xref: /openbmc/qemu/block/qcow2-refcount.c (revision 7f6c3d1a)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qcow2.h"
28 #include "qemu/range.h"
29 #include "qemu/bswap.h"
30 #include "qemu/cutils.h"
31 #include "trace.h"
32 
33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
34                                     uint64_t max);
35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
36                             int64_t offset, int64_t length, uint64_t addend,
37                             bool decrease, enum qcow2_discard_type type);
38 
39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
46 
47 static void set_refcount_ro0(void *refcount_array, uint64_t index,
48                              uint64_t value);
49 static void set_refcount_ro1(void *refcount_array, uint64_t index,
50                              uint64_t value);
51 static void set_refcount_ro2(void *refcount_array, uint64_t index,
52                              uint64_t value);
53 static void set_refcount_ro3(void *refcount_array, uint64_t index,
54                              uint64_t value);
55 static void set_refcount_ro4(void *refcount_array, uint64_t index,
56                              uint64_t value);
57 static void set_refcount_ro5(void *refcount_array, uint64_t index,
58                              uint64_t value);
59 static void set_refcount_ro6(void *refcount_array, uint64_t index,
60                              uint64_t value);
61 
62 
63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
64     &get_refcount_ro0,
65     &get_refcount_ro1,
66     &get_refcount_ro2,
67     &get_refcount_ro3,
68     &get_refcount_ro4,
69     &get_refcount_ro5,
70     &get_refcount_ro6
71 };
72 
73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
74     &set_refcount_ro0,
75     &set_refcount_ro1,
76     &set_refcount_ro2,
77     &set_refcount_ro3,
78     &set_refcount_ro4,
79     &set_refcount_ro5,
80     &set_refcount_ro6
81 };
82 
83 
84 /*********************************************************/
85 /* refcount handling */
86 
87 static void update_max_refcount_table_index(BDRVQcow2State *s)
88 {
89     unsigned i = s->refcount_table_size - 1;
90     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
91         i--;
92     }
93     /* Set s->max_refcount_table_index to the index of the last used entry */
94     s->max_refcount_table_index = i;
95 }
96 
97 int qcow2_refcount_init(BlockDriverState *bs)
98 {
99     BDRVQcow2State *s = bs->opaque;
100     unsigned int refcount_table_size2, i;
101     int ret;
102 
103     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
104 
105     s->get_refcount = get_refcount_funcs[s->refcount_order];
106     s->set_refcount = set_refcount_funcs[s->refcount_order];
107 
108     assert(s->refcount_table_size <= INT_MAX / REFTABLE_ENTRY_SIZE);
109     refcount_table_size2 = s->refcount_table_size * REFTABLE_ENTRY_SIZE;
110     s->refcount_table = g_try_malloc(refcount_table_size2);
111 
112     if (s->refcount_table_size > 0) {
113         if (s->refcount_table == NULL) {
114             ret = -ENOMEM;
115             goto fail;
116         }
117         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
118         ret = bdrv_pread(bs->file, s->refcount_table_offset,
119                          s->refcount_table, refcount_table_size2);
120         if (ret < 0) {
121             goto fail;
122         }
123         for(i = 0; i < s->refcount_table_size; i++)
124             be64_to_cpus(&s->refcount_table[i]);
125         update_max_refcount_table_index(s);
126     }
127     return 0;
128  fail:
129     return ret;
130 }
131 
132 void qcow2_refcount_close(BlockDriverState *bs)
133 {
134     BDRVQcow2State *s = bs->opaque;
135     g_free(s->refcount_table);
136 }
137 
138 
139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
140 {
141     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
142 }
143 
144 static void set_refcount_ro0(void *refcount_array, uint64_t index,
145                              uint64_t value)
146 {
147     assert(!(value >> 1));
148     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
149     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
150 }
151 
152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
153 {
154     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
155            & 0x3;
156 }
157 
158 static void set_refcount_ro1(void *refcount_array, uint64_t index,
159                              uint64_t value)
160 {
161     assert(!(value >> 2));
162     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
163     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
164 }
165 
166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
167 {
168     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
169            & 0xf;
170 }
171 
172 static void set_refcount_ro2(void *refcount_array, uint64_t index,
173                              uint64_t value)
174 {
175     assert(!(value >> 4));
176     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
177     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
178 }
179 
180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
181 {
182     return ((const uint8_t *)refcount_array)[index];
183 }
184 
185 static void set_refcount_ro3(void *refcount_array, uint64_t index,
186                              uint64_t value)
187 {
188     assert(!(value >> 8));
189     ((uint8_t *)refcount_array)[index] = value;
190 }
191 
192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
193 {
194     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
195 }
196 
197 static void set_refcount_ro4(void *refcount_array, uint64_t index,
198                              uint64_t value)
199 {
200     assert(!(value >> 16));
201     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
202 }
203 
204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
205 {
206     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
207 }
208 
209 static void set_refcount_ro5(void *refcount_array, uint64_t index,
210                              uint64_t value)
211 {
212     assert(!(value >> 32));
213     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
214 }
215 
216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
217 {
218     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
219 }
220 
221 static void set_refcount_ro6(void *refcount_array, uint64_t index,
222                              uint64_t value)
223 {
224     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
225 }
226 
227 
228 static int load_refcount_block(BlockDriverState *bs,
229                                int64_t refcount_block_offset,
230                                void **refcount_block)
231 {
232     BDRVQcow2State *s = bs->opaque;
233 
234     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
235     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
236                            refcount_block);
237 }
238 
239 /*
240  * Retrieves the refcount of the cluster given by its index and stores it in
241  * *refcount. Returns 0 on success and -errno on failure.
242  */
243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
244                        uint64_t *refcount)
245 {
246     BDRVQcow2State *s = bs->opaque;
247     uint64_t refcount_table_index, block_index;
248     int64_t refcount_block_offset;
249     int ret;
250     void *refcount_block;
251 
252     refcount_table_index = cluster_index >> s->refcount_block_bits;
253     if (refcount_table_index >= s->refcount_table_size) {
254         *refcount = 0;
255         return 0;
256     }
257     refcount_block_offset =
258         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
259     if (!refcount_block_offset) {
260         *refcount = 0;
261         return 0;
262     }
263 
264     if (offset_into_cluster(s, refcount_block_offset)) {
265         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
266                                 " unaligned (reftable index: %#" PRIx64 ")",
267                                 refcount_block_offset, refcount_table_index);
268         return -EIO;
269     }
270 
271     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
272                           &refcount_block);
273     if (ret < 0) {
274         return ret;
275     }
276 
277     block_index = cluster_index & (s->refcount_block_size - 1);
278     *refcount = s->get_refcount(refcount_block, block_index);
279 
280     qcow2_cache_put(s->refcount_block_cache, &refcount_block);
281 
282     return 0;
283 }
284 
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
287     uint64_t offset_b)
288 {
289     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
290     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
291 
292     return (block_a == block_b);
293 }
294 
295 /*
296  * Loads a refcount block. If it doesn't exist yet, it is allocated first
297  * (including growing the refcount table if needed).
298  *
299  * Returns 0 on success or -errno in error case
300  */
301 static int alloc_refcount_block(BlockDriverState *bs,
302                                 int64_t cluster_index, void **refcount_block)
303 {
304     BDRVQcow2State *s = bs->opaque;
305     unsigned int refcount_table_index;
306     int64_t ret;
307 
308     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
309 
310     /* Find the refcount block for the given cluster */
311     refcount_table_index = cluster_index >> s->refcount_block_bits;
312 
313     if (refcount_table_index < s->refcount_table_size) {
314 
315         uint64_t refcount_block_offset =
316             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
317 
318         /* If it's already there, we're done */
319         if (refcount_block_offset) {
320             if (offset_into_cluster(s, refcount_block_offset)) {
321                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
322                                         PRIx64 " unaligned (reftable index: "
323                                         "%#x)", refcount_block_offset,
324                                         refcount_table_index);
325                 return -EIO;
326             }
327 
328              return load_refcount_block(bs, refcount_block_offset,
329                                         refcount_block);
330         }
331     }
332 
333     /*
334      * If we came here, we need to allocate something. Something is at least
335      * a cluster for the new refcount block. It may also include a new refcount
336      * table if the old refcount table is too small.
337      *
338      * Note that allocating clusters here needs some special care:
339      *
340      * - We can't use the normal qcow2_alloc_clusters(), it would try to
341      *   increase the refcount and very likely we would end up with an endless
342      *   recursion. Instead we must place the refcount blocks in a way that
343      *   they can describe them themselves.
344      *
345      * - We need to consider that at this point we are inside update_refcounts
346      *   and potentially doing an initial refcount increase. This means that
347      *   some clusters have already been allocated by the caller, but their
348      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
349      *   need to return -EAGAIN to signal the caller that it needs to restart
350      *   the search for free clusters.
351      *
352      * - alloc_clusters_noref and qcow2_free_clusters may load a different
353      *   refcount block into the cache
354      */
355 
356     *refcount_block = NULL;
357 
358     /* We write to the refcount table, so we might depend on L2 tables */
359     ret = qcow2_cache_flush(bs, s->l2_table_cache);
360     if (ret < 0) {
361         return ret;
362     }
363 
364     /* Allocate the refcount block itself and mark it as used */
365     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX);
366     if (new_block < 0) {
367         return new_block;
368     }
369 
370     /* The offset must fit in the offset field of the refcount table entry */
371     assert((new_block & REFT_OFFSET_MASK) == new_block);
372 
373     /* If we're allocating the block at offset 0 then something is wrong */
374     if (new_block == 0) {
375         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
376                                 "allocation of refcount block at offset 0");
377         return -EIO;
378     }
379 
380 #ifdef DEBUG_ALLOC2
381     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
382         " at %" PRIx64 "\n",
383         refcount_table_index, cluster_index << s->cluster_bits, new_block);
384 #endif
385 
386     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
387         /* Zero the new refcount block before updating it */
388         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
389                                     refcount_block);
390         if (ret < 0) {
391             goto fail;
392         }
393 
394         memset(*refcount_block, 0, s->cluster_size);
395 
396         /* The block describes itself, need to update the cache */
397         int block_index = (new_block >> s->cluster_bits) &
398             (s->refcount_block_size - 1);
399         s->set_refcount(*refcount_block, block_index, 1);
400     } else {
401         /* Described somewhere else. This can recurse at most twice before we
402          * arrive at a block that describes itself. */
403         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
404                               QCOW2_DISCARD_NEVER);
405         if (ret < 0) {
406             goto fail;
407         }
408 
409         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
410         if (ret < 0) {
411             goto fail;
412         }
413 
414         /* Initialize the new refcount block only after updating its refcount,
415          * update_refcount uses the refcount cache itself */
416         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
417                                     refcount_block);
418         if (ret < 0) {
419             goto fail;
420         }
421 
422         memset(*refcount_block, 0, s->cluster_size);
423     }
424 
425     /* Now the new refcount block needs to be written to disk */
426     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
427     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
428     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
429     if (ret < 0) {
430         goto fail;
431     }
432 
433     /* If the refcount table is big enough, just hook the block up there */
434     if (refcount_table_index < s->refcount_table_size) {
435         uint64_t data64 = cpu_to_be64(new_block);
436         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
437         ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset +
438                                refcount_table_index * REFTABLE_ENTRY_SIZE,
439             &data64, sizeof(data64));
440         if (ret < 0) {
441             goto fail;
442         }
443 
444         s->refcount_table[refcount_table_index] = new_block;
445         /* If there's a hole in s->refcount_table then it can happen
446          * that refcount_table_index < s->max_refcount_table_index */
447         s->max_refcount_table_index =
448             MAX(s->max_refcount_table_index, refcount_table_index);
449 
450         /* The new refcount block may be where the caller intended to put its
451          * data, so let it restart the search. */
452         return -EAGAIN;
453     }
454 
455     qcow2_cache_put(s->refcount_block_cache, refcount_block);
456 
457     /*
458      * If we come here, we need to grow the refcount table. Again, a new
459      * refcount table needs some space and we can't simply allocate to avoid
460      * endless recursion.
461      *
462      * Therefore let's grab new refcount blocks at the end of the image, which
463      * will describe themselves and the new refcount table. This way we can
464      * reference them only in the new table and do the switch to the new
465      * refcount table at once without producing an inconsistent state in
466      * between.
467      */
468     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
469 
470     /* Calculate the number of refcount blocks needed so far; this will be the
471      * basis for calculating the index of the first cluster used for the
472      * self-describing refcount structures which we are about to create.
473      *
474      * Because we reached this point, there cannot be any refcount entries for
475      * cluster_index or higher indices yet. However, because new_block has been
476      * allocated to describe that cluster (and it will assume this role later
477      * on), we cannot use that index; also, new_block may actually have a higher
478      * cluster index than cluster_index, so it needs to be taken into account
479      * here (and 1 needs to be added to its value because that cluster is used).
480      */
481     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
482                                             (new_block >> s->cluster_bits) + 1),
483                                         s->refcount_block_size);
484 
485     /* Create the new refcount table and blocks */
486     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
487         s->cluster_size;
488 
489     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
490                               refcount_table_index, new_block);
491     if (ret < 0) {
492         return ret;
493     }
494 
495     ret = load_refcount_block(bs, new_block, refcount_block);
496     if (ret < 0) {
497         return ret;
498     }
499 
500     /* If we were trying to do the initial refcount update for some cluster
501      * allocation, we might have used the same clusters to store newly
502      * allocated metadata. Make the caller search some new space. */
503     return -EAGAIN;
504 
505 fail:
506     if (*refcount_block != NULL) {
507         qcow2_cache_put(s->refcount_block_cache, refcount_block);
508     }
509     return ret;
510 }
511 
512 /*
513  * Starting at @start_offset, this function creates new self-covering refcount
514  * structures: A new refcount table and refcount blocks which cover all of
515  * themselves, and a number of @additional_clusters beyond their end.
