xref: /openbmc/qemu/block/qcow2-refcount.c (revision 786a4ea8)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu-common.h"
26 #include "block/block_int.h"
27 #include "block/qcow2.h"
28 #include "qemu/range.h"
29 
30 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
31 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
32                             int64_t offset, int64_t length, uint64_t addend,
33                             bool decrease, enum qcow2_discard_type type);
34 
35 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
36 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
37 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
38 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
42 
43 static void set_refcount_ro0(void *refcount_array, uint64_t index,
44                              uint64_t value);
45 static void set_refcount_ro1(void *refcount_array, uint64_t index,
46                              uint64_t value);
47 static void set_refcount_ro2(void *refcount_array, uint64_t index,
48                              uint64_t value);
49 static void set_refcount_ro3(void *refcount_array, uint64_t index,
50                              uint64_t value);
51 static void set_refcount_ro4(void *refcount_array, uint64_t index,
52                              uint64_t value);
53 static void set_refcount_ro5(void *refcount_array, uint64_t index,
54                              uint64_t value);
55 static void set_refcount_ro6(void *refcount_array, uint64_t index,
56                              uint64_t value);
57 
58 
59 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
60     &get_refcount_ro0,
61     &get_refcount_ro1,
62     &get_refcount_ro2,
63     &get_refcount_ro3,
64     &get_refcount_ro4,
65     &get_refcount_ro5,
66     &get_refcount_ro6
67 };
68 
69 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
70     &set_refcount_ro0,
71     &set_refcount_ro1,
72     &set_refcount_ro2,
73     &set_refcount_ro3,
74     &set_refcount_ro4,
75     &set_refcount_ro5,
76     &set_refcount_ro6
77 };
78 
79 
80 /*********************************************************/
81 /* refcount handling */
82 
83 int qcow2_refcount_init(BlockDriverState *bs)
84 {
85     BDRVQcowState *s = bs->opaque;
86     unsigned int refcount_table_size2, i;
87     int ret;
88 
89     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
90 
91     s->get_refcount = get_refcount_funcs[s->refcount_order];
92     s->set_refcount = set_refcount_funcs[s->refcount_order];
93 
94     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
95     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
96     s->refcount_table = g_try_malloc(refcount_table_size2);
97 
98     if (s->refcount_table_size > 0) {
99         if (s->refcount_table == NULL) {
100             ret = -ENOMEM;
101             goto fail;
102         }
103         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
104         ret = bdrv_pread(bs->file, s->refcount_table_offset,
105                          s->refcount_table, refcount_table_size2);
106         if (ret < 0) {
107             goto fail;
108         }
109         for(i = 0; i < s->refcount_table_size; i++)
110             be64_to_cpus(&s->refcount_table[i]);
111     }
112     return 0;
113  fail:
114     return ret;
115 }
116 
117 void qcow2_refcount_close(BlockDriverState *bs)
118 {
119     BDRVQcowState *s = bs->opaque;
120     g_free(s->refcount_table);
121 }
122 
123 
124 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
125 {
126     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
127 }
128 
129 static void set_refcount_ro0(void *refcount_array, uint64_t index,
130                              uint64_t value)
131 {
132     assert(!(value >> 1));
133     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
134     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
135 }
136 
137 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
138 {
139     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
140            & 0x3;
141 }
142 
143 static void set_refcount_ro1(void *refcount_array, uint64_t index,
144                              uint64_t value)
145 {
146     assert(!(value >> 2));
147     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
148     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
149 }
150 
151 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
152 {
153     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
154            & 0xf;
155 }
156 
157 static void set_refcount_ro2(void *refcount_array, uint64_t index,
158                              uint64_t value)
159 {
160     assert(!(value >> 4));
161     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
162     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
163 }
164 
165 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
166 {
167     return ((const uint8_t *)refcount_array)[index];
168 }
169 
170 static void set_refcount_ro3(void *refcount_array, uint64_t index,
171                              uint64_t value)
172 {
173     assert(!(value >> 8));
174     ((uint8_t *)refcount_array)[index] = value;
175 }
176 
177 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
178 {
179     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
180 }
181 
182 static void set_refcount_ro4(void *refcount_array, uint64_t index,
183                              uint64_t value)
184 {
185     assert(!(value >> 16));
186     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
187 }
188 
189 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
190 {
191     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
192 }
193 
194 static void set_refcount_ro5(void *refcount_array, uint64_t index,
195                              uint64_t value)
196 {
197     assert(!(value >> 32));
198     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
199 }
200 
201 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
202 {
203     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
204 }
205 
206 static void set_refcount_ro6(void *refcount_array, uint64_t index,
207                              uint64_t value)
208 {
209     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
210 }
211 
212 
213 static int load_refcount_block(BlockDriverState *bs,
214                                int64_t refcount_block_offset,
215                                void **refcount_block)
216 {
217     BDRVQcowState *s = bs->opaque;
218     int ret;
219 
220     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
221     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
222         refcount_block);
223 
224     return ret;
225 }
226 
227 /*
228  * Retrieves the refcount of the cluster given by its index and stores it in
229  * *refcount. Returns 0 on success and -errno on failure.
230  */
231 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
232                        uint64_t *refcount)
233 {
234     BDRVQcowState *s = bs->opaque;
235     uint64_t refcount_table_index, block_index;
236     int64_t refcount_block_offset;
237     int ret;
238     void *refcount_block;
239 
240     refcount_table_index = cluster_index >> s->refcount_block_bits;
241     if (refcount_table_index >= s->refcount_table_size) {
242         *refcount = 0;
243         return 0;
244     }
245     refcount_block_offset =
246         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
247     if (!refcount_block_offset) {
248         *refcount = 0;
249         return 0;
250     }
251 
252     if (offset_into_cluster(s, refcount_block_offset)) {
253         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
254                                 " unaligned (reftable index: %#" PRIx64 ")",
255                                 refcount_block_offset, refcount_table_index);
256         return -EIO;
257     }
258 
259     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
260                           &refcount_block);
261     if (ret < 0) {
262         return ret;
263     }
264 
265     block_index = cluster_index & (s->refcount_block_size - 1);
266     *refcount = s->get_refcount(refcount_block, block_index);
267 
268     ret = qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
269     if (ret < 0) {
270         return ret;
271     }
272 
273     return 0;
274 }
275 
276 /*
277  * Rounds the refcount table size up to avoid growing the table for each single
278  * refcount block that is allocated.
279  */
280 static unsigned int next_refcount_table_size(BDRVQcowState *s,
281     unsigned int min_size)
282 {
283     unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
284     unsigned int refcount_table_clusters =
285         MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
286 
287     while (min_clusters > refcount_table_clusters) {
288         refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
289     }
290 
291     return refcount_table_clusters << (s->cluster_bits - 3);
292 }
293 
294 
295 /* Checks if two offsets are described by the same refcount block */
296 static int in_same_refcount_block(BDRVQcowState *s, uint64_t offset_a,
297     uint64_t offset_b)
298 {
299     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
300     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
301 
302     return (block_a == block_b);
303 }
304 
305 /*
306  * Loads a refcount block. If it doesn't exist yet, it is allocated first
307  * (including growing the refcount table if needed).
308  *
309  * Returns 0 on success or -errno in error case
310  */
311 static int alloc_refcount_block(BlockDriverState *bs,
312                                 int64_t cluster_index, void **refcount_block)
313 {
314     BDRVQcowState *s = bs->opaque;
315     unsigned int refcount_table_index;
316     int ret;
317 
318     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
319 
320     /* Find the refcount block for the given cluster */
321     refcount_table_index = cluster_index >> s->refcount_block_bits;
322 
323     if (refcount_table_index < s->refcount_table_size) {
324 
325         uint64_t refcount_block_offset =
326             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
327 
328         /* If it's already there, we're done */
329         if (refcount_block_offset) {
330             if (offset_into_cluster(s, refcount_block_offset)) {
331                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
332                                         PRIx64 " unaligned (reftable index: "
333                                         "%#x)", refcount_block_offset,
334                                         refcount_table_index);
335                 return -EIO;
336             }
337 
338              return load_refcount_block(bs, refcount_block_offset,
339                                         refcount_block);
340         }
341     }
342 
343     /*
344      * If we came here, we need to allocate something. Something is at least
345      * a cluster for the new refcount block. It may also include a new refcount
346      * table if the old refcount table is too small.
347      *
348      * Note that allocating clusters here needs some special care:
349      *
350      * - We can't use the normal qcow2_alloc_clusters(), it would try to
351      *   increase the refcount and very likely we would end up with an endless
352      *   recursion. Instead we must place the refcount blocks in a way that
353      *   they can describe them themselves.
354      *
355      * - We need to consider that at this point we are inside update_refcounts
356      *   and potentially doing an initial refcount increase. This means that
357      *   some clusters have already been allocated by the caller, but their
358      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
359      *   need to return -EAGAIN to signal the caller that it needs to restart
360      *   the search for free clusters.
