1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "qemu/range.h" 31 #include "qemu/bswap.h" 32 33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size); 34 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs, 35 int64_t offset, int64_t length, uint64_t addend, 36 bool decrease, enum qcow2_discard_type type); 37 38 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index); 39 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index); 40 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index); 41 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index); 42 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index); 43 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index); 44 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index); 45 46 static void set_refcount_ro0(void *refcount_array, uint64_t index, 47 uint64_t value); 48 static void set_refcount_ro1(void *refcount_array, uint64_t index, 49 uint64_t value); 50 static void set_refcount_ro2(void *refcount_array, uint64_t index, 51 uint64_t value); 52 static void set_refcount_ro3(void *refcount_array, uint64_t index, 53 uint64_t value); 54 static void set_refcount_ro4(void *refcount_array, uint64_t index, 55 uint64_t value); 56 static void set_refcount_ro5(void *refcount_array, uint64_t index, 57 uint64_t value); 58 static void set_refcount_ro6(void *refcount_array, uint64_t index, 59 uint64_t value); 60 61 62 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = { 63 &get_refcount_ro0, 64 &get_refcount_ro1, 65 &get_refcount_ro2, 66 &get_refcount_ro3, 67 &get_refcount_ro4, 68 &get_refcount_ro5, 69 &get_refcount_ro6 70 }; 71 72 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = { 73 &set_refcount_ro0, 74 &set_refcount_ro1, 75 &set_refcount_ro2, 76 &set_refcount_ro3, 77 &set_refcount_ro4, 78 &set_refcount_ro5, 79 &set_refcount_ro6 80 }; 81 82 83 /*********************************************************/ 84 /* refcount handling */ 85 86 static void update_max_refcount_table_index(BDRVQcow2State *s) 87 { 88 unsigned i = s->refcount_table_size - 1; 89 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) { 90 i--; 91 } 92 /* Set s->max_refcount_table_index to the index of the last used entry */ 93 s->max_refcount_table_index = i; 94 } 95 96 int qcow2_refcount_init(BlockDriverState *bs) 97 { 98 BDRVQcow2State *s = bs->opaque; 99 unsigned int refcount_table_size2, i; 100 int ret; 101 102 assert(s->refcount_order >= 0 && s->refcount_order <= 6); 103 104 s->get_refcount = get_refcount_funcs[s->refcount_order]; 105 s->set_refcount = set_refcount_funcs[s->refcount_order]; 106 107 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t)); 108 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t); 109 s->refcount_table = g_try_malloc(refcount_table_size2); 110 111 if (s->refcount_table_size > 0) { 112 if (s->refcount_table == NULL) { 113 ret = -ENOMEM; 114 goto fail; 115 } 116 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD); 117 ret = bdrv_pread(bs->file, s->refcount_table_offset, 118 s->refcount_table, refcount_table_size2); 119 if (ret < 0) { 120 goto fail; 121 } 122 for(i = 0; i < s->refcount_table_size; i++) 123 be64_to_cpus(&s->refcount_table[i]); 124 update_max_refcount_table_index(s); 125 } 126 return 0; 127 fail: 128 return ret; 129 } 130 131 void qcow2_refcount_close(BlockDriverState *bs) 132 { 133 BDRVQcow2State *s = bs->opaque; 134 g_free(s->refcount_table); 135 } 136 137 138 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index) 139 { 140 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1; 141 } 142 143 static void set_refcount_ro0(void *refcount_array, uint64_t index, 144 uint64_t value) 145 { 146 assert(!(value >> 1)); 147 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8)); 148 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8); 149 } 150 151 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index) 152 { 153 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4))) 154 & 0x3; 155 } 156 157 static void set_refcount_ro1(void *refcount_array, uint64_t index, 158 uint64_t value) 159 { 160 assert(!(value >> 2)); 161 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4))); 162 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4)); 163 } 164 165 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index) 166 { 167 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2))) 168 & 0xf; 169 } 170 171 static void set_refcount_ro2(void *refcount_array, uint64_t index, 172 uint64_t value) 173 { 174 assert(!(value >> 4)); 175 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2))); 176 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2)); 177 } 178 179 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index) 180 { 181 return ((const uint8_t *)refcount_array)[index]; 182 } 183 184 static void set_refcount_ro3(void *refcount_array, uint64_t index, 185 uint64_t value) 186 { 187 assert(!(value >> 8)); 188 ((uint8_t *)refcount_array)[index] = value; 189 } 190 191 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index) 192 { 193 return be16_to_cpu(((const uint16_t *)refcount_array)[index]); 194 } 195 196 static void set_refcount_ro4(void *refcount_array, uint64_t index, 197 uint64_t value) 198 { 199 assert(!(value >> 16)); 200 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value); 201 } 202 203 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index) 204 { 205 return be32_to_cpu(((const uint32_t *)refcount_array)[index]); 206 } 207 208 static void set_refcount_ro5(void *refcount_array, uint64_t index, 209 uint64_t value) 210 { 211 assert(!(value >> 32)); 212 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value); 213 } 214 215 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index) 216 { 217 return be64_to_cpu(((const uint64_t *)refcount_array)[index]); 218 } 219 220 static void set_refcount_ro6(void *refcount_array, uint64_t index, 221 uint64_t value) 222 { 223 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value); 224 } 225 226 227 static int load_refcount_block(BlockDriverState *bs, 228 int64_t refcount_block_offset, 229 void **refcount_block) 230 { 231 BDRVQcow2State *s = bs->opaque; 232 233 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD); 234 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 235 refcount_block); 236 } 237 238 /* 239 * Retrieves the refcount of the cluster given by its index and stores it in 240 * *refcount. Returns 0 on success and -errno on failure. 241 */ 242 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index, 243 uint64_t *refcount) 244 { 245 BDRVQcow2State *s = bs->opaque; 246 uint64_t refcount_table_index, block_index; 247 int64_t refcount_block_offset; 248 int ret; 249 void *refcount_block; 250 251 refcount_table_index = cluster_index >> s->refcount_block_bits; 252 if (refcount_table_index >= s->refcount_table_size) { 253 *refcount = 0; 254 return 0; 255 } 256 refcount_block_offset = 257 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 258 if (!refcount_block_offset) { 259 *refcount = 0; 260 return 0; 261 } 262 263 if (offset_into_cluster(s, refcount_block_offset)) { 264 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64 265 " unaligned (reftable index: %#" PRIx64 ")", 266 refcount_block_offset, refcount_table_index); 267 return -EIO; 268 } 269 270 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 271 &refcount_block); 272 if (ret < 0) { 273 return ret; 274 } 275 276 block_index = cluster_index & (s->refcount_block_size - 1); 277 *refcount = s->get_refcount(refcount_block, block_index); 278 279 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block); 280 281 return 0; 282 } 283 284 /* 285 * Rounds the refcount table size up to avoid growing the table for each single 286 * refcount block that is allocated. 287 */ 288 static unsigned int next_refcount_table_size(BDRVQcow2State *s, 289 unsigned int min_size) 290 { 291 unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1; 292 unsigned int refcount_table_clusters = 293 MAX(1, s->refcount_table_size >> (s->cluster_bits - 3)); 294 295 while (min_clusters > refcount_table_clusters) { 296 refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2; 297 } 298 299 return refcount_table_clusters << (s->cluster_bits - 3); 300 } 301 302 303 /* Checks if two offsets are described by the same refcount block */ 304 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a, 305 uint64_t offset_b) 306 { 307 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits); 308 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits); 309 310 return (block_a == block_b); 311 } 312 313 /* 314 * Loads a refcount block. If it doesn't exist yet, it is allocated first 315 * (including growing the refcount table if needed). 316 * 317 * Returns 0 on success or -errno in error case 318 */ 319 static int alloc_refcount_block(BlockDriverState *bs, 320 int64_t cluster_index, void **refcount_block) 321 { 322 BDRVQcow2State *s = bs->opaque; 323 unsigned int refcount_table_index; 324 int ret; 325 326 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC); 327 328 /* Find the refcount block for the given cluster */ 329 refcount_table_index = cluster_index >> s->refcount_block_bits; 330 331 if (refcount_table_index < s->refcount_table_size) { 332 333 uint64_t refcount_block_offset = 334 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 335 336 /* If it's already there, we're done */ 337 if (refcount_block_offset) { 338 if (offset_into_cluster(s, refcount_block_offset)) { 339 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 340 PRIx64 " unaligned (reftable index: " 341 "%#x)", refcount_block_offset, 342 refcount_table_index); 343 return -EIO; 344 } 345 346 return load_refcount_block(bs, refcount_block_offset, 347 refcount_block); 348 } 349 } 350 351 /* 352 * If we came here, we need to allocate something. Something is at least 353 * a cluster for the new refcount block. It may also include a new refcount 354 * table if the old refcount table is too small. 355 * 356 * Note that allocating clusters here needs some special care: 357 * 358 * - We can't use the normal qcow2_alloc_clusters(), it would try to 359 * increase the refcount and very likely we would end up with an endless 360 * recursion. Instead we must place the refcount blocks in a way that 361 * they can describe them themselves. 362 * 363 * - We need to consider that at this point we are inside update_refcounts 364 * and potentially doing an initial refcount increase. This means that 365 * some clusters have already been allocated by the caller, but their 366 * refcount isn't accurate yet. If we allocate clusters for metadata, we 367 * need to return -EAGAIN to signal the caller that it needs to restart 368 * the search for free clusters. 