516  * @start_offset must be at the end of the image file, that is, there must be
517  * only empty space beyond it.
518  * If @exact_size is false, the refcount table will have 50 % more entries than
519  * necessary so it will not need to grow again soon.
520  * If @new_refblock_offset is not zero, it contains the offset of a refcount
521  * block that should be entered into the new refcount table at index
522  * @new_refblock_index.
523  *
524  * Returns: The offset after the new refcount structures (i.e. where the
525  *          @additional_clusters may be placed) on success, -errno on error.
526  */
527 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
528                             uint64_t additional_clusters, bool exact_size,
529                             int new_refblock_index,
530                             uint64_t new_refblock_offset)
531 {
532     BDRVQcow2State *s = bs->opaque;
533     uint64_t total_refblock_count_u64, additional_refblock_count;
534     int total_refblock_count, table_size, area_reftable_index, table_clusters;
535     int i;
536     uint64_t table_offset, block_offset, end_offset;
537     int ret;
538     uint64_t *new_table;
539 
540     assert(!(start_offset % s->cluster_size));
541 
542     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
543                                  additional_clusters,
544                                  s->cluster_size, s->refcount_order,
545                                  !exact_size, &total_refblock_count_u64);
546     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
547         return -EFBIG;
548     }
549     total_refblock_count = total_refblock_count_u64;
550 
551     /* Index in the refcount table of the first refcount block to cover the area
552      * of refcount structures we are about to create; we know that
553      * @total_refblock_count can cover @start_offset, so this will definitely
554      * fit into an int. */
555     area_reftable_index = (start_offset / s->cluster_size) /
556                           s->refcount_block_size;
557 
558     if (exact_size) {
559         table_size = total_refblock_count;
560     } else {
561         table_size = total_refblock_count +
562                      DIV_ROUND_UP(total_refblock_count, 2);
563     }
564     /* The qcow2 file can only store the reftable size in number of clusters */
565     table_size = ROUND_UP(table_size, s->cluster_size / REFTABLE_ENTRY_SIZE);
566     table_clusters = (table_size * REFTABLE_ENTRY_SIZE) / s->cluster_size;
567 
568     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
569         return -EFBIG;
570     }
571 
572     new_table = g_try_new0(uint64_t, table_size);
573 
574     assert(table_size > 0);
575     if (new_table == NULL) {
576         ret = -ENOMEM;
577         goto fail;
578     }
579 
580     /* Fill the new refcount table */
581     if (table_size > s->max_refcount_table_index) {
582         /* We're actually growing the reftable */
583         memcpy(new_table, s->refcount_table,
584                (s->max_refcount_table_index + 1) * REFTABLE_ENTRY_SIZE);
585     } else {
586         /* Improbable case: We're shrinking the reftable. However, the caller
587          * has assured us that there is only empty space beyond @start_offset,
588          * so we can simply drop all of the refblocks that won't fit into the
589          * new reftable. */
590         memcpy(new_table, s->refcount_table, table_size * REFTABLE_ENTRY_SIZE);
591     }
592 
593     if (new_refblock_offset) {
594         assert(new_refblock_index < total_refblock_count);
595         new_table[new_refblock_index] = new_refblock_offset;
596     }
597 
598     /* Count how many new refblocks we have to create */
599     additional_refblock_count = 0;
600     for (i = area_reftable_index; i < total_refblock_count; i++) {
601         if (!new_table[i]) {
602             additional_refblock_count++;
603         }
604     }
605 
606     table_offset = start_offset + additional_refblock_count * s->cluster_size;
607     end_offset = table_offset + table_clusters * s->cluster_size;
608 
609     /* Fill the refcount blocks, and create new ones, if necessary */
610     block_offset = start_offset;
611     for (i = area_reftable_index; i < total_refblock_count; i++) {
612         void *refblock_data;
613         uint64_t first_offset_covered;
614 
615         /* Reuse an existing refblock if possible, create a new one otherwise */
616         if (new_table[i]) {
617             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
618                                   &refblock_data);
619             if (ret < 0) {
620                 goto fail;
621             }
622         } else {
623             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
624                                         block_offset, &refblock_data);
625             if (ret < 0) {
626                 goto fail;
627             }
628             memset(refblock_data, 0, s->cluster_size);
629             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
630                                          refblock_data);
631 
632             new_table[i] = block_offset;
633             block_offset += s->cluster_size;
634         }
635 
636         /* First host offset covered by this refblock */
637         first_offset_covered = (uint64_t)i * s->refcount_block_size *
638                                s->cluster_size;
639         if (first_offset_covered < end_offset) {
640             int j, end_index;
641 
642             /* Set the refcount of all of the new refcount structures to 1 */
643 
644             if (first_offset_covered < start_offset) {
645                 assert(i == area_reftable_index);
646                 j = (start_offset - first_offset_covered) / s->cluster_size;
647                 assert(j < s->refcount_block_size);
648             } else {
649                 j = 0;
650             }
651 
652             end_index = MIN((end_offset - first_offset_covered) /
653                             s->cluster_size,
654                             s->refcount_block_size);
655 
656             for (; j < end_index; j++) {
657                 /* The caller guaranteed us this space would be empty */
658                 assert(s->get_refcount(refblock_data, j) == 0);
659                 s->set_refcount(refblock_data, j, 1);
660             }
661 
662             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
663                                          refblock_data);
664         }
665 
666         qcow2_cache_put(s->refcount_block_cache, &refblock_data);
667     }
668 
669     assert(block_offset == table_offset);
670 
671     /* Write refcount blocks to disk */
672     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
673     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
674     if (ret < 0) {
675         goto fail;
676     }
677 
678     /* Write refcount table to disk */
679     for (i = 0; i < total_refblock_count; i++) {
680         cpu_to_be64s(&new_table[i]);
681     }
682 
683     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
684     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
685         table_size * REFTABLE_ENTRY_SIZE);
686     if (ret < 0) {
687         goto fail;
688     }
689 
690     for (i = 0; i < total_refblock_count; i++) {
691         be64_to_cpus(&new_table[i]);
692     }
693 
694     /* Hook up the new refcount table in the qcow2 header */
695     struct QEMU_PACKED {
696         uint64_t d64;
697         uint32_t d32;
698     } data;
699     data.d64 = cpu_to_be64(table_offset);
700     data.d32 = cpu_to_be32(table_clusters);
701     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
702     ret = bdrv_pwrite_sync(bs->file,
703                            offsetof(QCowHeader, refcount_table_offset),
704                            &data, sizeof(data));
705     if (ret < 0) {
706         goto fail;
707     }
708 
709     /* And switch it in memory */
710     uint64_t old_table_offset = s->refcount_table_offset;
711     uint64_t old_table_size = s->refcount_table_size;
712 
713     g_free(s->refcount_table);
714     s->refcount_table = new_table;
715     s->refcount_table_size = table_size;
716     s->refcount_table_offset = table_offset;
717     update_max_refcount_table_index(s);
718 
719     /* Free old table. */
720     qcow2_free_clusters(bs, old_table_offset,
721                         old_table_size * REFTABLE_ENTRY_SIZE,
722                         QCOW2_DISCARD_OTHER);
723 
724     return end_offset;
725 
726 fail:
727     g_free(new_table);
728     return ret;
729 }
730 
731 void qcow2_process_discards(BlockDriverState *bs, int ret)
732 {
733     BDRVQcow2State *s = bs->opaque;
734     Qcow2DiscardRegion *d, *next;
735 
736     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
737         QTAILQ_REMOVE(&s->discards, d, next);
738 
739         /* Discard is optional, ignore the return value */
740         if (ret >= 0) {
741             int r2 = bdrv_pdiscard(bs->file, d->offset, d->bytes);
742             if (r2 < 0) {
743                 trace_qcow2_process_discards_failed_region(d->offset, d->bytes,
744                                                            r2);
745             }
746         }
747 
748         g_free(d);
749     }
750 }
751 
752 static void update_refcount_discard(BlockDriverState *bs,
753                                     uint64_t offset, uint64_t length)
754 {
755     BDRVQcow2State *s = bs->opaque;
756     Qcow2DiscardRegion *d, *p, *next;
757 
758     QTAILQ_FOREACH(d, &s->discards, next) {
759         uint64_t new_start = MIN(offset, d->offset);
760         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
761 
762         if (new_end - new_start <= length + d->bytes) {
763             /* There can't be any overlap, areas ending up here have no
764              * references any more and therefore shouldn't get freed another
765              * time. */
766             assert(d->bytes + length == new_end - new_start);
767             d->offset = new_start;
768             d->bytes = new_end - new_start;
769             goto found;
770         }
771     }
772 
773     d = g_malloc(sizeof(*d));
774     *d = (Qcow2DiscardRegion) {
775         .bs     = bs,
776         .offset = offset,
777         .bytes  = length,
778     };
779     QTAILQ_INSERT_TAIL(&s->discards, d, next);
780 
781 found:
782     /* Merge discard requests if they are adjacent now */
783     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
784         if (p == d
785             || p->offset > d->offset + d->bytes
786             || d->offset > p->offset + p->bytes)
787         {
788             continue;
789         }
790 
791         /* Still no overlap possible */
792         assert(p->offset == d->offset + d->bytes
793             || d->offset == p->offset + p->bytes);
794 
795         QTAILQ_REMOVE(&s->discards, p, next);
796         d->offset = MIN(d->offset, p->offset);
797         d->bytes += p->bytes;
798         g_free(p);
799     }
800 }
801 
802 /* XXX: cache several refcount block clusters ? */
803 /* @addend is the absolute value of the addend; if @decrease is set, @addend
804  * will be subtracted from the current refcount, otherwise it will be added */
805 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
806                                                    int64_t offset,
807                                                    int64_t length,
808                                                    uint64_t addend,
809                                                    bool decrease,
810                                                    enum qcow2_discard_type type)
811 {
812     BDRVQcow2State *s = bs->opaque;
813     int64_t start, last, cluster_offset;
814     void *refcount_block = NULL;
815     int64_t old_table_index = -1;
816     int ret;
817 
818 #ifdef DEBUG_ALLOC2
819     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
820             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
821             addend);
822 #endif
823     if (length < 0) {
824         return -EINVAL;
825     } else if (length == 0) {
826         return 0;
827     }
828 
829     if (decrease) {
830         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
831             s->l2_table_cache);
832     }
833 
834     start = start_of_cluster(s, offset);
835     last = start_of_cluster(s, offset + length - 1);
836     for(cluster_offset = start; cluster_offset <= last;
837         cluster_offset += s->cluster_size)
838     {
839         int block_index;
840         uint64_t refcount;
841         int64_t cluster_index = cluster_offset >> s->cluster_bits;
842         int64_t table_index = cluster_index >> s->refcount_block_bits;
843 
844         /* Load the refcount block and allocate it if needed */
845         if (table_index != old_table_index) {
846             if (refcount_block) {
847                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
848             }
849             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
850             /* If the caller needs to restart the search for free clusters,
851              * try the same ones first to see if they're still free. */
852             if (ret == -EAGAIN) {
853                 if (s->free_cluster_index > (start >> s->cluster_bits)) {
854                     s->free_cluster_index = (start >> s->cluster_bits);
855                 }
856             }
857             if (ret < 0) {
858                 goto fail;
859             }
860         }
861         old_table_index = table_index;
862 
863         qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
864 
865         /* we can update the count and save it */
866         block_index = cluster_index & (s->refcount_block_size - 1);
867 
868         refcount = s->get_refcount(refcount_block, block_index);
869         if (decrease ? (refcount - addend > refcount)
870                      : (refcount + addend < refcount ||
871                         refcount + addend > s->refcount_max))
872         {
873             ret = -EINVAL;
874             goto fail;
875         }
876         if (decrease) {
877             refcount -= addend;
878         } else {
879             refcount += addend;
880         }
881         if (refcount == 0 && cluster_index < s->free_cluster_index) {
882             s->free_cluster_index = cluster_index;
883         }
884         s->set_refcount(refcount_block, block_index, refcount);
885 
886         if (refcount == 0) {
887             void *table;
888 
889             table = qcow2_cache_is_table_offset(s->refcount_block_cache,
890                                                 offset);
891             if (table != NULL) {
892                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
893                 old_table_index = -1;
894                 qcow2_cache_discard(s->refcount_block_cache, table);
895             }
896 
897             table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
898             if (table != NULL) {
899                 qcow2_cache_discard(s->l2_table_cache, table);
900             }
901 
902             if (s->discard_passthrough[type]) {
903                 update_refcount_discard(bs, cluster_offset, s->cluster_size);
904             }
905         }
906     }
907 
908     ret = 0;
909 fail:
910     if (!s->cache_discards) {
911         qcow2_process_discards(bs, ret);
912     }
913 
914     /* Write last changed block to disk */
915     if (refcount_block) {
916         qcow2_cache_put(s->refcount_block_cache, &refcount_block);
917     }
918 
919     /*
920      * Try do undo any updates if an error is returned (This may succeed in
921      * some cases like ENOSPC for allocating a new refcount block)
922      */
923     if (ret < 0) {
924         int dummy;
925         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
926                                 !decrease, QCOW2_DISCARD_NEVER);
927         (void)dummy;
928     }
929 
930     return ret;
931 }
932 
933 /*
934  * Increases or decreases the refcount of a given cluster.
935  *
936  * @addend is the absolute value of the addend; if @decrease is set, @addend
937  * will be subtracted from the current refcount, otherwise it will be added.
938  *
939  * On success 0 is returned; on failure -errno is returned.
