xref: /openbmc/qemu/block/qcow2-refcount.c (revision 8a49b300)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qcow2.h"
28 #include "qemu/range.h"
29 #include "qemu/bswap.h"
30 #include "qemu/cutils.h"
31 #include "trace.h"
32 
33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
34                                     uint64_t max);
35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
36                             int64_t offset, int64_t length, uint64_t addend,
37                             bool decrease, enum qcow2_discard_type type);
38 
39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
46 
47 static void set_refcount_ro0(void *refcount_array, uint64_t index,
48                              uint64_t value);
49 static void set_refcount_ro1(void *refcount_array, uint64_t index,
50                              uint64_t value);
51 static void set_refcount_ro2(void *refcount_array, uint64_t index,
52                              uint64_t value);
53 static void set_refcount_ro3(void *refcount_array, uint64_t index,
54                              uint64_t value);
55 static void set_refcount_ro4(void *refcount_array, uint64_t index,
56                              uint64_t value);
57 static void set_refcount_ro5(void *refcount_array, uint64_t index,
58                              uint64_t value);
59 static void set_refcount_ro6(void *refcount_array, uint64_t index,
60                              uint64_t value);
61 
62 
63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
64     &get_refcount_ro0,
65     &get_refcount_ro1,
66     &get_refcount_ro2,
67     &get_refcount_ro3,
68     &get_refcount_ro4,
69     &get_refcount_ro5,
70     &get_refcount_ro6
71 };
72 
73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
74     &set_refcount_ro0,
75     &set_refcount_ro1,
76     &set_refcount_ro2,
77     &set_refcount_ro3,
78     &set_refcount_ro4,
79     &set_refcount_ro5,
80     &set_refcount_ro6
81 };
82 
83 
84 /*********************************************************/
85 /* refcount handling */
86 
87 static void update_max_refcount_table_index(BDRVQcow2State *s)
88 {
89     unsigned i = s->refcount_table_size - 1;
90     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
91         i--;
92     }
93     /* Set s->max_refcount_table_index to the index of the last used entry */
94     s->max_refcount_table_index = i;
95 }
96 
97 int qcow2_refcount_init(BlockDriverState *bs)
98 {
99     BDRVQcow2State *s = bs->opaque;
100     unsigned int refcount_table_size2, i;
101     int ret;
102 
103     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
104 
105     s->get_refcount = get_refcount_funcs[s->refcount_order];
106     s->set_refcount = set_refcount_funcs[s->refcount_order];
107 
108     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
109     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
110     s->refcount_table = g_try_malloc(refcount_table_size2);
111 
112     if (s->refcount_table_size > 0) {
113         if (s->refcount_table == NULL) {
114             ret = -ENOMEM;
115             goto fail;
116         }
117         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
118         ret = bdrv_pread(bs->file, s->refcount_table_offset,
119                          s->refcount_table, refcount_table_size2);
120         if (ret < 0) {
121             goto fail;
122         }
123         for(i = 0; i < s->refcount_table_size; i++)
124             be64_to_cpus(&s->refcount_table[i]);
125         update_max_refcount_table_index(s);
126     }
127     return 0;
128  fail:
129     return ret;
130 }
131 
132 void qcow2_refcount_close(BlockDriverState *bs)
133 {
134     BDRVQcow2State *s = bs->opaque;
135     g_free(s->refcount_table);
136 }
137 
138 
139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
140 {
141     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
142 }
143 
144 static void set_refcount_ro0(void *refcount_array, uint64_t index,
145                              uint64_t value)
146 {
147     assert(!(value >> 1));
148     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
149     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
150 }
151 
152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
153 {
154     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
155            & 0x3;
156 }
157 
158 static void set_refcount_ro1(void *refcount_array, uint64_t index,
159                              uint64_t value)
160 {
161     assert(!(value >> 2));
162     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
163     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
164 }
165 
166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
167 {
168     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
169            & 0xf;
170 }
171 
172 static void set_refcount_ro2(void *refcount_array, uint64_t index,
173                              uint64_t value)
174 {
175     assert(!(value >> 4));
176     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
177     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
178 }
179 
180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
181 {
182     return ((const uint8_t *)refcount_array)[index];
183 }
184 
185 static void set_refcount_ro3(void *refcount_array, uint64_t index,
186                              uint64_t value)
187 {
188     assert(!(value >> 8));
189     ((uint8_t *)refcount_array)[index] = value;
190 }
191 
192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
193 {
194     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
195 }
196 
197 static void set_refcount_ro4(void *refcount_array, uint64_t index,
198                              uint64_t value)
199 {
200     assert(!(value >> 16));
201     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
202 }
203 
204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
205 {
206     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
207 }
208 
209 static void set_refcount_ro5(void *refcount_array, uint64_t index,
210                              uint64_t value)
211 {
212     assert(!(value >> 32));
213     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
214 }
215 
216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
217 {
218     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
219 }
220 
221 static void set_refcount_ro6(void *refcount_array, uint64_t index,
222                              uint64_t value)
223 {
224     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
225 }
226 
227 
228 static int load_refcount_block(BlockDriverState *bs,
229                                int64_t refcount_block_offset,
230                                void **refcount_block)
231 {
232     BDRVQcow2State *s = bs->opaque;
233 
234     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
235     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
236                            refcount_block);
237 }
238 
239 /*
240  * Retrieves the refcount of the cluster given by its index and stores it in
241  * *refcount. Returns 0 on success and -errno on failure.
242  */
243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
244                        uint64_t *refcount)
245 {
246     BDRVQcow2State *s = bs->opaque;
247     uint64_t refcount_table_index, block_index;
248     int64_t refcount_block_offset;
249     int ret;
250     void *refcount_block;
251 
252     refcount_table_index = cluster_index >> s->refcount_block_bits;
253     if (refcount_table_index >= s->refcount_table_size) {
254         *refcount = 0;
255         return 0;
256     }
257     refcount_block_offset =
258         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
259     if (!refcount_block_offset) {
260         *refcount = 0;
261         return 0;
262     }
263 
264     if (offset_into_cluster(s, refcount_block_offset)) {
265         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
266                                 " unaligned (reftable index: %#" PRIx64 ")",
267                                 refcount_block_offset, refcount_table_index);
268         return -EIO;
269     }
270 
271     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
272                           &refcount_block);
273     if (ret < 0) {
274         return ret;
275     }
276 
277     block_index = cluster_index & (s->refcount_block_size - 1);
278     *refcount = s->get_refcount(refcount_block, block_index);
279 
280     qcow2_cache_put(s->refcount_block_cache, &refcount_block);
281 
282     return 0;
283 }
284 
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
287     uint64_t offset_b)
288 {
289     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
290     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
291 
292     return (block_a == block_b);
293 }
294 
295 /*
296  * Loads a refcount block. If it doesn't exist yet, it is allocated first
297  * (including growing the refcount table if needed).
298  *
299  * Returns 0 on success or -errno in error case
300  */
301 static int alloc_refcount_block(BlockDriverState *bs,
302                                 int64_t cluster_index, void **refcount_block)
303 {
304     BDRVQcow2State *s = bs->opaque;
305     unsigned int refcount_table_index;
306     int64_t ret;
307 
308     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
309 
310     /* Find the refcount block for the given cluster */
311     refcount_table_index = cluster_index >> s->refcount_block_bits;
312 
313     if (refcount_table_index < s->refcount_table_size) {
314 
315         uint64_t refcount_block_offset =
316             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
317 
318         /* If it's already there, we're done */
319         if (refcount_block_offset) {
320             if (offset_into_cluster(s, refcount_block_offset)) {
321                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
322                                         PRIx64 " unaligned (reftable index: "
323                                         "%#x)", refcount_block_offset,
324                                         refcount_table_index);
325                 return -EIO;
326             }
327 
328              return load_refcount_block(bs, refcount_block_offset,
329                                         refcount_block);
330         }
331     }
332 
333     /*
334      * If we came here, we need to allocate something. Something is at least
335      * a cluster for the new refcount block. It may also include a new refcount
336      * table if the old refcount table is too small.
337      *
338      * Note that allocating clusters here needs some special care:
339      *
340      * - We can't use the normal qcow2_alloc_clusters(), it would try to
341      *   increase the refcount and very likely we would end up with an endless
342      *   recursion. Instead we must place the refcount blocks in a way that
343      *   they can describe them themselves.
344      *
345      * - We need to consider that at this point we are inside update_refcounts
346      *   and potentially doing an initial refcount increase. This means that
347      *   some clusters have already been allocated by the caller, but their
348      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
349      *   need to return -EAGAIN to signal the caller that it needs to restart
350      *   the search for free clusters.
351      *
352      * - alloc_clusters_noref and qcow2_free_clusters may load a different
353      *   refcount block into the cache
354      */
355 
356     *refcount_block = NULL;
357 
358     /* We write to the refcount table, so we might depend on L2 tables */
359     ret = qcow2_cache_flush(bs, s->l2_table_cache);
360     if (ret < 0) {
361         return ret;
362     }
363 
364     /* Allocate the refcount block itself and mark it as used */
365     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX);
366     if (new_block < 0) {
367         return new_block;
368     }
369 
370     /* The offset must fit in the offset field of the refcount table entry */
371     assert((new_block & REFT_OFFSET_MASK) == new_block);
372 
373     /* If we're allocating the block at offset 0 then something is wrong */
374     if (new_block == 0) {
375         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
376                                 "allocation of refcount block at offset 0");
377         return -EIO;
378     }
379 
380 #ifdef DEBUG_ALLOC2
381     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
382         " at %" PRIx64 "\n",
383         refcount_table_index, cluster_index << s->cluster_bits, new_block);
384 #endif
385 
386     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
387         /* Zero the new refcount block before updating it */
388         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
389                                     refcount_block);
390         if (ret < 0) {
391             goto fail;
392         }
393 
394         memset(*refcount_block, 0, s->cluster_size);
395 
396         /* The block describes itself, need to update the cache */
397         int block_index = (new_block >> s->cluster_bits) &
398             (s->refcount_block_size - 1);
399         s->set_refcount(*refcount_block, block_index, 1);
400     } else {
401         /* Described somewhere else. This can recurse at most twice before we
402          * arrive at a block that describes itself. */
403         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
404                               QCOW2_DISCARD_NEVER);
405         if (ret < 0) {
406             goto fail;
407         }
408 
409         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
410         if (ret < 0) {
411             goto fail;
412         }
413 
414         /* Initialize the new refcount block only after updating its refcount,
415          * update_refcount uses the refcount cache itself */
416         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
417                                     refcount_block);
418         if (ret < 0) {
419             goto fail;
420         }
421 
422         memset(*refcount_block, 0, s->cluster_size);
423     }
424 
425     /* Now the new refcount block needs to be written to disk */
426     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
427     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
428     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
429     if (ret < 0) {
430         goto fail;
431     }
432 
433     /* If the refcount table is big enough, just hook the block up there */
434     if (refcount_table_index < s->refcount_table_size) {
435         uint64_t data64 = cpu_to_be64(new_block);
436         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
437         ret = bdrv_pwrite_sync(bs->file,
438             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
439             &data64, sizeof(data64));
440         if (ret < 0) {
441             goto fail;
442         }
443 
444         s->refcount_table[refcount_table_index] = new_block;
445         /* If there's a hole in s->refcount_table then it can happen
446          * that refcount_table_index < s->max_refcount_table_index */
447         s->max_refcount_table_index =
448             MAX(s->max_refcount_table_index, refcount_table_index);
449 
450         /* The new refcount block may be where the caller intended to put its
451          * data, so let it restart the search. */
452         return -EAGAIN;
453     }
454 
455     qcow2_cache_put(s->refcount_block_cache, refcount_block);
456 
457     /*
458      * If we come here, we need to grow the refcount table. Again, a new
459      * refcount table needs some space and we can't simply allocate to avoid
460      * endless recursion.
461      *
462      * Therefore let's grab new refcount blocks at the end of the image, which
463      * will describe themselves and the new refcount table. This way we can
464      * reference them only in the new table and do the switch to the new
465      * refcount table at once without producing an inconsistent state in
466      * between.
467      */
468     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
469 
470     /* Calculate the number of refcount blocks needed so far; this will be the
471      * basis for calculating the index of the first cluster used for the
472      * self-describing refcount structures which we are about to create.
473      *
474      * Because we reached this point, there cannot be any refcount entries for
475      * cluster_index or higher indices yet. However, because new_block has been
476      * allocated to describe that cluster (and it will assume this role later
477      * on), we cannot use that index; also, new_block may actually have a higher
478      * cluster index than cluster_index, so it needs to be taken into account
479      * here (and 1 needs to be added to its value because that cluster is used).
480      */
481     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
482                                             (new_block >> s->cluster_bits) + 1),
483                                         s->refcount_block_size);
484 
485     /* Create the new refcount table and blocks */
486     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
487         s->cluster_size;
488 
489     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
490                               refcount_table_index, new_block);
491     if (ret < 0) {
492         return ret;
493     }
494 
495     ret = load_refcount_block(bs, new_block, refcount_block);
496     if (ret < 0) {
497         return ret;
498     }
499 
500     /* If we were trying to do the initial refcount update for some cluster
501      * allocation, we might have used the same clusters to store newly
502      * allocated metadata. Make the caller search some new space. */
503     return -EAGAIN;
504 
505 fail:
506     if (*refcount_block != NULL) {
507         qcow2_cache_put(s->refcount_block_cache, refcount_block);
508     }
509     return ret;
510 }
511 
512 /*
513  * Starting at @start_offset, this function creates new self-covering refcount
514  * structures: A new refcount table and refcount blocks which cover all of
515  * themselves, and a number of @additional_clusters beyond their end.