361      *
362      * - alloc_clusters_noref and qcow2_free_clusters may load a different
363      *   refcount block into the cache
364      */
365 
366     *refcount_block = NULL;
367 
368     /* We write to the refcount table, so we might depend on L2 tables */
369     ret = qcow2_cache_flush(bs, s->l2_table_cache);
370     if (ret < 0) {
371         return ret;
372     }
373 
374     /* Allocate the refcount block itself and mark it as used */
375     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
376     if (new_block < 0) {
377         return new_block;
378     }
379 
380 #ifdef DEBUG_ALLOC2
381     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
382         " at %" PRIx64 "\n",
383         refcount_table_index, cluster_index << s->cluster_bits, new_block);
384 #endif
385 
386     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
387         /* Zero the new refcount block before updating it */
388         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
389                                     refcount_block);
390         if (ret < 0) {
391             goto fail_block;
392         }
393 
394         memset(*refcount_block, 0, s->cluster_size);
395 
396         /* The block describes itself, need to update the cache */
397         int block_index = (new_block >> s->cluster_bits) &
398             (s->refcount_block_size - 1);
399         s->set_refcount(*refcount_block, block_index, 1);
400     } else {
401         /* Described somewhere else. This can recurse at most twice before we
402          * arrive at a block that describes itself. */
403         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
404                               QCOW2_DISCARD_NEVER);
405         if (ret < 0) {
406             goto fail_block;
407         }
408 
409         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
410         if (ret < 0) {
411             goto fail_block;
412         }
413 
414         /* Initialize the new refcount block only after updating its refcount,
415          * update_refcount uses the refcount cache itself */
416         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
417                                     refcount_block);
418         if (ret < 0) {
419             goto fail_block;
420         }
421 
422         memset(*refcount_block, 0, s->cluster_size);
423     }
424 
425     /* Now the new refcount block needs to be written to disk */
426     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
427     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
428     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
429     if (ret < 0) {
430         goto fail_block;
431     }
432 
433     /* If the refcount table is big enough, just hook the block up there */
434     if (refcount_table_index < s->refcount_table_size) {
435         uint64_t data64 = cpu_to_be64(new_block);
436         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
437         ret = bdrv_pwrite_sync(bs->file,
438             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
439             &data64, sizeof(data64));
440         if (ret < 0) {
441             goto fail_block;
442         }
443 
444         s->refcount_table[refcount_table_index] = new_block;
445 
446         /* The new refcount block may be where the caller intended to put its
447          * data, so let it restart the search. */
448         return -EAGAIN;
449     }
450 
451     ret = qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
452     if (ret < 0) {
453         goto fail_block;
454     }
455 
456     /*
457      * If we come here, we need to grow the refcount table. Again, a new
458      * refcount table needs some space and we can't simply allocate to avoid
459      * endless recursion.
460      *
461      * Therefore let's grab new refcount blocks at the end of the image, which
462      * will describe themselves and the new refcount table. This way we can
463      * reference them only in the new table and do the switch to the new
464      * refcount table at once without producing an inconsistent state in
465      * between.
466      */
467     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
468 
469     /* Calculate the number of refcount blocks needed so far; this will be the
470      * basis for calculating the index of the first cluster used for the
471      * self-describing refcount structures which we are about to create.
472      *
473      * Because we reached this point, there cannot be any refcount entries for
474      * cluster_index or higher indices yet. However, because new_block has been
475      * allocated to describe that cluster (and it will assume this role later
476      * on), we cannot use that index; also, new_block may actually have a higher
477      * cluster index than cluster_index, so it needs to be taken into account
478      * here (and 1 needs to be added to its value because that cluster is used).
479      */
480     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
481                                             (new_block >> s->cluster_bits) + 1),
482                                         s->refcount_block_size);
483 
484     if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
485         return -EFBIG;
486     }
487 
488     /* And now we need at least one block more for the new metadata */
489     uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
490     uint64_t last_table_size;
491     uint64_t blocks_clusters;
492     do {
493         uint64_t table_clusters =
494             size_to_clusters(s, table_size * sizeof(uint64_t));
495         blocks_clusters = 1 +
496             ((table_clusters + s->refcount_block_size - 1)
497             / s->refcount_block_size);
498         uint64_t meta_clusters = table_clusters + blocks_clusters;
499 
500         last_table_size = table_size;
501         table_size = next_refcount_table_size(s, blocks_used +
502             ((meta_clusters + s->refcount_block_size - 1)
503             / s->refcount_block_size));
504 
505     } while (last_table_size != table_size);
506 
507 #ifdef DEBUG_ALLOC2
508     fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
509         s->refcount_table_size, table_size);
510 #endif
511 
512     /* Create the new refcount table and blocks */
513     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
514         s->cluster_size;
515     uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
516     uint64_t *new_table = g_try_new0(uint64_t, table_size);
517     void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
518 
519     assert(table_size > 0 && blocks_clusters > 0);
520     if (new_table == NULL || new_blocks == NULL) {
521         ret = -ENOMEM;
522         goto fail_table;
523     }
524 
525     /* Fill the new refcount table */
526     memcpy(new_table, s->refcount_table,
527         s->refcount_table_size * sizeof(uint64_t));
528     new_table[refcount_table_index] = new_block;
529 
530     int i;
531     for (i = 0; i < blocks_clusters; i++) {
532         new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
533     }
534 
535     /* Fill the refcount blocks */
536     uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
537     int block = 0;
538     for (i = 0; i < table_clusters + blocks_clusters; i++) {
539         s->set_refcount(new_blocks, block++, 1);
540     }
541 
542     /* Write refcount blocks to disk */
543     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
544     ret = bdrv_pwrite_sync(bs->file, meta_offset, new_blocks,
545         blocks_clusters * s->cluster_size);
546     g_free(new_blocks);
547     new_blocks = NULL;
548     if (ret < 0) {
549         goto fail_table;
550     }
551 
552     /* Write refcount table to disk */
553     for(i = 0; i < table_size; i++) {
554         cpu_to_be64s(&new_table[i]);
555     }
556 
557     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
558     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
559         table_size * sizeof(uint64_t));
560     if (ret < 0) {
561         goto fail_table;
562     }
563 
564     for(i = 0; i < table_size; i++) {
565         be64_to_cpus(&new_table[i]);
566     }
567 
568     /* Hook up the new refcount table in the qcow2 header */
569     uint8_t data[12];
570     cpu_to_be64w((uint64_t*)data, table_offset);
571     cpu_to_be32w((uint32_t*)(data + 8), table_clusters);
572     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
573     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, refcount_table_offset),
574         data, sizeof(data));
575     if (ret < 0) {
576         goto fail_table;
577     }
578 
579     /* And switch it in memory */
580     uint64_t old_table_offset = s->refcount_table_offset;
581     uint64_t old_table_size = s->refcount_table_size;
582 
583     g_free(s->refcount_table);
584     s->refcount_table = new_table;
585     s->refcount_table_size = table_size;
586     s->refcount_table_offset = table_offset;
587 
588     /* Free old table. */
589     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
590                         QCOW2_DISCARD_OTHER);
591 
592     ret = load_refcount_block(bs, new_block, refcount_block);
593     if (ret < 0) {
594         return ret;
595     }
596 
597     /* If we were trying to do the initial refcount update for some cluster
598      * allocation, we might have used the same clusters to store newly
599      * allocated metadata. Make the caller search some new space. */
600     return -EAGAIN;
601 
602 fail_table:
603     g_free(new_blocks);
604     g_free(new_table);
605 fail_block:
606     if (*refcount_block != NULL) {
607         qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
608     }
609     return ret;
610 }
611 
612 void qcow2_process_discards(BlockDriverState *bs, int ret)
613 {
614     BDRVQcowState *s = bs->opaque;
615     Qcow2DiscardRegion *d, *next;
616 
617     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
618         QTAILQ_REMOVE(&s->discards, d, next);
619 
620         /* Discard is optional, ignore the return value */
621         if (ret >= 0) {
622             bdrv_discard(bs->file,
623                          d->offset >> BDRV_SECTOR_BITS,
624                          d->bytes >> BDRV_SECTOR_BITS);
625         }
626 
627         g_free(d);
628     }
629 }
630 
631 static void update_refcount_discard(BlockDriverState *bs,
632                                     uint64_t offset, uint64_t length)
633 {
634     BDRVQcowState *s = bs->opaque;
635     Qcow2DiscardRegion *d, *p, *next;
636 
637     QTAILQ_FOREACH(d, &s->discards, next) {
638         uint64_t new_start = MIN(offset, d->offset);
639         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
640 
641         if (new_end - new_start <= length + d->bytes) {
642             /* There can't be any overlap, areas ending up here have no
643              * references any more and therefore shouldn't get freed another
644              * time. */
645             assert(d->bytes + length == new_end - new_start);
646             d->offset = new_start;
647             d->bytes = new_end - new_start;
648             goto found;
649         }
