_empty && !(*reftable)[reftable_index]) { 2734 offset = qcow2_alloc_clusters(bs, s->cluster_size); 2735 if (offset < 0) { 2736 error_setg_errno(errp, -offset, "Failed to allocate refblock"); 2737 return offset; 2738 } 2739 (*reftable)[reftable_index] = offset; 2740 *allocated = true; 2741 } 2742 2743 return 0; 2744 } 2745 2746 /** 2747 * This "operation" for walk_over_reftable() writes the refblock to disk at the 2748 * offset specified by the new reftable's entry. It does not modify the new 2749 * reftable or change any refcounts. 2750 */ 2751 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable, 2752 uint64_t reftable_index, uint64_t *reftable_size, 2753 void *refblock, bool refblock_empty, bool *allocated, 2754 Error **errp) 2755 { 2756 BDRVQcow2State *s = bs->opaque; 2757 int64_t offset; 2758 int ret; 2759 2760 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) { 2761 offset = (*reftable)[reftable_index]; 2762 2763 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 2764 if (ret < 0) { 2765 error_setg_errno(errp, -ret, "Overlap check failed"); 2766 return ret; 2767 } 2768 2769 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size); 2770 if (ret < 0) { 2771 error_setg_errno(errp, -ret, "Failed to write refblock"); 2772 return ret; 2773 } 2774 } else { 2775 assert(refblock_empty); 2776 } 2777 2778 return 0; 2779 } 2780 2781 /** 2782 * This function walks over the existing reftable and every referenced refblock; 2783 * if @new_set_refcount is non-NULL, it is called for every refcount entry to 2784 * create an equal new entry in the passed @new_refblock. Once that 2785 * @new_refblock is completely filled, @operation will be called. 2786 * 2787 * @status_cb and @cb_opaque are used for the amend operation's status callback. 2788 * @index is the index of the walk_over_reftable() calls and @total is the total 2789 * number of walk_over_reftable() calls per amend operation. Both are used for 2790 * calculating the parameters for the status callback. 2791 * 2792 * @allocated is set to true if a new cluster has been allocated. 2793 */ 2794 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable, 2795 uint64_t *new_reftable_index, 2796 uint64_t *new_reftable_size, 2797 void *new_refblock, int new_refblock_size, 2798 int new_refcount_bits, 2799 RefblockFinishOp *operation, bool *allocated, 2800 Qcow2SetRefcountFunc *new_set_refcount, 2801 BlockDriverAmendStatusCB *status_cb, 2802 void *cb_opaque, int index, int total, 2803 Error **errp) 2804 { 2805 BDRVQcow2State *s = bs->opaque; 2806 uint64_t reftable_index; 2807 bool new_refblock_empty = true; 2808 int refblock_index; 2809 int new_refblock_index = 0; 2810 int ret; 2811 2812 for (reftable_index = 0; reftable_index < s->refcount_table_size; 2813 reftable_index++) 2814 { 2815 uint64_t refblock_offset = s->refcount_table[reftable_index] 2816 & REFT_OFFSET_MASK; 2817 2818 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index, 2819 (uint64_t)total * s->refcount_table_size, cb_opaque); 2820 2821 if (refblock_offset) { 2822 void *refblock; 2823 2824 if (offset_into_cluster(s, refblock_offset)) { 2825 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 2826 PRIx64 " unaligned (reftable index: %#" 2827 PRIx64 ")", refblock_offset, 2828 reftable_index); 2829 error_setg(errp, 2830 "Image is corrupt (unaligned refblock offset)"); 2831 return -EIO; 2832 } 2833 2834 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset, 2835 &refblock); 2836 if (ret < 0) { 2837 error_setg_errno(errp, -ret, "Failed to retrieve refblock"); 2838 return ret; 2839 } 2840 2841 for (refblock_index = 0; refblock_index < s->refcount_block_size; 2842 refblock_index++) 2843 { 2844 uint64_t refcount; 2845 2846 if (new_refblock_index >= new_refblock_size) { 2847 /* new_refblock is now complete */ 2848 ret = operation(bs, new_reftable, *new_reftable_index, 2849 new_reftable_size, new_refblock, 2850 new_refblock_empty, allocated, errp); 2851 if (ret < 0) { 2852 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 2853 return ret; 2854 } 2855 2856 (*new_reftable_index)++; 2857 new_refblock_index = 0; 2858 new_refblock_empty = true; 2859 } 2860 2861 refcount = s->get_refcount(refblock, refblock_index); 2862 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) { 2863 uint64_t offset; 2864 2865 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 2866 2867 offset = ((reftable_index << s->refcount_block_bits) 2868 + refblock_index) << s->cluster_bits; 2869 2870 error_setg(errp, "Cannot decrease refcount entry width to " 2871 "%i bits: Cluster at offset %#" PRIx64 " has a " 2872 "refcount of %" PRIu64, new_refcount_bits, 2873 offset, refcount); 2874 return -EINVAL; 2875 } 2876 2877 if (new_set_refcount) { 2878 new_set_refcount(new_refblock, new_refblock_index++, 2879 refcount); 2880 } else { 2881 new_refblock_index++; 2882 } 2883 new_refblock_empty = new_refblock_empty && refcount == 0; 2884 } 2885 2886 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 2887 } else { 2888 /* No refblock means every refcount is 0 */ 2889 for (refblock_index = 0; refblock_index < s->refcount_block_size; 2890 refblock_index++) 2891 { 2892 if (new_refblock_index >= new_refblock_size) { 2893 /* new_refblock is now complete */ 2894 ret = operation(bs, new_reftable, *new_reftable_index, 2895 new_reftable_size, new_refblock, 2896 new_refblock_empty, allocated, errp); 2897 if (ret < 0) { 2898 return ret; 2899 } 2900 2901 (*new_reftable_index)++; 2902 new_refblock_index = 0; 2903 new_refblock_empty = true; 2904 } 2905 2906 if (new_set_refcount) { 2907 new_set_refcount(new_refblock, new_refblock_index++, 0); 2908 } else { 2909 new_refblock_index++; 2910 } 2911 } 2912 } 2913 } 2914 2915 if (new_refblock_index > 0) { 2916 /* Complete the potentially existing partially filled final refblock */ 2917 if (new_set_refcount) { 2918 for (; new_refblock_index < new_refblock_size; 2919 new_refblock_index++) 2920 { 2921 new_set_refcount(new_refblock, new_refblock_index, 0); 2922 } 2923 } 2924 2925 ret = operation(bs, new_reftable, *new_reftable_index, 2926 new_reftable_size, new_refblock, new_refblock_empty, 2927 allocated, errp); 2928 if (ret < 0) { 2929 return ret; 2930 } 2931 2932 (*new_reftable_index)++; 2933 } 2934 2935 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size, 2936 (uint64_t)total * s->refcount_table_size, cb_opaque); 2937 2938 return 0; 2939 } 2940 2941 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order, 2942 BlockDriverAmendStatusCB *status_cb, 2943 void *cb_opaque, Error **errp) 2944 { 2945 BDRVQcow2State *s = bs->opaque; 2946 Qcow2GetRefcountFunc *new_get_refcount; 2947 Qcow2SetRefcountFunc *new_set_refcount; 2948 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size); 2949 uint64_t *new_reftable = NULL, new_reftable_size = 0; 2950 uint64_t *old_reftable, old_reftable_size, old_reftable_offset; 2951 uint64_t new_reftable_index = 0; 2952 uint64_t i; 2953 int64_t new_reftable_offset = 0, allocated_reftable_size = 0; 2954 int new_refblock_size, new_refcount_bits = 1 << refcount_order; 2955 int old_refcount_order; 2956 int walk_index = 0; 2957 int ret; 2958 bool new_allocation; 2959 2960 assert(s->qcow_version >= 3); 2961 assert(refcount_order >= 0 && refcount_order <= 6); 2962 2963 /* see qcow2_open() */ 2964 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3)); 2965 2966 new_get_refcount = get_refcount_funcs[refcount_order]; 2967 new_set_refcount = set_refcount_funcs[refcount_order]; 2968 2969 2970 do { 2971 int total_walks; 2972 2973 new_allocation = false; 2974 2975 /* At least we have to do this walk and the one which writes the 2976 * refblocks; also, at least we have to do this loop here at least 2977 * twice (normally), first to do the allocations, and second to 2978 * determine that everything is correctly allocated, this then makes 2979 * three walks in total */ 2980 total_walks = MAX(walk_index + 2, 3); 2981 2982 /* First, allocate the structures so they are present in the refcount 2983 * structures */ 2984 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 2985 &new_reftable_size, NULL, new_refblock_size, 2986 new_refcount_bits, &alloc_refblock, 2987 &new_allocation, NULL, status_cb, cb_opaque, 2988 walk_index++, total_walks, errp); 2989 if (ret < 0) { 2990 goto done; 2991 } 2992 2993 new_reftable_index = 0; 2994 2995 if (new_allocation) { 2996 if (new_reftable_offset) { 2997 qcow2_free_clusters(bs, new_reftable_offset, 2998 allocated_reftable_size * sizeof(uint64_t), 2999 QCOW2_DISCARD_NEVER); 3000 } 3001 3002 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size * 3003 sizeof(uint64_t)); 3004 if (new_reftable_offset < 0) { 3005 error_setg_errno(errp, -new_reftable_offset, 3006 "Failed to allocate the new reftable"); 3007 ret = new_reftable_offset; 3008 goto done; 3009 } 3010 allocated_reftable_size = new_reftable_size; 3011 } 3012 } while (new_allocation); 3013 3014 /* Second, write the new refblocks */ 3015 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 3016 &new_reftable_size, new_refblock, 3017 new_refblock_size, new_refcount_bits, 3018 &flush_refblock, &new_allocation, new_set_refcount, 3019 status_cb, cb_opaque, walk_index, walk_index + 1, 3020 errp); 3021 if (ret < 0) { 3022 goto done; 3023 } 3024 assert(!new_allocation); 3025 3026 3027 /* Write the new reftable */ 3028 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset, 3029 new_reftable_size * sizeof(uint64_t)); 3030 if (ret < 0) { 3031 error_setg_errno(errp, -ret, "Overlap check failed"); 3032 goto done; 3033 } 3034 3035 for (i = 0; i < new_reftable_size; i++) { 3036 cpu_to_be64s(&new_reftable[i]); 3037 } 3038 3039 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable, 3040 new_reftable_size * sizeof(uint64_t)); 3041 3042 for (i = 0; i < new_reftable_size; i++) { 3043 be64_to_cpus(&new_reftable[i]); 3044 } 3045 3046 if (ret < 0) { 3047 error_setg_errno(errp, -ret, "Failed to write the new reftable"); 3048 goto done; 3049 } 3050 3051 3052 /* Empty the refcount cache */ 3053 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 3054 if (ret < 0) { 3055 error_setg_errno(errp, -ret, "Failed to flush the refblock cache"); 3056 goto done; 3057 } 3058 3059 /* Update the image header to point to the new reftable; this only updates 3060 * the fields which are relevant to qcow2_update_header(); other fields 3061 * such as s->refcount_table or s->refcount_bits stay stale for now 3062 * (because we have to restore everything if qcow2_update_header() fails) */ 3063 old_refcount_order = s->refcount_order; 3064 old_reftable_size = s->refcount_table_size; 3065 old_reftable_offset = s->refcount_table_offset; 3066 3067 s->refcount_order = refcount_order; 3068 s->refcount_table_size = new_reftable_size; 3069 s->refcount_table_offset = new_reftable_offset; 3070 3071 ret = qcow2_update_header(bs); 3072 if (ret < 0) { 3073 s->refcount_order = old_refcount_order; 3074 s->refcount_table_size = old_reftable_size; 3075 s->refcount_table_offset = old_reftable_offset; 3076 error_setg_errno(errp, -ret, "Failed to update the qcow2 header"); 3077 goto done; 3078 } 3079 3080 /* Now update the rest of the in-memory information */ 3081 old_reftable = s->refcount_table; 3082 s->refcount_table = new_reftable; 3083 update_max_refcount_table_index(s); 3084 3085 s->refcount_bits = 1 << refcount_order; 3086 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1); 3087 s->refcount_max += s->refcount_max - 1; 3088 3089 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3); 3090 s->refcount_block_size = 1 << s->refcount_block_bits; 3091 3092 s->get_refcount = new_get_refcount; 3093 s->set_refcount = new_set_refcount; 3094 3095 /* For cleaning up all old refblocks and the old reftable below the "done" 3096 * label */ 3097 new_reftable = old_reftable; 3098 new_reftable_size = old_reftable_size; 3099 new_reftable_offset = old_reftable_offset; 3100 3101 done: 3102 if (new_reftable) { 3103 /* On success, new_reftable actually points to the old reftable (and 3104 * new_reftable_size is the old reftable's size); but that is just 3105 * fine */ 3106 for (i = 0; i < new_reftable_size; i++) { 3107 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK; 3108 if (offset) { 3109 qcow2_free_clusters(bs, offset, s->cluster_size, 3110 QCOW2_DISCARD_OTHER); 3111 } 3112 } 3113 g_free(new_reftable); 3114 3115 if (new_reftable_offset > 0) { 3116 qcow2_free_clusters(bs, new_reftable_offset, 3117 new_reftable_size * sizeof(uint64_t), 3118 QCOW2_DISCARD_OTHER); 3119 } 3120 } 3121 3122 qemu_vfree(new_refblock); 3123 return ret; 3124 } 3125 3126 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset) 3127 { 3128 BDRVQcow2State *s = bs->opaque; 3129 uint32_t index = offset_to_reftable_index(s, offset); 3130 int64_t covering_refblock_offset = 0; 3131 3132 if (index < s->refcount_table_size) { 3133 covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK; 3134 } 3135 if (!covering_refblock_offset) { 3136 qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is " 3137 "not covered by the refcount structures", 3138 offset); 3139 return -EIO; 3140 } 3141 3142 return covering_refblock_offset; 3143 } 3144 3145 