516  * @start_offset must be at the end of the image file, that is, there must be
517  * only empty space beyond it.
518  * If @exact_size is false, the refcount table will have 50 % more entries than
519  * necessary so it will not need to grow again soon.
520  * If @new_refblock_offset is not zero, it contains the offset of a refcount
521  * block that should be entered into the new refcount table at index
522  * @new_refblock_index.
523  *
524  * Returns: The offset after the new refcount structures (i.e. where the
525  *          @additional_clusters may be placed) on success, -errno on error.
526  */
527 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
528                             uint64_t additional_clusters, bool exact_size,
529                             int new_refblock_index,
530                             uint64_t new_refblock_offset)
531 {
532     BDRVQcow2State *s = bs->opaque;
533     uint64_t total_refblock_count_u64, additional_refblock_count;
534     int total_refblock_count, table_size, area_reftable_index, table_clusters;
535     int i;
536     uint64_t table_offset, block_offset, end_offset;
537     int ret;
538     uint64_t *new_table;
539 
540     assert(!(start_offset % s->cluster_size));
541 
542     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
543                                  additional_clusters,
544                                  s->cluster_size, s->refcount_order,
545                                  !exact_size, &total_refblock_count_u64);
546     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
547         return -EFBIG;
548     }
549     total_refblock_count = total_refblock_count_u64;
550 
551     /* Index in the refcount table of the first refcount block to cover the area
552      * of refcount structures we are about to create; we know that
553      * @total_refblock_count can cover @start_offset, so this will definitely
554      * fit into an int. */
555     area_reftable_index = (start_offset / s->cluster_size) /
556                           s->refcount_block_size;
557 
558     if (exact_size) {
559         table_size = total_refblock_count;
560     } else {
561         table_size = total_refblock_count +
562                      DIV_ROUND_UP(total_refblock_count, 2);
563     }
564     /* The qcow2 file can only store the reftable size in number of clusters */
565     table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
566     table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
567 
568     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
569         return -EFBIG;
570     }
571 
572     new_table = g_try_new0(uint64_t, table_size);
573 
574     assert(table_size > 0);
575     if (new_table == NULL) {
576         ret = -ENOMEM;
577         goto fail;
578     }
579 
580     /* Fill the new refcount table */
581     if (table_size > s->max_refcount_table_index) {
582         /* We're actually growing the reftable */
583         memcpy(new_table, s->refcount_table,
584                (s->max_refcount_table_index + 1) * sizeof(uint64_t));
585     } else {
586         /* Improbable case: We're shrinking the reftable. However, the caller
587          * has assured us that there is only empty space beyond @start_offset,
588          * so we can simply drop all of the refblocks that won't fit into the
589          * new reftable. */
590         memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
591     }
592 
593     if (new_refblock_offset) {
594         assert(new_refblock_index < total_refblock_count);
595         new_table[new_refblock_index] = new_refblock_offset;
596     }
597 
598     /* Count how many new refblocks we have to create */
599     additional_refblock_count = 0;
600     for (i = area_reftable_index; i < total_refblock_count; i++) {
601         if (!new_table[i]) {
602             additional_refblock_count++;
603         }
604     }
605 
606     table_offset = start_offset + additional_refblock_count * s->cluster_size;
607     end_offset = table_offset + table_clusters * s->cluster_size;
608 
609     /* Fill the refcount blocks, and create new ones, if necessary */
610     block_offset = start_offset;
611     for (i = area_reftable_index; i < total_refblock_count; i++) {
612         void *refblock_data;
613         uint64_t first_offset_covered;
614 
615         /* Reuse an existing refblock if possible, create a new one otherwise */
616         if (new_table[i]) {
617             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
618                                   &refblock_data);
619             if (ret < 0) {
620                 goto fail;
621             }
622         } else {
623             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
624                                         block_offset, &refblock_data);
625             if (ret < 0) {
626                 goto fail;
627             }
628             memset(refblock_data, 0, s->cluster_size);
629             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
630                                          refblock_data);
631 
632             new_table[i] = block_offset;
633             block_offset += s->cluster_size;
634         }
635 
636         /* First host offset covered by this refblock */
637         first_offset_covered = (uint64_t)i * s->refcount_block_size *
638                                s->cluster_size;
639         if (first_offset_covered < end_offset) {
640             int j, end_index;
641 
642             /* Set the refcount of all of the new refcount structures to 1 */
643 
644             if (first_offset_covered < start_offset) {
645                 assert(i == area_reftable_index);
646                 j = (start_offset - first_offset_covered) / s->cluster_size;
647                 assert(j < s->refcount_block_size);
648             } else {
649                 j = 0;
650             }
651 
652             end_index = MIN((end_offset - first_offset_covered) /
653                             s->cluster_size,
654                             s->refcount_block_size);
655 
656             for (; j < end_index; j++) {
657                 /* The caller guaranteed us this space would be empty */
658                 assert(s->get_refcount(refblock_data, j) == 0);
659                 s->set_refcount(refblock_data, j, 1);
660             }
661 
662             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
663                                          refblock_data);
664         }
665 
666         qcow2_cache_put(s->refcount_block_cache, &refblock_data);
667     }
668 
669     assert(block_offset == table_offset);
670 
671     /* Write refcount blocks to disk */
672     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
673     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
674     if (ret < 0) {
675         goto fail;
676     }
677 
678     /* Write refcount table to disk */
679     for (i = 0; i < total_refblock_count; i++) {
680         cpu_to_be64s(&new_table[i]);
681     }
682 
683     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
684     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
685         table_size * sizeof(uint64_t));
686     if (ret < 0) {
687         goto fail;
688     }
689 
690     for (i = 0; i < total_refblock_count; i++) {
691         be64_to_cpus(&new_table[i]);
692     }
693 
694     /* Hook up the new refcount table in the qcow2 header */
695     struct QEMU_PACKED {
696         uint64_t d64;
697         uint32_t d32;
698     } data;
699     data.d64 = cpu_to_be64(table_offset);
700     data.d32 = cpu_to_be32(table_clusters);
701     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
702     ret = bdrv_pwrite_sync(bs->file,
703                            offsetof(QCowHeader, refcount_table_offset),
704                            &data, sizeof(data));
705     if (ret < 0) {
706         goto fail;
707     }
708 
709     /* And switch it in memory */
710     uint64_t old_table_offset = s->refcount_table_offset;
711     uint64_t old_table_size = s->refcount_table_size;
712 
713     g_free(s->refcount_table);
714     s->refcount_table = new_table;
715     s->refcount_table_size = table_size;
716     s->refcount_table_offset = table_offset;
717     update_max_refcount_table_index(s);
718 
719     /* Free old table. */
720     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
721                         QCOW2_DISCARD_OTHER);
722 
723     return end_offset;
724 
725 fail:
726     g_free(new_table);
727     return ret;
728 }
729 
730 void qcow2_process_discards(BlockDriverState *bs, int ret)
731 {
732     BDRVQcow2State *s = bs->opaque;
733     Qcow2DiscardRegion *d, *next;
734 
735     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
736         QTAILQ_REMOVE(&s->discards, d, next);
737 
738         /* Discard is optional, ignore the return value */
739         if (ret >= 0) {
740             int r2 = bdrv_pdiscard(bs->file, d->offset, d->bytes);
741             if (r2 < 0) {
742                 trace_qcow2_process_discards_failed_region(d->offset, d->bytes,
743                                                            r2);
744             }
745         }
746 
747         g_free(d);
748     }
749 }
750 
751 static void update_refcount_discard(BlockDriverState *bs,
752                                     uint64_t offset, uint64_t length)
753 {
754     BDRVQcow2State *s = bs->opaque;
755     Qcow2DiscardRegion *d, *p, *next;
756 
757     QTAILQ_FOREACH(d, &s->discards, next) {
758         uint64_t new_start = MIN(offset, d->offset);
759         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
760 
761         if (new_end - new_start <= length + d->bytes) {
762             /* There can't be any overlap, areas ending up here have no
763              * references any more and therefore shouldn't get freed another
764              * time. */
765             assert(d->bytes + length == new_end - new_start);
766             d->offset = new_start;
767             d->bytes = new_end - new_start;
768             goto found;
769         }
770     }
771 
772     d = g_malloc(sizeof(*d));
773     *d = (Qcow2DiscardRegion) {
774         .bs     = bs,
775         .offset = offset,
776         .bytes  = length,
777     };
778     QTAILQ_INSERT_TAIL(&s->discards, d, next);
779 
780 found:
781     /* Merge discard requests if they are adjacent now */
782     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
783         if (p == d
784             || p->offset > d->offset + d->bytes
785             || d->offset > p->offset + p->bytes)
786         {
787             continue;
788         }
789 
790         /* Still no overlap possible */
791         assert(p->offset == d->offset + d->bytes
792             || d->offset == p->offset + p->bytes);
793 
794         QTAILQ_REMOVE(&s->discards, p, next);
795         d->offset = MIN(d->offset, p->offset);
796         d->bytes += p->bytes;
797         g_free(p);
798     }
799 }
800 
801 /* XXX: cache several refcount block clusters ? */
802 /* @addend is the absolute value of the addend; if @decrease is set, @addend
803  * will be subtracted from the current refcount, otherwise it will be added */
804 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
805                                                    int64_t offset,
806                                                    int64_t length,
807                                                    uint64_t addend,
808                                                    bool decrease,
809                                                    enum qcow2_discard_type type)
810 {
811     BDRVQcow2State *s = bs->opaque;
812     int64_t start, last, cluster_offset;
813     void *refcount_block = NULL;
814     int64_t old_table_index = -1;
815     int ret;
816 
817 #ifdef DEBUG_ALLOC2
818     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
819             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
820             addend);
821 #endif
822     if (length < 0) {
823         return -EINVAL;
824     } else if (length == 0) {
825         return 0;
826     }
827 
828     if (decrease) {
829         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
830             s->l2_table_cache);
831     }
832 
833     start = start_of_cluster(s, offset);
834     last = start_of_cluster(s, offset + length - 1);
835     for(cluster_offset = start; cluster_offset <= last;
836         cluster_offset += s->cluster_size)
837     {
838         int block_index;
839         uint64_t refcount;
840         int64_t cluster_index = cluster_offset >> s->cluster_bits;
841         int64_t table_index = cluster_index >> s->refcount_block_bits;
842 
843         /* Load the refcount block and allocate it if needed */
844         if (table_index != old_table_index) {
845             if (refcount_block) {
846                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
847             }
848             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
849             /* If the caller needs to restart the search for free clusters,
850              * try the same ones first to see if they're still free. */
851             if (ret == -EAGAIN) {
852                 if (s->free_cluster_index > (start >> s->cluster_bits)) {
853                     s->free_cluster_index = (start >> s->cluster_bits);
854                 }
855             }
856             if (ret < 0) {
857                 goto fail;
858             }
859         }
860         old_table_index = table_index;
861 
862         qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
863 
864         /* we can update the count and save it */
865         block_index = cluster_index & (s->refcount_block_size - 1);
866 
867         refcount = s->get_refcount(refcount_block, block_index);
868         if (decrease ? (refcount - addend > refcount)
869                      : (refcount + addend < refcount ||
870                         refcount + addend > s->refcount_max))
871         {
872             ret = -EINVAL;
873             goto fail;
874         }
875         if (decrease) {
876             refcount -= addend;
877         } else {
878             refcount += addend;
879         }
880         if (refcount == 0 && cluster_index < s->free_cluster_index) {
881             s->free_cluster_index = cluster_index;
882         }
883         s->set_refcount(refcount_block, block_index, refcount);
884 
885         if (refcount == 0) {
886             void *table;
887 
888             table = qcow2_cache_is_table_offset(s->refcount_block_cache,
889                                                 offset);
890             if (table != NULL) {
891                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
892                 old_table_index = -1;
893                 qcow2_cache_discard(s->refcount_block_cache, table);
894             }
895 
896             table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
897             if (table != NULL) {
898                 qcow2_cache_discard(s->l2_table_cache, table);
899             }
900 
901             if (s->discard_passthrough[type]) {
902                 update_refcount_discard(bs, cluster_offset, s->cluster_size);
903             }
904         }
905     }
906 
907     ret = 0;
908 fail:
909     if (!s->cache_discards) {
910         qcow2_process_discards(bs, ret);
911     }
912 
913     /* Write last changed block to disk */
914     if (refcount_block) {
915         qcow2_cache_put(s->refcount_block_cache, &refcount_block);
916     }
917 
918     /*
919      * Try do undo any updates if an error is returned (This may succeed in
920      * some cases like ENOSPC for allocating a new refcount block)
921      */
922     if (ret < 0) {
923         int dummy;
924         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
925                                 !decrease, QCOW2_DISCARD_NEVER);
926         (void)dummy;
927     }
928 
929     return ret;
930 }
931 
932 /*
933  * Increases or decreases the refcount of a given cluster.
934  *
935  * @addend is the absolute value of the addend; if @decrease is set, @addend
936  * will be subtracted from the current refcount, otherwise it will be added.
937  *
938  * On success 0 is returned; on failure -errno is returned.