650     }
651 
652     d = g_malloc(sizeof(*d));
653     *d = (Qcow2DiscardRegion) {
654         .bs     = bs,
655         .offset = offset,
656         .bytes  = length,
657     };
658     QTAILQ_INSERT_TAIL(&s->discards, d, next);
659 
660 found:
661     /* Merge discard requests if they are adjacent now */
662     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
663         if (p == d
664             || p->offset > d->offset + d->bytes
665             || d->offset > p->offset + p->bytes)
666         {
667             continue;
668         }
669 
670         /* Still no overlap possible */
671         assert(p->offset == d->offset + d->bytes
672             || d->offset == p->offset + p->bytes);
673 
674         QTAILQ_REMOVE(&s->discards, p, next);
675         d->offset = MIN(d->offset, p->offset);
676         d->bytes += p->bytes;
677         g_free(p);
678     }
679 }
680 
681 /* XXX: cache several refcount block clusters ? */
682 /* @addend is the absolute value of the addend; if @decrease is set, @addend
683  * will be subtracted from the current refcount, otherwise it will be added */
684 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
685                                                    int64_t offset,
686                                                    int64_t length,
687                                                    uint64_t addend,
688                                                    bool decrease,
689                                                    enum qcow2_discard_type type)
690 {
691     BDRVQcowState *s = bs->opaque;
692     int64_t start, last, cluster_offset;
693     void *refcount_block = NULL;
694     int64_t old_table_index = -1;
695     int ret;
696 
697 #ifdef DEBUG_ALLOC2
698     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
699             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
700             addend);
701 #endif
702     if (length < 0) {
703         return -EINVAL;
704     } else if (length == 0) {
705         return 0;
706     }
707 
708     if (decrease) {
709         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
710             s->l2_table_cache);
711     }
712 
713     start = start_of_cluster(s, offset);
714     last = start_of_cluster(s, offset + length - 1);
715     for(cluster_offset = start; cluster_offset <= last;
716         cluster_offset += s->cluster_size)
717     {
718         int block_index;
719         uint64_t refcount;
720         int64_t cluster_index = cluster_offset >> s->cluster_bits;
721         int64_t table_index = cluster_index >> s->refcount_block_bits;
722 
723         /* Load the refcount block and allocate it if needed */
724         if (table_index != old_table_index) {
725             if (refcount_block) {
726                 ret = qcow2_cache_put(bs, s->refcount_block_cache,
727                                       &refcount_block);
728                 if (ret < 0) {
729                     goto fail;
730                 }
731             }
732 
733             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
734             if (ret < 0) {
735                 goto fail;
736             }
737         }
738         old_table_index = table_index;
739 
740         qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
741 
742         /* we can update the count and save it */
743         block_index = cluster_index & (s->refcount_block_size - 1);
744 
745         refcount = s->get_refcount(refcount_block, block_index);
746         if (decrease ? (refcount - addend > refcount)
747                      : (refcount + addend < refcount ||
748                         refcount + addend > s->refcount_max))
749         {
750             ret = -EINVAL;
751             goto fail;
752         }
753         if (decrease) {
754             refcount -= addend;
755         } else {
756             refcount += addend;
757         }
758         if (refcount == 0 && cluster_index < s->free_cluster_index) {
759             s->free_cluster_index = cluster_index;
760         }
761         s->set_refcount(refcount_block, block_index, refcount);
762 
763         if (refcount == 0 && s->discard_passthrough[type]) {
764             update_refcount_discard(bs, cluster_offset, s->cluster_size);
765         }
766     }
767 
768     ret = 0;
769 fail:
770     if (!s->cache_discards) {
771         qcow2_process_discards(bs, ret);
772     }
773 
774     /* Write last changed block to disk */
775     if (refcount_block) {
776         int wret;
777         wret = qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
778         if (wret < 0) {
779             return ret < 0 ? ret : wret;
780         }
781     }
782 
783     /*
784      * Try do undo any updates if an error is returned (This may succeed in
785      * some cases like ENOSPC for allocating a new refcount block)
786      */
787     if (ret < 0) {
788         int dummy;
789         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
790                                 !decrease, QCOW2_DISCARD_NEVER);
791         (void)dummy;
792     }
793 
794     return ret;
795 }
796 
797 /*
798  * Increases or decreases the refcount of a given cluster.
799  *
800  * @addend is the absolute value of the addend; if @decrease is set, @addend
801  * will be subtracted from the current refcount, otherwise it will be added.
802  *
803  * On success 0 is returned; on failure -errno is returned.
804  */
805 int qcow2_update_cluster_refcount(BlockDriverState *bs,
806                                   int64_t cluster_index,
807                                   uint64_t addend, bool decrease,
808                                   enum qcow2_discard_type type)
809 {
810     BDRVQcowState *s = bs->opaque;
811     int ret;
812 
813     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
814                           decrease, type);
815     if (ret < 0) {
816         return ret;
817     }
818 
819     return 0;
820 }
821 
822 
823 
824 /*********************************************************/
825 /* cluster allocation functions */
826 
827 
828 
829 /* return < 0 if error */
830 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
831 {
832     BDRVQcowState *s = bs->opaque;
833     uint64_t i, nb_clusters, refcount;
834     int ret;
835 
836     nb_clusters = size_to_clusters(s, size);
837 retry:
838     for(i = 0; i < nb_clusters; i++) {
839         uint64_t next_cluster_index = s->free_cluster_index++;
840         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
841 
842         if (ret < 0) {
843             return ret;
844         } else if (refcount != 0) {
845             goto retry;
846         }
847     }
848 
849     /* Make sure that all offsets in the "allocated" range are representable
850      * in an int64_t */
851     if (s->free_cluster_index > 0 &&
852         s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
853     {
854         return -EFBIG;
855     }
856 
857 #ifdef DEBUG_ALLOC2
858     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
859             size,
860             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
861 #endif
862     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
863 }
864 
865 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
866 {
867     int64_t offset;
868     int ret;
869 
870     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
871     do {
872         offset = alloc_clusters_noref(bs, size);
873         if (offset < 0) {
874             return offset;
875         }
876 
877         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
878     } while (ret == -EAGAIN);
879 
880     if (ret < 0) {
881         return ret;
882     }
883 
884     return offset;
885 }
886 
887 int qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
888     int nb_clusters)
889 {
890     BDRVQcowState *s = bs->opaque;
891     uint64_t cluster_index, refcount;
892     uint64_t i;
893     int ret;
894 
895     assert(nb_clusters >= 0);
896     if (nb_clusters == 0) {
897         return 0;
898     }
899 
900     do {
901         /* Check how many clusters there are free */
902         cluster_index = offset >> s->cluster_bits;
903         for(i = 0; i < nb_clusters; i++) {
904             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
905             if (ret < 0) {
906                 return ret;
907             } else if (refcount != 0) {
908                 break;
909             }
910         }
911 
912         /* And then allocate them */
913         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
914                               QCOW2_DISCARD_NEVER);
915     } while (ret == -EAGAIN);
916 
917     if (ret < 0) {
918         return ret;
919     }
920 
921     return i;
922 }
923 
924 /* only used to allocate compressed sectors. We try to allocate
925    contiguous sectors. size must be <= cluster_size */
926 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
927 {
928     BDRVQcowState *s = bs->opaque;
929     int64_t offset;
930     size_t free_in_cluster;
931     int ret;
932 
933     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
934     assert(size > 0 && size <= s->cluster_size);
935     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
936 
937     offset = s->free_byte_offset;
938 
939     if (offset) {
940         uint64_t refcount;
941         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
942         if (ret < 0) {
943             return ret;
944         }
945 
946         if (refcount == s->refcount_max) {
947             offset = 0;
948         }
949     }
950 
951     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
952     if (!offset || free_in_cluster < size) {
953         int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
954         if (new_cluster < 0) {
955             return new_cluster;
956         }
957 
958         if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
959             offset = new_cluster;
960         }
961     }
962 
963     assert(offset);
964     ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
965     if (ret < 0) {
966         return ret;
967     }
968 
969     /* The cluster refcount was incremented; refcount blocks must be flushed
970      * before the caller's L2 table updates. */
971     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
972 
973     s->free_byte_offset = offset + size;
974     if (!offset_into_cluster(s, s->free_byte_offset)) {
975         s->free_byte_offset = 0;
976     }
977 
978     return offset;
979 }
980 
981 void qcow2_free_clusters(BlockDriverState *bs,
982                           int64_t offset, int64_t size,
983                           enum qcow2_discard_type type)
984 {
985     int ret;
986 
987     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
988     ret = update_refcount(bs, offset, size, 1, true, type);
989     if (ret < 0) {
990         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
991         /* TODO Remember the clusters to free them later and avoid leaking */
992     }
993 }
994 
995 /*
996  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
997  * normal cluster, compressed cluster, etc.)