369 * 370 * - alloc_clusters_noref and qcow2_free_clusters may load a different 371 * refcount block into the cache 372 */ 373 374 *refcount_block = NULL; 375 376 /* We write to the refcount table, so we might depend on L2 tables */ 377 ret = qcow2_cache_flush(bs, s->l2_table_cache); 378 if (ret < 0) { 379 return ret; 380 } 381 382 /* Allocate the refcount block itself and mark it as used */ 383 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size); 384 if (new_block < 0) { 385 return new_block; 386 } 387 388 #ifdef DEBUG_ALLOC2 389 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64 390 " at %" PRIx64 "\n", 391 refcount_table_index, cluster_index << s->cluster_bits, new_block); 392 #endif 393 394 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) { 395 /* Zero the new refcount block before updating it */ 396 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 397 refcount_block); 398 if (ret < 0) { 399 goto fail_block; 400 } 401 402 memset(*refcount_block, 0, s->cluster_size); 403 404 /* The block describes itself, need to update the cache */ 405 int block_index = (new_block >> s->cluster_bits) & 406 (s->refcount_block_size - 1); 407 s->set_refcount(*refcount_block, block_index, 1); 408 } else { 409 /* Described somewhere else. This can recurse at most twice before we 410 * arrive at a block that describes itself. */ 411 ret = update_refcount(bs, new_block, s->cluster_size, 1, false, 412 QCOW2_DISCARD_NEVER); 413 if (ret < 0) { 414 goto fail_block; 415 } 416 417 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 418 if (ret < 0) { 419 goto fail_block; 420 } 421 422 /* Initialize the new refcount block only after updating its refcount, 423 * update_refcount uses the refcount cache itself */ 424 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 425 refcount_block); 426 if (ret < 0) { 427 goto fail_block; 428 } 429 430 memset(*refcount_block, 0, s->cluster_size); 431 } 432 433 /* Now the new refcount block needs to be written to disk */ 434 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE); 435 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block); 436 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 437 if (ret < 0) { 438 goto fail_block; 439 } 440 441 /* If the refcount table is big enough, just hook the block up there */ 442 if (refcount_table_index < s->refcount_table_size) { 443 uint64_t data64 = cpu_to_be64(new_block); 444 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP); 445 ret = bdrv_pwrite_sync(bs->file, 446 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t), 447 &data64, sizeof(data64)); 448 if (ret < 0) { 449 goto fail_block; 450 } 451 452 s->refcount_table[refcount_table_index] = new_block; 453 /* If there's a hole in s->refcount_table then it can happen 454 * that refcount_table_index < s->max_refcount_table_index */ 455 s->max_refcount_table_index = 456 MAX(s->max_refcount_table_index, refcount_table_index); 457 458 /* The new refcount block may be where the caller intended to put its 459 * data, so let it restart the search. */ 460 return -EAGAIN; 461 } 462 463 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block); 464 465 /* 466 * If we come here, we need to grow the refcount table. Again, a new 467 * refcount table needs some space and we can't simply allocate to avoid 468 * endless recursion. 469 * 470 * Therefore let's grab new refcount blocks at the end of the image, which 471 * will describe themselves and the new refcount table. This way we can 472 * reference them only in the new table and do the switch to the new 473 * refcount table at once without producing an inconsistent state in 474 * between. 475 */ 476 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW); 477 478 /* Calculate the number of refcount blocks needed so far; this will be the 479 * basis for calculating the index of the first cluster used for the 480 * self-describing refcount structures which we are about to create. 481 * 482 * Because we reached this point, there cannot be any refcount entries for 483 * cluster_index or higher indices yet. However, because new_block has been 484 * allocated to describe that cluster (and it will assume this role later 485 * on), we cannot use that index; also, new_block may actually have a higher 486 * cluster index than cluster_index, so it needs to be taken into account 487 * here (and 1 needs to be added to its value because that cluster is used). 488 */ 489 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1, 490 (new_block >> s->cluster_bits) + 1), 491 s->refcount_block_size); 492 493 if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) { 494 return -EFBIG; 495 } 496 497 /* And now we need at least one block more for the new metadata */ 498 uint64_t table_size = next_refcount_table_size(s, blocks_used + 1); 499 uint64_t last_table_size; 500 uint64_t blocks_clusters; 501 do { 502 uint64_t table_clusters = 503 size_to_clusters(s, table_size * sizeof(uint64_t)); 504 blocks_clusters = 1 + 505 DIV_ROUND_UP(table_clusters, s->refcount_block_size); 506 uint64_t meta_clusters = table_clusters + blocks_clusters; 507 508 last_table_size = table_size; 509 table_size = next_refcount_table_size(s, blocks_used + 510 DIV_ROUND_UP(meta_clusters, s->refcount_block_size)); 511 512 } while (last_table_size != table_size); 513 514 #ifdef DEBUG_ALLOC2 515 fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n", 516 s->refcount_table_size, table_size); 517 #endif 518 519 /* Create the new refcount table and blocks */ 520 uint64_t meta_offset = (blocks_used * s->refcount_block_size) * 521 s->cluster_size; 522 uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size; 523 uint64_t *new_table = g_try_new0(uint64_t, table_size); 524 void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size); 525 526 assert(table_size > 0 && blocks_clusters > 0); 527 if (new_table == NULL || new_blocks == NULL) { 528 ret = -ENOMEM; 529 goto fail_table; 530 } 531 532 /* Fill the new refcount table */ 533 memcpy(new_table, s->refcount_table, 534 s->refcount_table_size * sizeof(uint64_t)); 535 new_table[refcount_table_index] = new_block; 536 537 int i; 538 for (i = 0; i < blocks_clusters; i++) { 539 new_table[blocks_used + i] = meta_offset + (i * s->cluster_size); 540 } 541 542 /* Fill the refcount blocks */ 543 uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t)); 544 int block = 0; 545 for (i = 0; i < table_clusters + blocks_clusters; i++) { 546 s->set_refcount(new_blocks, block++, 1); 547 } 548 549 /* Write refcount blocks to disk */ 550 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS); 551 ret = bdrv_pwrite_sync(bs->file, meta_offset, new_blocks, 552 blocks_clusters * s->cluster_size); 553 g_free(new_blocks); 554 new_blocks = NULL; 555 if (ret < 0) { 556 goto fail_table; 557 } 558 559 /* Write refcount table to disk */ 560 for(i = 0; i < table_size; i++) { 561 cpu_to_be64s(&new_table[i]); 562 } 563 564 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE); 565 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table, 566 table_size * sizeof(uint64_t)); 567 if (ret < 0) { 568 goto fail_table; 569 } 570 571 for(i = 0; i < table_size; i++) { 572 be64_to_cpus(&new_table[i]); 573 } 574 575 /* Hook up the new refcount table in the qcow2 header */ 576 struct QEMU_PACKED { 577 uint64_t d64; 578 uint32_t d32; 579 } data; 580 data.d64 = cpu_to_be64(table_offset); 581 data.d32 = cpu_to_be32(table_clusters); 582 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE); 583 ret = bdrv_pwrite_sync(bs->file, 584 offsetof(QCowHeader, refcount_table_offset), 585 &data, sizeof(data)); 586 if (ret < 0) { 587 goto fail_table; 588 } 589 590 /* And switch it in memory */ 591 uint64_t old_table_offset = s->refcount_table_offset; 592 uint64_t old_table_size = s->refcount_table_size; 593 594 g_free(s->refcount_table); 595 s->refcount_table = new_table; 596 s->refcount_table_size = table_size; 597 s->refcount_table_offset = table_offset; 598 update_max_refcount_table_index(s); 599 600 /* Free old table. */ 601 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t), 602 QCOW2_DISCARD_OTHER); 603 604 ret = load_refcount_block(bs, new_block, refcount_block); 605 if (ret < 0) { 606 return ret; 607 } 608 609 /* If we were trying to do the initial refcount update for some cluster 610 * allocation, we might have used the same clusters to store newly 611 * allocated metadata. Make the caller search some new space. */ 612 return -EAGAIN; 613 614 fail_table: 615 g_free(new_blocks); 616 g_free(new_table); 617 fail_block: 618 if (*refcount_block != NULL) { 619 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block); 620 } 621 return ret; 622 } 623 624 void qcow2_process_discards(BlockDriverState *bs, int ret) 625 { 626 BDRVQcow2State *s = bs->opaque; 627 Qcow2DiscardRegion *d, *next; 628 629 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) { 630 QTAILQ_REMOVE(&s->discards, d, next); 631 632 /* Discard is optional, ignore the return value */ 633 if (ret >= 0) { 634 bdrv_pdiscard(bs->file->bs, d->offset, d->bytes); 635 } 636 637 g_free(d); 638 } 639 } 640 641 static void update_refcount_discard(BlockDriverState *bs, 642 uint64_t offset, uint64_t length) 643 { 644 BDRVQcow2State *s = bs->opaque; 645 Qcow2DiscardRegion *d, *p, *next; 646 647 QTAILQ_FOREACH(d, &s->discards, next) { 648 uint64_t new_start = MIN(offset, d->offset); 649 uint64_t new_end = MAX(offset + length, d->offset + d->bytes); 650 651 if (new_end - new_start <= length + d->bytes) { 652 /* There can't be any overlap, areas ending up here have no 653 * references any more and therefore shouldn't get freed another 654 * time. */ 655 assert(d->bytes + length == new_end - new_start); 656 d->offset = new_start; 657 d->bytes = new_end - new_start; 658 goto found; 659 } 660 } 661 662 d = g_malloc(sizeof(*d)); 663 *d = (Qcow2DiscardRegion) { 664 .bs = bs, 665 .offset = offset, 666 .bytes = length, 667 }; 668 QTAILQ_INSERT_TAIL(&s->discards, d, next); 669 670 found: 671 /* Merge discard requests if they are adjacent now */ 672 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) { 673 if (p == d 674 || p->offset > d->offset + d->bytes 675 || d->offset > p->offset + p->bytes) 676 { 677 continue; 678 } 679 680 /* Still no overlap possible */ 681 assert(p->offset == d->offset + d->bytes 682 || d->offset == p->offset + p->bytes); 683 684 QTAILQ_REMOVE(&s->discards, p, next); 685 d->offset = MIN(d->offset, p->offset); 686 d->bytes += p->bytes; 687 g_free(p); 688 } 689 } 690 691 /* XXX: cache several refcount block clusters ? */ 692 /* @addend is the absolute value of the addend; if @decrease is set, @addend 693 * will be subtracted from the current refcount, otherwise it will be added */ 694 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs, 695 int64_t offset, 696 int64_t length, 697 uint64_t addend, 698 bool decrease, 699 enum qcow2_discard_type type) 700 { 701 BDRVQcow2State *s = bs->opaque; 702 int64_t start, last, cluster_offset; 703 void *refcount_block = NULL; 704 int64_t old_table_index = -1; 705 int ret; 706 707 #ifdef DEBUG_ALLOC2 708 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64 709 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "", 710 addend); 711 #endif 712 if (length < 0) { 713 return -EINVAL; 714 } else if (length == 0) { 715 return 0; 716 } 717 718 if (decrease) { 719 qcow2_cache_set_dependency(bs, s->refcount_block_cache, 