939  */
940 int qcow2_update_cluster_refcount(BlockDriverState *bs,
941                                   int64_t cluster_index,
942                                   uint64_t addend, bool decrease,
943                                   enum qcow2_discard_type type)
944 {
945     BDRVQcow2State *s = bs->opaque;
946     int ret;
947 
948     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
949                           decrease, type);
950     if (ret < 0) {
951         return ret;
952     }
953 
954     return 0;
955 }
956 
957 
958 
959 /*********************************************************/
960 /* cluster allocation functions */
961 
962 
963 
964 /* return < 0 if error */
965 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
966                                     uint64_t max)
967 {
968     BDRVQcow2State *s = bs->opaque;
969     uint64_t i, nb_clusters, refcount;
970     int ret;
971 
972     /* We can't allocate clusters if they may still be queued for discard. */
973     if (s->cache_discards) {
974         qcow2_process_discards(bs, 0);
975     }
976 
977     nb_clusters = size_to_clusters(s, size);
978 retry:
979     for(i = 0; i < nb_clusters; i++) {
980         uint64_t next_cluster_index = s->free_cluster_index++;
981         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
982 
983         if (ret < 0) {
984             return ret;
985         } else if (refcount != 0) {
986             goto retry;
987         }
988     }
989 
990     /* Make sure that all offsets in the "allocated" range are representable
991      * in the requested max */
992     if (s->free_cluster_index > 0 &&
993         s->free_cluster_index - 1 > (max >> s->cluster_bits))
994     {
995         return -EFBIG;
996     }
997 
998 #ifdef DEBUG_ALLOC2
999     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
1000             size,
1001             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
1002 #endif
1003     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
1004 }
1005 
1006 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
1007 {
1008     int64_t offset;
1009     int ret;
1010 
1011     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
1012     do {
1013         offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET);
1014         if (offset < 0) {
1015             return offset;
1016         }
1017 
1018         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1019     } while (ret == -EAGAIN);
1020 
1021     if (ret < 0) {
1022         return ret;
1023     }
1024 
1025     return offset;
1026 }
1027 
1028 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1029                                 int64_t nb_clusters)
1030 {
1031     BDRVQcow2State *s = bs->opaque;
1032     uint64_t cluster_index, refcount;
1033     uint64_t i;
1034     int ret;
1035 
1036     assert(nb_clusters >= 0);
1037     if (nb_clusters == 0) {
1038         return 0;
1039     }
1040 
1041     do {
1042         /* Check how many clusters there are free */
1043         cluster_index = offset >> s->cluster_bits;
1044         for(i = 0; i < nb_clusters; i++) {
1045             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1046             if (ret < 0) {
1047                 return ret;
1048             } else if (refcount != 0) {
1049                 break;
1050             }
1051         }
1052 
1053         /* And then allocate them */
1054         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1055                               QCOW2_DISCARD_NEVER);
1056     } while (ret == -EAGAIN);
1057 
1058     if (ret < 0) {
1059         return ret;
1060     }
1061 
1062     return i;
1063 }
1064 
1065 /* only used to allocate compressed sectors. We try to allocate
1066    contiguous sectors. size must be <= cluster_size */
1067 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1068 {
1069     BDRVQcow2State *s = bs->opaque;
1070     int64_t offset;
1071     size_t free_in_cluster;
1072     int ret;
1073 
1074     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1075     assert(size > 0 && size <= s->cluster_size);
1076     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1077 
1078     offset = s->free_byte_offset;
1079 
1080     if (offset) {
1081         uint64_t refcount;
1082         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1083         if (ret < 0) {
1084             return ret;
1085         }
1086 
1087         if (refcount == s->refcount_max) {
1088             offset = 0;
1089         }
1090     }
1091 
1092     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1093     do {
1094         if (!offset || free_in_cluster < size) {
1095             int64_t new_cluster;
1096 
1097             new_cluster = alloc_clusters_noref(bs, s->cluster_size,
1098                                                MIN(s->cluster_offset_mask,
1099                                                    QCOW_MAX_CLUSTER_OFFSET));
1100             if (new_cluster < 0) {
1101                 return new_cluster;
1102             }
1103 
1104             if (new_cluster == 0) {
1105                 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1106                                         "allocation of compressed cluster "
1107                                         "at offset 0");
1108                 return -EIO;
1109             }
1110 
1111             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1112                 offset = new_cluster;
1113                 free_in_cluster = s->cluster_size;
1114             } else {
1115                 free_in_cluster += s->cluster_size;
1116             }
1117         }
1118 
1119         assert(offset);
1120         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1121         if (ret < 0) {
1122             offset = 0;
1123         }
1124     } while (ret == -EAGAIN);
1125     if (ret < 0) {
1126         return ret;
1127     }
1128 
1129     /* The cluster refcount was incremented; refcount blocks must be flushed
1130      * before the caller's L2 table updates. */
1131     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1132 
1133     s->free_byte_offset = offset + size;
1134     if (!offset_into_cluster(s, s->free_byte_offset)) {
1135         s->free_byte_offset = 0;
1136     }
1137 
1138     return offset;
1139 }
1140 
1141 void qcow2_free_clusters(BlockDriverState *bs,
1142                           int64_t offset, int64_t size,
1143                           enum qcow2_discard_type type)
1144 {
1145     int ret;
1146 
1147     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1148     ret = update_refcount(bs, offset, size, 1, true, type);
1149     if (ret < 0) {
1150         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1151         /* TODO Remember the clusters to free them later and avoid leaking */
1152     }
1153 }
1154 
1155 /*
1156  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1157  * normal cluster, compressed cluster, etc.)
1158  */
1159 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1160                              int nb_clusters, enum qcow2_discard_type type)
1161 {
1162     BDRVQcow2State *s = bs->opaque;
1163     QCow2ClusterType ctype = qcow2_get_cluster_type(bs, l2_entry);
1164 
1165     if (has_data_file(bs)) {
1166         if (s->discard_passthrough[type] &&
1167             (ctype == QCOW2_CLUSTER_NORMAL ||
1168              ctype == QCOW2_CLUSTER_ZERO_ALLOC))
1169         {
1170             bdrv_pdiscard(s->data_file, l2_entry & L2E_OFFSET_MASK,
1171                           nb_clusters << s->cluster_bits);
1172         }
1173         return;
1174     }
1175 
1176     switch (ctype) {
1177     case QCOW2_CLUSTER_COMPRESSED:
1178         {
1179             int64_t offset = (l2_entry & s->cluster_offset_mask)
1180                 & QCOW2_COMPRESSED_SECTOR_MASK;
1181             int size = QCOW2_COMPRESSED_SECTOR_SIZE *
1182                 (((l2_entry >> s->csize_shift) & s->csize_mask) + 1);
1183             qcow2_free_clusters(bs, offset, size, type);
1184         }
1185         break;
1186     case QCOW2_CLUSTER_NORMAL:
1187     case QCOW2_CLUSTER_ZERO_ALLOC:
1188         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1189             qcow2_signal_corruption(bs, false, -1, -1,
1190                                     "Cannot free unaligned cluster %#llx",
1191                                     l2_entry & L2E_OFFSET_MASK);
1192         } else {
1193             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1194                                 nb_clusters << s->cluster_bits, type);
1195         }
1196         break;
1197     case QCOW2_CLUSTER_ZERO_PLAIN:
1198     case QCOW2_CLUSTER_UNALLOCATED:
1199         break;
1200     default:
1201         abort();
1202     }
1203 }
1204 
1205 int coroutine_fn qcow2_write_caches(BlockDriverState *bs)
1206 {
1207     BDRVQcow2State *s = bs->opaque;
1208     int ret;
1209 
1210     ret = qcow2_cache_write(bs, s->l2_table_cache);
1211     if (ret < 0) {
1212         return ret;
1213     }
1214 
1215     if (qcow2_need_accurate_refcounts(s)) {
1216         ret = qcow2_cache_write(bs, s->refcount_block_cache);
1217         if (ret < 0) {
1218             return ret;
1219         }
1220     }
1221 
1222     return 0;
1223 }
1224 
1225 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs)
1226 {
1227     int ret = qcow2_write_caches(bs);
1228     if (ret < 0) {
1229         return ret;
1230     }
1231 
1232     return bdrv_flush(bs->file->bs);
1233 }
1234 
1235 /*********************************************************/
1236 /* snapshots and image creation */
1237 
1238 
1239 
1240 /* update the refcounts of snapshots and the copied flag */
1241 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1242     int64_t l1_table_offset, int l1_size, int addend)
1243 {
1244     BDRVQcow2State *s = bs->opaque;
1245     uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1246     bool l1_allocated = false;
1247     int64_t old_entry, old_l2_offset;
1248     unsigned slice, slice_size2, n_slices;
1249     int i, j, l1_modified = 0, nb_csectors;
1250     int ret;
1251 
1252     assert(addend >= -1 && addend <= 1);
1253 
1254     l2_slice = NULL;
1255     l1_table = NULL;
1256     l1_size2 = l1_size * sizeof(uint64_t);
1257     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1258     n_slices = s->cluster_size / slice_size2;
1259 
1260     s->cache_discards = true;
1261 
1262     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1263      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1264      * when changing this! */
1265     if (l1_table_offset != s->l1_table_offset) {
1266         l1_table = g_try_malloc0(l1_size2);
1267         if (l1_size2 && l1_table == NULL) {
1268             ret = -ENOMEM;
1269             goto fail;
1270         }
1271         l1_allocated = true;
1272 
1273         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1274         if (ret < 0) {
1275             goto fail;
1276         }
1277 
1278         for (i = 0; i < l1_size; i++) {
1279             be64_to_cpus(&l1_table[i]);
1280         }
1281     } else {
1282         assert(l1_size == s->l1_size);
1283         l1_table = s->l1_table;
1284         l1_allocated = false;
1285     }
1286 
1287     for (i = 0; i < l1_size; i++) {
1288         l2_offset = l1_table[i];
1289         if (l2_offset) {
1290             old_l2_offset = l2_offset;
1291             l2_offset &= L1E_OFFSET_MASK;
1292 
1293             if (offset_into_cluster(s, l2_offset)) {
1294                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1295                                         PRIx64 " unaligned (L1 index: %#x)",
1296                                         l2_offset, i);
1297                 ret = -EIO;
1298                 goto fail;
1299             }
1300 
1301             for (slice = 0; slice < n_slices; slice++) {
1302                 ret = qcow2_cache_get(bs, s->l2_table_cache,
1303                                       l2_offset + slice * slice_size2,
1304                                       (void **) &l2_slice);
1305                 if (ret < 0) {
1306                     goto fail;
1307                 }
1308 
1309                 for (j = 0; j < s->l2_slice_size; j++) {
1310                     uint64_t cluster_index;
1311                     uint64_t offset;
1312 
1313                     entry = be64_to_cpu(l2_slice[j]);
1314                     old_entry = entry;
1315                     entry &= ~QCOW_OFLAG_COPIED;
1316                     offset = entry & L2E_OFFSET_MASK;
1317 
1318                     switch (qcow2_get_cluster_type(bs, entry)) {
1319                     case QCOW2_CLUSTER_COMPRESSED:
1320                         nb_csectors = ((entry >> s->csize_shift) &
1321                                        s->csize_mask) + 1;
1322                         if (addend != 0) {
1323                             uint64_t coffset = (entry & s->cluster_offset_mask)
1324                                 & QCOW2_COMPRESSED_SECTOR_MASK;
1325                             ret = update_refcount(
1326                                 bs, coffset,
1327                                 nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE,
1328                                 abs(addend), addend < 0,
1329                                 QCOW2_DISCARD_SNAPSHOT);
1330                             if (ret < 0) {
1331                                 goto fail;
1332                             }
1333                         }
1334                         /* compressed clusters are never modified */
1335                         refcount = 2;
1336                         break;
1337 
1338                     case QCOW2_CLUSTER_NORMAL:
1339                     case QCOW2_CLUSTER_ZERO_ALLOC:
1340                         if (offset_into_cluster(s, offset)) {
1341                             /* Here l2_index means table (not slice) index */
1342                             int l2_index = slice * s->l2_slice_size + j;
1343                             qcow2_signal_corruption(
1344                                 bs, true, -1, -1, "Cluster "
1345                                 "allocation offset %#" PRIx64
1346                                 " unaligned (L2 offset: %#"
1347                                 PRIx64 ", L2 index: %#x)",
1348                                 offset, l2_offset, l2_index);
1349                             ret = -EIO;
1350                             goto fail;
1351                         }
1352 
1353                         cluster_index = offset >> s->cluster_bits;
1354                         assert(cluster_index);
1355                         if (addend != 0) {
1356                             ret = qcow2_update_cluster_refcount(
1357                                 bs, cluster_index, abs(addend), addend < 0,
1358                                 QCOW2_DISCARD_SNAPSHOT);
1359                             if (ret < 0) {
1360                                 goto fail;
1361                             }
1362                         }
1363 
1364                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1365                         if (ret < 0) {
1366                             goto fail;
1367                         }
1368                         break;
1369 
1370                     case QCOW2_CLUSTER_ZERO_PLAIN:
1371                     case QCOW2_CLUSTER_UNALLOCATED:
1372                         refcount = 0;
1373                         break;
1374 
1375                     default:
1376                         abort();
1377                     }
1378 
1379                     if (refcount == 1) {
1380                         entry |= QCOW_OFLAG_COPIED;
1381                     }
1382                     if (entry != old_entry) {
1383                         if (addend > 0) {
1384                             qcow2_cache_set_dependency(bs, s->l2_table_cache,
1385                                                        s->refcount_block_cache);
1386                         }
1387                         l2_slice[j] = cpu_to_be64(entry);
1388                         qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1389                                                      l2_slice);
1390                     }
1391                 }
1392 
1393                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1394             }
1395 
1396             if (addend != 0) {
1397                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1398                                                         s->cluster_bits,
1399                                                     abs(addend), addend < 0,
1400                                                     QCOW2_DISCARD_SNAPSHOT);
1401                 if (ret < 0) {
1402                     goto fail;
1403                 }
1404             }
1405             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1406                                      &refcount);
1407             if (ret < 0) {
1408                 goto fail;
1409             } else if (refcount == 1) {
1410                 l2_offset |= QCOW_OFLAG_COPIED;
1411             }
1412             if (l2_offset != old_l2_offset) {
1413                 l1_table[i] = l2_offset;
1414                 l1_modified = 1;
1415             }
1416         }
1417     }
1418 
1419     ret = bdrv_flush(bs);
1420 fail:
1421     if (l2_slice) {
1422         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1423     }
1424 
1425     s->cache_discards = false;
1426     qcow2_process_discards(bs, ret);
1427 
1428     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1429     if (ret == 0 && addend >= 0 && l1_modified) {
1430         for (i = 0; i < l1_size; i++) {
1431             cpu_to_be64s(&l1_table[i]);
1432         }
1433 
1434         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1435                                l1_table, l1_size2);
1436 
1437         for (i = 0; i < l1_size; i++) {
1438             be64_to_cpus(&l1_table[i]);
1439         }
1440     }
1441     if (l1_allocated)
1442         g_free(l1_table);
1443     return ret;
1444 }
1445 
1446 
1447 
1448 
1449 /*********************************************************/
1450 /* refcount checking functions */
1451 
1452 
1453 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1454 {
1455     /* This assertion holds because there is no way we can address more than
1456      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1457      * offsets have to be representable in bytes); due to every cluster
1458      * corresponding to one refcount entry, we are well below that limit */
1459     assert(entries < (UINT64_C(1) << (64 - 9)));
1460 
1461     /* Thanks to the assertion this will not overflow, because
1462      * s->refcount_order < 7.