940  */
941 int qcow2_update_cluster_refcount(BlockDriverState *bs,
942                                   int64_t cluster_index,
943                                   uint64_t addend, bool decrease,
944                                   enum qcow2_discard_type type)
945 {
946     BDRVQcow2State *s = bs->opaque;
947     int ret;
948 
949     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
950                           decrease, type);
951     if (ret < 0) {
952         return ret;
953     }
954 
955     return 0;
956 }
957 
958 
959 
960 /*********************************************************/
961 /* cluster allocation functions */
962 
963 
964 
965 /* return < 0 if error */
966 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
967                                     uint64_t max)
968 {
969     BDRVQcow2State *s = bs->opaque;
970     uint64_t i, nb_clusters, refcount;
971     int ret;
972 
973     /* We can't allocate clusters if they may still be queued for discard. */
974     if (s->cache_discards) {
975         qcow2_process_discards(bs, 0);
976     }
977 
978     nb_clusters = size_to_clusters(s, size);
979 retry:
980     for(i = 0; i < nb_clusters; i++) {
981         uint64_t next_cluster_index = s->free_cluster_index++;
982         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
983 
984         if (ret < 0) {
985             return ret;
986         } else if (refcount != 0) {
987             goto retry;
988         }
989     }
990 
991     /* Make sure that all offsets in the "allocated" range are representable
992      * in the requested max */
993     if (s->free_cluster_index > 0 &&
994         s->free_cluster_index - 1 > (max >> s->cluster_bits))
995     {
996         return -EFBIG;
997     }
998 
999 #ifdef DEBUG_ALLOC2
1000     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
1001             size,
1002             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
1003 #endif
1004     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
1005 }
1006 
1007 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
1008 {
1009     int64_t offset;
1010     int ret;
1011 
1012     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
1013     do {
1014         offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET);
1015         if (offset < 0) {
1016             return offset;
1017         }
1018 
1019         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1020     } while (ret == -EAGAIN);
1021 
1022     if (ret < 0) {
1023         return ret;
1024     }
1025 
1026     return offset;
1027 }
1028 
1029 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1030                                 int64_t nb_clusters)
1031 {
1032     BDRVQcow2State *s = bs->opaque;
1033     uint64_t cluster_index, refcount;
1034     uint64_t i;
1035     int ret;
1036 
1037     assert(nb_clusters >= 0);
1038     if (nb_clusters == 0) {
1039         return 0;
1040     }
1041 
1042     do {
1043         /* Check how many clusters there are free */
1044         cluster_index = offset >> s->cluster_bits;
1045         for(i = 0; i < nb_clusters; i++) {
1046             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1047             if (ret < 0) {
1048                 return ret;
1049             } else if (refcount != 0) {
1050                 break;
1051             }
1052         }
1053 
1054         /* And then allocate them */
1055         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1056                               QCOW2_DISCARD_NEVER);
1057     } while (ret == -EAGAIN);
1058 
1059     if (ret < 0) {
1060         return ret;
1061     }
1062 
1063     return i;
1064 }
1065 
1066 /* only used to allocate compressed sectors. We try to allocate
1067    contiguous sectors. size must be <= cluster_size */
1068 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1069 {
1070     BDRVQcow2State *s = bs->opaque;
1071     int64_t offset;
1072     size_t free_in_cluster;
1073     int ret;
1074 
1075     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1076     assert(size > 0 && size <= s->cluster_size);
1077     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1078 
1079     offset = s->free_byte_offset;
1080 
1081     if (offset) {
1082         uint64_t refcount;
1083         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1084         if (ret < 0) {
1085             return ret;
1086         }
1087 
1088         if (refcount == s->refcount_max) {
1089             offset = 0;
1090         }
1091     }
1092 
1093     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1094     do {
1095         if (!offset || free_in_cluster < size) {
1096             int64_t new_cluster;
1097 
1098             new_cluster = alloc_clusters_noref(bs, s->cluster_size,
1099                                                MIN(s->cluster_offset_mask,
1100                                                    QCOW_MAX_CLUSTER_OFFSET));
1101             if (new_cluster < 0) {
1102                 return new_cluster;
1103             }
1104 
1105             if (new_cluster == 0) {
1106                 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1107                                         "allocation of compressed cluster "
1108                                         "at offset 0");
1109                 return -EIO;
1110             }
1111 
1112             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1113                 offset = new_cluster;
1114                 free_in_cluster = s->cluster_size;
1115             } else {
1116                 free_in_cluster += s->cluster_size;
1117             }
1118         }
1119 
1120         assert(offset);
1121         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1122         if (ret < 0) {
1123             offset = 0;
1124         }
1125     } while (ret == -EAGAIN);
1126     if (ret < 0) {
1127         return ret;
1128     }
1129 
1130     /* The cluster refcount was incremented; refcount blocks must be flushed
1131      * before the caller's L2 table updates. */
1132     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1133 
1134     s->free_byte_offset = offset + size;
1135     if (!offset_into_cluster(s, s->free_byte_offset)) {
1136         s->free_byte_offset = 0;
1137     }
1138 
1139     return offset;
1140 }
1141 
1142 void qcow2_free_clusters(BlockDriverState *bs,
1143                           int64_t offset, int64_t size,
1144                           enum qcow2_discard_type type)
1145 {
1146     int ret;
1147 
1148     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1149     ret = update_refcount(bs, offset, size, 1, true, type);
1150     if (ret < 0) {
1151         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1152         /* TODO Remember the clusters to free them later and avoid leaking */
1153     }
1154 }
1155 
1156 /*
1157  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1158  * normal cluster, compressed cluster, etc.)
1159  */
1160 void qcow2_free_any_cluster(BlockDriverState *bs, uint64_t l2_entry,
1161                             enum qcow2_discard_type type)
1162 {
1163     BDRVQcow2State *s = bs->opaque;
1164     QCow2ClusterType ctype = qcow2_get_cluster_type(bs, l2_entry);
1165 
1166     if (has_data_file(bs)) {
1167         if (s->discard_passthrough[type] &&
1168             (ctype == QCOW2_CLUSTER_NORMAL ||
1169              ctype == QCOW2_CLUSTER_ZERO_ALLOC))
1170         {
1171             bdrv_pdiscard(s->data_file, l2_entry & L2E_OFFSET_MASK,
1172                           s->cluster_size);
1173         }
1174         return;
1175     }
1176 
1177     switch (ctype) {
1178     case QCOW2_CLUSTER_COMPRESSED:
1179         {
1180             int64_t offset = (l2_entry & s->cluster_offset_mask)
1181                 & QCOW2_COMPRESSED_SECTOR_MASK;
1182             int size = QCOW2_COMPRESSED_SECTOR_SIZE *
1183                 (((l2_entry >> s->csize_shift) & s->csize_mask) + 1);
1184             qcow2_free_clusters(bs, offset, size, type);
1185         }
1186         break;
1187     case QCOW2_CLUSTER_NORMAL:
1188     case QCOW2_CLUSTER_ZERO_ALLOC:
1189         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1190             qcow2_signal_corruption(bs, false, -1, -1,
1191                                     "Cannot free unaligned cluster %#llx",
1192                                     l2_entry & L2E_OFFSET_MASK);
1193         } else {
1194             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1195                                 s->cluster_size, type);
1196         }
1197         break;
1198     case QCOW2_CLUSTER_ZERO_PLAIN:
1199     case QCOW2_CLUSTER_UNALLOCATED:
1200         break;
1201     default:
1202         abort();
1203     }
1204 }
1205 
1206 int coroutine_fn qcow2_write_caches(BlockDriverState *bs)
1207 {
1208     BDRVQcow2State *s = bs->opaque;
1209     int ret;
1210 
1211     ret = qcow2_cache_write(bs, s->l2_table_cache);
1212     if (ret < 0) {
1213         return ret;
1214     }
1215 
1216     if (qcow2_need_accurate_refcounts(s)) {
1217         ret = qcow2_cache_write(bs, s->refcount_block_cache);
1218         if (ret < 0) {
1219             return ret;
1220         }
1221     }
1222 
1223     return 0;
1224 }
1225 
1226 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs)
1227 {
1228     int ret = qcow2_write_caches(bs);
1229     if (ret < 0) {
1230         return ret;
1231     }
1232 
1233     return bdrv_flush(bs->file->bs);
1234 }
1235 
1236 /*********************************************************/
1237 /* snapshots and image creation */
1238 
1239 
1240 
1241 /* update the refcounts of snapshots and the copied flag */
1242 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1243     int64_t l1_table_offset, int l1_size, int addend)
1244 {
1245     BDRVQcow2State *s = bs->opaque;
1246     uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1247     bool l1_allocated = false;
1248     int64_t old_entry, old_l2_offset;
1249     unsigned slice, slice_size2, n_slices;
1250     int i, j, l1_modified = 0, nb_csectors;
1251     int ret;
1252 
1253     assert(addend >= -1 && addend <= 1);
1254 
1255     l2_slice = NULL;
1256     l1_table = NULL;
1257     l1_size2 = l1_size * L1E_SIZE;
1258     slice_size2 = s->l2_slice_size * l2_entry_size(s);
1259     n_slices = s->cluster_size / slice_size2;
1260 
1261     s->cache_discards = true;
1262 
1263     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1264      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1265      * when changing this! */
1266     if (l1_table_offset != s->l1_table_offset) {
1267         l1_table = g_try_malloc0(l1_size2);
1268         if (l1_size2 && l1_table == NULL) {
1269             ret = -ENOMEM;
1270             goto fail;
1271         }
1272         l1_allocated = true;
1273 
1274         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1275         if (ret < 0) {
1276             goto fail;
1277         }
1278 
1279         for (i = 0; i < l1_size; i++) {
1280             be64_to_cpus(&l1_table[i]);
1281         }
1282     } else {
1283         assert(l1_size == s->l1_size);
1284         l1_table = s->l1_table;
1285         l1_allocated = false;
1286     }
1287 
1288     for (i = 0; i < l1_size; i++) {
1289         l2_offset = l1_table[i];
1290         if (l2_offset) {
1291             old_l2_offset = l2_offset;
1292             l2_offset &= L1E_OFFSET_MASK;
1293 
1294             if (offset_into_cluster(s, l2_offset)) {
1295                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1296                                         PRIx64 " unaligned (L1 index: %#x)",
1297                                         l2_offset, i);
1298                 ret = -EIO;
1299                 goto fail;
1300             }
1301 
1302             for (slice = 0; slice < n_slices; slice++) {
1303                 ret = qcow2_cache_get(bs, s->l2_table_cache,
1304                                       l2_offset + slice * slice_size2,
1305                                       (void **) &l2_slice);
1306                 if (ret < 0) {
1307                     goto fail;
1308                 }
1309 
1310                 for (j = 0; j < s->l2_slice_size; j++) {
1311                     uint64_t cluster_index;
1312                     uint64_t offset;
1313 
1314                     entry = get_l2_entry(s, l2_slice, j);
1315                     old_entry = entry;
1316                     entry &= ~QCOW_OFLAG_COPIED;
1317                     offset = entry & L2E_OFFSET_MASK;
1318 
1319                     switch (qcow2_get_cluster_type(bs, entry)) {
1320                     case QCOW2_CLUSTER_COMPRESSED:
1321                         nb_csectors = ((entry >> s->csize_shift) &
1322                                        s->csize_mask) + 1;
1323                         if (addend != 0) {
1324                             uint64_t coffset = (entry & s->cluster_offset_mask)
1325                                 & QCOW2_COMPRESSED_SECTOR_MASK;
1326                             ret = update_refcount(
1327                                 bs, coffset,
1328                                 nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE,
1329                                 abs(addend), addend < 0,
1330                                 QCOW2_DISCARD_SNAPSHOT);
1331                             if (ret < 0) {
1332                                 goto fail;
1333                             }
1334                         }
1335                         /* compressed clusters are never modified */
1336                         refcount = 2;
1337                         break;
1338 
1339                     case QCOW2_CLUSTER_NORMAL:
1340                     case QCOW2_CLUSTER_ZERO_ALLOC:
1341                         if (offset_into_cluster(s, offset)) {
1342                             /* Here l2_index means table (not slice) index */
1343                             int l2_index = slice * s->l2_slice_size + j;
1344                             qcow2_signal_corruption(
1345                                 bs, true, -1, -1, "Cluster "
1346                                 "allocation offset %#" PRIx64
1347                                 " unaligned (L2 offset: %#"
1348                                 PRIx64 ", L2 index: %#x)",
1349                                 offset, l2_offset, l2_index);
1350                             ret = -EIO;
1351                             goto fail;
1352                         }
1353 
1354                         cluster_index = offset >> s->cluster_bits;
1355                         assert(cluster_index);
1356                         if (addend != 0) {
1357                             ret = qcow2_update_cluster_refcount(
1358                                 bs, cluster_index, abs(addend), addend < 0,
1359                                 QCOW2_DISCARD_SNAPSHOT);
1360                             if (ret < 0) {
1361                                 goto fail;
1362                             }
1363                         }
1364 
1365                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1366                         if (ret < 0) {
1367                             goto fail;
1368                         }
1369                         break;
1370 
1371                     case QCOW2_CLUSTER_ZERO_PLAIN:
1372                     case QCOW2_CLUSTER_UNALLOCATED:
1373                         refcount = 0;
1374                         break;
1375 
1376                     default:
1377                         abort();
1378                     }
1379 
1380                     if (refcount == 1) {
1381                         entry |= QCOW_OFLAG_COPIED;
1382                     }
1383                     if (entry != old_entry) {
1384                         if (addend > 0) {
1385                             qcow2_cache_set_dependency(bs, s->l2_table_cache,
1386                                                        s->refcount_block_cache);
1387                         }
1388                         set_l2_entry(s, l2_slice, j, entry);
1389                         qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1390                                                      l2_slice);
1391                     }
1392                 }
1393 
1394                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1395             }
1396 
1397             if (addend != 0) {
1398                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1399                                                         s->cluster_bits,
1400                                                     abs(addend), addend < 0,
1401                                                     QCOW2_DISCARD_SNAPSHOT);
1402                 if (ret < 0) {
1403                     goto fail;
1404                 }
1405             }
1406             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1407                                      &refcount);
1408             if (ret < 0) {
1409                 goto fail;
1410             } else if (refcount == 1) {
1411                 l2_offset |= QCOW_OFLAG_COPIED;
1412             }
1413             if (l2_offset != old_l2_offset) {
1414                 l1_table[i] = l2_offset;
1415                 l1_modified = 1;
1416             }
1417         }
1418     }
1419 
1420     ret = bdrv_flush(bs);
1421 fail:
1422     if (l2_slice) {
1423         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1424     }
1425 
1426     s->cache_discards = false;
1427     qcow2_process_discards(bs, ret);
1428 
1429     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1430     if (ret == 0 && addend >= 0 && l1_modified) {
1431         for (i = 0; i < l1_size; i++) {
1432             cpu_to_be64s(&l1_table[i]);
1433         }
1434 
1435         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1436                                l1_table, l1_size2);
1437 
1438         for (i = 0; i < l1_size; i++) {
1439             be64_to_cpus(&l1_table[i]);
1440         }
1441     }
1442     if (l1_allocated)
1443         g_free(l1_table);
1444     return ret;
1445 }
1446 
1447 
1448 
1449 
1450 /*********************************************************/
1451 /* refcount checking functions */
1452 
1453 
1454 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1455 {
1456     /* This assertion holds because there is no way we can address more than
1457      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1458      * offsets have to be representable in bytes); due to every cluster
1459      * corresponding to one refcount entry, we are well below that limit */
1460     assert(entries < (UINT64_C(1) << (64 - 9)));
1461 
1462     /* Thanks to the assertion this will not overflow, because
1463      * s->refcount_order < 7.