720 s->l2_table_cache); 721 } 722 723 start = start_of_cluster(s, offset); 724 last = start_of_cluster(s, offset + length - 1); 725 for(cluster_offset = start; cluster_offset <= last; 726 cluster_offset += s->cluster_size) 727 { 728 int block_index; 729 uint64_t refcount; 730 int64_t cluster_index = cluster_offset >> s->cluster_bits; 731 int64_t table_index = cluster_index >> s->refcount_block_bits; 732 733 /* Load the refcount block and allocate it if needed */ 734 if (table_index != old_table_index) { 735 if (refcount_block) { 736 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block); 737 } 738 ret = alloc_refcount_block(bs, cluster_index, &refcount_block); 739 if (ret < 0) { 740 goto fail; 741 } 742 } 743 old_table_index = table_index; 744 745 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, 746 refcount_block); 747 748 /* we can update the count and save it */ 749 block_index = cluster_index & (s->refcount_block_size - 1); 750 751 refcount = s->get_refcount(refcount_block, block_index); 752 if (decrease ? (refcount - addend > refcount) 753 : (refcount + addend < refcount || 754 refcount + addend > s->refcount_max)) 755 { 756 ret = -EINVAL; 757 goto fail; 758 } 759 if (decrease) { 760 refcount -= addend; 761 } else { 762 refcount += addend; 763 } 764 if (refcount == 0 && cluster_index < s->free_cluster_index) { 765 s->free_cluster_index = cluster_index; 766 } 767 s->set_refcount(refcount_block, block_index, refcount); 768 769 if (refcount == 0 && s->discard_passthrough[type]) { 770 update_refcount_discard(bs, cluster_offset, s->cluster_size); 771 } 772 } 773 774 ret = 0; 775 fail: 776 if (!s->cache_discards) { 777 qcow2_process_discards(bs, ret); 778 } 779 780 /* Write last changed block to disk */ 781 if (refcount_block) { 782 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block); 783 } 784 785 /* 786 * Try do undo any updates if an error is returned (This may succeed in 787 * some cases like ENOSPC for allocating a new refcount block) 788 */ 789 if (ret < 0) { 790 int dummy; 791 dummy = update_refcount(bs, offset, cluster_offset - offset, addend, 792 !decrease, QCOW2_DISCARD_NEVER); 793 (void)dummy; 794 } 795 796 return ret; 797 } 798 799 /* 800 * Increases or decreases the refcount of a given cluster. 801 * 802 * @addend is the absolute value of the addend; if @decrease is set, @addend 803 * will be subtracted from the current refcount, otherwise it will be added. 804 * 805 * On success 0 is returned; on failure -errno is returned. 806 */ 807 int qcow2_update_cluster_refcount(BlockDriverState *bs, 808 int64_t cluster_index, 809 uint64_t addend, bool decrease, 810 enum qcow2_discard_type type) 811 { 812 BDRVQcow2State *s = bs->opaque; 813 int ret; 814 815 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend, 816 decrease, type); 817 if (ret < 0) { 818 return ret; 819 } 820 821 return 0; 822 } 823 824 825 826 /*********************************************************/ 827 /* cluster allocation functions */ 828 829 830 831 /* return < 0 if error */ 832 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size) 833 { 834 BDRVQcow2State *s = bs->opaque; 835 uint64_t i, nb_clusters, refcount; 836 int ret; 837 838 /* We can't allocate clusters if they may still be queued for discard. */ 839 if (s->cache_discards) { 840 qcow2_process_discards(bs, 0); 841 } 842 843 nb_clusters = size_to_clusters(s, size); 844 retry: 845 for(i = 0; i < nb_clusters; i++) { 846 uint64_t next_cluster_index = s->free_cluster_index++; 847 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount); 848 849 if (ret < 0) { 850 return ret; 851 } else if (refcount != 0) { 852 goto retry; 853 } 854 } 855 856 /* Make sure that all offsets in the "allocated" range are representable 857 * in an int64_t */ 858 if (s->free_cluster_index > 0 && 859 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits)) 860 { 861 return -EFBIG; 862 } 863 864 #ifdef DEBUG_ALLOC2 865 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n", 866 size, 867 (s->free_cluster_index - nb_clusters) << s->cluster_bits); 868 #endif 869 return (s->free_cluster_index - nb_clusters) << s->cluster_bits; 870 } 871 872 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size) 873 { 874 int64_t offset; 875 int ret; 876 877 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC); 878 do { 879 offset = alloc_clusters_noref(bs, size); 880 if (offset < 0) { 881 return offset; 882 } 883 884 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 885 } while (ret == -EAGAIN); 886 887 if (ret < 0) { 888 return ret; 889 } 890 891 return offset; 892 } 893 894 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset, 895 int64_t nb_clusters) 896 { 897 BDRVQcow2State *s = bs->opaque; 898 uint64_t cluster_index, refcount; 899 uint64_t i; 900 int ret; 901 902 assert(nb_clusters >= 0); 903 if (nb_clusters == 0) { 904 return 0; 905 } 906 907 do { 908 /* Check how many clusters there are free */ 909 cluster_index = offset >> s->cluster_bits; 910 for(i = 0; i < nb_clusters; i++) { 911 ret = qcow2_get_refcount(bs, cluster_index++, &refcount); 912 if (ret < 0) { 913 return ret; 914 } else if (refcount != 0) { 915 break; 916 } 917 } 918 919 /* And then allocate them */ 920 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false, 921 QCOW2_DISCARD_NEVER); 922 } while (ret == -EAGAIN); 923 924 if (ret < 0) { 925 return ret; 926 } 927 928 return i; 929 } 930 931 /* only used to allocate compressed sectors. We try to allocate 932 contiguous sectors. size must be <= cluster_size */ 933 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size) 934 { 935 BDRVQcow2State *s = bs->opaque; 936 int64_t offset; 937 size_t free_in_cluster; 938 int ret; 939 940 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES); 941 assert(size > 0 && size <= s->cluster_size); 942 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset)); 943 944 offset = s->free_byte_offset; 945 946 if (offset) { 947 uint64_t refcount; 948 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount); 949 if (ret < 0) { 950 return ret; 951 } 952 953 if (refcount == s->refcount_max) { 954 offset = 0; 955 } 956 } 957 958 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset); 959 do { 960 if (!offset || free_in_cluster < size) { 961 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size); 962 if (new_cluster < 0) { 963 return new_cluster; 964 } 965 966 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) { 967 offset = new_cluster; 968 free_in_cluster = s->cluster_size; 969 } else { 970 free_in_cluster += s->cluster_size; 971 } 972 } 973 974 assert(offset); 975 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 976 if (ret < 0) { 977 offset = 0; 978 } 979 } while (ret == -EAGAIN); 980 if (ret < 0) { 981 return ret; 982 } 983 984 /* The cluster refcount was incremented; refcount blocks must be flushed 985 * before the caller's L2 table updates. */ 986 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache); 987 988 s->free_byte_offset = offset + size; 989 if (!offset_into_cluster(s, s->free_byte_offset)) { 990 s->free_byte_offset = 0; 991 } 992 993 return offset; 994 } 995 996 void qcow2_free_clusters(BlockDriverState *bs, 997 int64_t offset, int64_t size, 998 enum qcow2_discard_type type) 999 { 1000 int ret; 1001 1002 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE); 1003 ret = update_refcount(bs, offset, size, 1, true, type); 1004 if (ret < 0) { 1005 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret)); 1006 /* TODO Remember the clusters to free them later and avoid leaking */ 1007 } 1008 } 1009 1010 /* 1011 * Free a cluster using its L2 entry (handles clusters of all types, e.g. 1012 * normal cluster, compressed cluster, etc.) 1013 */ 1014 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry, 1015 int nb_clusters, enum qcow2_discard_type type) 1016 { 1017 BDRVQcow2State *s = bs->opaque; 1018 1019 switch (qcow2_get_cluster_type(l2_entry)) { 1020 case QCOW2_CLUSTER_COMPRESSED: 1021 { 1022 int nb_csectors; 1023 nb_csectors = ((l2_entry >> s->csize_shift) & 1024 s->csize_mask) + 1; 1025 qcow2_free_clusters(bs, 1026 (l2_entry & s->cluster_offset_mask) & ~511, 1027 nb_csectors * 512, type); 1028 } 1029 break; 1030 case QCOW2_CLUSTER_NORMAL: 1031 case QCOW2_CLUSTER_ZERO: 1032 if (l2_entry & L2E_OFFSET_MASK) { 1033 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) { 1034 qcow2_signal_corruption(bs, false, -1, -1, 1035 "Cannot free unaligned cluster %#llx", 1036 l2_entry & L2E_OFFSET_MASK); 1037 } else { 1038 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK, 1039 nb_clusters << s->cluster_bits, type); 1040 } 1041 } 1042 break; 1043 case QCOW2_CLUSTER_UNALLOCATED: 1044 break; 1045 default: 1046 abort(); 1047 } 1048 } 1049 1050 1051 1052 /*********************************************************/ 1053 /* snapshots and image creation */ 1054 1055 1056 1057 /* update the refcounts of snapshots and the copied flag */ 1058 int qcow2_update_snapshot_refcount(BlockDriverState *bs, 1059 int64_t l1_table_offset, int l1_size, int addend) 1060 { 1061 BDRVQcow2State *s = bs->opaque; 1062 uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount; 1063 bool l1_allocated = false; 1064 int64_t old_offset, old_l2_offset; 1065 int i, j, l1_modified = 0, nb_csectors; 1066 int ret; 1067 1068 assert(addend >= -1 && addend <= 1); 1069 1070 l2_table = NULL; 1071 l1_table = NULL; 1072 l1_size2 = l1_size * sizeof(uint64_t); 1073 1074 s->cache_discards = true; 1075 1076 /* WARNING: qcow2_snapshot_goto relies on this function not using the 1077 * l1_table_offset when it is the current s->l1_table_offset! Be careful 1078 * when changing this! */ 1079 if (l1_table_offset != s->l1_table_offset) { 1080 l1_table = g_try_malloc0(align_offset(l1_size2, 512)); 1081 if (l1_size2 && l1_table == NULL) { 1082 ret = -ENOMEM; 1083 goto fail; 1084 } 1085 l1_allocated = true; 1086 1087 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2); 1088 if (ret < 0) { 1089 goto fail; 1090 } 1091 1092 for(i = 0;i < l1_size; i++) 1093 be64_to_cpus(&l1_table[i]); 1094 } else { 1095 assert(l1_size == s->l1_size); 1096 l1_table = s->l1_table; 1097 l1_allocated = false; 1098 } 1099 1100 for(i = 0; i < l1_size; i++) { 1101 l2_offset = l1_table[i]; 1102 if (l2_offset) { 1103 old_l2_offset = l2_offset; 1104 l2_offset &= L1E_OFFSET_MASK; 1105 1106 if (offset_into_cluster(s, l2_offset)) { 1107 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1108 PRIx64 " unaligned (L1 index: %#x)", 1109 l2_offset, i); 1110 ret = -EIO; 1111 goto fail; 1112 } 1113 1114 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1115 (void**) &l2_table); 1116 if (ret < 0) { 1117 goto fail; 1118 } 1119 1120 for(j = 0; j < s->l2_size; j++) { 1121 uint64_t cluster_index; 1122 1123 offset = be64_to_cpu(l2_table[j]); 1124 old_offset = offset; 1125 offset &= ~QCOW_OFLAG_COPIED; 1126 1127 switch (qcow2_get_cluster_type(offset)) { 1128 case QCOW2_CLUSTER_COMPRESSED: 1129 nb_csectors = ((offset >> s->csize_shift) & 1130 s->csize_mask) + 1; 1131 if (addend != 0) { 1132 ret = update_refcount(bs, 1133 (offset & s->cluster_offset_mask) & ~511, 1134 nb_csectors * 512, abs(addend), addend < 0, 1135 QCOW2_DISCARD_SNAPSHOT); 1136 if (ret < 0) { 1137 goto fail; 1138 } 1139 } 1140 /* compressed clusters are never modified */ 1141 refcount = 2; 1142 break; 1143 1144 case QCOW2_CLUSTER_NORMAL: 1145 case QCOW2_CLUSTER_ZERO: 1146 if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) { 1147 qcow2_signal_corruption(bs, true, -1, -1, "Data " 1148 "cluster offset %#llx " 1149 "unaligned (L2 offset: %#" 1150 PRIx64 ", L2 index: %#x)", 1151 offset & L2E_OFFSET_MASK, 1152 l2_offset, j); 1153 ret = -EIO; 1154 goto fail; 1155 } 1156 1157 cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits; 1158 if (!cluster_index) { 1159 /* unallocated */ 1160 refcount = 0; 1161 break; 1162 } 1163 if (addend != 0) { 1164 ret = qcow2_update_cluster_refcount(bs, 1165 cluster_index, abs(addend), addend < 0, 1166 QCOW2_DISCARD_SNAPSHOT); 1167 if (ret < 0) { 1168 goto fail; 1169 } 1170 } 1171 1172 ret = qcow2_get_refcount(bs, cluster_index, &refcount); 1173 if (ret < 0) { 1174 goto fail; 1175 } 1176 break; 1177 1178 case QCOW2_CLUSTER_UNALLOCATED: 1179 refcount = 0; 1180 break; 1181 1182 default: 1183 abort(); 1184 } 1185 1186 if (refcount == 1) { 1187 offset |= QCOW_OFLAG_COPIED; 1188 } 1189 if (offset != old_offset) { 1190 if (addend > 0) { 1191 qcow2_cache_set_dependency(bs, s->l2_table_cache, 1192 s->refcount_block_cache); 1193 } 1194 l2_table[j] = cpu_to_be64(offset); 1195 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, 1196 l2_table); 1197 } 1198 } 1199 1200 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1201 1202 if (addend != 0) { 1203 ret = qcow2_update_cluster_refcount(bs, l2_offset >> 1204 s->cluster_bits, 1205 abs(addend), addend < 0, 1206 QCOW2_DISCARD_SNAPSHOT); 1207 if (ret < 0) { 1208 goto fail; 1209 } 1210 } 1211 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1212 &refcount); 1213 if (ret < 0) { 1214 goto fail; 1215 } else if (refcount == 1) { 1216 l2_offset |= QCOW_OFLAG_COPIED; 1217 } 1218 if (l2_offset != old_l2_offset) { 1219 l1_table[i] = l2_offset; 1220 l1_modified = 1; 1221 } 1222 } 1223 } 1224 1225 ret = bdrv_flush(bs); 1226 fail: 1227 if (l2_table) { 1228 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1229 } 1230 1231 s->cache_discards = false; 1232 qcow2_process_discards(bs, ret); 1233 1234 /* Update L1 only if it isn't deleted anyway (addend = -1) */ 1235 if (ret == 0 && addend >= 0 && l1_modified) { 1236 for (i = 0; i < l1_size; i++) { 1237 cpu_to_be64s(&l1_table[i]); 1238 } 1239 1240 ret = bdrv_pwrite_sync(bs->file, l1_table_offset, 1241 l1_table, l1_size2); 1242 1243 for (i = 0; i < l1_size; i++) { 1244 be64_to_cpus(&l1_table[i]); 1245 } 1246 } 1247 if (l1_allocated) 1248 g_free(l1_table); 1249 return ret; 1250 } 1251 1252 1253 1254 1255 /*********************************************************/ 1256 /* refcount checking functions */ 1257 1258 1259 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries) 1260 { 1261 /* This assertion holds because there is no way we can address more than 1262 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because 1263 * offsets have to be representable in bytes); due to every cluster 1264 * corresponding to one refcount entry, we are well below that limit */ 1265 assert(entries < (UINT64_C(1) << (64 - 9))); 1266 1267 /* Thanks to the assertion this will not overflow, because 1268 * s->refcount_order < 7. 1269 * (note: x << s->refcount_order == x * s->refcount_bits) */ 1270 return DIV_ROUND_UP(entries << s->refcount_order, 8); 1271 } 1272 1273 /** 1274 * Reallocates *array so that it can hold new_size entries. *size must contain 1275 * the current number of entries in *array. If the reallocation fails, *array 1276 * and *size will not be modified and -errno will be returned. If the 1277 * reallocation is successful, *array will be set to the new buffer, *size 1278 * will be set to new_size and 0 will be returned. The size of the reallocated 1279 * refcount array buffer will be aligned to a cluster boundary, and the newly 1280 * allocated area will be zeroed. 1281 */ 1282 static int realloc_refcount_array(BDRVQcow2State *s, void **array, 1283 int64_t *size, int64_t new_size) 1284 { 1285 int64_t old_byte_size, new_byte_size; 1286 void *new_ptr; 1287 1288 /* Round to clusters so the array can be directly written to disk */ 1289 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size)) 1290 * s->cluster_size; 1291 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size)) 1292 * s->cluster_size; 1293 1294 if (new_byte_size == old_byte_size) { 1295 *size = new_size; 1296 return 0; 1297 } 1298 1299 assert(new_byte_size > 0); 1300 1301 if (new_byte_size > SIZE_MAX) { 1302 return -ENOMEM; 1303 } 1304 1305 new_ptr = g_try_realloc(*array, new_byte_size); 1306 if (!new_ptr) { 1307 return -ENOMEM; 1308 } 1309 1310 if (new_byte_size > old_byte_size) { 1311 memset((char *)new_ptr + old_byte_size, 0, 1312 new_byte_size - old_byte_size); 1313 } 1314 1315 *array = new_ptr; 1316 *size = new_size; 1317 1318 return 0; 1319 } 1320 1321 /* 1322 * Increases the refcount for a range of clusters in a given refcount table. 1323 * This is used to construct a temporary refcount table out of L1 and L2 tables 1324 * which can be compared to the refcount table saved in the image. 1325 * 1326 * Modifies the number of errors in res. 1327 */ 1328 static int inc_refcounts(BlockDriverState *bs, 1329 BdrvCheckResult *res, 1330 void **refcount_table, 1331 int64_t *refcount_table_size, 1332 int64_t offset, int64_t size) 1333 { 1334 BDRVQcow2State *s = bs->opaque; 1335 uint64_t start, last, cluster_offset, k, refcount; 1336 int ret; 1337 1338 if (size <= 0) { 1339 return 0; 1340 } 1341 1342 start = start_of_cluster(s, offset); 1343 last = start_of_cluster(s, offset + size - 1); 1344 for(cluster_offset = start; cluster_offset <= last; 1345 cluster_offset += s->cluster_size) { 1346 k = cluster_offset >> s->cluster_bits; 1347 if (k >= *refcount_table_size) { 1348 ret = realloc_refcount_array(s, refcount_table, 1349 refcount_table_size, k + 1); 1350 if (ret < 0) { 1351 res->check_errors++; 1352 return ret; 1353 } 1354 } 1355 1356 refcount = s->get_refcount(*refcount_table, k); 1357 if (refcount == s->refcount_max) { 1358 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64 1359 "\n", cluster_offset); 1360 fprintf(stderr, "Use qemu-img amend to increase the refcount entry " 1361 "width or qemu-img convert to create a clean copy if the " 1362 "image cannot be opened for writing\n"); 1363 res->corruptions++; 1364 continue; 1365 } 1366 s->set_refcount(*refcount_table, k, refcount + 1); 1367 } 1368 1369 return 0; 1370 } 1371 1372 /* Flags for check_refcounts_l1() and check_refcounts_l2() */ 1373 enum { 1374 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */ 1375 }; 1376 1377 /* 1378 * Increases the refcount in the given refcount table for the all clusters 1379 * referenced in the L2 table. While doing so, performs some checks on L2 1380 * entries. 1381 * 1382 * Returns the number of errors found by the checks or -errno if an internal 1383 * error occurred. 1384 */ 1385 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res, 1386 void **refcount_table, 1387 int64_t *refcount_table_size, int64_t l2_offset, 1388 int flags) 1389 { 1390 BDRVQcow2State *s = bs->opaque; 1391 uint64_t *l2_table, l2_entry; 1392 uint64_t next_contiguous_offset = 0; 1393 int i, l2_size, nb_csectors, ret; 1394 1395 /* Read L2 table from disk */ 1396 l2_size = s->l2_size * sizeof(uint64_t); 1397 l2_table = g_malloc(l2_size); 1398 1399 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size); 1400 if (ret < 0) { 1401 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n"); 1402 res->check_errors++; 1403 goto fail; 1404 } 1405 1406 /* Do the actual checks */ 1407 for(i = 0; i < s->l2_size; i++) { 1408 l2_entry = be64_to_cpu(l2_table[i]); 1409 1410 switch (qcow2_get_cluster_type(l2_entry)) { 1411 case QCOW2_CLUSTER_COMPRESSED: 1412 /* Compressed clusters don't have QCOW_OFLAG_COPIED */ 1413 if (l2_entry & QCOW_OFLAG_COPIED) { 1414 fprintf(stderr, "ERROR: cluster %" PRId64 ": " 1415 "copied flag must never be set for compressed " 1416 "clusters\n", l2_entry >> s->cluster_bits); 1417 l2_entry &= ~QCOW_OFLAG_COPIED; 1418 res->corruptions++; 1419 } 1420 1421 /* Mark cluster as used */ 1422 nb_csectors = ((l2_entry >> s->csize_shift) & 1423 s->csize_mask) + 1; 1424 l2_entry &= s->cluster_offset_mask; 1425 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size, 1426 l2_entry & ~511, nb_csectors * 512); 1427 if (ret < 0) { 1428 goto fail; 1429 } 1430 1431 if (flags & CHECK_FRAG_INFO) { 1432 res->bfi.allocated_clusters++; 1433 res->bfi.compressed_clusters++; 1434 1435 /* Compressed clusters are fragmented by nature. Since they 1436 * take up sub-sector space but we only have sector granularity 1437 * I/O we need to re-read the same sectors even for adjacent 1438 * compressed clusters. 1439 */ 1440 res->bfi.fragmented_clusters++; 1441 } 1442 break; 1443 1444 case QCOW2_CLUSTER_ZERO: 1445 if ((l2_entry & L2E_OFFSET_MASK) == 0) { 1446 break; 1447 } 1448 /* fall through */ 1449 1450 case QCOW2_CLUSTER_NORMAL: 1451 { 1452 uint64_t offset = l2_entry & L2E_OFFSET_MASK; 1453 1454 if (flags & CHECK_FRAG_INFO) { 1455 res->bfi.allocated_clusters++; 1456 if (next_contiguous_offset && 1457 offset != next_contiguous_offset) { 1458 res->bfi.fragmented_clusters++; 1459 } 1460 next_contiguous_offset = offset + s->cluster_size; 1461 } 1462 1463 /* Mark cluster as used */ 1464 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size, 1465 offset, s->cluster_size); 1466 if (ret < 0) { 1467 goto fail; 1468 } 1469 1470 /* Correct offsets are cluster aligned */ 1471 if (offset_into_cluster(s, offset)) { 1472 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not " 1473 "properly aligned; L2 entry corrupted.\n", offset); 1474 res->corruptions++; 1475 } 1476 break; 1477 } 1478 1479 case QCOW2_CLUSTER_UNALLOCATED: 1480 break; 1481 1482 default: 1483 abort(); 1484 } 1485 } 1486 1487 g_free(l2_table); 1488 return 0; 1489 1490 fail: 1491 g_free(l2_table); 1492 return ret; 1493 } 1494 1495 /* 1496 * Increases the refcount for the L1 table, its L2 tables and all referenced 1497 * clusters in the given refcount table. While doing so, performs some checks 1498 * on L1 and L2 entries. 1499 * 1500 * Returns the number of errors found by the checks or -errno if an internal 1501 * error occurred. 