1463      * (note: x << s->refcount_order == x * s->refcount_bits) */
1464     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1465 }
1466 
1467 /**
1468  * Reallocates *array so that it can hold new_size entries. *size must contain
1469  * the current number of entries in *array. If the reallocation fails, *array
1470  * and *size will not be modified and -errno will be returned. If the
1471  * reallocation is successful, *array will be set to the new buffer, *size
1472  * will be set to new_size and 0 will be returned. The size of the reallocated
1473  * refcount array buffer will be aligned to a cluster boundary, and the newly
1474  * allocated area will be zeroed.
1475  */
1476 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1477                                   int64_t *size, int64_t new_size)
1478 {
1479     int64_t old_byte_size, new_byte_size;
1480     void *new_ptr;
1481 
1482     /* Round to clusters so the array can be directly written to disk */
1483     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1484                     * s->cluster_size;
1485     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1486                     * s->cluster_size;
1487 
1488     if (new_byte_size == old_byte_size) {
1489         *size = new_size;
1490         return 0;
1491     }
1492 
1493     assert(new_byte_size > 0);
1494 
1495     if (new_byte_size > SIZE_MAX) {
1496         return -ENOMEM;
1497     }
1498 
1499     new_ptr = g_try_realloc(*array, new_byte_size);
1500     if (!new_ptr) {
1501         return -ENOMEM;
1502     }
1503 
1504     if (new_byte_size > old_byte_size) {
1505         memset((char *)new_ptr + old_byte_size, 0,
1506                new_byte_size - old_byte_size);
1507     }
1508 
1509     *array = new_ptr;
1510     *size  = new_size;
1511 
1512     return 0;
1513 }
1514 
1515 /*
1516  * Increases the refcount for a range of clusters in a given refcount table.
1517  * This is used to construct a temporary refcount table out of L1 and L2 tables
1518  * which can be compared to the refcount table saved in the image.
1519  *
1520  * Modifies the number of errors in res.
1521  */
1522 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1523                              void **refcount_table,
1524                              int64_t *refcount_table_size,
1525                              int64_t offset, int64_t size)
1526 {
1527     BDRVQcow2State *s = bs->opaque;
1528     uint64_t start, last, cluster_offset, k, refcount;
1529     int64_t file_len;
1530     int ret;
1531 
1532     if (size <= 0) {
1533         return 0;
1534     }
1535 
1536     file_len = bdrv_getlength(bs->file->bs);
1537     if (file_len < 0) {
1538         return file_len;
1539     }
1540 
1541     /*
1542      * Last cluster of qcow2 image may be semi-allocated, so it may be OK to
1543      * reference some space after file end but it should be less than one
1544      * cluster.
1545      */
1546     if (offset + size - file_len >= s->cluster_size) {
1547         fprintf(stderr, "ERROR: counting reference for region exceeding the "
1548                 "end of the file by one cluster or more: offset 0x%" PRIx64
1549                 " size 0x%" PRIx64 "\n", offset, size);
1550         res->corruptions++;
1551         return 0;
1552     }
1553 
1554     start = start_of_cluster(s, offset);
1555     last = start_of_cluster(s, offset + size - 1);
1556     for(cluster_offset = start; cluster_offset <= last;
1557         cluster_offset += s->cluster_size) {
1558         k = cluster_offset >> s->cluster_bits;
1559         if (k >= *refcount_table_size) {
1560             ret = realloc_refcount_array(s, refcount_table,
1561                                          refcount_table_size, k + 1);
1562             if (ret < 0) {
1563                 res->check_errors++;
1564                 return ret;
1565             }
1566         }
1567 
1568         refcount = s->get_refcount(*refcount_table, k);
1569         if (refcount == s->refcount_max) {
1570             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1571                     "\n", cluster_offset);
1572             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1573                     "width or qemu-img convert to create a clean copy if the "
1574                     "image cannot be opened for writing\n");
1575             res->corruptions++;
1576             continue;
1577         }
1578         s->set_refcount(*refcount_table, k, refcount + 1);
1579     }
1580 
1581     return 0;
1582 }
1583 
1584 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1585 enum {
1586     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1587 };
1588 
1589 /*
1590  * Increases the refcount in the given refcount table for the all clusters
1591  * referenced in the L2 table. While doing so, performs some checks on L2
1592  * entries.
1593  *
1594  * Returns the number of errors found by the checks or -errno if an internal
1595  * error occurred.
1596  */
1597 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1598                               void **refcount_table,
1599                               int64_t *refcount_table_size, int64_t l2_offset,
1600                               int flags, BdrvCheckMode fix, bool active)
1601 {
1602     BDRVQcow2State *s = bs->opaque;
1603     uint64_t *l2_table, l2_entry;
1604     uint64_t next_contiguous_offset = 0;
1605     int i, l2_size, nb_csectors, ret;
1606 
1607     /* Read L2 table from disk */
1608     l2_size = s->l2_size * sizeof(uint64_t);
1609     l2_table = g_malloc(l2_size);
1610 
1611     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1612     if (ret < 0) {
1613         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1614         res->check_errors++;
1615         goto fail;
1616     }
1617 
1618     /* Do the actual checks */
1619     for(i = 0; i < s->l2_size; i++) {
1620         l2_entry = be64_to_cpu(l2_table[i]);
1621 
1622         switch (qcow2_get_cluster_type(bs, l2_entry)) {
1623         case QCOW2_CLUSTER_COMPRESSED:
1624             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1625             if (l2_entry & QCOW_OFLAG_COPIED) {
1626                 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
1627                     "copied flag must never be set for compressed "
1628                     "clusters\n", l2_entry & s->cluster_offset_mask);
1629                 l2_entry &= ~QCOW_OFLAG_COPIED;
1630                 res->corruptions++;
1631             }
1632 
1633             if (has_data_file(bs)) {
1634                 fprintf(stderr, "ERROR compressed cluster %d with data file, "
1635                         "entry=0x%" PRIx64 "\n", i, l2_entry);
1636                 res->corruptions++;
1637                 break;
1638             }
1639 
1640             /* Mark cluster as used */
1641             nb_csectors = ((l2_entry >> s->csize_shift) &
1642                            s->csize_mask) + 1;
1643             l2_entry &= s->cluster_offset_mask;
1644             ret = qcow2_inc_refcounts_imrt(
1645                 bs, res, refcount_table, refcount_table_size,
1646                 l2_entry & QCOW2_COMPRESSED_SECTOR_MASK,
1647                 nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE);
1648             if (ret < 0) {
1649                 goto fail;
1650             }
1651 
1652             if (flags & CHECK_FRAG_INFO) {
1653                 res->bfi.allocated_clusters++;
1654                 res->bfi.compressed_clusters++;
1655 
1656                 /* Compressed clusters are fragmented by nature.  Since they
1657                  * take up sub-sector space but we only have sector granularity
1658                  * I/O we need to re-read the same sectors even for adjacent
1659                  * compressed clusters.
1660                  */
1661                 res->bfi.fragmented_clusters++;
1662             }
1663             break;
1664 
1665         case QCOW2_CLUSTER_ZERO_ALLOC:
1666         case QCOW2_CLUSTER_NORMAL:
1667         {
1668             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1669 
1670             /* Correct offsets are cluster aligned */
1671             if (offset_into_cluster(s, offset)) {
1672                 res->corruptions++;
1673 
1674                 if (qcow2_get_cluster_type(bs, l2_entry) ==
1675                     QCOW2_CLUSTER_ZERO_ALLOC)
1676                 {
1677                     fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated zero "
1678                             "cluster is not properly aligned; L2 entry "
1679                             "corrupted.\n",
1680                             fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1681                             offset);
1682                     if (fix & BDRV_FIX_ERRORS) {
1683                         uint64_t l2e_offset =
1684                             l2_offset + (uint64_t)i * sizeof(uint64_t);
1685                         int ign = active ? QCOW2_OL_ACTIVE_L2 :
1686                                            QCOW2_OL_INACTIVE_L2;
1687 
1688                         l2_entry = QCOW_OFLAG_ZERO;
1689                         l2_table[i] = cpu_to_be64(l2_entry);
1690                         ret = qcow2_pre_write_overlap_check(bs, ign,
1691                                 l2e_offset, sizeof(uint64_t), false);
1692                         if (ret < 0) {
1693                             fprintf(stderr, "ERROR: Overlap check failed\n");
1694                             res->check_errors++;
1695                             /* Something is seriously wrong, so abort checking
1696                              * this L2 table */
1697                             goto fail;
1698                         }
1699 
1700                         ret = bdrv_pwrite_sync(bs->file, l2e_offset,
1701                                                &l2_table[i], sizeof(uint64_t));
1702                         if (ret < 0) {
1703                             fprintf(stderr, "ERROR: Failed to overwrite L2 "
1704                                     "table entry: %s\n", strerror(-ret));
1705                             res->check_errors++;
1706                             /* Do not abort, continue checking the rest of this
1707                              * L2 table's entries */
1708                         } else {
1709                             res->corruptions--;
1710                             res->corruptions_fixed++;
1711                             /* Skip marking the cluster as used
1712                              * (it is unused now) */
1713                             continue;
1714                         }
1715                     }
1716                 } else {
1717                     fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1718                         "not properly aligned; L2 entry corrupted.\n", offset);
1719                 }
1720             }
1721 
1722             if (flags & CHECK_FRAG_INFO) {
1723                 res->bfi.allocated_clusters++;
1724                 if (next_contiguous_offset &&
1725                     offset != next_contiguous_offset) {
1726                     res->bfi.fragmented_clusters++;
1727                 }
1728                 next_contiguous_offset = offset + s->cluster_size;
1729             }
1730 
1731             /* Mark cluster as used */
1732             if (!has_data_file(bs)) {
1733                 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table,
1734                                                refcount_table_size,
1735                                                offset, s->cluster_size);
1736                 if (ret < 0) {
1737                     goto fail;
1738                 }
1739             }
1740             break;
1741         }
1742 
1743         case QCOW2_CLUSTER_ZERO_PLAIN:
1744         case QCOW2_CLUSTER_UNALLOCATED:
1745             break;
1746 
1747         default:
1748             abort();
1749         }
1750     }
1751 
1752     g_free(l2_table);
1753     return 0;
1754 
1755 fail:
1756     g_free(l2_table);
1757     return ret;
1758 }
1759 
1760 /*
1761  * Increases the refcount for the L1 table, its L2 tables and all referenced
1762  * clusters in the given refcount table. While doing so, performs some checks
1763  * on L1 and L2 entries.
1764  *
1765  * Returns the number of errors found by the checks or -errno if an internal
1766  * error occurred.