998  */
999 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1000                              int nb_clusters, enum qcow2_discard_type type)
1001 {
1002     BDRVQcowState *s = bs->opaque;
1003 
1004     switch (qcow2_get_cluster_type(l2_entry)) {
1005     case QCOW2_CLUSTER_COMPRESSED:
1006         {
1007             int nb_csectors;
1008             nb_csectors = ((l2_entry >> s->csize_shift) &
1009                            s->csize_mask) + 1;
1010             qcow2_free_clusters(bs,
1011                 (l2_entry & s->cluster_offset_mask) & ~511,
1012                 nb_csectors * 512, type);
1013         }
1014         break;
1015     case QCOW2_CLUSTER_NORMAL:
1016     case QCOW2_CLUSTER_ZERO:
1017         if (l2_entry & L2E_OFFSET_MASK) {
1018             if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1019                 qcow2_signal_corruption(bs, false, -1, -1,
1020                                         "Cannot free unaligned cluster %#llx",
1021                                         l2_entry & L2E_OFFSET_MASK);
1022             } else {
1023                 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1024                                     nb_clusters << s->cluster_bits, type);
1025             }
1026         }
1027         break;
1028     case QCOW2_CLUSTER_UNALLOCATED:
1029         break;
1030     default:
1031         abort();
1032     }
1033 }
1034 
1035 
1036 
1037 /*********************************************************/
1038 /* snapshots and image creation */
1039 
1040 
1041 
1042 /* update the refcounts of snapshots and the copied flag */
1043 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1044     int64_t l1_table_offset, int l1_size, int addend)
1045 {
1046     BDRVQcowState *s = bs->opaque;
1047     uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount;
1048     bool l1_allocated = false;
1049     int64_t old_offset, old_l2_offset;
1050     int i, j, l1_modified = 0, nb_csectors;
1051     int ret;
1052 
1053     assert(addend >= -1 && addend <= 1);
1054 
1055     l2_table = NULL;
1056     l1_table = NULL;
1057     l1_size2 = l1_size * sizeof(uint64_t);
1058 
1059     s->cache_discards = true;
1060 
1061     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1062      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1063      * when changing this! */
1064     if (l1_table_offset != s->l1_table_offset) {
1065         l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1066         if (l1_size2 && l1_table == NULL) {
1067             ret = -ENOMEM;
1068             goto fail;
1069         }
1070         l1_allocated = true;
1071 
1072         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1073         if (ret < 0) {
1074             goto fail;
1075         }
1076 
1077         for(i = 0;i < l1_size; i++)
1078             be64_to_cpus(&l1_table[i]);
1079     } else {
1080         assert(l1_size == s->l1_size);
1081         l1_table = s->l1_table;
1082         l1_allocated = false;
1083     }
1084 
1085     for(i = 0; i < l1_size; i++) {
1086         l2_offset = l1_table[i];
1087         if (l2_offset) {
1088             old_l2_offset = l2_offset;
1089             l2_offset &= L1E_OFFSET_MASK;
1090 
1091             if (offset_into_cluster(s, l2_offset)) {
1092                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1093                                         PRIx64 " unaligned (L1 index: %#x)",
1094                                         l2_offset, i);
1095                 ret = -EIO;
1096                 goto fail;
1097             }
1098 
1099             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1100                 (void**) &l2_table);
1101             if (ret < 0) {
1102                 goto fail;
1103             }
1104 
1105             for(j = 0; j < s->l2_size; j++) {
1106                 uint64_t cluster_index;
1107 
1108                 offset = be64_to_cpu(l2_table[j]);
1109                 old_offset = offset;
1110                 offset &= ~QCOW_OFLAG_COPIED;
1111 
1112                 switch (qcow2_get_cluster_type(offset)) {
1113                     case QCOW2_CLUSTER_COMPRESSED:
1114                         nb_csectors = ((offset >> s->csize_shift) &
1115                                        s->csize_mask) + 1;
1116                         if (addend != 0) {
1117                             ret = update_refcount(bs,
1118                                 (offset & s->cluster_offset_mask) & ~511,
1119                                 nb_csectors * 512, abs(addend), addend < 0,
1120                                 QCOW2_DISCARD_SNAPSHOT);
1121                             if (ret < 0) {
1122                                 goto fail;
1123                             }
1124                         }
1125                         /* compressed clusters are never modified */
1126                         refcount = 2;
1127                         break;
1128 
1129                     case QCOW2_CLUSTER_NORMAL:
1130                     case QCOW2_CLUSTER_ZERO:
1131                         if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) {
1132                             qcow2_signal_corruption(bs, true, -1, -1, "Data "
1133                                                     "cluster offset %#llx "
1134                                                     "unaligned (L2 offset: %#"
1135                                                     PRIx64 ", L2 index: %#x)",
1136                                                     offset & L2E_OFFSET_MASK,
1137                                                     l2_offset, j);
1138                             ret = -EIO;
1139                             goto fail;
1140                         }
1141 
1142                         cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits;
1143                         if (!cluster_index) {
1144                             /* unallocated */
1145                             refcount = 0;
1146                             break;
1147                         }
1148                         if (addend != 0) {
1149                             ret = qcow2_update_cluster_refcount(bs,
1150                                     cluster_index, abs(addend), addend < 0,
1151                                     QCOW2_DISCARD_SNAPSHOT);
1152                             if (ret < 0) {
1153                                 goto fail;
1154                             }
1155                         }
1156 
1157                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1158                         if (ret < 0) {
1159                             goto fail;
1160                         }
1161                         break;
1162 
1163                     case QCOW2_CLUSTER_UNALLOCATED:
1164                         refcount = 0;
1165                         break;
1166 
1167                     default:
1168                         abort();
1169                 }
1170 
1171                 if (refcount == 1) {
1172                     offset |= QCOW_OFLAG_COPIED;
1173                 }
1174                 if (offset != old_offset) {
1175                     if (addend > 0) {
1176                         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1177                             s->refcount_block_cache);
1178                     }
1179                     l2_table[j] = cpu_to_be64(offset);
1180                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1181                 }
1182             }
1183 
1184             ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1185             if (ret < 0) {
1186                 goto fail;
1187             }
1188 
1189 
1190             if (addend != 0) {
1191                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1192                                                         s->cluster_bits,
1193                                                     abs(addend), addend < 0,
1194                                                     QCOW2_DISCARD_SNAPSHOT);
1195                 if (ret < 0) {
1196                     goto fail;
1197                 }
1198             }
1199             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1200                                      &refcount);
1201             if (ret < 0) {
1202                 goto fail;
1203             } else if (refcount == 1) {
1204                 l2_offset |= QCOW_OFLAG_COPIED;
1205             }
1206             if (l2_offset != old_l2_offset) {
1207                 l1_table[i] = l2_offset;
1208                 l1_modified = 1;
1209             }
1210         }
1211     }
1212 
1213     ret = bdrv_flush(bs);
1214 fail:
1215     if (l2_table) {
1216         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1217     }
1218 
1219     s->cache_discards = false;
1220     qcow2_process_discards(bs, ret);
1221 
1222     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1223     if (ret == 0 && addend >= 0 && l1_modified) {
1224         for (i = 0; i < l1_size; i++) {
1225             cpu_to_be64s(&l1_table[i]);
1226         }
1227 
1228         ret = bdrv_pwrite_sync(bs->file, l1_table_offset, l1_table, l1_size2);
1229 
1230         for (i = 0; i < l1_size; i++) {
1231             be64_to_cpus(&l1_table[i]);
1232         }
1233     }
1234     if (l1_allocated)
1235         g_free(l1_table);
1236     return ret;
1237 }
1238 
1239 
1240 
1241 
1242 /*********************************************************/
1243 /* refcount checking functions */
1244 
1245 
1246 static size_t refcount_array_byte_size(BDRVQcowState *s, uint64_t entries)
1247 {
1248     /* This assertion holds because there is no way we can address more than
1249      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1250      * offsets have to be representable in bytes); due to every cluster
1251      * corresponding to one refcount entry, we are well below that limit */
1252     assert(entries < (UINT64_C(1) << (64 - 9)));
1253 
1254     /* Thanks to the assertion this will not overflow, because
1255      * s->refcount_order < 7.
1256      * (note: x << s->refcount_order == x * s->refcount_bits) */
1257     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1258 }
1259 
1260 /**
1261  * Reallocates *array so that it can hold new_size entries. *size must contain
1262  * the current number of entries in *array. If the reallocation fails, *array
1263  * and *size will not be modified and -errno will be returned. If the
1264  * reallocation is successful, *array will be set to the new buffer, *size
1265  * will be set to new_size and 0 will be returned. The size of the reallocated
1266  * refcount array buffer will be aligned to a cluster boundary, and the newly
1267  * allocated area will be zeroed.
1268  */
1269 static int realloc_refcount_array(BDRVQcowState *s, void **array,
1270                                   int64_t *size, int64_t new_size)
1271 {
1272     size_t old_byte_size, new_byte_size;
1273     void *new_ptr;
1274 
1275     /* Round to clusters so the array can be directly written to disk */
1276     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1277                     * s->cluster_size;
1278     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1279                     * s->cluster_size;
1280 
1281     if (new_byte_size == old_byte_size) {
1282         *size = new_size;
1283         return 0;
1284     }
1285 
1286     assert(new_byte_size > 0);
1287 
1288     new_ptr = g_try_realloc(*array, new_byte_size);
1289     if (!new_ptr) {
1290         return -ENOMEM;
1291     }
1292 
1293     if (new_byte_size > old_byte_size) {
1294         memset((void *)((uintptr_t)new_ptr + old_byte_size), 0,
1295                new_byte_size - old_byte_size);
1296     }
1297 
1298     *array = new_ptr;
1299     *size  = new_size;
1300 
1301     return 0;
1302 }
1303 
1304 /*
1305  * Increases the refcount for a range of clusters in a given refcount table.