1502 */ 1503 static int check_refcounts_l1(BlockDriverState *bs, 1504 BdrvCheckResult *res, 1505 void **refcount_table, 1506 int64_t *refcount_table_size, 1507 int64_t l1_table_offset, int l1_size, 1508 int flags) 1509 { 1510 BDRVQcow2State *s = bs->opaque; 1511 uint64_t *l1_table = NULL, l2_offset, l1_size2; 1512 int i, ret; 1513 1514 l1_size2 = l1_size * sizeof(uint64_t); 1515 1516 /* Mark L1 table as used */ 1517 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size, 1518 l1_table_offset, l1_size2); 1519 if (ret < 0) { 1520 goto fail; 1521 } 1522 1523 /* Read L1 table entries from disk */ 1524 if (l1_size2 > 0) { 1525 l1_table = g_try_malloc(l1_size2); 1526 if (l1_table == NULL) { 1527 ret = -ENOMEM; 1528 res->check_errors++; 1529 goto fail; 1530 } 1531 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2); 1532 if (ret < 0) { 1533 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n"); 1534 res->check_errors++; 1535 goto fail; 1536 } 1537 for(i = 0;i < l1_size; i++) 1538 be64_to_cpus(&l1_table[i]); 1539 } 1540 1541 /* Do the actual checks */ 1542 for(i = 0; i < l1_size; i++) { 1543 l2_offset = l1_table[i]; 1544 if (l2_offset) { 1545 /* Mark L2 table as used */ 1546 l2_offset &= L1E_OFFSET_MASK; 1547 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size, 1548 l2_offset, s->cluster_size); 1549 if (ret < 0) { 1550 goto fail; 1551 } 1552 1553 /* L2 tables are cluster aligned */ 1554 if (offset_into_cluster(s, l2_offset)) { 1555 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not " 1556 "cluster aligned; L1 entry corrupted\n", l2_offset); 1557 res->corruptions++; 1558 } 1559 1560 /* Process and check L2 entries */ 1561 ret = check_refcounts_l2(bs, res, refcount_table, 1562 refcount_table_size, l2_offset, flags); 1563 if (ret < 0) { 1564 goto fail; 1565 } 1566 } 1567 } 1568 g_free(l1_table); 1569 return 0; 1570 1571 fail: 1572 g_free(l1_table); 1573 return ret; 1574 } 1575 1576 /* 1577 * Checks the OFLAG_COPIED flag for all L1 and L2 entries. 1578 * 1579 * This function does not print an error message nor does it increment 1580 * check_errors if qcow2_get_refcount fails (this is because such an error will 1581 * have been already detected and sufficiently signaled by the calling function 1582 * (qcow2_check_refcounts) by the time this function is called). 1583 */ 1584 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res, 1585 BdrvCheckMode fix) 1586 { 1587 BDRVQcow2State *s = bs->opaque; 1588 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size); 1589 int ret; 1590 uint64_t refcount; 1591 int i, j; 1592 1593 for (i = 0; i < s->l1_size; i++) { 1594 uint64_t l1_entry = s->l1_table[i]; 1595 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK; 1596 bool l2_dirty = false; 1597 1598 if (!l2_offset) { 1599 continue; 1600 } 1601 1602 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1603 &refcount); 1604 if (ret < 0) { 1605 /* don't print message nor increment check_errors */ 1606 continue; 1607 } 1608 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) { 1609 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d " 1610 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 1611 fix & BDRV_FIX_ERRORS ? "Repairing" : 1612 "ERROR", 1613 i, l1_entry, refcount); 1614 if (fix & BDRV_FIX_ERRORS) { 1615 s->l1_table[i] = refcount == 1 1616 ? l1_entry | QCOW_OFLAG_COPIED 1617 : l1_entry & ~QCOW_OFLAG_COPIED; 1618 ret = qcow2_write_l1_entry(bs, i); 1619 if (ret < 0) { 1620 res->check_errors++; 1621 goto fail; 1622 } 1623 res->corruptions_fixed++; 1624 } else { 1625 res->corruptions++; 1626 } 1627 } 1628 1629 ret = bdrv_pread(bs->file, l2_offset, l2_table, 1630 s->l2_size * sizeof(uint64_t)); 1631 if (ret < 0) { 1632 fprintf(stderr, "ERROR: Could not read L2 table: %s\n", 1633 strerror(-ret)); 1634 res->check_errors++; 1635 goto fail; 1636 } 1637 1638 for (j = 0; j < s->l2_size; j++) { 1639 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1640 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK; 1641 int cluster_type = qcow2_get_cluster_type(l2_entry); 1642 1643 if ((cluster_type == QCOW2_CLUSTER_NORMAL) || 1644 ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) { 1645 ret = qcow2_get_refcount(bs, 1646 data_offset >> s->cluster_bits, 1647 &refcount); 1648 if (ret < 0) { 1649 /* don't print message nor increment check_errors */ 1650 continue; 1651 } 1652 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) { 1653 fprintf(stderr, "%s OFLAG_COPIED data cluster: " 1654 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 1655 fix & BDRV_FIX_ERRORS ? "Repairing" : 1656 "ERROR", 1657 l2_entry, refcount); 1658 if (fix & BDRV_FIX_ERRORS) { 1659 l2_table[j] = cpu_to_be64(refcount == 1 1660 ? l2_entry | QCOW_OFLAG_COPIED 1661 : l2_entry & ~QCOW_OFLAG_COPIED); 1662 l2_dirty = true; 1663 res->corruptions_fixed++; 1664 } else { 1665 res->corruptions++; 1666 } 1667 } 1668 } 1669 } 1670 1671 if (l2_dirty) { 1672 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2, 1673 l2_offset, s->cluster_size); 1674 if (ret < 0) { 1675 fprintf(stderr, "ERROR: Could not write L2 table; metadata " 1676 "overlap check failed: %s\n", strerror(-ret)); 1677 res->check_errors++; 1678 goto fail; 1679 } 1680 1681 ret = bdrv_pwrite(bs->file, l2_offset, l2_table, 1682 s->cluster_size); 1683 if (ret < 0) { 1684 fprintf(stderr, "ERROR: Could not write L2 table: %s\n", 1685 strerror(-ret)); 1686 res->check_errors++; 1687 goto fail; 1688 } 1689 } 1690 } 1691 1692 ret = 0; 1693 1694 fail: 1695 qemu_vfree(l2_table); 1696 return ret; 1697 } 1698 1699 /* 1700 * Checks consistency of refblocks and accounts for each refblock in 1701 * *refcount_table. 1702 */ 1703 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res, 1704 BdrvCheckMode fix, bool *rebuild, 1705 void **refcount_table, int64_t *nb_clusters) 1706 { 1707 BDRVQcow2State *s = bs->opaque; 1708 int64_t i, size; 1709 int ret; 1710 1711 for(i = 0; i < s->refcount_table_size; i++) { 1712 uint64_t offset, cluster; 1713 offset = s->refcount_table[i]; 1714 cluster = offset >> s->cluster_bits; 1715 1716 /* Refcount blocks are cluster aligned */ 1717 if (offset_into_cluster(s, offset)) { 1718 fprintf(stderr, "ERROR refcount block %" PRId64 " is not " 1719 "cluster aligned; refcount table entry corrupted\n", i); 1720 res->corruptions++; 1721 *rebuild = true; 1722 continue; 1723 } 1724 1725 if (cluster >= *nb_clusters) { 1726 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n", 1727 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i); 1728 1729 if (fix & BDRV_FIX_ERRORS) { 1730 int64_t new_nb_clusters; 1731 1732 if (offset > INT64_MAX - s->cluster_size) { 1733 ret = -EINVAL; 1734 goto resize_fail; 1735 } 1736 1737 ret = bdrv_truncate(bs->file, offset + s->cluster_size); 1738 if (ret < 0) { 1739 goto resize_fail; 1740 } 1741 size = bdrv_getlength(bs->file->bs); 1742 if (size < 0) { 1743 ret = size; 1744 goto resize_fail; 1745 } 1746 1747 new_nb_clusters = size_to_clusters(s, size); 1748 assert(new_nb_clusters >= *nb_clusters); 1749 1750 ret = realloc_refcount_array(s, refcount_table, 1751 nb_clusters, new_nb_clusters); 1752 if (ret < 0) { 1753 res->check_errors++; 1754 return ret; 1755 } 1756 1757 if (cluster >= *nb_clusters) { 1758 ret = -EINVAL; 1759 goto resize_fail; 1760 } 1761 1762 res->corruptions_fixed++; 1763 ret = inc_refcounts(bs, res, refcount_table, nb_clusters, 1764 offset, s->cluster_size); 1765 if (ret < 0) { 1766 return ret; 1767 } 1768 /* No need to check whether the refcount is now greater than 1: 1769 * This area was just allocated and zeroed, so it can only be 1770 * exactly 1 after inc_refcounts() */ 1771 continue; 1772 1773 resize_fail: 1774 res->corruptions++; 1775 *rebuild = true; 1776 fprintf(stderr, "ERROR could not resize image: %s\n", 1777 strerror(-ret)); 1778 } else { 1779 res->corruptions++; 1780 } 1781 continue; 1782 } 1783 1784 if (offset != 0) { 1785 ret = inc_refcounts(bs, res, refcount_table, nb_clusters, 1786 offset, s->cluster_size); 1787 if (ret < 0) { 1788 return ret; 1789 } 1790 if (s->get_refcount(*refcount_table, cluster) != 1) { 1791 fprintf(stderr, "ERROR refcount block %" PRId64 1792 " refcount=%" PRIu64 "\n", i, 1793 s->get_refcount(*refcount_table, cluster)); 1794 res->corruptions++; 1795 *rebuild = true; 1796 } 1797 } 1798 } 1799 1800 return 0; 1801 } 1802 1803 /* 1804 * Calculates an in-memory refcount table. 1805 */ 1806 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 1807 BdrvCheckMode fix, bool *rebuild, 1808 void **refcount_table, int64_t *nb_clusters) 1809 { 1810 BDRVQcow2State *s = bs->opaque; 1811 int64_t i; 1812 QCowSnapshot *sn; 1813 int ret; 1814 1815 if (!*refcount_table) { 1816 int64_t old_size = 0; 1817 ret = realloc_refcount_array(s, refcount_table, 1818 &old_size, *nb_clusters); 1819 if (ret < 0) { 1820 res->check_errors++; 1821 return ret; 1822 } 1823 } 1824 1825 /* header */ 1826 ret = inc_refcounts(bs, res, refcount_table, nb_clusters, 1827 0, s->cluster_size); 1828 if (ret < 0) { 1829 return ret; 1830 } 1831 1832 /* current L1 table */ 1833 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 1834 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO); 1835 if (ret < 0) { 1836 return ret; 1837 } 1838 1839 /* snapshots */ 1840 for (i = 0; i < s->nb_snapshots; i++) { 1841 sn = s->snapshots + i; 1842 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 1843 sn->l1_table_offset, sn->l1_size, 0); 1844 if (ret < 0) { 1845 return ret; 1846 } 1847 } 1848 ret = inc_refcounts(bs, res, refcount_table, nb_clusters, 1849 s->snapshots_offset, s->snapshots_size); 1850 if (ret < 0) { 1851 return ret; 1852 } 1853 1854 /* refcount data */ 1855 ret = inc_refcounts(bs, res, refcount_table, nb_clusters, 1856 s->refcount_table_offset, 1857 s->refcount_table_size * sizeof(uint64_t)); 1858 if (ret < 0) { 1859 return ret; 1860 } 1861 1862 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters); 1863 } 1864 1865 /* 1866 * Compares the actual reference count for each cluster in the image against the 1867 * refcount as reported by the refcount structures on-disk. 1868 */ 1869 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 1870 BdrvCheckMode fix, bool *rebuild, 1871 int64_t *highest_cluster, 1872 void *refcount_table, int64_t nb_clusters) 1873 { 1874 BDRVQcow2State *s = bs->opaque; 1875 int64_t i; 1876 uint64_t refcount1, refcount2; 1877 int ret; 1878 1879 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) { 1880 ret = qcow2_get_refcount(bs, i, &refcount1); 1881 if (ret < 0) { 1882 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 1883 i, strerror(-ret)); 1884 res->check_errors++; 1885 continue; 1886 } 1887 1888 refcount2 = s->get_refcount(refcount_table, i); 1889 1890 if (refcount1 > 0 || refcount2 > 0) { 1891 *highest_cluster = i; 1892 } 1893 1894 if (refcount1 != refcount2) { 1895 /* Check if we're allowed to fix the mismatch */ 1896 int *num_fixed = NULL; 1897 if (refcount1 == 0) { 1898 *rebuild = true; 1899 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) { 1900 num_fixed = &res->leaks_fixed; 1901 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) { 1902 num_fixed = &res->corruptions_fixed; 1903 } 1904 1905 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64 1906 " reference=%" PRIu64 "\n", 1907 num_fixed != NULL ? "Repairing" : 1908 refcount1 < refcount2 ? "ERROR" : 1909 "Leaked", 1910 i, refcount1, refcount2); 1911 1912 if (num_fixed) { 1913 ret = update_refcount(bs, i << s->cluster_bits, 1, 1914 refcount_diff(refcount1, refcount2), 1915 refcount1 > refcount2, 1916 QCOW2_DISCARD_ALWAYS); 1917 if (ret >= 0) { 1918 (*num_fixed)++; 1919 continue; 1920 } 1921 } 1922 1923 /* And if we couldn't, print an error */ 1924 if (refcount1 < refcount2) { 1925 res->corruptions++; 1926 } else { 1927 res->leaks++; 1928 } 1929 } 1930 } 1931 } 1932 1933 /* 1934 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to 1935 * the on-disk refcount structures. 