1767  */
1768 static int check_refcounts_l1(BlockDriverState *bs,
1769                               BdrvCheckResult *res,
1770                               void **refcount_table,
1771                               int64_t *refcount_table_size,
1772                               int64_t l1_table_offset, int l1_size,
1773                               int flags, BdrvCheckMode fix, bool active)
1774 {
1775     BDRVQcow2State *s = bs->opaque;
1776     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1777     int i, ret;
1778 
1779     l1_size2 = l1_size * sizeof(uint64_t);
1780 
1781     /* Mark L1 table as used */
1782     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1783                                    l1_table_offset, l1_size2);
1784     if (ret < 0) {
1785         goto fail;
1786     }
1787 
1788     /* Read L1 table entries from disk */
1789     if (l1_size2 > 0) {
1790         l1_table = g_try_malloc(l1_size2);
1791         if (l1_table == NULL) {
1792             ret = -ENOMEM;
1793             res->check_errors++;
1794             goto fail;
1795         }
1796         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1797         if (ret < 0) {
1798             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1799             res->check_errors++;
1800             goto fail;
1801         }
1802         for(i = 0;i < l1_size; i++)
1803             be64_to_cpus(&l1_table[i]);
1804     }
1805 
1806     /* Do the actual checks */
1807     for(i = 0; i < l1_size; i++) {
1808         l2_offset = l1_table[i];
1809         if (l2_offset) {
1810             /* Mark L2 table as used */
1811             l2_offset &= L1E_OFFSET_MASK;
1812             ret = qcow2_inc_refcounts_imrt(bs, res,
1813                                            refcount_table, refcount_table_size,
1814                                            l2_offset, s->cluster_size);
1815             if (ret < 0) {
1816                 goto fail;
1817             }
1818 
1819             /* L2 tables are cluster aligned */
1820             if (offset_into_cluster(s, l2_offset)) {
1821                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1822                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1823                 res->corruptions++;
1824             }
1825 
1826             /* Process and check L2 entries */
1827             ret = check_refcounts_l2(bs, res, refcount_table,
1828                                      refcount_table_size, l2_offset, flags,
1829                                      fix, active);
1830             if (ret < 0) {
1831                 goto fail;
1832             }
1833         }
1834     }
1835     g_free(l1_table);
1836     return 0;
1837 
1838 fail:
1839     g_free(l1_table);
1840     return ret;
1841 }
1842 
1843 /*
1844  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1845  *
1846  * This function does not print an error message nor does it increment
1847  * check_errors if qcow2_get_refcount fails (this is because such an error will
1848  * have been already detected and sufficiently signaled by the calling function
1849  * (qcow2_check_refcounts) by the time this function is called).
1850  */
1851 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1852                               BdrvCheckMode fix)
1853 {
1854     BDRVQcow2State *s = bs->opaque;
1855     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1856     int ret;
1857     uint64_t refcount;
1858     int i, j;
1859     bool repair;
1860 
1861     if (fix & BDRV_FIX_ERRORS) {
1862         /* Always repair */
1863         repair = true;
1864     } else if (fix & BDRV_FIX_LEAKS) {
1865         /* Repair only if that seems safe: This function is always
1866          * called after the refcounts have been fixed, so the refcount
1867          * is accurate if that repair was successful */
1868         repair = !res->check_errors && !res->corruptions && !res->leaks;
1869     } else {
1870         repair = false;
1871     }
1872 
1873     for (i = 0; i < s->l1_size; i++) {
1874         uint64_t l1_entry = s->l1_table[i];
1875         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1876         int l2_dirty = 0;
1877 
1878         if (!l2_offset) {
1879             continue;
1880         }
1881 
1882         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1883                                  &refcount);
1884         if (ret < 0) {
1885             /* don't print message nor increment check_errors */
1886             continue;
1887         }
1888         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1889             res->corruptions++;
1890             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1891                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1892                     repair ? "Repairing" : "ERROR", i, l1_entry, refcount);
1893             if (repair) {
1894                 s->l1_table[i] = refcount == 1
1895                                ? l1_entry |  QCOW_OFLAG_COPIED
1896                                : l1_entry & ~QCOW_OFLAG_COPIED;
1897                 ret = qcow2_write_l1_entry(bs, i);
1898                 if (ret < 0) {
1899                     res->check_errors++;
1900                     goto fail;
1901                 }
1902                 res->corruptions--;
1903                 res->corruptions_fixed++;
1904             }
1905         }
1906 
1907         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1908                          s->l2_size * sizeof(uint64_t));
1909         if (ret < 0) {
1910             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1911                     strerror(-ret));
1912             res->check_errors++;
1913             goto fail;
1914         }
1915 
1916         for (j = 0; j < s->l2_size; j++) {
1917             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1918             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1919             QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1920 
1921             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1922                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1923                 if (has_data_file(bs)) {
1924                     refcount = 1;
1925                 } else {
1926                     ret = qcow2_get_refcount(bs,
1927                                              data_offset >> s->cluster_bits,
1928                                              &refcount);
1929                     if (ret < 0) {
1930                         /* don't print message nor increment check_errors */
1931                         continue;
1932                     }
1933                 }
1934                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1935                     res->corruptions++;
1936                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1937                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1938                             repair ? "Repairing" : "ERROR", l2_entry, refcount);
1939                     if (repair) {
1940                         l2_table[j] = cpu_to_be64(refcount == 1
1941                                     ? l2_entry |  QCOW_OFLAG_COPIED
1942                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1943                         l2_dirty++;
1944                     }
1945                 }
1946             }
1947         }
1948 
1949         if (l2_dirty > 0) {
1950             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1951                                                 l2_offset, s->cluster_size,
1952                                                 false);
1953             if (ret < 0) {
1954                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1955                         "overlap check failed: %s\n", strerror(-ret));
1956                 res->check_errors++;
1957                 goto fail;
1958             }
1959 
1960             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1961                               s->cluster_size);
1962             if (ret < 0) {
1963                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1964                         strerror(-ret));
1965                 res->check_errors++;
1966                 goto fail;
1967             }
1968             res->corruptions -= l2_dirty;
1969             res->corruptions_fixed += l2_dirty;
1970         }
1971     }
1972 
1973     ret = 0;
1974 
1975 fail:
1976     qemu_vfree(l2_table);
1977     return ret;
1978 }
1979 
1980 /*
1981  * Checks consistency of refblocks and accounts for each refblock in
1982  * *refcount_table.
1983  */
1984 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1985                            BdrvCheckMode fix, bool *rebuild,
1986                            void **refcount_table, int64_t *nb_clusters)
1987 {
1988     BDRVQcow2State *s = bs->opaque;
1989     int64_t i, size;
1990     int ret;
1991 
1992     for(i = 0; i < s->refcount_table_size; i++) {
1993         uint64_t offset, cluster;
1994         offset = s->refcount_table[i];
1995         cluster = offset >> s->cluster_bits;
1996 
1997         /* Refcount blocks are cluster aligned */
1998         if (offset_into_cluster(s, offset)) {
1999             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
2000                 "cluster aligned; refcount table entry corrupted\n", i);
2001             res->corruptions++;
2002             *rebuild = true;
2003             continue;
2004         }
2005 
2006         if (cluster >= *nb_clusters) {
2007             res->corruptions++;
2008             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
2009                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
2010 
2011             if (fix & BDRV_FIX_ERRORS) {
2012                 int64_t new_nb_clusters;
2013                 Error *local_err = NULL;
2014 
2015                 if (offset > INT64_MAX - s->cluster_size) {
2016                     ret = -EINVAL;
2017                     goto resize_fail;
2018                 }
2019 
2020                 ret = bdrv_truncate(bs->file, offset + s->cluster_size, false,
2021                                     PREALLOC_MODE_OFF, 0, &local_err);
2022                 if (ret < 0) {
2023                     error_report_err(local_err);
2024                     goto resize_fail;
2025                 }
2026                 size = bdrv_getlength(bs->file->bs);
2027                 if (size < 0) {
2028                     ret = size;
2029                     goto resize_fail;
2030                 }
2031 
2032                 new_nb_clusters = size_to_clusters(s, size);
2033                 assert(new_nb_clusters >= *nb_clusters);
2034 
2035                 ret = realloc_refcount_array(s, refcount_table,
2036                                              nb_clusters, new_nb_clusters);
2037                 if (ret < 0) {
2038                     res->check_errors++;
2039                     return ret;
2040                 }
2041 
2042                 if (cluster >= *nb_clusters) {
2043                     ret = -EINVAL;
2044                     goto resize_fail;
2045                 }
2046 
2047                 res->corruptions--;
2048                 res->corruptions_fixed++;
2049                 ret = qcow2_inc_refcounts_imrt(bs, res,
2050                                                refcount_table, nb_clusters,
2051                                                offset, s->cluster_size);
2052                 if (ret < 0) {
2053                     return ret;
2054                 }
2055                 /* No need to check whether the refcount is now greater than 1:
2056                  * This area was just allocated and zeroed, so it can only be
2057                  * exactly 1 after qcow2_inc_refcounts_imrt() */
2058                 continue;
2059 
2060 resize_fail:
2061                 *rebuild = true;
2062                 fprintf(stderr, "ERROR could not resize image: %s\n",
2063                         strerror(-ret));
2064             }
2065             continue;
2066         }
2067 
2068         if (offset != 0) {
2069             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2070                                            offset, s->cluster_size);
2071             if (ret < 0) {
2072                 return ret;
2073             }
2074             if (s->get_refcount(*refcount_table, cluster) != 1) {
2075                 fprintf(stderr, "ERROR refcount block %" PRId64
2076                         " refcount=%" PRIu64 "\n", i,
2077                         s->get_refcount(*refcount_table, cluster));
2078                 res->corruptions++;
2079                 *rebuild = true;
2080             }
2081         }
2082     }
2083 
2084     return 0;
2085 }
2086 
2087 /*
2088  * Calculates an in-memory refcount table.
2089  */
2090 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2091                                BdrvCheckMode fix, bool *rebuild,
2092                                void **refcount_table, int64_t *nb_clusters)
2093 {
2094     BDRVQcow2State *s = bs->opaque;
2095     int64_t i;
2096     QCowSnapshot *sn;
2097     int ret;
2098 
2099     if (!*refcount_table) {
2100         int64_t old_size = 0;
2101         ret = realloc_refcount_array(s, refcount_table,
2102                                      &old_size, *nb_clusters);
2103         if (ret < 0) {
2104             res->check_errors++;
2105             return ret;
2106         }
2107     }
2108 
2109     /* header */
2110     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2111                                    0, s->cluster_size);
2112     if (ret < 0) {
2113         return ret;
2114     }
2115 
2116     /* current L1 table */
2117     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2118                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2119                              fix, true);
2120     if (ret < 0) {
2121         return ret;
2122     }
2123 
2124     /* snapshots */
2125     if (has_data_file(bs) && s->nb_snapshots) {
2126         fprintf(stderr, "ERROR %d snapshots in image with data file\n",
2127                 s->nb_snapshots);
2128         res->corruptions++;
2129     }
2130 
2131     for (i = 0; i < s->nb_snapshots; i++) {
2132         sn = s->snapshots + i;
2133         if (offset_into_cluster(s, sn->l1_table_offset)) {
2134             fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": "
2135                     "L1 table is not cluster aligned; snapshot table entry "
2136                     "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset);
2137             res->corruptions++;
2138             continue;
2139         }
2140         if (sn->l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2141             fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": "
2142                     "L1 table is too large; snapshot table entry corrupted\n",
2143                     sn->id_str, sn->name, sn->l1_size);
2144             res->corruptions++;
2145             continue;
2146         }
2147         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2148                                  sn->l1_table_offset, sn->l1_size, 0, fix,
2149                                  false);
2150         if (ret < 0) {
2151             return ret;
2152         }
2153     }
2154     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2155                                    s->snapshots_offset, s->snapshots_size);
2156     if (ret < 0) {
2157         return ret;
2158     }
2159 
2160     /* refcount data */
2161     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2162                                    s->refcount_table_offset,
2163                                    s->refcount_table_size * sizeof(uint64_t));
2164     if (ret < 0) {
2165         return ret;
2166     }
2167 
2168     /* encryption */
2169     if (s->crypto_header.length) {
2170         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2171                                        s->crypto_header.offset,
2172                                        s->crypto_header.length);
2173         if (ret < 0) {
2174             return ret;
2175         }
2176     }
2177 
2178     /* bitmaps */
2179     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2180     if (ret < 0) {
2181         return ret;
2182     }
2183 
2184     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2185 }
2186 
2187 /*
2188  * Compares the actual reference count for each cluster in the image against the
2189  * refcount as reported by the refcount structures on-disk.
2190  */
2191 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2192                               BdrvCheckMode fix, bool *rebuild,
2193                               int64_t *highest_cluster,
2194                               void *refcount_table, int64_t nb_clusters)
2195 {
2196     BDRVQcow2State *s = bs->opaque;
2197     int64_t i;
2198     uint64_t refcount1, refcount2;
2199     int ret;
2200 
2201     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2202         ret = qcow2_get_refcount(bs, i, &refcount1);
2203         if (ret < 0) {
2204             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2205                     i, strerror(-ret));
2206             res->check_errors++;
2207             continue;
2208         }
2209 
2210         refcount2 = s->get_refcount(refcount_table, i);
2211 
2212         if (refcount1 > 0 || refcount2 > 0) {
2213             *highest_cluster = i;
2214         }
2215 
2216         if (refcount1 != refcount2) {
2217             /* Check if we're allowed to fix the mismatch */
2218             int *num_fixed = NULL;
2219             if (refcount1 == 0) {
2220                 *rebuild = true;
2221             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2222                 num_fixed = &res->leaks_fixed;
2223             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2224                 num_fixed = &res->corruptions_fixed;
2225             }
2226 
2227             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2228                     " reference=%" PRIu64 "\n",
2229                    num_fixed != NULL     ? "Repairing" :
2230                    refcount1 < refcount2 ? "ERROR" :
2231                                            "Leaked",
2232                    i, refcount1, refcount2);
2233 
2234             if (num_fixed) {
2235                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2236                                       refcount_diff(refcount1, refcount2),
2237                                       refcount1 > refcount2,
2238                                       QCOW2_DISCARD_ALWAYS);
2239                 if (ret >= 0) {
2240                     (*num_fixed)++;
2241                     continue;
2242                 }
2243             }
2244 
2245             /* And if we couldn't, print an error */
2246             if (refcount1 < refcount2) {
2247                 res->corruptions++;
2248             } else {
2249                 res->leaks++;
2250             }
2251         }
2252     }
2253 }
2254 
2255 /*
2256  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2257  * the on-disk refcount structures.