1306  * This is used to construct a temporary refcount table out of L1 and L2 tables
1307  * which can be compared the the refcount table saved in the image.
1308  *
1309  * Modifies the number of errors in res.
1310  */
1311 static int inc_refcounts(BlockDriverState *bs,
1312                          BdrvCheckResult *res,
1313                          void **refcount_table,
1314                          int64_t *refcount_table_size,
1315                          int64_t offset, int64_t size)
1316 {
1317     BDRVQcowState *s = bs->opaque;
1318     uint64_t start, last, cluster_offset, k, refcount;
1319     int ret;
1320 
1321     if (size <= 0) {
1322         return 0;
1323     }
1324 
1325     start = start_of_cluster(s, offset);
1326     last = start_of_cluster(s, offset + size - 1);
1327     for(cluster_offset = start; cluster_offset <= last;
1328         cluster_offset += s->cluster_size) {
1329         k = cluster_offset >> s->cluster_bits;
1330         if (k >= *refcount_table_size) {
1331             ret = realloc_refcount_array(s, refcount_table,
1332                                          refcount_table_size, k + 1);
1333             if (ret < 0) {
1334                 res->check_errors++;
1335                 return ret;
1336             }
1337         }
1338 
1339         refcount = s->get_refcount(*refcount_table, k);
1340         if (refcount == s->refcount_max) {
1341             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1342                     "\n", cluster_offset);
1343             res->corruptions++;
1344             continue;
1345         }
1346         s->set_refcount(*refcount_table, k, refcount + 1);
1347     }
1348 
1349     return 0;
1350 }
1351 
1352 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1353 enum {
1354     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1355 };
1356 
1357 /*
1358  * Increases the refcount in the given refcount table for the all clusters
1359  * referenced in the L2 table. While doing so, performs some checks on L2
1360  * entries.
1361  *
1362  * Returns the number of errors found by the checks or -errno if an internal
1363  * error occurred.
1364  */
1365 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1366                               void **refcount_table,
1367                               int64_t *refcount_table_size, int64_t l2_offset,
1368                               int flags)
1369 {
1370     BDRVQcowState *s = bs->opaque;
1371     uint64_t *l2_table, l2_entry;
1372     uint64_t next_contiguous_offset = 0;
1373     int i, l2_size, nb_csectors, ret;
1374 
1375     /* Read L2 table from disk */
1376     l2_size = s->l2_size * sizeof(uint64_t);
1377     l2_table = g_malloc(l2_size);
1378 
1379     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1380     if (ret < 0) {
1381         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1382         res->check_errors++;
1383         goto fail;
1384     }
1385 
1386     /* Do the actual checks */
1387     for(i = 0; i < s->l2_size; i++) {
1388         l2_entry = be64_to_cpu(l2_table[i]);
1389 
1390         switch (qcow2_get_cluster_type(l2_entry)) {
1391         case QCOW2_CLUSTER_COMPRESSED:
1392             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1393             if (l2_entry & QCOW_OFLAG_COPIED) {
1394                 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1395                     "copied flag must never be set for compressed "
1396                     "clusters\n", l2_entry >> s->cluster_bits);
1397                 l2_entry &= ~QCOW_OFLAG_COPIED;
1398                 res->corruptions++;
1399             }
1400 
1401             /* Mark cluster as used */
1402             nb_csectors = ((l2_entry >> s->csize_shift) &
1403                            s->csize_mask) + 1;
1404             l2_entry &= s->cluster_offset_mask;
1405             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1406                                 l2_entry & ~511, nb_csectors * 512);
1407             if (ret < 0) {
1408                 goto fail;
1409             }
1410 
1411             if (flags & CHECK_FRAG_INFO) {
1412                 res->bfi.allocated_clusters++;
1413                 res->bfi.compressed_clusters++;
1414 
1415                 /* Compressed clusters are fragmented by nature.  Since they
1416                  * take up sub-sector space but we only have sector granularity
1417                  * I/O we need to re-read the same sectors even for adjacent
1418                  * compressed clusters.
1419                  */
1420                 res->bfi.fragmented_clusters++;
1421             }
1422             break;
1423 
1424         case QCOW2_CLUSTER_ZERO:
1425             if ((l2_entry & L2E_OFFSET_MASK) == 0) {
1426                 break;
1427             }
1428             /* fall through */
1429 
1430         case QCOW2_CLUSTER_NORMAL:
1431         {
1432             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1433 
1434             if (flags & CHECK_FRAG_INFO) {
1435                 res->bfi.allocated_clusters++;
1436                 if (next_contiguous_offset &&
1437                     offset != next_contiguous_offset) {
1438                     res->bfi.fragmented_clusters++;
1439                 }
1440                 next_contiguous_offset = offset + s->cluster_size;
1441             }
1442 
1443             /* Mark cluster as used */
1444             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1445                                 offset, s->cluster_size);
1446             if (ret < 0) {
1447                 goto fail;
1448             }
1449 
1450             /* Correct offsets are cluster aligned */
1451             if (offset_into_cluster(s, offset)) {
1452                 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1453                     "properly aligned; L2 entry corrupted.\n", offset);
1454                 res->corruptions++;
1455             }
1456             break;
1457         }
1458 
1459         case QCOW2_CLUSTER_UNALLOCATED:
1460             break;
1461 
1462         default:
1463             abort();
1464         }
1465     }
1466 
1467     g_free(l2_table);
1468     return 0;
1469 
1470 fail:
1471     g_free(l2_table);
1472     return ret;
1473 }
1474 
1475 /*
1476  * Increases the refcount for the L1 table, its L2 tables and all referenced
1477  * clusters in the given refcount table. While doing so, performs some checks
1478  * on L1 and L2 entries.
1479  *
1480  * Returns the number of errors found by the checks or -errno if an internal
1481  * error occurred.
1482  */
1483 static int check_refcounts_l1(BlockDriverState *bs,
1484                               BdrvCheckResult *res,
1485                               void **refcount_table,
1486                               int64_t *refcount_table_size,
1487                               int64_t l1_table_offset, int l1_size,
1488                               int flags)
1489 {
1490     BDRVQcowState *s = bs->opaque;
1491     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1492     int i, ret;
1493 
1494     l1_size2 = l1_size * sizeof(uint64_t);
1495 
1496     /* Mark L1 table as used */
1497     ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1498                         l1_table_offset, l1_size2);
1499     if (ret < 0) {
1500         goto fail;
1501     }
1502 
1503     /* Read L1 table entries from disk */
1504     if (l1_size2 > 0) {
1505         l1_table = g_try_malloc(l1_size2);
1506         if (l1_table == NULL) {
1507             ret = -ENOMEM;
1508             res->check_errors++;
1509             goto fail;
1510         }
1511         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1512         if (ret < 0) {
1513             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1514             res->check_errors++;
1515             goto fail;
1516         }
1517         for(i = 0;i < l1_size; i++)
1518             be64_to_cpus(&l1_table[i]);
1519     }
1520 
1521     /* Do the actual checks */
1522     for(i = 0; i < l1_size; i++) {
1523         l2_offset = l1_table[i];
1524         if (l2_offset) {
1525             /* Mark L2 table as used */
1526             l2_offset &= L1E_OFFSET_MASK;
1527             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1528                                 l2_offset, s->cluster_size);
1529             if (ret < 0) {
1530                 goto fail;
1531             }
1532 
1533             /* L2 tables are cluster aligned */
1534             if (offset_into_cluster(s, l2_offset)) {
1535                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1536                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1537                 res->corruptions++;
1538             }
1539 
1540             /* Process and check L2 entries */
1541             ret = check_refcounts_l2(bs, res, refcount_table,
1542                                      refcount_table_size, l2_offset, flags);
1543             if (ret < 0) {
1544                 goto fail;
1545             }
1546         }
1547     }
1548     g_free(l1_table);
1549     return 0;
1550 
1551 fail:
1552     g_free(l1_table);
1553     return ret;
1554 }
1555 
1556 /*
1557  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1558  *
1559  * This function does not print an error message nor does it increment
1560  * check_errors if qcow2_get_refcount fails (this is because such an error will
1561  * have been already detected and sufficiently signaled by the calling function
1562  * (qcow2_check_refcounts) by the time this function is called).