1936 * 1937 * On input, *first_free_cluster tells where to start looking, and need not 1938 * actually be a free cluster; the returned offset will not be before that 1939 * cluster. On output, *first_free_cluster points to the first gap found, even 1940 * if that gap was too small to be used as the returned offset. 1941 * 1942 * Note that *first_free_cluster is a cluster index whereas the return value is 1943 * an offset. 1944 */ 1945 static int64_t alloc_clusters_imrt(BlockDriverState *bs, 1946 int cluster_count, 1947 void **refcount_table, 1948 int64_t *imrt_nb_clusters, 1949 int64_t *first_free_cluster) 1950 { 1951 BDRVQcow2State *s = bs->opaque; 1952 int64_t cluster = *first_free_cluster, i; 1953 bool first_gap = true; 1954 int contiguous_free_clusters; 1955 int ret; 1956 1957 /* Starting at *first_free_cluster, find a range of at least cluster_count 1958 * continuously free clusters */ 1959 for (contiguous_free_clusters = 0; 1960 cluster < *imrt_nb_clusters && 1961 contiguous_free_clusters < cluster_count; 1962 cluster++) 1963 { 1964 if (!s->get_refcount(*refcount_table, cluster)) { 1965 contiguous_free_clusters++; 1966 if (first_gap) { 1967 /* If this is the first free cluster found, update 1968 * *first_free_cluster accordingly */ 1969 *first_free_cluster = cluster; 1970 first_gap = false; 1971 } 1972 } else if (contiguous_free_clusters) { 1973 contiguous_free_clusters = 0; 1974 } 1975 } 1976 1977 /* If contiguous_free_clusters is greater than zero, it contains the number 1978 * of continuously free clusters until the current cluster; the first free 1979 * cluster in the current "gap" is therefore 1980 * cluster - contiguous_free_clusters */ 1981 1982 /* If no such range could be found, grow the in-memory refcount table 1983 * accordingly to append free clusters at the end of the image */ 1984 if (contiguous_free_clusters < cluster_count) { 1985 /* contiguous_free_clusters clusters are already empty at the image end; 1986 * we need cluster_count clusters; therefore, we have to allocate 1987 * cluster_count - contiguous_free_clusters new clusters at the end of 1988 * the image (which is the current value of cluster; note that cluster 1989 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond 1990 * the image end) */ 1991 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters, 1992 cluster + cluster_count 1993 - contiguous_free_clusters); 1994 if (ret < 0) { 1995 return ret; 1996 } 1997 } 1998 1999 /* Go back to the first free cluster */ 2000 cluster -= contiguous_free_clusters; 2001 for (i = 0; i < cluster_count; i++) { 2002 s->set_refcount(*refcount_table, cluster + i, 1); 2003 } 2004 2005 return cluster << s->cluster_bits; 2006 } 2007 2008 /* 2009 * Creates a new refcount structure based solely on the in-memory information 2010 * given through *refcount_table. All necessary allocations will be reflected 2011 * in that array. 2012 * 2013 * On success, the old refcount structure is leaked (it will be covered by the 2014 * new refcount structure). 2015 */ 2016 static int rebuild_refcount_structure(BlockDriverState *bs, 2017 BdrvCheckResult *res, 2018 void **refcount_table, 2019 int64_t *nb_clusters) 2020 { 2021 BDRVQcow2State *s = bs->opaque; 2022 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0; 2023 int64_t refblock_offset, refblock_start, refblock_index; 2024 uint32_t reftable_size = 0; 2025 uint64_t *on_disk_reftable = NULL; 2026 void *on_disk_refblock; 2027 int ret = 0; 2028 struct { 2029 uint64_t reftable_offset; 2030 uint32_t reftable_clusters; 2031 } QEMU_PACKED reftable_offset_and_clusters; 2032 2033 qcow2_cache_empty(bs, s->refcount_block_cache); 2034 2035 write_refblocks: 2036 for (; cluster < *nb_clusters; cluster++) { 2037 if (!s->get_refcount(*refcount_table, cluster)) { 2038 continue; 2039 } 2040 2041 refblock_index = cluster >> s->refcount_block_bits; 2042 refblock_start = refblock_index << s->refcount_block_bits; 2043 2044 /* Don't allocate a cluster in a refblock already written to disk */ 2045 if (first_free_cluster < refblock_start) { 2046 first_free_cluster = refblock_start; 2047 } 2048 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table, 2049 nb_clusters, &first_free_cluster); 2050 if (refblock_offset < 0) { 2051 fprintf(stderr, "ERROR allocating refblock: %s\n", 2052 strerror(-refblock_offset)); 2053 res->check_errors++; 2054 ret = refblock_offset; 2055 goto fail; 2056 } 2057 2058 if (reftable_size <= refblock_index) { 2059 uint32_t old_reftable_size = reftable_size; 2060 uint64_t *new_on_disk_reftable; 2061 2062 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t), 2063 s->cluster_size) / sizeof(uint64_t); 2064 new_on_disk_reftable = g_try_realloc(on_disk_reftable, 2065 reftable_size * 2066 sizeof(uint64_t)); 2067 if (!new_on_disk_reftable) { 2068 res->check_errors++; 2069 ret = -ENOMEM; 2070 goto fail; 2071 } 2072 on_disk_reftable = new_on_disk_reftable; 2073 2074 memset(on_disk_reftable + old_reftable_size, 0, 2075 (reftable_size - old_reftable_size) * sizeof(uint64_t)); 2076 2077 /* The offset we have for the reftable is now no longer valid; 2078 * this will leak that range, but we can easily fix that by running 2079 * a leak-fixing check after this rebuild operation */ 2080 reftable_offset = -1; 2081 } 2082 on_disk_reftable[refblock_index] = refblock_offset; 2083 2084 /* If this is apparently the last refblock (for now), try to squeeze the 2085 * reftable in */ 2086 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits && 2087 reftable_offset < 0) 2088 { 2089 uint64_t reftable_clusters = size_to_clusters(s, reftable_size * 2090 sizeof(uint64_t)); 2091 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2092 refcount_table, nb_clusters, 2093 &first_free_cluster); 2094 if (reftable_offset < 0) { 2095 fprintf(stderr, "ERROR allocating reftable: %s\n", 2096 strerror(-reftable_offset)); 2097 res->check_errors++; 2098 ret = reftable_offset; 2099 goto fail; 2100 } 2101 } 2102 2103 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset, 2104 s->cluster_size); 2105 if (ret < 0) { 2106 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret)); 2107 goto fail; 2108 } 2109 2110 /* The size of *refcount_table is always cluster-aligned, therefore the 2111 * write operation will not overflow */ 2112 on_disk_refblock = (void *)((char *) *refcount_table + 2113 refblock_index * s->cluster_size); 2114 2115 ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE, 2116 on_disk_refblock, s->cluster_sectors); 2117 if (ret < 0) { 2118 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret)); 2119 goto fail; 2120 } 2121 2122 /* Go to the end of this refblock */ 2123 cluster = refblock_start + s->refcount_block_size - 1; 2124 } 2125 2126 if (reftable_offset < 0) { 2127 uint64_t post_refblock_start, reftable_clusters; 2128 2129 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size); 2130 reftable_clusters = size_to_clusters(s, 2131 reftable_size * sizeof(uint64_t)); 2132 /* Not pretty but simple */ 2133 if (first_free_cluster < post_refblock_start) { 2134 first_free_cluster = post_refblock_start; 2135 } 2136 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2137 refcount_table, nb_clusters, 2138 &first_free_cluster); 2139 if (reftable_offset < 0) { 2140 fprintf(stderr, "ERROR allocating reftable: %s\n", 2141 strerror(-reftable_offset)); 2142 res->check_errors++; 2143 ret = reftable_offset; 2144 goto fail; 2145 } 2146 2147 goto write_refblocks; 2148 } 2149 2150 assert(on_disk_reftable); 2151 2152 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) { 2153 cpu_to_be64s(&on_disk_reftable[refblock_index]); 2154 } 2155 2156 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset, 2157 reftable_size * sizeof(uint64_t)); 2158 if (ret < 0) { 2159 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret)); 2160 goto fail; 2161 } 2162 2163 assert(reftable_size < INT_MAX / sizeof(uint64_t)); 2164 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable, 2165 reftable_size * sizeof(uint64_t)); 2166 if (ret < 0) { 2167 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret)); 2168 goto fail; 2169 } 2170 2171 /* Enter new reftable into the image header */ 2172 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset); 2173 reftable_offset_and_clusters.reftable_clusters = 2174 cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t))); 2175 ret = bdrv_pwrite_sync(bs->file, 2176 offsetof(QCowHeader, refcount_table_offset), 2177 &reftable_offset_and_clusters, 2178 sizeof(reftable_offset_and_clusters)); 2179 if (ret < 0) { 2180 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret)); 2181 goto fail; 2182 } 2183 2184 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) { 2185 be64_to_cpus(&on_disk_reftable[refblock_index]); 2186 } 2187 s->refcount_table = on_disk_reftable; 2188 s->refcount_table_offset = reftable_offset; 2189 s->refcount_table_size = reftable_size; 2190 update_max_refcount_table_index(s); 2191 2192 return 0; 2193 2194 fail: 2195 g_free(on_disk_reftable); 2196 return ret; 2197 } 2198 2199 /* 2200 * Checks an image for refcount consistency. 2201 * 2202 * Returns 0 if no errors are found, the number of errors in case the image is 2203 * detected as corrupted, and -errno when an internal error occurred. 