1464      * (note: x << s->refcount_order == x * s->refcount_bits) */
1465     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1466 }
1467 
1468 /**
1469  * Reallocates *array so that it can hold new_size entries. *size must contain
1470  * the current number of entries in *array. If the reallocation fails, *array
1471  * and *size will not be modified and -errno will be returned. If the
1472  * reallocation is successful, *array will be set to the new buffer, *size
1473  * will be set to new_size and 0 will be returned. The size of the reallocated
1474  * refcount array buffer will be aligned to a cluster boundary, and the newly
1475  * allocated area will be zeroed.
1476  */
1477 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1478                                   int64_t *size, int64_t new_size)
1479 {
1480     int64_t old_byte_size, new_byte_size;
1481     void *new_ptr;
1482 
1483     /* Round to clusters so the array can be directly written to disk */
1484     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1485                     * s->cluster_size;
1486     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1487                     * s->cluster_size;
1488 
1489     if (new_byte_size == old_byte_size) {
1490         *size = new_size;
1491         return 0;
1492     }
1493 
1494     assert(new_byte_size > 0);
1495 
1496     if (new_byte_size > SIZE_MAX) {
1497         return -ENOMEM;
1498     }
1499 
1500     new_ptr = g_try_realloc(*array, new_byte_size);
1501     if (!new_ptr) {
1502         return -ENOMEM;
1503     }
1504 
1505     if (new_byte_size > old_byte_size) {
1506         memset((char *)new_ptr + old_byte_size, 0,
1507                new_byte_size - old_byte_size);
1508     }
1509 
1510     *array = new_ptr;
1511     *size  = new_size;
1512 
1513     return 0;
1514 }
1515 
1516 /*
1517  * Increases the refcount for a range of clusters in a given refcount table.
1518  * This is used to construct a temporary refcount table out of L1 and L2 tables
1519  * which can be compared to the refcount table saved in the image.
1520  *
1521  * Modifies the number of errors in res.
1522  */
1523 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1524                              void **refcount_table,
1525                              int64_t *refcount_table_size,
1526                              int64_t offset, int64_t size)
1527 {
1528     BDRVQcow2State *s = bs->opaque;
1529     uint64_t start, last, cluster_offset, k, refcount;
1530     int64_t file_len;
1531     int ret;
1532 
1533     if (size <= 0) {
1534         return 0;
1535     }
1536 
1537     file_len = bdrv_getlength(bs->file->bs);
1538     if (file_len < 0) {
1539         return file_len;
1540     }
1541 
1542     /*
1543      * Last cluster of qcow2 image may be semi-allocated, so it may be OK to
1544      * reference some space after file end but it should be less than one
1545      * cluster.
1546      */
1547     if (offset + size - file_len >= s->cluster_size) {
1548         fprintf(stderr, "ERROR: counting reference for region exceeding the "
1549                 "end of the file by one cluster or more: offset 0x%" PRIx64
1550                 " size 0x%" PRIx64 "\n", offset, size);
1551         res->corruptions++;
1552         return 0;
1553     }
1554 
1555     start = start_of_cluster(s, offset);
1556     last = start_of_cluster(s, offset + size - 1);
1557     for(cluster_offset = start; cluster_offset <= last;
1558         cluster_offset += s->cluster_size) {
1559         k = cluster_offset >> s->cluster_bits;
1560         if (k >= *refcount_table_size) {
1561             ret = realloc_refcount_array(s, refcount_table,
1562                                          refcount_table_size, k + 1);
1563             if (ret < 0) {
1564                 res->check_errors++;
1565                 return ret;
1566             }
1567         }
1568 
1569         refcount = s->get_refcount(*refcount_table, k);
1570         if (refcount == s->refcount_max) {
1571             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1572                     "\n", cluster_offset);
1573             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1574                     "width or qemu-img convert to create a clean copy if the "
1575                     "image cannot be opened for writing\n");
1576             res->corruptions++;
1577             continue;
1578         }
1579         s->set_refcount(*refcount_table, k, refcount + 1);
1580     }
1581 
1582     return 0;
1583 }
1584 
1585 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1586 enum {
1587     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1588 };
1589 
1590 /*
1591  * Increases the refcount in the given refcount table for the all clusters
1592  * referenced in the L2 table. While doing so, performs some checks on L2
1593  * entries.
1594  *
1595  * Returns the number of errors found by the checks or -errno if an internal
1596  * error occurred.
1597  */
1598 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1599                               void **refcount_table,
1600                               int64_t *refcount_table_size, int64_t l2_offset,
1601                               int flags, BdrvCheckMode fix, bool active)
1602 {
1603     BDRVQcow2State *s = bs->opaque;
1604     uint64_t *l2_table, l2_entry;
1605     uint64_t next_contiguous_offset = 0;
1606     int i, l2_size, nb_csectors, ret;
1607 
1608     /* Read L2 table from disk */
1609     l2_size = s->l2_size * l2_entry_size(s);
1610     l2_table = g_malloc(l2_size);
1611 
1612     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1613     if (ret < 0) {
1614         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1615         res->check_errors++;
1616         goto fail;
1617     }
1618 
1619     /* Do the actual checks */
1620     for(i = 0; i < s->l2_size; i++) {
1621         l2_entry = get_l2_entry(s, l2_table, i);
1622 
1623         switch (qcow2_get_cluster_type(bs, l2_entry)) {
1624         case QCOW2_CLUSTER_COMPRESSED:
1625             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1626             if (l2_entry & QCOW_OFLAG_COPIED) {
1627                 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
1628                     "copied flag must never be set for compressed "
1629                     "clusters\n", l2_entry & s->cluster_offset_mask);
1630                 l2_entry &= ~QCOW_OFLAG_COPIED;
1631                 res->corruptions++;
1632             }
1633 
1634             if (has_data_file(bs)) {
1635                 fprintf(stderr, "ERROR compressed cluster %d with data file, "
1636                         "entry=0x%" PRIx64 "\n", i, l2_entry);
1637                 res->corruptions++;
1638                 break;
1639             }
1640 
1641             /* Mark cluster as used */
1642             nb_csectors = ((l2_entry >> s->csize_shift) &
1643                            s->csize_mask) + 1;
1644             l2_entry &= s->cluster_offset_mask;
1645             ret = qcow2_inc_refcounts_imrt(
1646                 bs, res, refcount_table, refcount_table_size,
1647                 l2_entry & QCOW2_COMPRESSED_SECTOR_MASK,
1648                 nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE);
1649             if (ret < 0) {
1650                 goto fail;
1651             }
1652 
1653             if (flags & CHECK_FRAG_INFO) {
1654                 res->bfi.allocated_clusters++;
1655                 res->bfi.compressed_clusters++;
1656 
1657                 /* Compressed clusters are fragmented by nature.  Since they
1658                  * take up sub-sector space but we only have sector granularity
1659                  * I/O we need to re-read the same sectors even for adjacent
1660                  * compressed clusters.
1661                  */
1662                 res->bfi.fragmented_clusters++;
1663             }
1664             break;
1665 
1666         case QCOW2_CLUSTER_ZERO_ALLOC:
1667         case QCOW2_CLUSTER_NORMAL:
1668         {
1669             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1670 
1671             /* Correct offsets are cluster aligned */
1672             if (offset_into_cluster(s, offset)) {
1673                 bool contains_data;
1674                 res->corruptions++;
1675 
1676                 if (has_subclusters(s)) {
1677                     uint64_t l2_bitmap = get_l2_bitmap(s, l2_table, i);
1678                     contains_data = (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC);
1679                 } else {
1680                     contains_data = !(l2_entry & QCOW_OFLAG_ZERO);
1681                 }
1682 
1683                 if (!contains_data) {
1684                     fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated "
1685                             "cluster is not properly aligned; L2 entry "
1686                             "corrupted.\n",
1687                             fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1688                             offset);
1689                     if (fix & BDRV_FIX_ERRORS) {
1690                         int idx = i * (l2_entry_size(s) / sizeof(uint64_t));
1691                         uint64_t l2e_offset =
1692                             l2_offset + (uint64_t)i * l2_entry_size(s);
1693                         int ign = active ? QCOW2_OL_ACTIVE_L2 :
1694                                            QCOW2_OL_INACTIVE_L2;
1695 
1696                         l2_entry = has_subclusters(s) ? 0 : QCOW_OFLAG_ZERO;
1697                         set_l2_entry(s, l2_table, i, l2_entry);
1698                         ret = qcow2_pre_write_overlap_check(bs, ign,
1699                                 l2e_offset, l2_entry_size(s), false);
1700                         if (ret < 0) {
1701                             fprintf(stderr, "ERROR: Overlap check failed\n");
1702                             res->check_errors++;
1703                             /* Something is seriously wrong, so abort checking
1704                              * this L2 table */
1705                             goto fail;
1706                         }
1707 
1708                         ret = bdrv_pwrite_sync(bs->file, l2e_offset,
1709                                                &l2_table[idx],
1710                                                l2_entry_size(s));
1711                         if (ret < 0) {
1712                             fprintf(stderr, "ERROR: Failed to overwrite L2 "
1713                                     "table entry: %s\n", strerror(-ret));
1714                             res->check_errors++;
1715                             /* Do not abort, continue checking the rest of this
1716                              * L2 table's entries */
1717                         } else {
1718                             res->corruptions--;
1719                             res->corruptions_fixed++;
1720                             /* Skip marking the cluster as used
1721                              * (it is unused now) */
1722                             continue;
1723                         }
1724                     }
1725                 } else {
1726                     fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1727                         "not properly aligned; L2 entry corrupted.\n", offset);
1728                 }
1729             }
1730 
1731             if (flags & CHECK_FRAG_INFO) {
1732                 res->bfi.allocated_clusters++;
1733                 if (next_contiguous_offset &&
1734                     offset != next_contiguous_offset) {
1735                     res->bfi.fragmented_clusters++;
1736                 }
1737                 next_contiguous_offset = offset + s->cluster_size;
1738             }
1739 
1740             /* Mark cluster as used */
1741             if (!has_data_file(bs)) {
1742                 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table,
1743                                                refcount_table_size,
1744                                                offset, s->cluster_size);
1745                 if (ret < 0) {
1746                     goto fail;
1747                 }
1748             }
1749             break;
1750         }
1751 
1752         case QCOW2_CLUSTER_ZERO_PLAIN:
1753         case QCOW2_CLUSTER_UNALLOCATED:
1754             break;
1755 
1756         default:
1757             abort();
1758         }
1759     }
1760 
1761     g_free(l2_table);
1762     return 0;
1763 
1764 fail:
1765     g_free(l2_table);
1766     return ret;
1767 }
1768 
1769 /*
1770  * Increases the refcount for the L1 table, its L2 tables and all referenced
1771  * clusters in the given refcount table. While doing so, performs some checks
1772  * on L1 and L2 entries.
1773  *
1774  * Returns the number of errors found by the checks or -errno if an internal
1775  * error occurred.