1563  */
1564 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1565                               BdrvCheckMode fix)
1566 {
1567     BDRVQcowState *s = bs->opaque;
1568     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1569     int ret;
1570     uint64_t refcount;
1571     int i, j;
1572 
1573     for (i = 0; i < s->l1_size; i++) {
1574         uint64_t l1_entry = s->l1_table[i];
1575         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1576         bool l2_dirty = false;
1577 
1578         if (!l2_offset) {
1579             continue;
1580         }
1581 
1582         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1583                                  &refcount);
1584         if (ret < 0) {
1585             /* don't print message nor increment check_errors */
1586             continue;
1587         }
1588         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1589             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1590                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1591                     fix & BDRV_FIX_ERRORS ? "Repairing" :
1592                                             "ERROR",
1593                     i, l1_entry, refcount);
1594             if (fix & BDRV_FIX_ERRORS) {
1595                 s->l1_table[i] = refcount == 1
1596                                ? l1_entry |  QCOW_OFLAG_COPIED
1597                                : l1_entry & ~QCOW_OFLAG_COPIED;
1598                 ret = qcow2_write_l1_entry(bs, i);
1599                 if (ret < 0) {
1600                     res->check_errors++;
1601                     goto fail;
1602                 }
1603                 res->corruptions_fixed++;
1604             } else {
1605                 res->corruptions++;
1606             }
1607         }
1608 
1609         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1610                          s->l2_size * sizeof(uint64_t));
1611         if (ret < 0) {
1612             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1613                     strerror(-ret));
1614             res->check_errors++;
1615             goto fail;
1616         }
1617 
1618         for (j = 0; j < s->l2_size; j++) {
1619             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1620             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1621             int cluster_type = qcow2_get_cluster_type(l2_entry);
1622 
1623             if ((cluster_type == QCOW2_CLUSTER_NORMAL) ||
1624                 ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) {
1625                 ret = qcow2_get_refcount(bs,
1626                                          data_offset >> s->cluster_bits,
1627                                          &refcount);
1628                 if (ret < 0) {
1629                     /* don't print message nor increment check_errors */
1630                     continue;
1631                 }
1632                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1633                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1634                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1635                             fix & BDRV_FIX_ERRORS ? "Repairing" :
1636                                                     "ERROR",
1637                             l2_entry, refcount);
1638                     if (fix & BDRV_FIX_ERRORS) {
1639                         l2_table[j] = cpu_to_be64(refcount == 1
1640                                     ? l2_entry |  QCOW_OFLAG_COPIED
1641                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1642                         l2_dirty = true;
1643                         res->corruptions_fixed++;
1644                     } else {
1645                         res->corruptions++;
1646                     }
1647                 }
1648             }
1649         }
1650 
1651         if (l2_dirty) {
1652             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1653                                                 l2_offset, s->cluster_size);
1654             if (ret < 0) {
1655                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1656                         "overlap check failed: %s\n", strerror(-ret));
1657                 res->check_errors++;
1658                 goto fail;
1659             }
1660 
1661             ret = bdrv_pwrite(bs->file, l2_offset, l2_table, s->cluster_size);
1662             if (ret < 0) {
1663                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1664                         strerror(-ret));
1665                 res->check_errors++;
1666                 goto fail;
1667             }
1668         }
1669     }
1670 
1671     ret = 0;
1672 
1673 fail:
1674     qemu_vfree(l2_table);
1675     return ret;
1676 }
1677 
1678 /*
1679  * Checks consistency of refblocks and accounts for each refblock in
1680  * *refcount_table.
1681  */
1682 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1683                            BdrvCheckMode fix, bool *rebuild,
1684                            void **refcount_table, int64_t *nb_clusters)
1685 {
1686     BDRVQcowState *s = bs->opaque;
1687     int64_t i, size;
1688     int ret;
1689 
1690     for(i = 0; i < s->refcount_table_size; i++) {
1691         uint64_t offset, cluster;
1692         offset = s->refcount_table[i];
1693         cluster = offset >> s->cluster_bits;
1694 
1695         /* Refcount blocks are cluster aligned */
1696         if (offset_into_cluster(s, offset)) {
1697             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1698                 "cluster aligned; refcount table entry corrupted\n", i);
1699             res->corruptions++;
1700             *rebuild = true;
1701             continue;
1702         }
1703 
1704         if (cluster >= *nb_clusters) {
1705             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1706                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1707 
1708             if (fix & BDRV_FIX_ERRORS) {
1709                 int64_t new_nb_clusters;
1710 
1711                 if (offset > INT64_MAX - s->cluster_size) {
1712                     ret = -EINVAL;
1713                     goto resize_fail;
1714                 }
1715 
1716                 ret = bdrv_truncate(bs->file, offset + s->cluster_size);
1717                 if (ret < 0) {
1718                     goto resize_fail;
1719                 }
1720                 size = bdrv_getlength(bs->file);
1721                 if (size < 0) {
1722                     ret = size;
1723                     goto resize_fail;
1724                 }
1725 
1726                 new_nb_clusters = size_to_clusters(s, size);
1727                 assert(new_nb_clusters >= *nb_clusters);
1728 
1729                 ret = realloc_refcount_array(s, refcount_table,
1730                                              nb_clusters, new_nb_clusters);
1731                 if (ret < 0) {
1732                     res->check_errors++;
1733                     return ret;
1734                 }
1735 
1736                 if (cluster >= *nb_clusters) {
1737                     ret = -EINVAL;
1738                     goto resize_fail;
1739                 }
1740 
1741                 res->corruptions_fixed++;
1742                 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1743                                     offset, s->cluster_size);
1744                 if (ret < 0) {
1745                     return ret;
1746                 }
1747                 /* No need to check whether the refcount is now greater than 1:
1748                  * This area was just allocated and zeroed, so it can only be
1749                  * exactly 1 after inc_refcounts() */
1750                 continue;
1751 
1752 resize_fail:
1753                 res->corruptions++;
1754                 *rebuild = true;
1755                 fprintf(stderr, "ERROR could not resize image: %s\n",
1756                         strerror(-ret));
1757             } else {
1758                 res->corruptions++;
1759             }
1760             continue;
1761         }
1762 
1763         if (offset != 0) {
1764             ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1765                                 offset, s->cluster_size);
1766             if (ret < 0) {
1767                 return ret;
1768             }
1769             if (s->get_refcount(*refcount_table, cluster) != 1) {
1770                 fprintf(stderr, "ERROR refcount block %" PRId64
1771                         " refcount=%" PRIu64 "\n", i,
1772                         s->get_refcount(*refcount_table, cluster));
1773                 res->corruptions++;
1774                 *rebuild = true;
1775             }
1776         }
1777     }
1778 
1779     return 0;
1780 }
1781 
1782 /*
1783  * Calculates an in-memory refcount table.
1784  */
1785 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1786                                BdrvCheckMode fix, bool *rebuild,
1787                                void **refcount_table, int64_t *nb_clusters)
1788 {
1789     BDRVQcowState *s = bs->opaque;
1790     int64_t i;
1791     QCowSnapshot *sn;
1792     int ret;
1793 
1794     if (!*refcount_table) {
1795         int64_t old_size = 0;
1796         ret = realloc_refcount_array(s, refcount_table,
1797                                      &old_size, *nb_clusters);
1798         if (ret < 0) {
1799             res->check_errors++;
1800             return ret;
1801         }
1802     }
1803 
1804     /* header */
1805     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1806                         0, s->cluster_size);
1807     if (ret < 0) {
1808         return ret;
1809     }
1810 
1811     /* current L1 table */
1812     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1813                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1814     if (ret < 0) {
1815         return ret;
1816     }
1817 
1818     /* snapshots */
1819     for (i = 0; i < s->nb_snapshots; i++) {
1820         sn = s->snapshots + i;
1821         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1822                                  sn->l1_table_offset, sn->l1_size, 0);
1823         if (ret < 0) {
1824             return ret;
1825         }
1826     }
1827     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1828                         s->snapshots_offset, s->snapshots_size);
1829     if (ret < 0) {
1830         return ret;
1831     }
1832 
1833     /* refcount data */
1834     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1835                         s->refcount_table_offset,
1836                         s->refcount_table_size * sizeof(uint64_t));
1837     if (ret < 0) {
1838         return ret;
1839     }
1840 
1841     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1842 }
1843 
1844 /*
1845  * Compares the actual reference count for each cluster in the image against the
1846  * refcount as reported by the refcount structures on-disk.
1847  */
1848 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1849                               BdrvCheckMode fix, bool *rebuild,
1850                               int64_t *highest_cluster,
1851                               void *refcount_table, int64_t nb_clusters)
1852 {
1853     BDRVQcowState *s = bs->opaque;
1854     int64_t i;
1855     uint64_t refcount1, refcount2;
1856     int ret;
1857 
1858     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1859         ret = qcow2_get_refcount(bs, i, &refcount1);
1860         if (ret < 0) {
1861             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1862                     i, strerror(-ret));
1863             res->check_errors++;
1864             continue;
1865         }
1866 
1867         refcount2 = s->get_refcount(refcount_table, i);
1868 
1869         if (refcount1 > 0 || refcount2 > 0) {
1870             *highest_cluster = i;
1871         }
1872 
1873         if (refcount1 != refcount2) {
1874             /* Check if we're allowed to fix the mismatch */
1875             int *num_fixed = NULL;
1876             if (refcount1 == 0) {
1877                 *rebuild = true;
1878             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
1879                 num_fixed = &res->leaks_fixed;
1880             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
1881                 num_fixed = &res->corruptions_fixed;
1882             }
1883 
1884             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
1885                     " reference=%" PRIu64 "\n",
1886                    num_fixed != NULL     ? "Repairing" :
1887                    refcount1 < refcount2 ? "ERROR" :
1888                                            "Leaked",
1889                    i, refcount1, refcount2);
1890 
1891             if (num_fixed) {
1892                 ret = update_refcount(bs, i << s->cluster_bits, 1,
1893                                       refcount_diff(refcount1, refcount2),
1894                                       refcount1 > refcount2,
1895                                       QCOW2_DISCARD_ALWAYS);
1896                 if (ret >= 0) {
1897                     (*num_fixed)++;
1898                     continue;
1899                 }
1900             }
1901 
1902             /* And if we couldn't, print an error */
1903             if (refcount1 < refcount2) {
1904                 res->corruptions++;
1905             } else {
1906                 res->leaks++;
1907             }
1908         }
1909     }
1910 }
1911 
1912 /*
1913  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1914  * the on-disk refcount structures.