static int qcow2_discard_refcount_block(BlockDriverState *bs, 3146 uint64_t discard_block_offs) 3147 { 3148 BDRVQcow2State *s = bs->opaque; 3149 int64_t refblock_offs; 3150 uint64_t cluster_index = discard_block_offs >> s->cluster_bits; 3151 uint32_t block_index = cluster_index & (s->refcount_block_size - 1); 3152 void *refblock; 3153 int ret; 3154 3155 refblock_offs = get_refblock_offset(bs, discard_block_offs); 3156 if (refblock_offs < 0) { 3157 return refblock_offs; 3158 } 3159 3160 assert(discard_block_offs != 0); 3161 3162 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs, 3163 &refblock); 3164 if (ret < 0) { 3165 return ret; 3166 } 3167 3168 if (s->get_refcount(refblock, block_index) != 1) { 3169 qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:" 3170 " refblock offset %#" PRIx64 3171 ", reftable index %u" 3172 ", block offset %#" PRIx64 3173 ", refcount %#" PRIx64, 3174 refblock_offs, 3175 offset_to_reftable_index(s, discard_block_offs), 3176 discard_block_offs, 3177 s->get_refcount(refblock, block_index)); 3178 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 3179 return -EINVAL; 3180 } 3181 s->set_refcount(refblock, block_index, 0); 3182 3183 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, refblock); 3184 3185 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 3186 3187 if (cluster_index < s->free_cluster_index) { 3188 s->free_cluster_index = cluster_index; 3189 } 3190 3191 refblock = qcow2_cache_is_table_offset(bs, s->refcount_block_cache, 3192 discard_block_offs); 3193 if (refblock) { 3194 /* discard refblock from the cache if refblock is cached */ 3195 qcow2_cache_discard(bs, s->refcount_block_cache, refblock); 3196 } 3197 update_refcount_discard(bs, discard_block_offs, s->cluster_size); 3198 3199 return 0; 3200 } 3201 3202 int qcow2_shrink_reftable(BlockDriverState *bs) 3203 { 3204 BDRVQcow2State *s = bs->opaque; 3205 uint64_t *reftable_tmp = 3206 g_malloc(s->refcount_table_size * sizeof(uint64_t)); 3207 int i, ret; 3208 3209 for (i = 0; i < s->refcount_table_size; i++) { 3210 int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK; 3211 void *refblock; 3212 bool unused_block; 3213 3214 if (refblock_offs == 0) { 3215 reftable_tmp[i] = 0; 3216 continue; 3217 } 3218 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs, 3219 &refblock); 3220 if (ret < 0) { 3221 goto out; 3222 } 3223 3224 /* the refblock has own reference */ 3225 if (i == offset_to_reftable_index(s, refblock_offs)) { 3226 uint64_t block_index = (refblock_offs >> s->cluster_bits) & 3227 (s->refcount_block_size - 1); 3228 uint64_t refcount = s->get_refcount(refblock, block_index); 3229 3230 s->set_refcount(refblock, block_index, 0); 3231 3232 unused_block = buffer_is_zero(refblock, s->cluster_size); 3233 3234 s->set_refcount(refblock, block_index, refcount); 3235 } else { 3236 unused_block = buffer_is_zero(refblock, s->cluster_size); 3237 } 3238 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 3239 3240 reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]); 3241 } 3242 3243 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp, 3244 s->refcount_table_size * sizeof(uint64_t)); 3245 /* 3246 * If the write in the reftable failed the image may contain a partially 3247 * overwritten reftable. In this case it would be better to clear the 3248 * reftable in memory to avoid possible image corruption. 3249 */ 3250 for (i = 0; i < s->refcount_table_size; i++) { 3251 if (s->refcount_table[i] && !reftable_tmp[i]) { 3252 if (ret == 0) { 3253 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] & 3254 REFT_OFFSET_MASK); 3255 } 3256 s->refcount_table[i] = 0; 3257 } 3258 } 3259 3260 if (!s->cache_discards) { 3261 qcow2_process_discards(bs, ret); 3262 } 3263 3264 out: 3265 g_free(reftable_tmp); 3266 return ret; 3267 } 3268 3269 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size) 3270 { 3271 BDRVQcow2State *s = bs->opaque; 3272 int64_t i; 3273 3274 for (i = size_to_clusters(s, size) - 1; i >= 0; i--) { 3275 uint64_t refcount; 3276 int ret = qcow2_get_refcount(bs, i, &refcount); 3277 if (ret < 0) { 3278 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 3279 i, strerror(-ret)); 3280 return ret; 3281 } 3282 if (refcount > 0) { 3283 return i; 3284 } 3285 } 3286 qcow2_signal_corruption(bs, true, -1, -1, 3287 "There are no references in the refcount table."); 3288 return -EIO; 3289 } 3290