1776  */
1777 static int check_refcounts_l1(BlockDriverState *bs,
1778                               BdrvCheckResult *res,
1779                               void **refcount_table,
1780                               int64_t *refcount_table_size,
1781                               int64_t l1_table_offset, int l1_size,
1782                               int flags, BdrvCheckMode fix, bool active)
1783 {
1784     BDRVQcow2State *s = bs->opaque;
1785     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1786     int i, ret;
1787 
1788     l1_size2 = l1_size * L1E_SIZE;
1789 
1790     /* Mark L1 table as used */
1791     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1792                                    l1_table_offset, l1_size2);
1793     if (ret < 0) {
1794         goto fail;
1795     }
1796 
1797     /* Read L1 table entries from disk */
1798     if (l1_size2 > 0) {
1799         l1_table = g_try_malloc(l1_size2);
1800         if (l1_table == NULL) {
1801             ret = -ENOMEM;
1802             res->check_errors++;
1803             goto fail;
1804         }
1805         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1806         if (ret < 0) {
1807             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1808             res->check_errors++;
1809             goto fail;
1810         }
1811         for(i = 0;i < l1_size; i++)
1812             be64_to_cpus(&l1_table[i]);
1813     }
1814 
1815     /* Do the actual checks */
1816     for(i = 0; i < l1_size; i++) {
1817         l2_offset = l1_table[i];
1818         if (l2_offset) {
1819             /* Mark L2 table as used */
1820             l2_offset &= L1E_OFFSET_MASK;
1821             ret = qcow2_inc_refcounts_imrt(bs, res,
1822                                            refcount_table, refcount_table_size,
1823                                            l2_offset, s->cluster_size);
1824             if (ret < 0) {
1825                 goto fail;
1826             }
1827 
1828             /* L2 tables are cluster aligned */
1829             if (offset_into_cluster(s, l2_offset)) {
1830                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1831                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1832                 res->corruptions++;
1833             }
1834 
1835             /* Process and check L2 entries */
1836             ret = check_refcounts_l2(bs, res, refcount_table,
1837                                      refcount_table_size, l2_offset, flags,
1838                                      fix, active);
1839             if (ret < 0) {
1840                 goto fail;
1841             }
1842         }
1843     }
1844     g_free(l1_table);
1845     return 0;
1846 
1847 fail:
1848     g_free(l1_table);
1849     return ret;
1850 }
1851 
1852 /*
1853  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1854  *
1855  * This function does not print an error message nor does it increment
1856  * check_errors if qcow2_get_refcount fails (this is because such an error will
1857  * have been already detected and sufficiently signaled by the calling function
1858  * (qcow2_check_refcounts) by the time this function is called).
1859  */
1860 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1861                               BdrvCheckMode fix)
1862 {
1863     BDRVQcow2State *s = bs->opaque;
1864     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1865     int ret;
1866     uint64_t refcount;
1867     int i, j;
1868     bool repair;
1869 
1870     if (fix & BDRV_FIX_ERRORS) {
1871         /* Always repair */
1872         repair = true;
1873     } else if (fix & BDRV_FIX_LEAKS) {
1874         /* Repair only if that seems safe: This function is always
1875          * called after the refcounts have been fixed, so the refcount
1876          * is accurate if that repair was successful */
1877         repair = !res->check_errors && !res->corruptions && !res->leaks;
1878     } else {
1879         repair = false;
1880     }
1881 
1882     for (i = 0; i < s->l1_size; i++) {
1883         uint64_t l1_entry = s->l1_table[i];
1884         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1885         int l2_dirty = 0;
1886 
1887         if (!l2_offset) {
1888             continue;
1889         }
1890 
1891         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1892                                  &refcount);
1893         if (ret < 0) {
1894             /* don't print message nor increment check_errors */
1895             continue;
1896         }
1897         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1898             res->corruptions++;
1899             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1900                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1901                     repair ? "Repairing" : "ERROR", i, l1_entry, refcount);
1902             if (repair) {
1903                 s->l1_table[i] = refcount == 1
1904                                ? l1_entry |  QCOW_OFLAG_COPIED
1905                                : l1_entry & ~QCOW_OFLAG_COPIED;
1906                 ret = qcow2_write_l1_entry(bs, i);
1907                 if (ret < 0) {
1908                     res->check_errors++;
1909                     goto fail;
1910                 }
1911                 res->corruptions--;
1912                 res->corruptions_fixed++;
1913             }
1914         }
1915 
1916         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1917                          s->l2_size * l2_entry_size(s));
1918         if (ret < 0) {
1919             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1920                     strerror(-ret));
1921             res->check_errors++;
1922             goto fail;
1923         }
1924 
1925         for (j = 0; j < s->l2_size; j++) {
1926             uint64_t l2_entry = get_l2_entry(s, l2_table, j);
1927             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1928             QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1929 
1930             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1931                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1932                 if (has_data_file(bs)) {
1933                     refcount = 1;
1934                 } else {
1935                     ret = qcow2_get_refcount(bs,
1936                                              data_offset >> s->cluster_bits,
1937                                              &refcount);
1938                     if (ret < 0) {
1939                         /* don't print message nor increment check_errors */
1940                         continue;
1941                     }
1942                 }
1943                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1944                     res->corruptions++;
1945                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1946                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1947                             repair ? "Repairing" : "ERROR", l2_entry, refcount);
1948                     if (repair) {
1949                         set_l2_entry(s, l2_table, j,
1950                                      refcount == 1 ?
1951                                      l2_entry |  QCOW_OFLAG_COPIED :
1952                                      l2_entry & ~QCOW_OFLAG_COPIED);
1953                         l2_dirty++;
1954                     }
1955                 }
1956             }
1957         }
1958 
1959         if (l2_dirty > 0) {
1960             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1961                                                 l2_offset, s->cluster_size,
1962                                                 false);
1963             if (ret < 0) {
1964                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1965                         "overlap check failed: %s\n", strerror(-ret));
1966                 res->check_errors++;
1967                 goto fail;
1968             }
1969 
1970             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1971                               s->cluster_size);
1972             if (ret < 0) {
1973                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1974                         strerror(-ret));
1975                 res->check_errors++;
1976                 goto fail;
1977             }
1978             res->corruptions -= l2_dirty;
1979             res->corruptions_fixed += l2_dirty;
1980         }
1981     }
1982 
1983     ret = 0;
1984 
1985 fail:
1986     qemu_vfree(l2_table);
1987     return ret;
1988 }
1989 
1990 /*
1991  * Checks consistency of refblocks and accounts for each refblock in
1992  * *refcount_table.
1993  */
1994 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1995                            BdrvCheckMode fix, bool *rebuild,
1996                            void **refcount_table, int64_t *nb_clusters)
1997 {
1998     BDRVQcow2State *s = bs->opaque;
1999     int64_t i, size;
2000     int ret;
2001 
2002     for(i = 0; i < s->refcount_table_size; i++) {
2003         uint64_t offset, cluster;
2004         offset = s->refcount_table[i];
2005         cluster = offset >> s->cluster_bits;
2006 
2007         /* Refcount blocks are cluster aligned */
2008         if (offset_into_cluster(s, offset)) {
2009             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
2010                 "cluster aligned; refcount table entry corrupted\n", i);
2011             res->corruptions++;
2012             *rebuild = true;
2013             continue;
2014         }
2015 
2016         if (cluster >= *nb_clusters) {
2017             res->corruptions++;
2018             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
2019                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
2020 
2021             if (fix & BDRV_FIX_ERRORS) {
2022                 int64_t new_nb_clusters;
2023                 Error *local_err = NULL;
2024 
2025                 if (offset > INT64_MAX - s->cluster_size) {
2026                     ret = -EINVAL;
2027                     goto resize_fail;
2028                 }
2029 
2030                 ret = bdrv_truncate(bs->file, offset + s->cluster_size, false,
2031                                     PREALLOC_MODE_OFF, 0, &local_err);
2032                 if (ret < 0) {
2033                     error_report_err(local_err);
2034                     goto resize_fail;
2035                 }
2036                 size = bdrv_getlength(bs->file->bs);
2037                 if (size < 0) {
2038                     ret = size;
2039                     goto resize_fail;
2040                 }
2041 
2042                 new_nb_clusters = size_to_clusters(s, size);
2043                 assert(new_nb_clusters >= *nb_clusters);
2044 
2045                 ret = realloc_refcount_array(s, refcount_table,
2046                                              nb_clusters, new_nb_clusters);
2047                 if (ret < 0) {
2048                     res->check_errors++;
2049                     return ret;
2050                 }
2051 
2052                 if (cluster >= *nb_clusters) {
2053                     ret = -EINVAL;
2054                     goto resize_fail;
2055                 }
2056 
2057                 res->corruptions--;
2058                 res->corruptions_fixed++;
2059                 ret = qcow2_inc_refcounts_imrt(bs, res,
2060                                                refcount_table, nb_clusters,
2061                                                offset, s->cluster_size);
2062                 if (ret < 0) {
2063                     return ret;
2064                 }
2065                 /* No need to check whether the refcount is now greater than 1:
2066                  * This area was just allocated and zeroed, so it can only be
2067                  * exactly 1 after qcow2_inc_refcounts_imrt() */
2068                 continue;
2069 
2070 resize_fail:
2071                 *rebuild = true;
2072                 fprintf(stderr, "ERROR could not resize image: %s\n",
2073                         strerror(-ret));
2074             }
2075             continue;
2076         }
2077 
2078         if (offset != 0) {
2079             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2080                                            offset, s->cluster_size);
2081             if (ret < 0) {
2082                 return ret;
2083             }
2084             if (s->get_refcount(*refcount_table, cluster) != 1) {
2085                 fprintf(stderr, "ERROR refcount block %" PRId64
2086                         " refcount=%" PRIu64 "\n", i,
2087                         s->get_refcount(*refcount_table, cluster));
2088                 res->corruptions++;
2089                 *rebuild = true;
2090             }
2091         }
2092     }
2093 
2094     return 0;
2095 }
2096 
2097 /*
2098  * Calculates an in-memory refcount table.
2099  */
2100 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2101                                BdrvCheckMode fix, bool *rebuild,
2102                                void **refcount_table, int64_t *nb_clusters)
2103 {
2104     BDRVQcow2State *s = bs->opaque;
2105     int64_t i;
2106     QCowSnapshot *sn;
2107     int ret;
2108 
2109     if (!*refcount_table) {
2110         int64_t old_size = 0;
2111         ret = realloc_refcount_array(s, refcount_table,
2112                                      &old_size, *nb_clusters);
2113         if (ret < 0) {
2114             res->check_errors++;
2115             return ret;
2116         }
2117     }
2118 
2119     /* header */
2120     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2121                                    0, s->cluster_size);
2122     if (ret < 0) {
2123         return ret;
2124     }
2125 
2126     /* current L1 table */
2127     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2128                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2129                              fix, true);
2130     if (ret < 0) {
2131         return ret;
2132     }
2133 
2134     /* snapshots */
2135     if (has_data_file(bs) && s->nb_snapshots) {
2136         fprintf(stderr, "ERROR %d snapshots in image with data file\n",
2137                 s->nb_snapshots);
2138         res->corruptions++;
2139     }
2140 
2141     for (i = 0; i < s->nb_snapshots; i++) {
2142         sn = s->snapshots + i;
2143         if (offset_into_cluster(s, sn->l1_table_offset)) {
2144             fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": "
2145                     "L1 table is not cluster aligned; snapshot table entry "
2146                     "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset);
2147             res->corruptions++;
2148             continue;
2149         }
2150         if (sn->l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
2151             fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": "
2152                     "L1 table is too large; snapshot table entry corrupted\n",
2153                     sn->id_str, sn->name, sn->l1_size);
2154             res->corruptions++;
2155             continue;
2156         }
2157         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2158                                  sn->l1_table_offset, sn->l1_size, 0, fix,
2159                                  false);
2160         if (ret < 0) {
2161             return ret;
2162         }
2163     }
2164     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2165                                    s->snapshots_offset, s->snapshots_size);
2166     if (ret < 0) {
2167         return ret;
2168     }
2169 
2170     /* refcount data */
2171     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2172                                    s->refcount_table_offset,
2173                                    s->refcount_table_size *
2174                                    REFTABLE_ENTRY_SIZE);
2175     if (ret < 0) {
2176         return ret;
2177     }
2178 
2179     /* encryption */
2180     if (s->crypto_header.length) {
2181         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2182                                        s->crypto_header.offset,
2183                                        s->crypto_header.length);
2184         if (ret < 0) {
2185             return ret;
2186         }
2187     }
2188 
2189     /* bitmaps */
2190     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2191     if (ret < 0) {
2192         return ret;
2193     }
2194 
2195     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2196 }
2197 
2198 /*
2199  * Compares the actual reference count for each cluster in the image against the
2200  * refcount as reported by the refcount structures on-disk.
2201  */
2202 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2203                               BdrvCheckMode fix, bool *rebuild,
2204                               int64_t *highest_cluster,
2205                               void *refcount_table, int64_t nb_clusters)
2206 {
2207     BDRVQcow2State *s = bs->opaque;
2208     int64_t i;
2209     uint64_t refcount1, refcount2;
2210     int ret;
2211 
2212     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2213         ret = qcow2_get_refcount(bs, i, &refcount1);
2214         if (ret < 0) {
2215             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2216                     i, strerror(-ret));
2217             res->check_errors++;
2218             continue;
2219         }
2220 
2221         refcount2 = s->get_refcount(refcount_table, i);
2222 
2223         if (refcount1 > 0 || refcount2 > 0) {
2224             *highest_cluster = i;
2225         }
2226 
2227         if (refcount1 != refcount2) {
2228             /* Check if we're allowed to fix the mismatch */
2229             int *num_fixed = NULL;
2230             if (refcount1 == 0) {
2231                 *rebuild = true;
2232             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2233                 num_fixed = &res->leaks_fixed;
2234             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2235                 num_fixed = &res->corruptions_fixed;
2236             }
2237 
2238             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2239                     " reference=%" PRIu64 "\n",
2240                    num_fixed != NULL     ? "Repairing" :
2241                    refcount1 < refcount2 ? "ERROR" :
2242                                            "Leaked",
2243                    i, refcount1, refcount2);
2244 
2245             if (num_fixed) {
2246                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2247                                       refcount_diff(refcount1, refcount2),
2248                                       refcount1 > refcount2,
2249                                       QCOW2_DISCARD_ALWAYS);
2250                 if (ret >= 0) {
2251                     (*num_fixed)++;
2252                     continue;
2253                 }
2254             }
2255 
2256             /* And if we couldn't, print an error */
2257             if (refcount1 < refcount2) {
2258                 res->corruptions++;
2259             } else {
2260                 res->leaks++;
2261             }
2262         }
2263     }
2264 }
2265 
2266 /*
2267  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2268  * the on-disk refcount structures.