1915  *
1916  * On input, *first_free_cluster tells where to start looking, and need not
1917  * actually be a free cluster; the returned offset will not be before that
1918  * cluster.  On output, *first_free_cluster points to the first gap found, even
1919  * if that gap was too small to be used as the returned offset.
1920  *
1921  * Note that *first_free_cluster is a cluster index whereas the return value is
1922  * an offset.
1923  */
1924 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
1925                                    int cluster_count,
1926                                    void **refcount_table,
1927                                    int64_t *imrt_nb_clusters,
1928                                    int64_t *first_free_cluster)
1929 {
1930     BDRVQcowState *s = bs->opaque;
1931     int64_t cluster = *first_free_cluster, i;
1932     bool first_gap = true;
1933     int contiguous_free_clusters;
1934     int ret;
1935 
1936     /* Starting at *first_free_cluster, find a range of at least cluster_count
1937      * continuously free clusters */
1938     for (contiguous_free_clusters = 0;
1939          cluster < *imrt_nb_clusters &&
1940          contiguous_free_clusters < cluster_count;
1941          cluster++)
1942     {
1943         if (!s->get_refcount(*refcount_table, cluster)) {
1944             contiguous_free_clusters++;
1945             if (first_gap) {
1946                 /* If this is the first free cluster found, update
1947                  * *first_free_cluster accordingly */
1948                 *first_free_cluster = cluster;
1949                 first_gap = false;
1950             }
1951         } else if (contiguous_free_clusters) {
1952             contiguous_free_clusters = 0;
1953         }
1954     }
1955 
1956     /* If contiguous_free_clusters is greater than zero, it contains the number
1957      * of continuously free clusters until the current cluster; the first free
1958      * cluster in the current "gap" is therefore
1959      * cluster - contiguous_free_clusters */
1960 
1961     /* If no such range could be found, grow the in-memory refcount table
1962      * accordingly to append free clusters at the end of the image */
1963     if (contiguous_free_clusters < cluster_count) {
1964         /* contiguous_free_clusters clusters are already empty at the image end;
1965          * we need cluster_count clusters; therefore, we have to allocate
1966          * cluster_count - contiguous_free_clusters new clusters at the end of
1967          * the image (which is the current value of cluster; note that cluster
1968          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1969          * the image end) */
1970         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
1971                                      cluster + cluster_count
1972                                      - contiguous_free_clusters);
1973         if (ret < 0) {
1974             return ret;
1975         }
1976     }
1977 
1978     /* Go back to the first free cluster */
1979     cluster -= contiguous_free_clusters;
1980     for (i = 0; i < cluster_count; i++) {
1981         s->set_refcount(*refcount_table, cluster + i, 1);
1982     }
1983 
1984     return cluster << s->cluster_bits;
1985 }
1986 
1987 /*
1988  * Creates a new refcount structure based solely on the in-memory information
1989  * given through *refcount_table. All necessary allocations will be reflected
1990  * in that array.
1991  *
1992  * On success, the old refcount structure is leaked (it will be covered by the
1993  * new refcount structure).
1994  */
1995 static int rebuild_refcount_structure(BlockDriverState *bs,
1996                                       BdrvCheckResult *res,
1997                                       void **refcount_table,
1998                                       int64_t *nb_clusters)
1999 {
2000     BDRVQcowState *s = bs->opaque;
2001     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2002     int64_t refblock_offset, refblock_start, refblock_index;
2003     uint32_t reftable_size = 0;
2004     uint64_t *on_disk_reftable = NULL;
2005     void *on_disk_refblock;
2006     int ret = 0;
2007     struct {
2008         uint64_t reftable_offset;
2009         uint32_t reftable_clusters;
2010     } QEMU_PACKED reftable_offset_and_clusters;
2011 
2012     qcow2_cache_empty(bs, s->refcount_block_cache);
2013 
2014 write_refblocks:
2015     for (; cluster < *nb_clusters; cluster++) {
2016         if (!s->get_refcount(*refcount_table, cluster)) {
2017             continue;
2018         }
2019 
2020         refblock_index = cluster >> s->refcount_block_bits;
2021         refblock_start = refblock_index << s->refcount_block_bits;
2022 
2023         /* Don't allocate a cluster in a refblock already written to disk */
2024         if (first_free_cluster < refblock_start) {
2025             first_free_cluster = refblock_start;
2026         }
2027         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2028                                               nb_clusters, &first_free_cluster);
2029         if (refblock_offset < 0) {
2030             fprintf(stderr, "ERROR allocating refblock: %s\n",
2031                     strerror(-refblock_offset));
2032             res->check_errors++;
2033             ret = refblock_offset;
2034             goto fail;
2035         }
2036 
2037         if (reftable_size <= refblock_index) {
2038             uint32_t old_reftable_size = reftable_size;
2039             uint64_t *new_on_disk_reftable;
2040 
2041             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2042                                      s->cluster_size) / sizeof(uint64_t);
2043             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2044                                                  reftable_size *
2045                                                  sizeof(uint64_t));
2046             if (!new_on_disk_reftable) {
2047                 res->check_errors++;
2048                 ret = -ENOMEM;
2049                 goto fail;
2050             }
2051             on_disk_reftable = new_on_disk_reftable;
2052 
2053             memset(on_disk_reftable + old_reftable_size, 0,
2054                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2055 
2056             /* The offset we have for the reftable is now no longer valid;
2057              * this will leak that range, but we can easily fix that by running
2058              * a leak-fixing check after this rebuild operation */
2059             reftable_offset = -1;
2060         }
2061         on_disk_reftable[refblock_index] = refblock_offset;
2062 
2063         /* If this is apparently the last refblock (for now), try to squeeze the
2064          * reftable in */
2065         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2066             reftable_offset < 0)
2067         {
2068             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2069                                                           sizeof(uint64_t));
2070             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2071                                                   refcount_table, nb_clusters,
2072                                                   &first_free_cluster);
2073             if (reftable_offset < 0) {
2074                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2075                         strerror(-reftable_offset));
2076                 res->check_errors++;
2077                 ret = reftable_offset;
2078                 goto fail;
2079             }
2080         }
2081 
2082         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2083                                             s->cluster_size);
2084         if (ret < 0) {
2085             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2086             goto fail;
2087         }
2088 
2089         /* The size of *refcount_table is always cluster-aligned, therefore the
2090          * write operation will not overflow */
2091         on_disk_refblock = (void *)((char *) *refcount_table +
2092                                     refblock_index * s->cluster_size);
2093 
2094         ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2095                          on_disk_refblock, s->cluster_sectors);
2096         if (ret < 0) {
2097             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2098             goto fail;
2099         }
2100 
2101         /* Go to the end of this refblock */
2102         cluster = refblock_start + s->refcount_block_size - 1;
2103     }
2104 
2105     if (reftable_offset < 0) {
2106         uint64_t post_refblock_start, reftable_clusters;
2107 
2108         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2109         reftable_clusters = size_to_clusters(s,
2110                                              reftable_size * sizeof(uint64_t));
2111         /* Not pretty but simple */
2112         if (first_free_cluster < post_refblock_start) {
2113             first_free_cluster = post_refblock_start;
2114         }
2115         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2116                                               refcount_table, nb_clusters,
2117                                               &first_free_cluster);
2118         if (reftable_offset < 0) {
2119             fprintf(stderr, "ERROR allocating reftable: %s\n",
2120                     strerror(-reftable_offset));
2121             res->check_errors++;
2122             ret = reftable_offset;
2123             goto fail;
2124         }
2125 
2126         goto write_refblocks;
2127     }
2128 
2129     assert(on_disk_reftable);
2130 
2131     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2132         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2133     }
2134 
2135     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2136                                         reftable_size * sizeof(uint64_t));
2137     if (ret < 0) {
2138         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2139         goto fail;
2140     }
2141 
2142     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2143     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2144                       reftable_size * sizeof(uint64_t));
2145     if (ret < 0) {
2146         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2147         goto fail;
2148     }
2149 
2150     /* Enter new reftable into the image header */
2151     cpu_to_be64w(&reftable_offset_and_clusters.reftable_offset,
2152                  reftable_offset);
2153     cpu_to_be32w(&reftable_offset_and_clusters.reftable_clusters,
2154                  size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2155     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader,
2156                                               refcount_table_offset),
2157                            &reftable_offset_and_clusters,
2158                            sizeof(reftable_offset_and_clusters));
2159     if (ret < 0) {
2160         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2161         goto fail;
2162     }
2163 
2164     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2165         be64_to_cpus(&on_disk_reftable[refblock_index]);
2166     }
2167     s->refcount_table = on_disk_reftable;
2168     s->refcount_table_offset = reftable_offset;
2169     s->refcount_table_size = reftable_size;
2170 
2171     return 0;
2172 
2173 fail:
2174     g_free(on_disk_reftable);
2175     return ret;
2176 }
2177 
2178 /*
2179  * Checks an image for refcount consistency.