2204 */ 2205 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2206 BdrvCheckMode fix) 2207 { 2208 BDRVQcow2State *s = bs->opaque; 2209 BdrvCheckResult pre_compare_res; 2210 int64_t size, highest_cluster, nb_clusters; 2211 void *refcount_table = NULL; 2212 bool rebuild = false; 2213 int ret; 2214 2215 size = bdrv_getlength(bs->file->bs); 2216 if (size < 0) { 2217 res->check_errors++; 2218 return size; 2219 } 2220 2221 nb_clusters = size_to_clusters(s, size); 2222 if (nb_clusters > INT_MAX) { 2223 res->check_errors++; 2224 return -EFBIG; 2225 } 2226 2227 res->bfi.total_clusters = 2228 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE); 2229 2230 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table, 2231 &nb_clusters); 2232 if (ret < 0) { 2233 goto fail; 2234 } 2235 2236 /* In case we don't need to rebuild the refcount structure (but want to fix 2237 * something), this function is immediately called again, in which case the 2238 * result should be ignored */ 2239 pre_compare_res = *res; 2240 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table, 2241 nb_clusters); 2242 2243 if (rebuild && (fix & BDRV_FIX_ERRORS)) { 2244 BdrvCheckResult old_res = *res; 2245 int fresh_leaks = 0; 2246 2247 fprintf(stderr, "Rebuilding refcount structure\n"); 2248 ret = rebuild_refcount_structure(bs, res, &refcount_table, 2249 &nb_clusters); 2250 if (ret < 0) { 2251 goto fail; 2252 } 2253 2254 res->corruptions = 0; 2255 res->leaks = 0; 2256 2257 /* Because the old reftable has been exchanged for a new one the 2258 * references have to be recalculated */ 2259 rebuild = false; 2260 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters)); 2261 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table, 2262 &nb_clusters); 2263 if (ret < 0) { 2264 goto fail; 2265 } 2266 2267 if (fix & BDRV_FIX_LEAKS) { 2268 /* The old refcount structures are now leaked, fix it; the result 2269 * can be ignored, aside from leaks which were introduced by 2270 * rebuild_refcount_structure() that could not be fixed */ 2271 BdrvCheckResult saved_res = *res; 2272 *res = (BdrvCheckResult){ 0 }; 2273 2274 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild, 2275 &highest_cluster, refcount_table, nb_clusters); 2276 if (rebuild) { 2277 fprintf(stderr, "ERROR rebuilt refcount structure is still " 2278 "broken\n"); 2279 } 2280 2281 /* Any leaks accounted for here were introduced by 2282 * rebuild_refcount_structure() because that function has created a 2283 * new refcount structure from scratch */ 2284 fresh_leaks = res->leaks; 2285 *res = saved_res; 2286 } 2287 2288 if (res->corruptions < old_res.corruptions) { 2289 res->corruptions_fixed += old_res.corruptions - res->corruptions; 2290 } 2291 if (res->leaks < old_res.leaks) { 2292 res->leaks_fixed += old_res.leaks - res->leaks; 2293 } 2294 res->leaks += fresh_leaks; 2295 } else if (fix) { 2296 if (rebuild) { 2297 fprintf(stderr, "ERROR need to rebuild refcount structures\n"); 2298 res->check_errors++; 2299 ret = -EIO; 2300 goto fail; 2301 } 2302 2303 if (res->leaks || res->corruptions) { 2304 *res = pre_compare_res; 2305 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster, 2306 refcount_table, nb_clusters); 2307 } 2308 } 2309 2310 /* check OFLAG_COPIED */ 2311 ret = check_oflag_copied(bs, res, fix); 2312 if (ret < 0) { 2313 goto fail; 2314 } 2315 2316 res->image_end_offset = (highest_cluster + 1) * s->cluster_size; 2317 ret = 0; 2318 2319 fail: 2320 g_free(refcount_table); 2321 2322 return ret; 2323 } 2324 2325 #define overlaps_with(ofs, sz) \ 2326 ranges_overlap(offset, size, ofs, sz) 2327 2328 /* 2329 * Checks if the given offset into the image file is actually free to use by 2330 * looking for overlaps with important metadata sections (L1/L2 tables etc.), 2331 * i.e. a sanity check without relying on the refcount tables. 2332 * 2333 * The ign parameter specifies what checks not to perform (being a bitmask of 2334 * QCow2MetadataOverlap values), i.e., what sections to ignore. 2335 * 2336 * Returns: 2337 * - 0 if writing to this offset will not affect the mentioned metadata 2338 * - a positive QCow2MetadataOverlap value indicating one overlapping section 2339 * - a negative value (-errno) indicating an error while performing a check, 2340 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2 2341 */ 2342 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset, 2343 int64_t size) 2344 { 2345 BDRVQcow2State *s = bs->opaque; 2346 int chk = s->overlap_check & ~ign; 2347 int i, j; 2348 2349 if (!size) { 2350 return 0; 2351 } 2352 2353 if (chk & QCOW2_OL_MAIN_HEADER) { 2354 if (offset < s->cluster_size) { 2355 return QCOW2_OL_MAIN_HEADER; 2356 } 2357 } 2358 2359 /* align range to test to cluster boundaries */ 2360 size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size); 2361 offset = start_of_cluster(s, offset); 2362 2363 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) { 2364 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) { 2365 return QCOW2_OL_ACTIVE_L1; 2366 } 2367 } 2368 2369 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) { 2370 if (overlaps_with(s->refcount_table_offset, 2371 s->refcount_table_size * sizeof(uint64_t))) { 2372 return QCOW2_OL_REFCOUNT_TABLE; 2373 } 2374 } 2375 2376 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) { 2377 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) { 2378 return QCOW2_OL_SNAPSHOT_TABLE; 2379 } 2380 } 2381 2382 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) { 2383 for (i = 0; i < s->nb_snapshots; i++) { 2384 if (s->snapshots[i].l1_size && 2385 overlaps_with(s->snapshots[i].l1_table_offset, 2386 s->snapshots[i].l1_size * sizeof(uint64_t))) { 2387 return QCOW2_OL_INACTIVE_L1; 2388 } 2389 } 2390 } 2391 2392 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) { 2393 for (i = 0; i < s->l1_size; i++) { 2394 if ((s->l1_table[i] & L1E_OFFSET_MASK) && 2395 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK, 2396 s->cluster_size)) { 2397 return QCOW2_OL_ACTIVE_L2; 2398 } 2399 } 2400 } 2401 2402 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) { 2403 unsigned last_entry = s->max_refcount_table_index; 2404 assert(last_entry < s->refcount_table_size); 2405 assert(last_entry + 1 == s->refcount_table_size || 2406 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0); 2407 for (i = 0; i <= last_entry; i++) { 2408 if ((s->refcount_table[i] & REFT_OFFSET_MASK) && 2409 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK, 2410 s->cluster_size)) { 2411 return QCOW2_OL_REFCOUNT_BLOCK; 2412 } 2413 } 2414 } 2415 2416 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) { 2417 for (i = 0; i < s->nb_snapshots; i++) { 2418 uint64_t l1_ofs = s->snapshots[i].l1_table_offset; 2419 uint32_t l1_sz = s->snapshots[i].l1_size; 2420 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t); 2421 uint64_t *l1 = g_try_malloc(l1_sz2); 2422 int ret; 2423 2424 if (l1_sz2 && l1 == NULL) { 2425 return -ENOMEM; 2426 } 2427 2428 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2); 2429 if (ret < 0) { 2430 g_free(l1); 2431 return ret; 2432 } 2433 2434 for (j = 0; j < l1_sz; j++) { 2435 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK; 2436 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) { 2437 g_free(l1); 2438 return QCOW2_OL_INACTIVE_L2; 2439 } 2440 } 2441 2442 g_free(l1); 2443 } 2444 } 2445 2446 return 0; 2447 } 2448 2449 static const char *metadata_ol_names[] = { 2450 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header", 2451 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table", 2452 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table", 2453 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table", 2454 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block", 2455 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table", 2456 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table", 2457 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table", 2458 }; 2459 2460 /* 2461 * First performs a check for metadata overlaps (through 2462 * qcow2_check_metadata_overlap); if that fails with a negative value (error 2463 * while performing a check), that value is returned. If an impending overlap 2464 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt 2465 * and -EIO returned. 2466 * 2467 * Returns 0 if there were neither overlaps nor errors while checking for 2468 * overlaps; or a negative value (-errno) on error. 2469 */ 2470 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset, 2471 int64_t size) 2472 { 2473 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size); 2474 2475 if (ret < 0) { 2476 return ret; 2477 } else if (ret > 0) { 2478 int metadata_ol_bitnr = ctz32(ret); 2479 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR); 2480 2481 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid " 2482 "write on metadata (overlaps with %s)", 2483 metadata_ol_names[metadata_ol_bitnr]); 2484 return -EIO; 2485 } 2486 2487 return 0; 2488 } 2489 2490 /* A pointer to a function of this type is given to walk_over_reftable(). That 2491 * function will create refblocks and pass them to a RefblockFinishOp once they 2492 * are completed (@refblock). @refblock_empty is set if the refblock is 2493 * completely empty. 2494 * 2495 * Along with the refblock, a corresponding reftable entry is passed, in the 2496 * reftable @reftable (which may be reallocated) at @reftable_index. 2497 * 2498 * @allocated should be set to true if a new cluster has been allocated. 2499 */ 2500 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable, 2501 uint64_t reftable_index, uint64_t *reftable_size, 2502 void *refblock, bool refblock_empty, 2503 bool *allocated, Error **errp); 2504 2505 /** 2506 * This "operation" for walk_over_reftable() allocates the refblock on disk (if 2507 * it is not empty) and inserts its offset into the new reftable. The size of 2508 * this new reftable is increased as required. 2509 */ 2510 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable, 2511 uint64_t reftable_index, uint64_t *reftable_size, 2512 void *refblock, bool refblock_empty, bool *allocated, 2513 Error **errp) 2514 { 2515 BDRVQcow2State *s = bs->opaque; 2516 int64_t offset; 2517 2518 if (!refblock_empty && reftable_index >= *reftable_size) { 2519 uint64_t *new_reftable; 2520 uint64_t new_reftable_size; 2521 2522 new_reftable_size = ROUND_UP(reftable_index + 1, 2523 s->cluster_size / sizeof(uint64_t)); 2524 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) { 2525 error_setg(errp, 2526 "This operation would make the refcount table grow " 2527 "beyond the maximum size supported by QEMU, aborting"); 2528 return -ENOTSUP; 2529 } 2530 2531 new_reftable = g_try_realloc(*reftable, new_reftable_size * 2532 sizeof(uint64_t)); 2533 if (!new_reftable) { 2534 error_setg(errp, "Failed to increase reftable buffer size"); 2535 return -ENOMEM; 2536 } 2537 2538 memset(new_reftable + *reftable_size, 0, 2539 (new_reftable_size - *reftable_size) * sizeof(uint64_t)); 2540 2541 *reftable = new_reftable; 2542 *reftable_size = new_reftable_size; 2543 } 2544 2545 if (!refblock_empty && !(*reftable)[reftable_index]) { 2546 offset = qcow2_alloc_clusters(bs, s->cluster_size); 2547 if (offset < 0) { 2548 error_setg_errno(errp, -offset, "Failed to allocate refblock"); 2549 return offset; 2550 } 2551 (*reftable)[reftable_index] = offset; 2552 *allocated = true; 2553 } 2554 2555 return 0; 2556 } 2557 2558 /** 2559 * This "operation" for walk_over_reftable() writes the refblock to disk at the 2560 * offset specified by the new reftable's entry. It does not modify the new 2561 * reftable or change any refcounts. 2562 */ 2563 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable, 2564 uint64_t reftable_index, uint64_t *reftable_size, 2565 void *refblock, bool refblock_empty, bool *allocated, 2566 Error **errp) 2567 { 2568 BDRVQcow2State *s = bs->opaque; 2569 int64_t offset; 2570 int ret; 2571 2572 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) { 2573 offset = (*reftable)[reftable_index]; 2574 2575 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 2576 if (ret < 0) { 2577 error_setg_errno(errp, -ret, "Overlap check failed"); 2578 return ret; 2579 } 2580 2581 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size); 2582 if (ret < 0) { 2583 error_setg_errno(errp, -ret, "Failed to write refblock"); 2584 return ret; 2585 } 2586 } else { 2587 assert(refblock_empty); 2588 } 2589 2590 return 0; 2591 } 2592 2593 /** 2594 * This function walks over the existing reftable and every referenced refblock; 2595 * if @new_set_refcount is non-NULL, it is called for every refcount entry to 2596 * create an equal new entry in the passed @new_refblock. Once that 2597 * @new_refblock is completely filled, @operation will be called. 