2269  *
2270  * On input, *first_free_cluster tells where to start looking, and need not
2271  * actually be a free cluster; the returned offset will not be before that
2272  * cluster.  On output, *first_free_cluster points to the first gap found, even
2273  * if that gap was too small to be used as the returned offset.
2274  *
2275  * Note that *first_free_cluster is a cluster index whereas the return value is
2276  * an offset.
2277  */
2278 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2279                                    int cluster_count,
2280                                    void **refcount_table,
2281                                    int64_t *imrt_nb_clusters,
2282                                    int64_t *first_free_cluster)
2283 {
2284     BDRVQcow2State *s = bs->opaque;
2285     int64_t cluster = *first_free_cluster, i;
2286     bool first_gap = true;
2287     int contiguous_free_clusters;
2288     int ret;
2289 
2290     /* Starting at *first_free_cluster, find a range of at least cluster_count
2291      * continuously free clusters */
2292     for (contiguous_free_clusters = 0;
2293          cluster < *imrt_nb_clusters &&
2294          contiguous_free_clusters < cluster_count;
2295          cluster++)
2296     {
2297         if (!s->get_refcount(*refcount_table, cluster)) {
2298             contiguous_free_clusters++;
2299             if (first_gap) {
2300                 /* If this is the first free cluster found, update
2301                  * *first_free_cluster accordingly */
2302                 *first_free_cluster = cluster;
2303                 first_gap = false;
2304             }
2305         } else if (contiguous_free_clusters) {
2306             contiguous_free_clusters = 0;
2307         }
2308     }
2309 
2310     /* If contiguous_free_clusters is greater than zero, it contains the number
2311      * of continuously free clusters until the current cluster; the first free
2312      * cluster in the current "gap" is therefore
2313      * cluster - contiguous_free_clusters */
2314 
2315     /* If no such range could be found, grow the in-memory refcount table
2316      * accordingly to append free clusters at the end of the image */
2317     if (contiguous_free_clusters < cluster_count) {
2318         /* contiguous_free_clusters clusters are already empty at the image end;
2319          * we need cluster_count clusters; therefore, we have to allocate
2320          * cluster_count - contiguous_free_clusters new clusters at the end of
2321          * the image (which is the current value of cluster; note that cluster
2322          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2323          * the image end) */
2324         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2325                                      cluster + cluster_count
2326                                      - contiguous_free_clusters);
2327         if (ret < 0) {
2328             return ret;
2329         }
2330     }
2331 
2332     /* Go back to the first free cluster */
2333     cluster -= contiguous_free_clusters;
2334     for (i = 0; i < cluster_count; i++) {
2335         s->set_refcount(*refcount_table, cluster + i, 1);
2336     }
2337 
2338     return cluster << s->cluster_bits;
2339 }
2340 
2341 /*
2342  * Creates a new refcount structure based solely on the in-memory information
2343  * given through *refcount_table. All necessary allocations will be reflected
2344  * in that array.
2345  *
2346  * On success, the old refcount structure is leaked (it will be covered by the
2347  * new refcount structure).
2348  */
2349 static int rebuild_refcount_structure(BlockDriverState *bs,
2350                                       BdrvCheckResult *res,
2351                                       void **refcount_table,
2352                                       int64_t *nb_clusters)
2353 {
2354     BDRVQcow2State *s = bs->opaque;
2355     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2356     int64_t refblock_offset, refblock_start, refblock_index;
2357     uint32_t reftable_size = 0;
2358     uint64_t *on_disk_reftable = NULL;
2359     void *on_disk_refblock;
2360     int ret = 0;
2361     struct {
2362         uint64_t reftable_offset;
2363         uint32_t reftable_clusters;
2364     } QEMU_PACKED reftable_offset_and_clusters;
2365 
2366     qcow2_cache_empty(bs, s->refcount_block_cache);
2367 
2368 write_refblocks:
2369     for (; cluster < *nb_clusters; cluster++) {
2370         if (!s->get_refcount(*refcount_table, cluster)) {
2371             continue;
2372         }
2373 
2374         refblock_index = cluster >> s->refcount_block_bits;
2375         refblock_start = refblock_index << s->refcount_block_bits;
2376 
2377         /* Don't allocate a cluster in a refblock already written to disk */
2378         if (first_free_cluster < refblock_start) {
2379             first_free_cluster = refblock_start;
2380         }
2381         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2382                                               nb_clusters, &first_free_cluster);
2383         if (refblock_offset < 0) {
2384             fprintf(stderr, "ERROR allocating refblock: %s\n",
2385                     strerror(-refblock_offset));
2386             res->check_errors++;
2387             ret = refblock_offset;
2388             goto fail;
2389         }
2390 
2391         if (reftable_size <= refblock_index) {
2392             uint32_t old_reftable_size = reftable_size;
2393             uint64_t *new_on_disk_reftable;
2394 
2395             reftable_size = ROUND_UP((refblock_index + 1) * REFTABLE_ENTRY_SIZE,
2396                                      s->cluster_size) / REFTABLE_ENTRY_SIZE;
2397             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2398                                                  reftable_size *
2399                                                  REFTABLE_ENTRY_SIZE);
2400             if (!new_on_disk_reftable) {
2401                 res->check_errors++;
2402                 ret = -ENOMEM;
2403                 goto fail;
2404             }
2405             on_disk_reftable = new_on_disk_reftable;
2406 
2407             memset(on_disk_reftable + old_reftable_size, 0,
2408                    (reftable_size - old_reftable_size) * REFTABLE_ENTRY_SIZE);
2409 
2410             /* The offset we have for the reftable is now no longer valid;
2411              * this will leak that range, but we can easily fix that by running
2412              * a leak-fixing check after this rebuild operation */
2413             reftable_offset = -1;
2414         } else {
2415             assert(on_disk_reftable);
2416         }
2417         on_disk_reftable[refblock_index] = refblock_offset;
2418 
2419         /* If this is apparently the last refblock (for now), try to squeeze the
2420          * reftable in */
2421         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2422             reftable_offset < 0)
2423         {
2424             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2425                                                           REFTABLE_ENTRY_SIZE);
2426             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2427                                                   refcount_table, nb_clusters,
2428                                                   &first_free_cluster);
2429             if (reftable_offset < 0) {
2430                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2431                         strerror(-reftable_offset));
2432                 res->check_errors++;
2433                 ret = reftable_offset;
2434                 goto fail;
2435             }
2436         }
2437 
2438         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2439                                             s->cluster_size, false);
2440         if (ret < 0) {
2441             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2442             goto fail;
2443         }
2444 
2445         /* The size of *refcount_table is always cluster-aligned, therefore the
2446          * write operation will not overflow */
2447         on_disk_refblock = (void *)((char *) *refcount_table +
2448                                     refblock_index * s->cluster_size);
2449 
2450         ret = bdrv_pwrite(bs->file, refblock_offset, on_disk_refblock,
2451                           s->cluster_size);
2452         if (ret < 0) {
2453             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2454             goto fail;
2455         }
2456 
2457         /* Go to the end of this refblock */
2458         cluster = refblock_start + s->refcount_block_size - 1;
2459     }
2460 
2461     if (reftable_offset < 0) {
2462         uint64_t post_refblock_start, reftable_clusters;
2463 
2464         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2465         reftable_clusters =
2466             size_to_clusters(s, reftable_size * REFTABLE_ENTRY_SIZE);
2467         /* Not pretty but simple */
2468         if (first_free_cluster < post_refblock_start) {
2469             first_free_cluster = post_refblock_start;
2470         }
2471         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2472                                               refcount_table, nb_clusters,
2473                                               &first_free_cluster);
2474         if (reftable_offset < 0) {
2475             fprintf(stderr, "ERROR allocating reftable: %s\n",
2476                     strerror(-reftable_offset));
2477             res->check_errors++;
2478             ret = reftable_offset;
2479             goto fail;
2480         }
2481 
2482         goto write_refblocks;
2483     }
2484 
2485     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2486         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2487     }
2488 
2489     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2490                                         reftable_size * REFTABLE_ENTRY_SIZE,
2491                                         false);
2492     if (ret < 0) {
2493         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2494         goto fail;
2495     }
2496 
2497     assert(reftable_size < INT_MAX / REFTABLE_ENTRY_SIZE);
2498     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2499                       reftable_size * REFTABLE_ENTRY_SIZE);
2500     if (ret < 0) {
2501         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2502         goto fail;
2503     }
2504 
2505     /* Enter new reftable into the image header */
2506     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2507     reftable_offset_and_clusters.reftable_clusters =
2508         cpu_to_be32(size_to_clusters(s, reftable_size * REFTABLE_ENTRY_SIZE));
2509     ret = bdrv_pwrite_sync(bs->file,
2510                            offsetof(QCowHeader, refcount_table_offset),
2511                            &reftable_offset_and_clusters,
2512                            sizeof(reftable_offset_and_clusters));
2513     if (ret < 0) {
2514         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2515         goto fail;
2516     }
2517 
2518     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2519         be64_to_cpus(&on_disk_reftable[refblock_index]);
2520     }
2521     s->refcount_table = on_disk_reftable;
2522     s->refcount_table_offset = reftable_offset;
2523     s->refcount_table_size = reftable_size;
2524     update_max_refcount_table_index(s);
2525 
2526     return 0;
2527 
2528 fail:
2529     g_free(on_disk_reftable);
2530     return ret;
2531 }
2532 
2533 /*
2534  * Checks an image for refcount consistency.
2535  *
2536  * Returns 0 if no errors are found, the number of errors in case the image is
2537  * detected as corrupted, and -errno when an internal error occurred.
2538  */
2539 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2540                           BdrvCheckMode fix)
2541 {
2542     BDRVQcow2State *s = bs->opaque;
2543     BdrvCheckResult pre_compare_res;
2544     int64_t size, highest_cluster, nb_clusters;
2545     void *refcount_table = NULL;
2546     bool rebuild = false;
2547     int ret;
2548 
2549     size = bdrv_getlength(bs->file->bs);
2550     if (size < 0) {
2551         res->check_errors++;
2552         return size;
2553     }
2554 
2555     nb_clusters = size_to_clusters(s, size);
2556     if (nb_clusters > INT_MAX) {
2557         res->check_errors++;
2558         return -EFBIG;
2559     }
2560 
2561     res->bfi.total_clusters =
2562         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2563 
2564     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2565                               &nb_clusters);
2566     if (ret < 0) {
2567         goto fail;
2568     }
2569 
2570     /* In case we don't need to rebuild the refcount structure (but want to fix
2571      * something), this function is immediately called again, in which case the
2572      * result should be ignored */
2573     pre_compare_res = *res;
2574     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2575                       nb_clusters);
2576 
2577     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2578         BdrvCheckResult old_res = *res;
2579         int fresh_leaks = 0;
2580 
2581         fprintf(stderr, "Rebuilding refcount structure\n");
2582         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2583                                          &nb_clusters);
2584         if (ret < 0) {
2585             goto fail;
2586         }
2587 
2588         res->corruptions = 0;
2589         res->leaks = 0;
2590 
2591         /* Because the old reftable has been exchanged for a new one the
2592          * references have to be recalculated */
2593         rebuild = false;
2594         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2595         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2596                                   &nb_clusters);
2597         if (ret < 0) {
2598             goto fail;
2599         }
2600 
2601         if (fix & BDRV_FIX_LEAKS) {
2602             /* The old refcount structures are now leaked, fix it; the result
2603              * can be ignored, aside from leaks which were introduced by
2604              * rebuild_refcount_structure() that could not be fixed */
2605             BdrvCheckResult saved_res = *res;
2606             *res = (BdrvCheckResult){ 0 };
2607 
2608             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2609                               &highest_cluster, refcount_table, nb_clusters);
2610             if (rebuild) {
2611                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2612                         "broken\n");
2613             }
2614 
2615             /* Any leaks accounted for here were introduced by
2616              * rebuild_refcount_structure() because that function has created a
2617              * new refcount structure from scratch */
2618             fresh_leaks = res->leaks;
2619             *res = saved_res;
2620         }
2621 
2622         if (res->corruptions < old_res.corruptions) {
2623             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2624         }
2625         if (res->leaks < old_res.leaks) {
2626             res->leaks_fixed += old_res.leaks - res->leaks;
2627         }
2628         res->leaks += fresh_leaks;
2629     } else if (fix) {
2630         if (rebuild) {
2631             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2632             res->check_errors++;
2633             ret = -EIO;
2634             goto fail;
2635         }
2636 
2637         if (res->leaks || res->corruptions) {
2638             *res = pre_compare_res;
2639             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2640                               refcount_table, nb_clusters);
2641         }
2642     }
2643 
2644     /* check OFLAG_COPIED */
2645     ret = check_oflag_copied(bs, res, fix);
2646     if (ret < 0) {
2647         goto fail;
2648     }
2649 
2650     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2651     ret = 0;
2652 
2653 fail:
2654     g_free(refcount_table);
2655 
2656     return ret;
2657 }
2658 
2659 #define overlaps_with(ofs, sz) \
2660     ranges_overlap(offset, size, ofs, sz)
2661 
2662 /*
2663  * Checks if the given offset into the image file is actually free to use by
2664  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2665  * i.e. a sanity check without relying on the refcount tables.