2258  *
2259  * On input, *first_free_cluster tells where to start looking, and need not
2260  * actually be a free cluster; the returned offset will not be before that
2261  * cluster.  On output, *first_free_cluster points to the first gap found, even
2262  * if that gap was too small to be used as the returned offset.
2263  *
2264  * Note that *first_free_cluster is a cluster index whereas the return value is
2265  * an offset.
2266  */
2267 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2268                                    int cluster_count,
2269                                    void **refcount_table,
2270                                    int64_t *imrt_nb_clusters,
2271                                    int64_t *first_free_cluster)
2272 {
2273     BDRVQcow2State *s = bs->opaque;
2274     int64_t cluster = *first_free_cluster, i;
2275     bool first_gap = true;
2276     int contiguous_free_clusters;
2277     int ret;
2278 
2279     /* Starting at *first_free_cluster, find a range of at least cluster_count
2280      * continuously free clusters */
2281     for (contiguous_free_clusters = 0;
2282          cluster < *imrt_nb_clusters &&
2283          contiguous_free_clusters < cluster_count;
2284          cluster++)
2285     {
2286         if (!s->get_refcount(*refcount_table, cluster)) {
2287             contiguous_free_clusters++;
2288             if (first_gap) {
2289                 /* If this is the first free cluster found, update
2290                  * *first_free_cluster accordingly */
2291                 *first_free_cluster = cluster;
2292                 first_gap = false;
2293             }
2294         } else if (contiguous_free_clusters) {
2295             contiguous_free_clusters = 0;
2296         }
2297     }
2298 
2299     /* If contiguous_free_clusters is greater than zero, it contains the number
2300      * of continuously free clusters until the current cluster; the first free
2301      * cluster in the current "gap" is therefore
2302      * cluster - contiguous_free_clusters */
2303 
2304     /* If no such range could be found, grow the in-memory refcount table
2305      * accordingly to append free clusters at the end of the image */
2306     if (contiguous_free_clusters < cluster_count) {
2307         /* contiguous_free_clusters clusters are already empty at the image end;
2308          * we need cluster_count clusters; therefore, we have to allocate
2309          * cluster_count - contiguous_free_clusters new clusters at the end of
2310          * the image (which is the current value of cluster; note that cluster
2311          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2312          * the image end) */
2313         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2314                                      cluster + cluster_count
2315                                      - contiguous_free_clusters);
2316         if (ret < 0) {
2317             return ret;
2318         }
2319     }
2320 
2321     /* Go back to the first free cluster */
2322     cluster -= contiguous_free_clusters;
2323     for (i = 0; i < cluster_count; i++) {
2324         s->set_refcount(*refcount_table, cluster + i, 1);
2325     }
2326 
2327     return cluster << s->cluster_bits;
2328 }
2329 
2330 /*
2331  * Creates a new refcount structure based solely on the in-memory information
2332  * given through *refcount_table. All necessary allocations will be reflected
2333  * in that array.
2334  *
2335  * On success, the old refcount structure is leaked (it will be covered by the
2336  * new refcount structure).
2337  */
2338 static int rebuild_refcount_structure(BlockDriverState *bs,
2339                                       BdrvCheckResult *res,
2340                                       void **refcount_table,
2341                                       int64_t *nb_clusters)
2342 {
2343     BDRVQcow2State *s = bs->opaque;
2344     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2345     int64_t refblock_offset, refblock_start, refblock_index;
2346     uint32_t reftable_size = 0;
2347     uint64_t *on_disk_reftable = NULL;
2348     void *on_disk_refblock;
2349     int ret = 0;
2350     struct {
2351         uint64_t reftable_offset;
2352         uint32_t reftable_clusters;
2353     } QEMU_PACKED reftable_offset_and_clusters;
2354 
2355     qcow2_cache_empty(bs, s->refcount_block_cache);
2356 
2357 write_refblocks:
2358     for (; cluster < *nb_clusters; cluster++) {
2359         if (!s->get_refcount(*refcount_table, cluster)) {
2360             continue;
2361         }
2362 
2363         refblock_index = cluster >> s->refcount_block_bits;
2364         refblock_start = refblock_index << s->refcount_block_bits;
2365 
2366         /* Don't allocate a cluster in a refblock already written to disk */
2367         if (first_free_cluster < refblock_start) {
2368             first_free_cluster = refblock_start;
2369         }
2370         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2371                                               nb_clusters, &first_free_cluster);
2372         if (refblock_offset < 0) {
2373             fprintf(stderr, "ERROR allocating refblock: %s\n",
2374                     strerror(-refblock_offset));
2375             res->check_errors++;
2376             ret = refblock_offset;
2377             goto fail;
2378         }
2379 
2380         if (reftable_size <= refblock_index) {
2381             uint32_t old_reftable_size = reftable_size;
2382             uint64_t *new_on_disk_reftable;
2383 
2384             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2385                                      s->cluster_size) / sizeof(uint64_t);
2386             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2387                                                  reftable_size *
2388                                                  sizeof(uint64_t));
2389             if (!new_on_disk_reftable) {
2390                 res->check_errors++;
2391                 ret = -ENOMEM;
2392                 goto fail;
2393             }
2394             on_disk_reftable = new_on_disk_reftable;
2395 
2396             memset(on_disk_reftable + old_reftable_size, 0,
2397                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2398 
2399             /* The offset we have for the reftable is now no longer valid;
2400              * this will leak that range, but we can easily fix that by running
2401              * a leak-fixing check after this rebuild operation */
2402             reftable_offset = -1;
2403         } else {
2404             assert(on_disk_reftable);
2405         }
2406         on_disk_reftable[refblock_index] = refblock_offset;
2407 
2408         /* If this is apparently the last refblock (for now), try to squeeze the
2409          * reftable in */
2410         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2411             reftable_offset < 0)
2412         {
2413             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2414                                                           sizeof(uint64_t));
2415             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2416                                                   refcount_table, nb_clusters,
2417                                                   &first_free_cluster);
2418             if (reftable_offset < 0) {
2419                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2420                         strerror(-reftable_offset));
2421                 res->check_errors++;
2422                 ret = reftable_offset;
2423                 goto fail;
2424             }
2425         }
2426 
2427         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2428                                             s->cluster_size, false);
2429         if (ret < 0) {
2430             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2431             goto fail;
2432         }
2433 
2434         /* The size of *refcount_table is always cluster-aligned, therefore the
2435          * write operation will not overflow */
2436         on_disk_refblock = (void *)((char *) *refcount_table +
2437                                     refblock_index * s->cluster_size);
2438 
2439         ret = bdrv_pwrite(bs->file, refblock_offset, on_disk_refblock,
2440                           s->cluster_size);
2441         if (ret < 0) {
2442             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2443             goto fail;
2444         }
2445 
2446         /* Go to the end of this refblock */
2447         cluster = refblock_start + s->refcount_block_size - 1;
2448     }
2449 
2450     if (reftable_offset < 0) {
2451         uint64_t post_refblock_start, reftable_clusters;
2452 
2453         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2454         reftable_clusters = size_to_clusters(s,
2455                                              reftable_size * sizeof(uint64_t));
2456         /* Not pretty but simple */
2457         if (first_free_cluster < post_refblock_start) {
2458             first_free_cluster = post_refblock_start;
2459         }
2460         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2461                                               refcount_table, nb_clusters,
2462                                               &first_free_cluster);
2463         if (reftable_offset < 0) {
2464             fprintf(stderr, "ERROR allocating reftable: %s\n",
2465                     strerror(-reftable_offset));
2466             res->check_errors++;
2467             ret = reftable_offset;
2468             goto fail;
2469         }
2470 
2471         goto write_refblocks;
2472     }
2473 
2474     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2475         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2476     }
2477 
2478     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2479                                         reftable_size * sizeof(uint64_t),
2480                                         false);
2481     if (ret < 0) {
2482         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2483         goto fail;
2484     }
2485 
2486     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2487     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2488                       reftable_size * sizeof(uint64_t));
2489     if (ret < 0) {
2490         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2491         goto fail;
2492     }
2493 
2494     /* Enter new reftable into the image header */
2495     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2496     reftable_offset_and_clusters.reftable_clusters =
2497         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2498     ret = bdrv_pwrite_sync(bs->file,
2499                            offsetof(QCowHeader, refcount_table_offset),
2500                            &reftable_offset_and_clusters,
2501                            sizeof(reftable_offset_and_clusters));
2502     if (ret < 0) {
2503         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2504         goto fail;
2505     }
2506 
2507     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2508         be64_to_cpus(&on_disk_reftable[refblock_index]);
2509     }
2510     s->refcount_table = on_disk_reftable;
2511     s->refcount_table_offset = reftable_offset;
2512     s->refcount_table_size = reftable_size;
2513     update_max_refcount_table_index(s);
2514 
2515     return 0;
2516 
2517 fail:
2518     g_free(on_disk_reftable);
2519     return ret;
2520 }
2521 
2522 /*
2523  * Checks an image for refcount consistency.
2524  *
2525  * Returns 0 if no errors are found, the number of errors in case the image is
2526  * detected as corrupted, and -errno when an internal error occurred.
2527  */
2528 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2529                           BdrvCheckMode fix)
2530 {
2531     BDRVQcow2State *s = bs->opaque;
2532     BdrvCheckResult pre_compare_res;
2533     int64_t size, highest_cluster, nb_clusters;
2534     void *refcount_table = NULL;
2535     bool rebuild = false;
2536     int ret;
2537 
2538     size = bdrv_getlength(bs->file->bs);
2539     if (size < 0) {
2540         res->check_errors++;
2541         return size;
2542     }
2543 
2544     nb_clusters = size_to_clusters(s, size);
2545     if (nb_clusters > INT_MAX) {
2546         res->check_errors++;
2547         return -EFBIG;
2548     }
2549 
2550     res->bfi.total_clusters =
2551         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2552 
2553     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2554                               &nb_clusters);
2555     if (ret < 0) {
2556         goto fail;
2557     }
2558 
2559     /* In case we don't need to rebuild the refcount structure (but want to fix
2560      * something), this function is immediately called again, in which case the
2561      * result should be ignored */
2562     pre_compare_res = *res;
2563     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2564                       nb_clusters);
2565 
2566     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2567         BdrvCheckResult old_res = *res;
2568         int fresh_leaks = 0;
2569 
2570         fprintf(stderr, "Rebuilding refcount structure\n");
2571         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2572                                          &nb_clusters);
2573         if (ret < 0) {
2574             goto fail;
2575         }
2576 
2577         res->corruptions = 0;
2578         res->leaks = 0;
2579 
2580         /* Because the old reftable has been exchanged for a new one the
2581          * references have to be recalculated */
2582         rebuild = false;
2583         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2584         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2585                                   &nb_clusters);
2586         if (ret < 0) {
2587             goto fail;
2588         }
2589 
2590         if (fix & BDRV_FIX_LEAKS) {
2591             /* The old refcount structures are now leaked, fix it; the result
2592              * can be ignored, aside from leaks which were introduced by
2593              * rebuild_refcount_structure() that could not be fixed */
2594             BdrvCheckResult saved_res = *res;
2595             *res = (BdrvCheckResult){ 0 };
2596 
2597             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2598                               &highest_cluster, refcount_table, nb_clusters);
2599             if (rebuild) {
2600                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2601                         "broken\n");
2602             }
2603 
2604             /* Any leaks accounted for here were introduced by
2605              * rebuild_refcount_structure() because that function has created a
2606              * new refcount structure from scratch */
2607             fresh_leaks = res->leaks;
2608             *res = saved_res;
2609         }
2610 
2611         if (res->corruptions < old_res.corruptions) {
2612             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2613         }
2614         if (res->leaks < old_res.leaks) {
2615             res->leaks_fixed += old_res.leaks - res->leaks;
2616         }
2617         res->leaks += fresh_leaks;
2618     } else if (fix) {
2619         if (rebuild) {
2620             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2621             res->check_errors++;
2622             ret = -EIO;
2623             goto fail;
2624         }
2625 
2626         if (res->leaks || res->corruptions) {
2627             *res = pre_compare_res;
2628             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2629                               refcount_table, nb_clusters);
2630         }
2631     }
2632 
2633     /* check OFLAG_COPIED */
2634     ret = check_oflag_copied(bs, res, fix);
2635     if (ret < 0) {
2636         goto fail;
2637     }
2638 
2639     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2640     ret = 0;
2641 
2642 fail:
2643     g_free(refcount_table);
2644 
2645     return ret;
2646 }
2647 
2648 #define overlaps_with(ofs, sz) \
2649     ranges_overlap(offset, size, ofs, sz)
2650 
2651 /*
2652  * Checks if the given offset into the image file is actually free to use by
2653  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2654  * i.e. a sanity check without relying on the refcount tables.