2598 * 2599 * @status_cb and @cb_opaque are used for the amend operation's status callback. 2600 * @index is the index of the walk_over_reftable() calls and @total is the total 2601 * number of walk_over_reftable() calls per amend operation. Both are used for 2602 * calculating the parameters for the status callback. 2603 * 2604 * @allocated is set to true if a new cluster has been allocated. 2605 */ 2606 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable, 2607 uint64_t *new_reftable_index, 2608 uint64_t *new_reftable_size, 2609 void *new_refblock, int new_refblock_size, 2610 int new_refcount_bits, 2611 RefblockFinishOp *operation, bool *allocated, 2612 Qcow2SetRefcountFunc *new_set_refcount, 2613 BlockDriverAmendStatusCB *status_cb, 2614 void *cb_opaque, int index, int total, 2615 Error **errp) 2616 { 2617 BDRVQcow2State *s = bs->opaque; 2618 uint64_t reftable_index; 2619 bool new_refblock_empty = true; 2620 int refblock_index; 2621 int new_refblock_index = 0; 2622 int ret; 2623 2624 for (reftable_index = 0; reftable_index < s->refcount_table_size; 2625 reftable_index++) 2626 { 2627 uint64_t refblock_offset = s->refcount_table[reftable_index] 2628 & REFT_OFFSET_MASK; 2629 2630 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index, 2631 (uint64_t)total * s->refcount_table_size, cb_opaque); 2632 2633 if (refblock_offset) { 2634 void *refblock; 2635 2636 if (offset_into_cluster(s, refblock_offset)) { 2637 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 2638 PRIx64 " unaligned (reftable index: %#" 2639 PRIx64 ")", refblock_offset, 2640 reftable_index); 2641 error_setg(errp, 2642 "Image is corrupt (unaligned refblock offset)"); 2643 return -EIO; 2644 } 2645 2646 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset, 2647 &refblock); 2648 if (ret < 0) { 2649 error_setg_errno(errp, -ret, "Failed to retrieve refblock"); 2650 return ret; 2651 } 2652 2653 for (refblock_index = 0; refblock_index < s->refcount_block_size; 2654 refblock_index++) 2655 { 2656 uint64_t refcount; 2657 2658 if (new_refblock_index >= new_refblock_size) { 2659 /* new_refblock is now complete */ 2660 ret = operation(bs, new_reftable, *new_reftable_index, 2661 new_reftable_size, new_refblock, 2662 new_refblock_empty, allocated, errp); 2663 if (ret < 0) { 2664 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 2665 return ret; 2666 } 2667 2668 (*new_reftable_index)++; 2669 new_refblock_index = 0; 2670 new_refblock_empty = true; 2671 } 2672 2673 refcount = s->get_refcount(refblock, refblock_index); 2674 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) { 2675 uint64_t offset; 2676 2677 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 2678 2679 offset = ((reftable_index << s->refcount_block_bits) 2680 + refblock_index) << s->cluster_bits; 2681 2682 error_setg(errp, "Cannot decrease refcount entry width to " 2683 "%i bits: Cluster at offset %#" PRIx64 " has a " 2684 "refcount of %" PRIu64, new_refcount_bits, 2685 offset, refcount); 2686 return -EINVAL; 2687 } 2688 2689 if (new_set_refcount) { 2690 new_set_refcount(new_refblock, new_refblock_index++, 2691 refcount); 2692 } else { 2693 new_refblock_index++; 2694 } 2695 new_refblock_empty = new_refblock_empty && refcount == 0; 2696 } 2697 2698 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 2699 } else { 2700 /* No refblock means every refcount is 0 */ 2701 for (refblock_index = 0; refblock_index < s->refcount_block_size; 2702 refblock_index++) 2703 { 2704 if (new_refblock_index >= new_refblock_size) { 2705 /* new_refblock is now complete */ 2706 ret = operation(bs, new_reftable, *new_reftable_index, 2707 new_reftable_size, new_refblock, 2708 new_refblock_empty, allocated, errp); 2709 if (ret < 0) { 2710 return ret; 2711 } 2712 2713 (*new_reftable_index)++; 2714 new_refblock_index = 0; 2715 new_refblock_empty = true; 2716 } 2717 2718 if (new_set_refcount) { 2719 new_set_refcount(new_refblock, new_refblock_index++, 0); 2720 } else { 2721 new_refblock_index++; 2722 } 2723 } 2724 } 2725 } 2726 2727 if (new_refblock_index > 0) { 2728 /* Complete the potentially existing partially filled final refblock */ 2729 if (new_set_refcount) { 2730 for (; new_refblock_index < new_refblock_size; 2731 new_refblock_index++) 2732 { 2733 new_set_refcount(new_refblock, new_refblock_index, 0); 2734 } 2735 } 2736 2737 ret = operation(bs, new_reftable, *new_reftable_index, 2738 new_reftable_size, new_refblock, new_refblock_empty, 2739 allocated, errp); 2740 if (ret < 0) { 2741 return ret; 2742 } 2743 2744 (*new_reftable_index)++; 2745 } 2746 2747 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size, 2748 (uint64_t)total * s->refcount_table_size, cb_opaque); 2749 2750 return 0; 2751 } 2752 2753 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order, 2754 BlockDriverAmendStatusCB *status_cb, 2755 void *cb_opaque, Error **errp) 2756 { 2757 BDRVQcow2State *s = bs->opaque; 2758 Qcow2GetRefcountFunc *new_get_refcount; 2759 Qcow2SetRefcountFunc *new_set_refcount; 2760 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size); 2761 uint64_t *new_reftable = NULL, new_reftable_size = 0; 2762 uint64_t *old_reftable, old_reftable_size, old_reftable_offset; 2763 uint64_t new_reftable_index = 0; 2764 uint64_t i; 2765 int64_t new_reftable_offset = 0, allocated_reftable_size = 0; 2766 int new_refblock_size, new_refcount_bits = 1 << refcount_order; 2767 int old_refcount_order; 2768 int walk_index = 0; 2769 int ret; 2770 bool new_allocation; 2771 2772 assert(s->qcow_version >= 3); 2773 assert(refcount_order >= 0 && refcount_order <= 6); 2774 2775 /* see qcow2_open() */ 2776 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3)); 2777 2778 new_get_refcount = get_refcount_funcs[refcount_order]; 2779 new_set_refcount = set_refcount_funcs[refcount_order]; 2780 2781 2782 do { 2783 int total_walks; 2784 2785 new_allocation = false; 2786 2787 /* At least we have to do this walk and the one which writes the 2788 * refblocks; also, at least we have to do this loop here at least 2789 * twice (normally), first to do the allocations, and second to 2790 * determine that everything is correctly allocated, this then makes 2791 * three walks in total */ 2792 total_walks = MAX(walk_index + 2, 3); 2793 2794 /* First, allocate the structures so they are present in the refcount 2795 * structures */ 2796 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 2797 &new_reftable_size, NULL, new_refblock_size, 2798 new_refcount_bits, &alloc_refblock, 2799 &new_allocation, NULL, status_cb, cb_opaque, 2800 walk_index++, total_walks, errp); 2801 if (ret < 0) { 2802 goto done; 2803 } 2804 2805 new_reftable_index = 0; 2806 2807 if (new_allocation) { 2808 if (new_reftable_offset) { 2809 qcow2_free_clusters(bs, new_reftable_offset, 2810 allocated_reftable_size * sizeof(uint64_t), 2811 QCOW2_DISCARD_NEVER); 2812 } 2813 2814 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size * 2815 sizeof(uint64_t)); 2816 if (new_reftable_offset < 0) { 2817 error_setg_errno(errp, -new_reftable_offset, 2818 "Failed to allocate the new reftable"); 2819 ret = new_reftable_offset; 2820 goto done; 2821 } 2822 allocated_reftable_size = new_reftable_size; 2823 } 2824 } while (new_allocation); 2825 2826 /* Second, write the new refblocks */ 2827 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 2828 &new_reftable_size, new_refblock, 2829 new_refblock_size, new_refcount_bits, 2830 &flush_refblock, &new_allocation, new_set_refcount, 2831 status_cb, cb_opaque, walk_index, walk_index + 1, 2832 errp); 2833 if (ret < 0) { 2834 goto done; 2835 } 2836 assert(!new_allocation); 2837 2838 2839 /* Write the new reftable */ 2840 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset, 2841 new_reftable_size * sizeof(uint64_t)); 2842 if (ret < 0) { 2843 error_setg_errno(errp, -ret, "Overlap check failed"); 2844 goto done; 2845 } 2846 2847 for (i = 0; i < new_reftable_size; i++) { 2848 cpu_to_be64s(&new_reftable[i]); 2849 } 2850 2851 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable, 2852 new_reftable_size * sizeof(uint64_t)); 2853 2854 for (i = 0; i < new_reftable_size; i++) { 2855 be64_to_cpus(&new_reftable[i]); 2856 } 2857 2858 if (ret < 0) { 2859 error_setg_errno(errp, -ret, "Failed to write the new reftable"); 2860 goto done; 2861 } 2862 2863 2864 /* Empty the refcount cache */ 2865 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 2866 if (ret < 0) { 2867 error_setg_errno(errp, -ret, "Failed to flush the refblock cache"); 2868 goto done; 2869 } 2870 2871 /* Update the image header to point to the new reftable; this only updates 2872 * the fields which are relevant to qcow2_update_header(); other fields 2873 * such as s->refcount_table or s->refcount_bits stay stale for now 2874 * (because we have to restore everything if qcow2_update_header() fails) */ 2875 old_refcount_order = s->refcount_order; 2876 old_reftable_size = s->refcount_table_size; 2877 old_reftable_offset = s->refcount_table_offset; 2878 2879 s->refcount_order = refcount_order; 2880 s->refcount_table_size = new_reftable_size; 2881 s->refcount_table_offset = new_reftable_offset; 2882 2883 ret = qcow2_update_header(bs); 2884 if (ret < 0) { 2885 s->refcount_order = old_refcount_order; 2886 s->refcount_table_size = old_reftable_size; 2887 s->refcount_table_offset = old_reftable_offset; 2888 error_setg_errno(errp, -ret, "Failed to update the qcow2 header"); 2889 goto done; 2890 } 2891 2892 /* Now update the rest of the in-memory information */ 2893 old_reftable = s->refcount_table; 2894 s->refcount_table = new_reftable; 2895 update_max_refcount_table_index(s); 2896 2897 s->refcount_bits = 1 << refcount_order; 2898 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1); 2899 s->refcount_max += s->refcount_max - 1; 2900 2901 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3); 2902 s->refcount_block_size = 1 << s->refcount_block_bits; 2903 2904 s->get_refcount = new_get_refcount; 2905 s->set_refcount = new_set_refcount; 2906 2907 /* For cleaning up all old refblocks and the old reftable below the "done" 2908 * label */ 2909 new_reftable = old_reftable; 2910 new_reftable_size = old_reftable_size; 2911 new_reftable_offset = old_reftable_offset; 2912 2913 done: 2914 if (new_reftable) { 2915 /* On success, new_reftable actually points to the old reftable (and 2916 * new_reftable_size is the old reftable's size); but that is just 2917 * fine */ 2918 for (i = 0; i < new_reftable_size; i++) { 2919 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK; 2920 if (offset) { 2921 qcow2_free_clusters(bs, offset, s->cluster_size, 2922 QCOW2_DISCARD_OTHER); 2923 } 2924 } 2925 g_free(new_reftable); 2926 2927 if (new_reftable_offset > 0) { 2928 qcow2_free_clusters(bs, new_reftable_offset, 2929 new_reftable_size * sizeof(uint64_t), 2930 QCOW2_DISCARD_OTHER); 2931 } 2932 } 2933 2934 qemu_vfree(new_refblock); 2935 return ret; 2936 } 2937