2666  *
2667  * The ign parameter specifies what checks not to perform (being a bitmask of
2668  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2669  *
2670  * Returns:
2671  * - 0 if writing to this offset will not affect the mentioned metadata
2672  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2673  * - a negative value (-errno) indicating an error while performing a check,
2674  *   e.g. when bdrv_pread failed on QCOW2_OL_INACTIVE_L2
2675  */
2676 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2677                                  int64_t size)
2678 {
2679     BDRVQcow2State *s = bs->opaque;
2680     int chk = s->overlap_check & ~ign;
2681     int i, j;
2682 
2683     if (!size) {
2684         return 0;
2685     }
2686 
2687     if (chk & QCOW2_OL_MAIN_HEADER) {
2688         if (offset < s->cluster_size) {
2689             return QCOW2_OL_MAIN_HEADER;
2690         }
2691     }
2692 
2693     /* align range to test to cluster boundaries */
2694     size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2695     offset = start_of_cluster(s, offset);
2696 
2697     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2698         if (overlaps_with(s->l1_table_offset, s->l1_size * L1E_SIZE)) {
2699             return QCOW2_OL_ACTIVE_L1;
2700         }
2701     }
2702 
2703     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2704         if (overlaps_with(s->refcount_table_offset,
2705             s->refcount_table_size * REFTABLE_ENTRY_SIZE)) {
2706             return QCOW2_OL_REFCOUNT_TABLE;
2707         }
2708     }
2709 
2710     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2711         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2712             return QCOW2_OL_SNAPSHOT_TABLE;
2713         }
2714     }
2715 
2716     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2717         for (i = 0; i < s->nb_snapshots; i++) {
2718             if (s->snapshots[i].l1_size &&
2719                 overlaps_with(s->snapshots[i].l1_table_offset,
2720                 s->snapshots[i].l1_size * L1E_SIZE)) {
2721                 return QCOW2_OL_INACTIVE_L1;
2722             }
2723         }
2724     }
2725 
2726     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2727         for (i = 0; i < s->l1_size; i++) {
2728             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2729                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2730                 s->cluster_size)) {
2731                 return QCOW2_OL_ACTIVE_L2;
2732             }
2733         }
2734     }
2735 
2736     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2737         unsigned last_entry = s->max_refcount_table_index;
2738         assert(last_entry < s->refcount_table_size);
2739         assert(last_entry + 1 == s->refcount_table_size ||
2740                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2741         for (i = 0; i <= last_entry; i++) {
2742             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2743                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2744                 s->cluster_size)) {
2745                 return QCOW2_OL_REFCOUNT_BLOCK;
2746             }
2747         }
2748     }
2749 
2750     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2751         for (i = 0; i < s->nb_snapshots; i++) {
2752             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2753             uint32_t l1_sz  = s->snapshots[i].l1_size;
2754             uint64_t l1_sz2 = l1_sz * L1E_SIZE;
2755             uint64_t *l1;
2756             int ret;
2757 
2758             ret = qcow2_validate_table(bs, l1_ofs, l1_sz, L1E_SIZE,
2759                                        QCOW_MAX_L1_SIZE, "", NULL);
2760             if (ret < 0) {
2761                 return ret;
2762             }
2763 
2764             l1 = g_try_malloc(l1_sz2);
2765 
2766             if (l1_sz2 && l1 == NULL) {
2767                 return -ENOMEM;
2768             }
2769 
2770             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2771             if (ret < 0) {
2772                 g_free(l1);
2773                 return ret;
2774             }
2775 
2776             for (j = 0; j < l1_sz; j++) {
2777                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2778                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2779                     g_free(l1);
2780                     return QCOW2_OL_INACTIVE_L2;
2781                 }
2782             }
2783 
2784             g_free(l1);
2785         }
2786     }
2787 
2788     if ((chk & QCOW2_OL_BITMAP_DIRECTORY) &&
2789         (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS))
2790     {
2791         if (overlaps_with(s->bitmap_directory_offset,
2792                           s->bitmap_directory_size))
2793         {
2794             return QCOW2_OL_BITMAP_DIRECTORY;
2795         }
2796     }
2797 
2798     return 0;
2799 }
2800 
2801 static const char *metadata_ol_names[] = {
2802     [QCOW2_OL_MAIN_HEADER_BITNR]        = "qcow2_header",
2803     [QCOW2_OL_ACTIVE_L1_BITNR]          = "active L1 table",
2804     [QCOW2_OL_ACTIVE_L2_BITNR]          = "active L2 table",
2805     [QCOW2_OL_REFCOUNT_TABLE_BITNR]     = "refcount table",
2806     [QCOW2_OL_REFCOUNT_BLOCK_BITNR]     = "refcount block",
2807     [QCOW2_OL_SNAPSHOT_TABLE_BITNR]     = "snapshot table",
2808     [QCOW2_OL_INACTIVE_L1_BITNR]        = "inactive L1 table",
2809     [QCOW2_OL_INACTIVE_L2_BITNR]        = "inactive L2 table",
2810     [QCOW2_OL_BITMAP_DIRECTORY_BITNR]   = "bitmap directory",
2811 };
2812 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names));
2813 
2814 /*
2815  * First performs a check for metadata overlaps (through
2816  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2817  * while performing a check), that value is returned. If an impending overlap
2818  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2819  * and -EIO returned.
2820  *
2821  * Returns 0 if there were neither overlaps nor errors while checking for
2822  * overlaps; or a negative value (-errno) on error.
2823  */
2824 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2825                                   int64_t size, bool data_file)
2826 {
2827     int ret;
2828 
2829     if (data_file && has_data_file(bs)) {
2830         return 0;
2831     }
2832 
2833     ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2834     if (ret < 0) {
2835         return ret;
2836     } else if (ret > 0) {
2837         int metadata_ol_bitnr = ctz32(ret);
2838         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2839 
2840         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2841                                 "write on metadata (overlaps with %s)",
2842                                 metadata_ol_names[metadata_ol_bitnr]);
2843         return -EIO;
2844     }
2845 
2846     return 0;
2847 }
2848 
2849 /* A pointer to a function of this type is given to walk_over_reftable(). That
2850  * function will create refblocks and pass them to a RefblockFinishOp once they
2851  * are completed (@refblock). @refblock_empty is set if the refblock is
2852  * completely empty.
2853  *
2854  * Along with the refblock, a corresponding reftable entry is passed, in the
2855  * reftable @reftable (which may be reallocated) at @reftable_index.
2856  *
2857  * @allocated should be set to true if a new cluster has been allocated.
2858  */
2859 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2860                                uint64_t reftable_index, uint64_t *reftable_size,
2861                                void *refblock, bool refblock_empty,
2862                                bool *allocated, Error **errp);
2863 
2864 /**
2865  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2866  * it is not empty) and inserts its offset into the new reftable. The size of
2867  * this new reftable is increased as required.
2868  */
2869 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2870                           uint64_t reftable_index, uint64_t *reftable_size,
2871                           void *refblock, bool refblock_empty, bool *allocated,
2872                           Error **errp)
2873 {
2874     BDRVQcow2State *s = bs->opaque;
2875     int64_t offset;
2876 
2877     if (!refblock_empty && reftable_index >= *reftable_size) {
2878         uint64_t *new_reftable;
2879         uint64_t new_reftable_size;
2880 
2881         new_reftable_size = ROUND_UP(reftable_index + 1,
2882                                      s->cluster_size / REFTABLE_ENTRY_SIZE);
2883         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / REFTABLE_ENTRY_SIZE) {
2884             error_setg(errp,
2885                        "This operation would make the refcount table grow "
2886                        "beyond the maximum size supported by QEMU, aborting");
2887             return -ENOTSUP;
2888         }
2889 
2890         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2891                                                 REFTABLE_ENTRY_SIZE);
2892         if (!new_reftable) {
2893             error_setg(errp, "Failed to increase reftable buffer size");
2894             return -ENOMEM;
2895         }
2896 
2897         memset(new_reftable + *reftable_size, 0,
2898                (new_reftable_size - *reftable_size) * REFTABLE_ENTRY_SIZE);
2899 
2900         *reftable      = new_reftable;
2901         *reftable_size = new_reftable_size;
2902     }
2903 
2904     if (!refblock_empty && !(*reftable)[reftable_index]) {
2905         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2906         if (offset < 0) {
2907             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2908             return offset;
2909         }
2910         (*reftable)[reftable_index] = offset;
2911         *allocated = true;
2912     }
2913 
2914     return 0;
2915 }
2916 
2917 /**
2918  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2919  * offset specified by the new reftable's entry. It does not modify the new
2920  * reftable or change any refcounts.
2921  */
2922 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2923                           uint64_t reftable_index, uint64_t *reftable_size,
2924                           void *refblock, bool refblock_empty, bool *allocated,
2925                           Error **errp)
2926 {
2927     BDRVQcow2State *s = bs->opaque;
2928     int64_t offset;
2929     int ret;
2930 
2931     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2932         offset = (*reftable)[reftable_index];
2933 
2934         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size,
2935                                             false);
2936         if (ret < 0) {
2937             error_setg_errno(errp, -ret, "Overlap check failed");
2938             return ret;
2939         }
2940 
2941         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2942         if (ret < 0) {
2943             error_setg_errno(errp, -ret, "Failed to write refblock");
2944             return ret;
2945         }
2946     } else {
2947         assert(refblock_empty);
2948     }
2949 
2950     return 0;
2951 }
2952 
2953 /**
2954  * This function walks over the existing reftable and every referenced refblock;
2955  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2956  * create an equal new entry in the passed @new_refblock. Once that
2957  * @new_refblock is completely filled, @operation will be called.
2958  *
2959  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2960  * @index is the index of the walk_over_reftable() calls and @total is the total
2961  * number of walk_over_reftable() calls per amend operation. Both are used for
2962  * calculating the parameters for the status callback.
2963  *
2964  * @allocated is set to true if a new cluster has been allocated.