2655  *
2656  * The ign parameter specifies what checks not to perform (being a bitmask of
2657  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2658  *
2659  * Returns:
2660  * - 0 if writing to this offset will not affect the mentioned metadata
2661  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2662  * - a negative value (-errno) indicating an error while performing a check,
2663  *   e.g. when bdrv_pread failed on QCOW2_OL_INACTIVE_L2
2664  */
2665 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2666                                  int64_t size)
2667 {
2668     BDRVQcow2State *s = bs->opaque;
2669     int chk = s->overlap_check & ~ign;
2670     int i, j;
2671 
2672     if (!size) {
2673         return 0;
2674     }
2675 
2676     if (chk & QCOW2_OL_MAIN_HEADER) {
2677         if (offset < s->cluster_size) {
2678             return QCOW2_OL_MAIN_HEADER;
2679         }
2680     }
2681 
2682     /* align range to test to cluster boundaries */
2683     size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2684     offset = start_of_cluster(s, offset);
2685 
2686     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2687         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2688             return QCOW2_OL_ACTIVE_L1;
2689         }
2690     }
2691 
2692     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2693         if (overlaps_with(s->refcount_table_offset,
2694             s->refcount_table_size * sizeof(uint64_t))) {
2695             return QCOW2_OL_REFCOUNT_TABLE;
2696         }
2697     }
2698 
2699     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2700         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2701             return QCOW2_OL_SNAPSHOT_TABLE;
2702         }
2703     }
2704 
2705     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2706         for (i = 0; i < s->nb_snapshots; i++) {
2707             if (s->snapshots[i].l1_size &&
2708                 overlaps_with(s->snapshots[i].l1_table_offset,
2709                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2710                 return QCOW2_OL_INACTIVE_L1;
2711             }
2712         }
2713     }
2714 
2715     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2716         for (i = 0; i < s->l1_size; i++) {
2717             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2718                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2719                 s->cluster_size)) {
2720                 return QCOW2_OL_ACTIVE_L2;
2721             }
2722         }
2723     }
2724 
2725     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2726         unsigned last_entry = s->max_refcount_table_index;
2727         assert(last_entry < s->refcount_table_size);
2728         assert(last_entry + 1 == s->refcount_table_size ||
2729                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2730         for (i = 0; i <= last_entry; i++) {
2731             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2732                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2733                 s->cluster_size)) {
2734                 return QCOW2_OL_REFCOUNT_BLOCK;
2735             }
2736         }
2737     }
2738 
2739     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2740         for (i = 0; i < s->nb_snapshots; i++) {
2741             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2742             uint32_t l1_sz  = s->snapshots[i].l1_size;
2743             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2744             uint64_t *l1;
2745             int ret;
2746 
2747             ret = qcow2_validate_table(bs, l1_ofs, l1_sz, sizeof(uint64_t),
2748                                        QCOW_MAX_L1_SIZE, "", NULL);
2749             if (ret < 0) {
2750                 return ret;
2751             }
2752 
2753             l1 = g_try_malloc(l1_sz2);
2754 
2755             if (l1_sz2 && l1 == NULL) {
2756                 return -ENOMEM;
2757             }
2758 
2759             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2760             if (ret < 0) {
2761                 g_free(l1);
2762                 return ret;
2763             }
2764 
2765             for (j = 0; j < l1_sz; j++) {
2766                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2767                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2768                     g_free(l1);
2769                     return QCOW2_OL_INACTIVE_L2;
2770                 }
2771             }
2772 
2773             g_free(l1);
2774         }
2775     }
2776 
2777     if ((chk & QCOW2_OL_BITMAP_DIRECTORY) &&
2778         (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS))
2779     {
2780         if (overlaps_with(s->bitmap_directory_offset,
2781                           s->bitmap_directory_size))
2782         {
2783             return QCOW2_OL_BITMAP_DIRECTORY;
2784         }
2785     }
2786 
2787     return 0;
2788 }
2789 
2790 static const char *metadata_ol_names[] = {
2791     [QCOW2_OL_MAIN_HEADER_BITNR]        = "qcow2_header",
2792     [QCOW2_OL_ACTIVE_L1_BITNR]          = "active L1 table",
2793     [QCOW2_OL_ACTIVE_L2_BITNR]          = "active L2 table",
2794     [QCOW2_OL_REFCOUNT_TABLE_BITNR]     = "refcount table",
2795     [QCOW2_OL_REFCOUNT_BLOCK_BITNR]     = "refcount block",
2796     [QCOW2_OL_SNAPSHOT_TABLE_BITNR]     = "snapshot table",
2797     [QCOW2_OL_INACTIVE_L1_BITNR]        = "inactive L1 table",
2798     [QCOW2_OL_INACTIVE_L2_BITNR]        = "inactive L2 table",
2799     [QCOW2_OL_BITMAP_DIRECTORY_BITNR]   = "bitmap directory",
2800 };
2801 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names));
2802 
2803 /*
2804  * First performs a check for metadata overlaps (through
2805  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2806  * while performing a check), that value is returned. If an impending overlap
2807  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2808  * and -EIO returned.
2809  *
2810  * Returns 0 if there were neither overlaps nor errors while checking for
2811  * overlaps; or a negative value (-errno) on error.
2812  */
2813 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2814                                   int64_t size, bool data_file)
2815 {
2816     int ret;
2817 
2818     if (data_file && has_data_file(bs)) {
2819         return 0;
2820     }
2821 
2822     ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2823     if (ret < 0) {
2824         return ret;
2825     } else if (ret > 0) {
2826         int metadata_ol_bitnr = ctz32(ret);
2827         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2828 
2829         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2830                                 "write on metadata (overlaps with %s)",
2831                                 metadata_ol_names[metadata_ol_bitnr]);
2832         return -EIO;
2833     }
2834 
2835     return 0;
2836 }
2837 
2838 /* A pointer to a function of this type is given to walk_over_reftable(). That
2839  * function will create refblocks and pass them to a RefblockFinishOp once they
2840  * are completed (@refblock). @refblock_empty is set if the refblock is
2841  * completely empty.
2842  *
2843  * Along with the refblock, a corresponding reftable entry is passed, in the
2844  * reftable @reftable (which may be reallocated) at @reftable_index.
2845  *
2846  * @allocated should be set to true if a new cluster has been allocated.
2847  */
2848 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2849                                uint64_t reftable_index, uint64_t *reftable_size,
2850                                void *refblock, bool refblock_empty,
2851                                bool *allocated, Error **errp);
2852 
2853 /**
2854  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2855  * it is not empty) and inserts its offset into the new reftable. The size of
2856  * this new reftable is increased as required.
2857  */
2858 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2859                           uint64_t reftable_index, uint64_t *reftable_size,
2860                           void *refblock, bool refblock_empty, bool *allocated,
2861                           Error **errp)
2862 {
2863     BDRVQcow2State *s = bs->opaque;
2864     int64_t offset;
2865 
2866     if (!refblock_empty && reftable_index >= *reftable_size) {
2867         uint64_t *new_reftable;
2868         uint64_t new_reftable_size;
2869 
2870         new_reftable_size = ROUND_UP(reftable_index + 1,
2871                                      s->cluster_size / sizeof(uint64_t));
2872         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2873             error_setg(errp,
2874                        "This operation would make the refcount table grow "
2875                        "beyond the maximum size supported by QEMU, aborting");
2876             return -ENOTSUP;
2877         }
2878 
2879         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2880                                                 sizeof(uint64_t));
2881         if (!new_reftable) {
2882             error_setg(errp, "Failed to increase reftable buffer size");
2883             return -ENOMEM;
2884         }
2885 
2886         memset(new_reftable + *reftable_size, 0,
2887                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2888 
2889         *reftable      = new_reftable;
2890         *reftable_size = new_reftable_size;
2891     }
2892 
2893     if (!refblock_empty && !(*reftable)[reftable_index]) {
2894         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2895         if (offset < 0) {
2896             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2897             return offset;
2898         }
2899         (*reftable)[reftable_index] = offset;
2900         *allocated = true;
2901     }
2902 
2903     return 0;
2904 }
2905 
2906 /**
2907  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2908  * offset specified by the new reftable's entry. It does not modify the new
2909  * reftable or change any refcounts.
2910  */
2911 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2912                           uint64_t reftable_index, uint64_t *reftable_size,
2913                           void *refblock, bool refblock_empty, bool *allocated,
2914                           Error **errp)
2915 {
2916     BDRVQcow2State *s = bs->opaque;
2917     int64_t offset;
2918     int ret;
2919 
2920     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2921         offset = (*reftable)[reftable_index];
2922 
2923         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size,
2924                                             false);
2925         if (ret < 0) {
2926             error_setg_errno(errp, -ret, "Overlap check failed");
2927             return ret;
2928         }
2929 
2930         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2931         if (ret < 0) {
2932             error_setg_errno(errp, -ret, "Failed to write refblock");
2933             return ret;
2934         }
2935     } else {
2936         assert(refblock_empty);
2937     }
2938 
2939     return 0;
2940 }
2941 
2942 /**
2943  * This function walks over the existing reftable and every referenced refblock;
2944  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2945  * create an equal new entry in the passed @new_refblock. Once that
2946  * @new_refblock is completely filled, @operation will be called.
2947  *
2948  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2949  * @index is the index of the walk_over_reftable() calls and @total is the total
2950  * number of walk_over_reftable() calls per amend operation. Both are used for
2951  * calculating the parameters for the status callback.
2952  *
2953  * @allocated is set to true if a new cluster has been allocated.