2180  *
2181  * Returns 0 if no errors are found, the number of errors in case the image is
2182  * detected as corrupted, and -errno when an internal error occurred.
2183  */
2184 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2185                           BdrvCheckMode fix)
2186 {
2187     BDRVQcowState *s = bs->opaque;
2188     BdrvCheckResult pre_compare_res;
2189     int64_t size, highest_cluster, nb_clusters;
2190     void *refcount_table = NULL;
2191     bool rebuild = false;
2192     int ret;
2193 
2194     size = bdrv_getlength(bs->file);
2195     if (size < 0) {
2196         res->check_errors++;
2197         return size;
2198     }
2199 
2200     nb_clusters = size_to_clusters(s, size);
2201     if (nb_clusters > INT_MAX) {
2202         res->check_errors++;
2203         return -EFBIG;
2204     }
2205 
2206     res->bfi.total_clusters =
2207         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2208 
2209     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2210                               &nb_clusters);
2211     if (ret < 0) {
2212         goto fail;
2213     }
2214 
2215     /* In case we don't need to rebuild the refcount structure (but want to fix
2216      * something), this function is immediately called again, in which case the
2217      * result should be ignored */
2218     pre_compare_res = *res;
2219     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2220                       nb_clusters);
2221 
2222     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2223         BdrvCheckResult old_res = *res;
2224         int fresh_leaks = 0;
2225 
2226         fprintf(stderr, "Rebuilding refcount structure\n");
2227         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2228                                          &nb_clusters);
2229         if (ret < 0) {
2230             goto fail;
2231         }
2232 
2233         res->corruptions = 0;
2234         res->leaks = 0;
2235 
2236         /* Because the old reftable has been exchanged for a new one the
2237          * references have to be recalculated */
2238         rebuild = false;
2239         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2240         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2241                                   &nb_clusters);
2242         if (ret < 0) {
2243             goto fail;
2244         }
2245 
2246         if (fix & BDRV_FIX_LEAKS) {
2247             /* The old refcount structures are now leaked, fix it; the result
2248              * can be ignored, aside from leaks which were introduced by
2249              * rebuild_refcount_structure() that could not be fixed */
2250             BdrvCheckResult saved_res = *res;
2251             *res = (BdrvCheckResult){ 0 };
2252 
2253             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2254                               &highest_cluster, refcount_table, nb_clusters);
2255             if (rebuild) {
2256                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2257                         "broken\n");
2258             }
2259 
2260             /* Any leaks accounted for here were introduced by
2261              * rebuild_refcount_structure() because that function has created a
2262              * new refcount structure from scratch */
2263             fresh_leaks = res->leaks;
2264             *res = saved_res;
2265         }
2266 
2267         if (res->corruptions < old_res.corruptions) {
2268             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2269         }
2270         if (res->leaks < old_res.leaks) {
2271             res->leaks_fixed += old_res.leaks - res->leaks;
2272         }
2273         res->leaks += fresh_leaks;
2274     } else if (fix) {
2275         if (rebuild) {
2276             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2277             res->check_errors++;
2278             ret = -EIO;
2279             goto fail;
2280         }
2281 
2282         if (res->leaks || res->corruptions) {
2283             *res = pre_compare_res;
2284             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2285                               refcount_table, nb_clusters);
2286         }
2287     }
2288 
2289     /* check OFLAG_COPIED */
2290     ret = check_oflag_copied(bs, res, fix);
2291     if (ret < 0) {
2292         goto fail;
2293     }
2294 
2295     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2296     ret = 0;
2297 
2298 fail:
2299     g_free(refcount_table);
2300 
2301     return ret;
2302 }
2303 
2304 #define overlaps_with(ofs, sz) \
2305     ranges_overlap(offset, size, ofs, sz)
2306 
2307 /*
2308  * Checks if the given offset into the image file is actually free to use by
2309  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2310  * i.e. a sanity check without relying on the refcount tables.
2311  *
2312  * The ign parameter specifies what checks not to perform (being a bitmask of
2313  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2314  *
2315  * Returns:
2316  * - 0 if writing to this offset will not affect the mentioned metadata
2317  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2318  * - a negative value (-errno) indicating an error while performing a check,
2319  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2320  */
2321 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2322                                  int64_t size)
2323 {
2324     BDRVQcowState *s = bs->opaque;
2325     int chk = s->overlap_check & ~ign;
2326     int i, j;
2327 
2328     if (!size) {
2329         return 0;
2330     }
2331 
2332     if (chk & QCOW2_OL_MAIN_HEADER) {
2333         if (offset < s->cluster_size) {
2334             return QCOW2_OL_MAIN_HEADER;
2335         }
2336     }
2337 
2338     /* align range to test to cluster boundaries */
2339     size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2340     offset = start_of_cluster(s, offset);
2341 
2342     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2343         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2344             return QCOW2_OL_ACTIVE_L1;
2345         }
2346     }
2347 
2348     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2349         if (overlaps_with(s->refcount_table_offset,
2350             s->refcount_table_size * sizeof(uint64_t))) {
2351             return QCOW2_OL_REFCOUNT_TABLE;
2352         }
2353     }
2354 
2355     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2356         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2357             return QCOW2_OL_SNAPSHOT_TABLE;
2358         }
2359     }
2360 
2361     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2362         for (i = 0; i < s->nb_snapshots; i++) {
2363             if (s->snapshots[i].l1_size &&
2364                 overlaps_with(s->snapshots[i].l1_table_offset,
2365                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2366                 return QCOW2_OL_INACTIVE_L1;
2367             }
2368         }
2369     }
2370 
2371     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2372         for (i = 0; i < s->l1_size; i++) {
2373             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2374                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2375                 s->cluster_size)) {
2376                 return QCOW2_OL_ACTIVE_L2;
2377             }
2378         }
2379     }
2380 
2381     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2382         for (i = 0; i < s->refcount_table_size; i++) {
2383             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2384                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2385                 s->cluster_size)) {
2386                 return QCOW2_OL_REFCOUNT_BLOCK;
2387             }
2388         }
2389     }
2390 
2391     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2392         for (i = 0; i < s->nb_snapshots; i++) {
2393             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2394             uint32_t l1_sz  = s->snapshots[i].l1_size;
2395             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2396             uint64_t *l1 = g_try_malloc(l1_sz2);
2397             int ret;
2398 
2399             if (l1_sz2 && l1 == NULL) {
2400                 return -ENOMEM;
2401             }
2402 
2403             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2404             if (ret < 0) {
2405                 g_free(l1);
2406                 return ret;
2407             }
2408 
2409             for (j = 0; j < l1_sz; j++) {
2410                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2411                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2412                     g_free(l1);
2413                     return QCOW2_OL_INACTIVE_L2;
2414                 }
2415             }
2416 
2417             g_free(l1);
2418         }
2419     }
2420 
2421     return 0;
2422 }
2423 
2424 static const char *metadata_ol_names[] = {
2425     [QCOW2_OL_MAIN_HEADER_BITNR]    = "qcow2_header",
2426     [QCOW2_OL_ACTIVE_L1_BITNR]      = "active L1 table",
2427     [QCOW2_OL_ACTIVE_L2_BITNR]      = "active L2 table",
2428     [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2429     [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2430     [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2431     [QCOW2_OL_INACTIVE_L1_BITNR]    = "inactive L1 table",
2432     [QCOW2_OL_INACTIVE_L2_BITNR]    = "inactive L2 table",
2433 };
2434 
2435 /*
2436  * First performs a check for metadata overlaps (through
2437  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2438  * while performing a check), that value is returned. If an impending overlap
2439  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2440  * and -EIO returned.
2441  *
2442  * Returns 0 if there were neither overlaps nor errors while checking for
2443  * overlaps; or a negative value (-errno) on error.
2444  */
2445 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2446                                   int64_t size)
2447 {
2448     int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2449 
2450     if (ret < 0) {
2451         return ret;
2452     } else if (ret > 0) {
2453         int metadata_ol_bitnr = ctz32(ret);
2454         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2455 
2456         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2457                                 "write on metadata (overlaps with %s)",
2458                                 metadata_ol_names[metadata_ol_bitnr]);
2459         return -EIO;
2460     }
2461 
2462     return 0;
2463 }
2464