2965  */
2966 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2967                               uint64_t *new_reftable_index,
2968                               uint64_t *new_reftable_size,
2969                               void *new_refblock, int new_refblock_size,
2970                               int new_refcount_bits,
2971                               RefblockFinishOp *operation, bool *allocated,
2972                               Qcow2SetRefcountFunc *new_set_refcount,
2973                               BlockDriverAmendStatusCB *status_cb,
2974                               void *cb_opaque, int index, int total,
2975                               Error **errp)
2976 {
2977     BDRVQcow2State *s = bs->opaque;
2978     uint64_t reftable_index;
2979     bool new_refblock_empty = true;
2980     int refblock_index;
2981     int new_refblock_index = 0;
2982     int ret;
2983 
2984     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2985          reftable_index++)
2986     {
2987         uint64_t refblock_offset = s->refcount_table[reftable_index]
2988                                  & REFT_OFFSET_MASK;
2989 
2990         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2991                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2992 
2993         if (refblock_offset) {
2994             void *refblock;
2995 
2996             if (offset_into_cluster(s, refblock_offset)) {
2997                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2998                                         PRIx64 " unaligned (reftable index: %#"
2999                                         PRIx64 ")", refblock_offset,
3000                                         reftable_index);
3001                 error_setg(errp,
3002                            "Image is corrupt (unaligned refblock offset)");
3003                 return -EIO;
3004             }
3005 
3006             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
3007                                   &refblock);
3008             if (ret < 0) {
3009                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
3010                 return ret;
3011             }
3012 
3013             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3014                  refblock_index++)
3015             {
3016                 uint64_t refcount;
3017 
3018                 if (new_refblock_index >= new_refblock_size) {
3019                     /* new_refblock is now complete */
3020                     ret = operation(bs, new_reftable, *new_reftable_index,
3021                                     new_reftable_size, new_refblock,
3022                                     new_refblock_empty, allocated, errp);
3023                     if (ret < 0) {
3024                         qcow2_cache_put(s->refcount_block_cache, &refblock);
3025                         return ret;
3026                     }
3027 
3028                     (*new_reftable_index)++;
3029                     new_refblock_index = 0;
3030                     new_refblock_empty = true;
3031                 }
3032 
3033                 refcount = s->get_refcount(refblock, refblock_index);
3034                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
3035                     uint64_t offset;
3036 
3037                     qcow2_cache_put(s->refcount_block_cache, &refblock);
3038 
3039                     offset = ((reftable_index << s->refcount_block_bits)
3040                               + refblock_index) << s->cluster_bits;
3041 
3042                     error_setg(errp, "Cannot decrease refcount entry width to "
3043                                "%i bits: Cluster at offset %#" PRIx64 " has a "
3044                                "refcount of %" PRIu64, new_refcount_bits,
3045                                offset, refcount);
3046                     return -EINVAL;
3047                 }
3048 
3049                 if (new_set_refcount) {
3050                     new_set_refcount(new_refblock, new_refblock_index++,
3051                                      refcount);
3052                 } else {
3053                     new_refblock_index++;
3054                 }
3055                 new_refblock_empty = new_refblock_empty && refcount == 0;
3056             }
3057 
3058             qcow2_cache_put(s->refcount_block_cache, &refblock);
3059         } else {
3060             /* No refblock means every refcount is 0 */
3061             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3062                  refblock_index++)
3063             {
3064                 if (new_refblock_index >= new_refblock_size) {
3065                     /* new_refblock is now complete */
3066                     ret = operation(bs, new_reftable, *new_reftable_index,
3067                                     new_reftable_size, new_refblock,
3068                                     new_refblock_empty, allocated, errp);
3069                     if (ret < 0) {
3070                         return ret;
3071                     }
3072 
3073                     (*new_reftable_index)++;
3074                     new_refblock_index = 0;
3075                     new_refblock_empty = true;
3076                 }
3077 
3078                 if (new_set_refcount) {
3079                     new_set_refcount(new_refblock, new_refblock_index++, 0);
3080                 } else {
3081                     new_refblock_index++;
3082                 }
3083             }
3084         }
3085     }
3086 
3087     if (new_refblock_index > 0) {
3088         /* Complete the potentially existing partially filled final refblock */
3089         if (new_set_refcount) {
3090             for (; new_refblock_index < new_refblock_size;
3091                  new_refblock_index++)
3092             {
3093                 new_set_refcount(new_refblock, new_refblock_index, 0);
3094             }
3095         }
3096 
3097         ret = operation(bs, new_reftable, *new_reftable_index,
3098                         new_reftable_size, new_refblock, new_refblock_empty,
3099                         allocated, errp);
3100         if (ret < 0) {
3101             return ret;
3102         }
3103 
3104         (*new_reftable_index)++;
3105     }
3106 
3107     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
3108               (uint64_t)total * s->refcount_table_size, cb_opaque);
3109 
3110     return 0;
3111 }
3112 
3113 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
3114                                 BlockDriverAmendStatusCB *status_cb,
3115                                 void *cb_opaque, Error **errp)
3116 {
3117     BDRVQcow2State *s = bs->opaque;
3118     Qcow2GetRefcountFunc *new_get_refcount;
3119     Qcow2SetRefcountFunc *new_set_refcount;
3120     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
3121     uint64_t *new_reftable = NULL, new_reftable_size = 0;
3122     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
3123     uint64_t new_reftable_index = 0;
3124     uint64_t i;
3125     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
3126     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
3127     int old_refcount_order;
3128     int walk_index = 0;
3129     int ret;
3130     bool new_allocation;
3131 
3132     assert(s->qcow_version >= 3);
3133     assert(refcount_order >= 0 && refcount_order <= 6);
3134 
3135     /* see qcow2_open() */
3136     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3137 
3138     new_get_refcount = get_refcount_funcs[refcount_order];
3139     new_set_refcount = set_refcount_funcs[refcount_order];
3140 
3141 
3142     do {
3143         int total_walks;
3144 
3145         new_allocation = false;
3146 
3147         /* At least we have to do this walk and the one which writes the
3148          * refblocks; also, at least we have to do this loop here at least
3149          * twice (normally), first to do the allocations, and second to
3150          * determine that everything is correctly allocated, this then makes
3151          * three walks in total */
3152         total_walks = MAX(walk_index + 2, 3);
3153 
3154         /* First, allocate the structures so they are present in the refcount
3155          * structures */
3156         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3157                                  &new_reftable_size, NULL, new_refblock_size,
3158                                  new_refcount_bits, &alloc_refblock,
3159                                  &new_allocation, NULL, status_cb, cb_opaque,
3160                                  walk_index++, total_walks, errp);
3161         if (ret < 0) {
3162             goto done;
3163         }
3164 
3165         new_reftable_index = 0;
3166 
3167         if (new_allocation) {
3168             if (new_reftable_offset) {
3169                 qcow2_free_clusters(
3170                     bs, new_reftable_offset,
3171                     allocated_reftable_size * REFTABLE_ENTRY_SIZE,
3172                     QCOW2_DISCARD_NEVER);
3173             }
3174 
3175             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3176                                                            REFTABLE_ENTRY_SIZE);
3177             if (new_reftable_offset < 0) {
3178                 error_setg_errno(errp, -new_reftable_offset,
3179                                  "Failed to allocate the new reftable");
3180                 ret = new_reftable_offset;
3181                 goto done;
3182             }
3183             allocated_reftable_size = new_reftable_size;
3184         }
3185     } while (new_allocation);
3186 
3187     /* Second, write the new refblocks */
3188     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3189                              &new_reftable_size, new_refblock,
3190                              new_refblock_size, new_refcount_bits,
3191                              &flush_refblock, &new_allocation, new_set_refcount,
3192                              status_cb, cb_opaque, walk_index, walk_index + 1,
3193                              errp);
3194     if (ret < 0) {
3195         goto done;
3196     }
3197     assert(!new_allocation);
3198 
3199 
3200     /* Write the new reftable */
3201     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3202                                         new_reftable_size * REFTABLE_ENTRY_SIZE,
3203                                         false);
3204     if (ret < 0) {
3205         error_setg_errno(errp, -ret, "Overlap check failed");
3206         goto done;
3207     }
3208 
3209     for (i = 0; i < new_reftable_size; i++) {
3210         cpu_to_be64s(&new_reftable[i]);
3211     }
3212 
3213     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
3214                       new_reftable_size * REFTABLE_ENTRY_SIZE);
3215 
3216     for (i = 0; i < new_reftable_size; i++) {
3217         be64_to_cpus(&new_reftable[i]);
3218     }
3219 
3220     if (ret < 0) {
3221         error_setg_errno(errp, -ret, "Failed to write the new reftable");
3222         goto done;
3223     }
3224 
3225 
3226     /* Empty the refcount cache */
3227     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3228     if (ret < 0) {
3229         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3230         goto done;
3231     }
3232 
3233     /* Update the image header to point to the new reftable; this only updates
3234      * the fields which are relevant to qcow2_update_header(); other fields
3235      * such as s->refcount_table or s->refcount_bits stay stale for now
3236      * (because we have to restore everything if qcow2_update_header() fails) */
3237     old_refcount_order  = s->refcount_order;
3238     old_reftable_size   = s->refcount_table_size;
3239     old_reftable_offset = s->refcount_table_offset;
3240 
3241     s->refcount_order        = refcount_order;
3242     s->refcount_table_size   = new_reftable_size;
3243     s->refcount_table_offset = new_reftable_offset;
3244 
3245     ret = qcow2_update_header(bs);
3246     if (ret < 0) {
3247         s->refcount_order        = old_refcount_order;
3248         s->refcount_table_size   = old_reftable_size;
3249         s->refcount_table_offset = old_reftable_offset;
3250         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3251         goto done;
3252     }
3253 
3254     /* Now update the rest of the in-memory information */
3255     old_reftable = s->refcount_table;
3256     s->refcount_table = new_reftable;
3257     update_max_refcount_table_index(s);
3258 
3259     s->refcount_bits = 1 << refcount_order;
3260     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3261     s->refcount_max += s->refcount_max - 1;
3262 
3263     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3264     s->refcount_block_size = 1 << s->refcount_block_bits;
3265 
3266     s->get_refcount = new_get_refcount;
3267     s->set_refcount = new_set_refcount;
3268 
3269     /* For cleaning up all old refblocks and the old reftable below the "done"
3270      * label */
3271     new_reftable        = old_reftable;
3272     new_reftable_size   = old_reftable_size;
3273     new_reftable_offset = old_reftable_offset;
3274 
3275 done:
3276     if (new_reftable) {
3277         /* On success, new_reftable actually points to the old reftable (and
3278          * new_reftable_size is the old reftable's size); but that is just
3279          * fine */
3280         for (i = 0; i < new_reftable_size; i++) {
3281             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3282             if (offset) {
3283                 qcow2_free_clusters(bs, offset, s->cluster_size,
3284                                     QCOW2_DISCARD_OTHER);
3285             }
3286         }
3287         g_free(new_reftable);
3288 
3289         if (new_reftable_offset > 0) {
3290             qcow2_free_clusters(bs, new_reftable_offset,
3291                                 new_reftable_size * REFTABLE_ENTRY_SIZE,
3292                                 QCOW2_DISCARD_OTHER);
3293         }
3294     }
3295 
3296     qemu_vfree(new_refblock);
3297     return ret;
3298 }
3299 
3300 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3301 {
3302     BDRVQcow2State *s = bs->opaque;
3303     uint32_t index = offset_to_reftable_index(s, offset);
3304     int64_t covering_refblock_offset = 0;
3305 
3306     if (index < s->refcount_table_size) {
3307         covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3308     }
3309     if (!covering_refblock_offset) {
3310         qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3311                                 "not covered by the refcount structures",
3312                                 offset);
3313         return -EIO;
3314     }
3315 
3316     return covering_refblock_offset;
3317 }
3318 
3319 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3320                                         uint64_t discard_block_offs)
3321 {
3322     BDRVQcow2State *s = bs->opaque;
3323     int64_t refblock_offs;
3324     uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3325     uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3326     void *refblock;
3327     int ret;
3328 
3329     refblock_offs = get_refblock_offset(bs, discard_block_offs);
3330     if (refblock_offs < 0) {
3331         return refblock_offs;
3332     }
3333 
3334     assert(discard_block_offs != 0);
3335 
3336     ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3337                           &refblock);
3338     if (ret < 0) {
3339         return ret;
3340     }
3341 
3342     if (s->get_refcount(refblock, block_index) != 1) {
3343         qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3344                                 " refblock offset %#" PRIx64
3345                                 ", reftable index %u"
3346                                 ", block offset %#" PRIx64
3347                                 ", refcount %#" PRIx64,
3348                                 refblock_offs,
3349                                 offset_to_reftable_index(s, discard_block_offs),
3350                                 discard_block_offs,
3351                                 s->get_refcount(refblock, block_index));
3352         qcow2_cache_put(s->refcount_block_cache, &refblock);
3353         return -EINVAL;
3354     }
3355     s->set_refcount(refblock, block_index, 0);
3356 
3357     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3358 
3359     qcow2_cache_put(s->refcount_block_cache, &refblock);
3360 
3361     if (cluster_index < s->free_cluster_index) {
3362         s->free_cluster_index = cluster_index;
3363     }
3364 
3365     refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3366                                            discard_block_offs);
3367     if (refblock) {
3368         /* discard refblock from the cache if refblock is cached */
3369         qcow2_cache_discard(s->refcount_block_cache, refblock);
3370     }
3371     update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3372 
3373     return 0;
3374 }
3375 
3376 int qcow2_shrink_reftable(BlockDriverState *bs)
3377 {
3378     BDRVQcow2State *s = bs->opaque;
3379     uint64_t *reftable_tmp =
3380         g_malloc(s->refcount_table_size * REFTABLE_ENTRY_SIZE);
3381     int i, ret;
3382 
3383     for (i = 0; i < s->refcount_table_size; i++) {
3384         int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3385         void *refblock;
3386         bool unused_block;
3387 
3388         if (refblock_offs == 0) {
3389             reftable_tmp[i] = 0;
3390             continue;
3391         }
3392         ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3393                               &refblock);
3394         if (ret < 0) {
3395             goto out;
3396         }
3397 
3398         /* the refblock has own reference */
3399         if (i == offset_to_reftable_index(s, refblock_offs)) {
3400             uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3401                                    (s->refcount_block_size - 1);
3402             uint64_t refcount = s->get_refcount(refblock, block_index);
3403 
3404             s->set_refcount(refblock, block_index, 0);
3405 
3406             unused_block = buffer_is_zero(refblock, s->cluster_size);
3407 
3408             s->set_refcount(refblock, block_index, refcount);
3409         } else {
3410             unused_block = buffer_is_zero(refblock, s->cluster_size);
3411         }
3412         qcow2_cache_put(s->refcount_block_cache, &refblock);
3413 
3414         reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3415     }
3416 
3417     ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3418                            s->refcount_table_size * REFTABLE_ENTRY_SIZE);
3419     /*
3420      * If the write in the reftable failed the image may contain a partially
3421      * overwritten reftable. In this case it would be better to clear the
3422      * reftable in memory to avoid possible image corruption.
3423      */
3424     for (i = 0; i < s->refcount_table_size; i++) {
3425         if (s->refcount_table[i] && !reftable_tmp[i]) {
3426             if (ret == 0) {
3427                 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3428                                                        REFT_OFFSET_MASK);
3429             }
3430             s->refcount_table[i] = 0;
3431         }
3432     }
3433 
3434     if (!s->cache_discards) {
3435         qcow2_process_discards(bs, ret);
3436     }
3437 
3438 out:
3439     g_free(reftable_tmp);
3440     return ret;
3441 }
3442 
3443 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3444 {
3445     BDRVQcow2State *s = bs->opaque;
3446     int64_t i;
3447 
3448     for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3449         uint64_t refcount;
3450         int ret = qcow2_get_refcount(bs, i, &refcount);
3451         if (ret < 0) {
3452             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3453                     i, strerror(-ret));
3454             return ret;
3455         }
3456         if (refcount > 0) {
3457             return i;
3458         }
3459     }
3460     qcow2_signal_corruption(bs, true, -1, -1,
3461                             "There are no references in the refcount table.");
3462     return -EIO;
3463 }
3464 
3465 int qcow2_detect_metadata_preallocation(BlockDriverState *bs)
3466 {
3467     BDRVQcow2State *s = bs->opaque;
3468     int64_t i, end_cluster, cluster_count = 0, threshold;
3469     int64_t file_length, real_allocation, real_clusters;
3470 
3471     qemu_co_mutex_assert_locked(&s->lock);
3472 
3473     file_length = bdrv_getlength(bs->file->bs);
3474     if (file_length < 0) {
3475         return file_length;
3476     }
3477 
3478     real_allocation = bdrv_get_allocated_file_size(bs->file->bs);
3479     if (real_allocation < 0) {
3480         return real_allocation;
3481     }
3482 
3483     real_clusters = real_allocation / s->cluster_size;
3484     threshold = MAX(real_clusters * 10 / 9, real_clusters + 2);
3485 
3486     end_cluster = size_to_clusters(s, file_length);
3487     for (i = 0; i < end_cluster && cluster_count < threshold; i++) {
3488         uint64_t refcount;
3489         int ret = qcow2_get_refcount(bs, i, &refcount);
3490         if (ret < 0) {
3491             return ret;
3492         }
3493         cluster_count += !!refcount;
3494     }
3495 
3496     return cluster_count >= threshold;
3497 }
3498