2954  */
2955 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2956                               uint64_t *new_reftable_index,
2957                               uint64_t *new_reftable_size,
2958                               void *new_refblock, int new_refblock_size,
2959                               int new_refcount_bits,
2960                               RefblockFinishOp *operation, bool *allocated,
2961                               Qcow2SetRefcountFunc *new_set_refcount,
2962                               BlockDriverAmendStatusCB *status_cb,
2963                               void *cb_opaque, int index, int total,
2964                               Error **errp)
2965 {
2966     BDRVQcow2State *s = bs->opaque;
2967     uint64_t reftable_index;
2968     bool new_refblock_empty = true;
2969     int refblock_index;
2970     int new_refblock_index = 0;
2971     int ret;
2972 
2973     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2974          reftable_index++)
2975     {
2976         uint64_t refblock_offset = s->refcount_table[reftable_index]
2977                                  & REFT_OFFSET_MASK;
2978 
2979         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2980                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2981 
2982         if (refblock_offset) {
2983             void *refblock;
2984 
2985             if (offset_into_cluster(s, refblock_offset)) {
2986                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2987                                         PRIx64 " unaligned (reftable index: %#"
2988                                         PRIx64 ")", refblock_offset,
2989                                         reftable_index);
2990                 error_setg(errp,
2991                            "Image is corrupt (unaligned refblock offset)");
2992                 return -EIO;
2993             }
2994 
2995             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2996                                   &refblock);
2997             if (ret < 0) {
2998                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2999                 return ret;
3000             }
3001 
3002             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3003                  refblock_index++)
3004             {
3005                 uint64_t refcount;
3006 
3007                 if (new_refblock_index >= new_refblock_size) {
3008                     /* new_refblock is now complete */
3009                     ret = operation(bs, new_reftable, *new_reftable_index,
3010                                     new_reftable_size, new_refblock,
3011                                     new_refblock_empty, allocated, errp);
3012                     if (ret < 0) {
3013                         qcow2_cache_put(s->refcount_block_cache, &refblock);
3014                         return ret;
3015                     }
3016 
3017                     (*new_reftable_index)++;
3018                     new_refblock_index = 0;
3019                     new_refblock_empty = true;
3020                 }
3021 
3022                 refcount = s->get_refcount(refblock, refblock_index);
3023                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
3024                     uint64_t offset;
3025 
3026                     qcow2_cache_put(s->refcount_block_cache, &refblock);
3027 
3028                     offset = ((reftable_index << s->refcount_block_bits)
3029                               + refblock_index) << s->cluster_bits;
3030 
3031                     error_setg(errp, "Cannot decrease refcount entry width to "
3032                                "%i bits: Cluster at offset %#" PRIx64 " has a "
3033                                "refcount of %" PRIu64, new_refcount_bits,
3034                                offset, refcount);
3035                     return -EINVAL;
3036                 }
3037 
3038                 if (new_set_refcount) {
3039                     new_set_refcount(new_refblock, new_refblock_index++,
3040                                      refcount);
3041                 } else {
3042                     new_refblock_index++;
3043                 }
3044                 new_refblock_empty = new_refblock_empty && refcount == 0;
3045             }
3046 
3047             qcow2_cache_put(s->refcount_block_cache, &refblock);
3048         } else {
3049             /* No refblock means every refcount is 0 */
3050             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3051                  refblock_index++)
3052             {
3053                 if (new_refblock_index >= new_refblock_size) {
3054                     /* new_refblock is now complete */
3055                     ret = operation(bs, new_reftable, *new_reftable_index,
3056                                     new_reftable_size, new_refblock,
3057                                     new_refblock_empty, allocated, errp);
3058                     if (ret < 0) {
3059                         return ret;
3060                     }
3061 
3062                     (*new_reftable_index)++;
3063                     new_refblock_index = 0;
3064                     new_refblock_empty = true;
3065                 }
3066 
3067                 if (new_set_refcount) {
3068                     new_set_refcount(new_refblock, new_refblock_index++, 0);
3069                 } else {
3070                     new_refblock_index++;
3071                 }
3072             }
3073         }
3074     }
3075 
3076     if (new_refblock_index > 0) {
3077         /* Complete the potentially existing partially filled final refblock */
3078         if (new_set_refcount) {
3079             for (; new_refblock_index < new_refblock_size;
3080                  new_refblock_index++)
3081             {
3082                 new_set_refcount(new_refblock, new_refblock_index, 0);
3083             }
3084         }
3085 
3086         ret = operation(bs, new_reftable, *new_reftable_index,
3087                         new_reftable_size, new_refblock, new_refblock_empty,
3088                         allocated, errp);
3089         if (ret < 0) {
3090             return ret;
3091         }
3092 
3093         (*new_reftable_index)++;
3094     }
3095 
3096     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
3097               (uint64_t)total * s->refcount_table_size, cb_opaque);
3098 
3099     return 0;
3100 }
3101 
3102 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
3103                                 BlockDriverAmendStatusCB *status_cb,
3104                                 void *cb_opaque, Error **errp)
3105 {
3106     BDRVQcow2State *s = bs->opaque;
3107     Qcow2GetRefcountFunc *new_get_refcount;
3108     Qcow2SetRefcountFunc *new_set_refcount;
3109     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
3110     uint64_t *new_reftable = NULL, new_reftable_size = 0;
3111     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
3112     uint64_t new_reftable_index = 0;
3113     uint64_t i;
3114     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
3115     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
3116     int old_refcount_order;
3117     int walk_index = 0;
3118     int ret;
3119     bool new_allocation;
3120 
3121     assert(s->qcow_version >= 3);
3122     assert(refcount_order >= 0 && refcount_order <= 6);
3123 
3124     /* see qcow2_open() */
3125     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3126 
3127     new_get_refcount = get_refcount_funcs[refcount_order];
3128     new_set_refcount = set_refcount_funcs[refcount_order];
3129 
3130 
3131     do {
3132         int total_walks;
3133 
3134         new_allocation = false;
3135 
3136         /* At least we have to do this walk and the one which writes the
3137          * refblocks; also, at least we have to do this loop here at least
3138          * twice (normally), first to do the allocations, and second to
3139          * determine that everything is correctly allocated, this then makes
3140          * three walks in total */
3141         total_walks = MAX(walk_index + 2, 3);
3142 
3143         /* First, allocate the structures so they are present in the refcount
3144          * structures */
3145         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3146                                  &new_reftable_size, NULL, new_refblock_size,
3147                                  new_refcount_bits, &alloc_refblock,
3148                                  &new_allocation, NULL, status_cb, cb_opaque,
3149                                  walk_index++, total_walks, errp);
3150         if (ret < 0) {
3151             goto done;
3152         }
3153 
3154         new_reftable_index = 0;
3155 
3156         if (new_allocation) {
3157             if (new_reftable_offset) {
3158                 qcow2_free_clusters(bs, new_reftable_offset,
3159                                     allocated_reftable_size * sizeof(uint64_t),
3160                                     QCOW2_DISCARD_NEVER);
3161             }
3162 
3163             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3164                                                            sizeof(uint64_t));
3165             if (new_reftable_offset < 0) {
3166                 error_setg_errno(errp, -new_reftable_offset,
3167                                  "Failed to allocate the new reftable");
3168                 ret = new_reftable_offset;
3169                 goto done;
3170             }
3171             allocated_reftable_size = new_reftable_size;
3172         }
3173     } while (new_allocation);
3174 
3175     /* Second, write the new refblocks */
3176     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3177                              &new_reftable_size, new_refblock,
3178                              new_refblock_size, new_refcount_bits,
3179                              &flush_refblock, &new_allocation, new_set_refcount,
3180                              status_cb, cb_opaque, walk_index, walk_index + 1,
3181                              errp);
3182     if (ret < 0) {
3183         goto done;
3184     }
3185     assert(!new_allocation);
3186 
3187 
3188     /* Write the new reftable */
3189     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3190                                         new_reftable_size * sizeof(uint64_t),
3191                                         false);
3192     if (ret < 0) {
3193         error_setg_errno(errp, -ret, "Overlap check failed");
3194         goto done;
3195     }
3196 
3197     for (i = 0; i < new_reftable_size; i++) {
3198         cpu_to_be64s(&new_reftable[i]);
3199     }
3200 
3201     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
3202                       new_reftable_size * sizeof(uint64_t));
3203 
3204     for (i = 0; i < new_reftable_size; i++) {
3205         be64_to_cpus(&new_reftable[i]);
3206     }
3207 
3208     if (ret < 0) {
3209         error_setg_errno(errp, -ret, "Failed to write the new reftable");
3210         goto done;
3211     }
3212 
3213 
3214     /* Empty the refcount cache */
3215     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3216     if (ret < 0) {
3217         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3218         goto done;
3219     }
3220 
3221     /* Update the image header to point to the new reftable; this only updates
3222      * the fields which are relevant to qcow2_update_header(); other fields
3223      * such as s->refcount_table or s->refcount_bits stay stale for now
3224      * (because we have to restore everything if qcow2_update_header() fails) */
3225     old_refcount_order  = s->refcount_order;
3226     old_reftable_size   = s->refcount_table_size;
3227     old_reftable_offset = s->refcount_table_offset;
3228 
3229     s->refcount_order        = refcount_order;
3230     s->refcount_table_size   = new_reftable_size;
3231     s->refcount_table_offset = new_reftable_offset;
3232 
3233     ret = qcow2_update_header(bs);
3234     if (ret < 0) {
3235         s->refcount_order        = old_refcount_order;
3236         s->refcount_table_size   = old_reftable_size;
3237         s->refcount_table_offset = old_reftable_offset;
3238         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3239         goto done;
3240     }
3241 
3242     /* Now update the rest of the in-memory information */
3243     old_reftable = s->refcount_table;
3244     s->refcount_table = new_reftable;
3245     update_max_refcount_table_index(s);
3246 
3247     s->refcount_bits = 1 << refcount_order;
3248     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3249     s->refcount_max += s->refcount_max - 1;
3250 
3251     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3252     s->refcount_block_size = 1 << s->refcount_block_bits;
3253 
3254     s->get_refcount = new_get_refcount;
3255     s->set_refcount = new_set_refcount;
3256 
3257     /* For cleaning up all old refblocks and the old reftable below the "done"
3258      * label */
3259     new_reftable        = old_reftable;
3260     new_reftable_size   = old_reftable_size;
3261     new_reftable_offset = old_reftable_offset;
3262 
3263 done:
3264     if (new_reftable) {
3265         /* On success, new_reftable actually points to the old reftable (and
3266          * new_reftable_size is the old reftable's size); but that is just
3267          * fine */
3268         for (i = 0; i < new_reftable_size; i++) {
3269             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3270             if (offset) {
3271                 qcow2_free_clusters(bs, offset, s->cluster_size,
3272                                     QCOW2_DISCARD_OTHER);
3273             }
3274         }
3275         g_free(new_reftable);
3276 
3277         if (new_reftable_offset > 0) {
3278             qcow2_free_clusters(bs, new_reftable_offset,
3279                                 new_reftable_size * sizeof(uint64_t),
3280                                 QCOW2_DISCARD_OTHER);
3281         }
3282     }
3283 
3284     qemu_vfree(new_refblock);
3285     return ret;
3286 }
3287 
3288 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3289 {
3290     BDRVQcow2State *s = bs->opaque;
3291     uint32_t index = offset_to_reftable_index(s, offset);
3292     int64_t covering_refblock_offset = 0;
3293 
3294     if (index < s->refcount_table_size) {
3295         covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3296     }
3297     if (!covering_refblock_offset) {
3298         qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3299                                 "not covered by the refcount structures",
3300                                 offset);
3301         return -EIO;
3302     }
3303 
3304     return covering_refblock_offset;
3305 }
3306 
3307 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3308                                         uint64_t discard_block_offs)
3309 {
3310     BDRVQcow2State *s = bs->opaque;
3311     int64_t refblock_offs;
3312     uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3313     uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3314     void *refblock;
3315     int ret;
3316 
3317     refblock_offs = get_refblock_offset(bs, discard_block_offs);
3318     if (refblock_offs < 0) {
3319         return refblock_offs;
3320     }
3321 
3322     assert(discard_block_offs != 0);
3323 
3324     ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3325                           &refblock);
3326     if (ret < 0) {
3327         return ret;
3328     }
3329 
3330     if (s->get_refcount(refblock, block_index) != 1) {
3331         qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3332                                 " refblock offset %#" PRIx64
3333                                 ", reftable index %u"
3334                                 ", block offset %#" PRIx64
3335                                 ", refcount %#" PRIx64,
3336                                 refblock_offs,
3337                                 offset_to_reftable_index(s, discard_block_offs),
3338                                 discard_block_offs,
3339                                 s->get_refcount(refblock, block_index));
3340         qcow2_cache_put(s->refcount_block_cache, &refblock);
3341         return -EINVAL;
3342     }
3343     s->set_refcount(refblock, block_index, 0);
3344 
3345     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3346 
3347     qcow2_cache_put(s->refcount_block_cache, &refblock);
3348 
3349     if (cluster_index < s->free_cluster_index) {
3350         s->free_cluster_index = cluster_index;
3351     }
3352 
3353     refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3354                                            discard_block_offs);
3355     if (refblock) {
3356         /* discard refblock from the cache if refblock is cached */
3357         qcow2_cache_discard(s->refcount_block_cache, refblock);
3358     }
3359     update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3360 
3361     return 0;
3362 }
3363 
3364 int qcow2_shrink_reftable(BlockDriverState *bs)
3365 {
3366     BDRVQcow2State *s = bs->opaque;
3367     uint64_t *reftable_tmp =
3368         g_malloc(s->refcount_table_size * sizeof(uint64_t));
3369     int i, ret;
3370 
3371     for (i = 0; i < s->refcount_table_size; i++) {
3372         int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3373         void *refblock;
3374         bool unused_block;
3375 
3376         if (refblock_offs == 0) {
3377             reftable_tmp[i] = 0;
3378             continue;
3379         }
3380         ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3381                               &refblock);
3382         if (ret < 0) {
3383             goto out;
3384         }
3385 
3386         /* the refblock has own reference */
3387         if (i == offset_to_reftable_index(s, refblock_offs)) {
3388             uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3389                                    (s->refcount_block_size - 1);
3390             uint64_t refcount = s->get_refcount(refblock, block_index);
3391 
3392             s->set_refcount(refblock, block_index, 0);
3393 
3394             unused_block = buffer_is_zero(refblock, s->cluster_size);
3395 
3396             s->set_refcount(refblock, block_index, refcount);
3397         } else {
3398             unused_block = buffer_is_zero(refblock, s->cluster_size);
3399         }
3400         qcow2_cache_put(s->refcount_block_cache, &refblock);
3401 
3402         reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3403     }
3404 
3405     ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3406                            s->refcount_table_size * sizeof(uint64_t));
3407     /*
3408      * If the write in the reftable failed the image may contain a partially
3409      * overwritten reftable. In this case it would be better to clear the
3410      * reftable in memory to avoid possible image corruption.
3411      */
3412     for (i = 0; i < s->refcount_table_size; i++) {
3413         if (s->refcount_table[i] && !reftable_tmp[i]) {
3414             if (ret == 0) {
3415                 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3416                                                        REFT_OFFSET_MASK);
3417             }
3418             s->refcount_table[i] = 0;
3419         }
3420     }
3421 
3422     if (!s->cache_discards) {
3423         qcow2_process_discards(bs, ret);
3424     }
3425 
3426 out:
3427     g_free(reftable_tmp);
3428     return ret;
3429 }
3430 
3431 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3432 {
3433     BDRVQcow2State *s = bs->opaque;
3434     int64_t i;
3435 
3436     for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3437         uint64_t refcount;
3438         int ret = qcow2_get_refcount(bs, i, &refcount);
3439         if (ret < 0) {
3440             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3441                     i, strerror(-ret));
3442             return ret;
3443         }
3444         if (refcount > 0) {
3445             return i;
3446         }
3447     }
3448     qcow2_signal_corruption(bs, true, -1, -1,
3449                             "There are no references in the refcount table.");
3450     return -EIO;
3451 }
3452 
3453 int qcow2_detect_metadata_preallocation(BlockDriverState *bs)
3454 {
3455     BDRVQcow2State *s = bs->opaque;
3456     int64_t i, end_cluster, cluster_count = 0, threshold;
3457     int64_t file_length, real_allocation, real_clusters;
3458 
3459     qemu_co_mutex_assert_locked(&s->lock);
3460 
3461     file_length = bdrv_getlength(bs->file->bs);
3462     if (file_length < 0) {
3463         return file_length;
3464     }
3465 
3466     real_allocation = bdrv_get_allocated_file_size(bs->file->bs);
3467     if (real_allocation < 0) {
3468         return real_allocation;
3469     }
3470 
3471     real_clusters = real_allocation / s->cluster_size;
3472     threshold = MAX(real_clusters * 10 / 9, real_clusters + 2);
3473 
3474     end_cluster = size_to_clusters(s, file_length);
3475     for (i = 0; i < end_cluster && cluster_count < threshold; i++) {
3476         uint64_t refcount;
3477         int ret = qcow2_get_refcount(bs, i, &refcount);
3478         if (ret < 0) {
3479             return ret;
3480         }
3481         cluster_count += !!refcount;
3482     }
3483 
3484     return cluster_count >= threshold;
3485 }
3486