1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "block/block-io.h" 27 #include "qapi/error.h" 28 #include "qcow2.h" 29 #include "qemu/range.h" 30 #include "qemu/bswap.h" 31 #include "qemu/cutils.h" 32 #include "qemu/memalign.h" 33 #include "trace.h" 34 35 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size, 36 uint64_t max); 37 38 G_GNUC_WARN_UNUSED_RESULT 39 static int update_refcount(BlockDriverState *bs, 40 int64_t offset, int64_t length, uint64_t addend, 41 bool decrease, enum qcow2_discard_type type); 42 43 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index); 44 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index); 45 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index); 46 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index); 47 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index); 48 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index); 49 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index); 50 51 static void set_refcount_ro0(void *refcount_array, uint64_t index, 52 uint64_t value); 53 static void set_refcount_ro1(void *refcount_array, uint64_t index, 54 uint64_t value); 55 static void set_refcount_ro2(void *refcount_array, uint64_t index, 56 uint64_t value); 57 static void set_refcount_ro3(void *refcount_array, uint64_t index, 58 uint64_t value); 59 static void set_refcount_ro4(void *refcount_array, uint64_t index, 60 uint64_t value); 61 static void set_refcount_ro5(void *refcount_array, uint64_t index, 62 uint64_t value); 63 static void set_refcount_ro6(void *refcount_array, uint64_t index, 64 uint64_t value); 65 66 67 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = { 68 &get_refcount_ro0, 69 &get_refcount_ro1, 70 &get_refcount_ro2, 71 &get_refcount_ro3, 72 &get_refcount_ro4, 73 &get_refcount_ro5, 74 &get_refcount_ro6 75 }; 76 77 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = { 78 &set_refcount_ro0, 79 &set_refcount_ro1, 80 &set_refcount_ro2, 81 &set_refcount_ro3, 82 &set_refcount_ro4, 83 &set_refcount_ro5, 84 &set_refcount_ro6 85 }; 86 87 88 /*********************************************************/ 89 /* refcount handling */ 90 91 static void update_max_refcount_table_index(BDRVQcow2State *s) 92 { 93 unsigned i = s->refcount_table_size - 1; 94 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) { 95 i--; 96 } 97 /* Set s->max_refcount_table_index to the index of the last used entry */ 98 s->max_refcount_table_index = i; 99 } 100 101 int coroutine_fn qcow2_refcount_init(BlockDriverState *bs) 102 { 103 BDRVQcow2State *s = bs->opaque; 104 unsigned int refcount_table_size2, i; 105 int ret; 106 107 assert(s->refcount_order >= 0 && s->refcount_order <= 6); 108 109 s->get_refcount = get_refcount_funcs[s->refcount_order]; 110 s->set_refcount = set_refcount_funcs[s->refcount_order]; 111 112 assert(s->refcount_table_size <= INT_MAX / REFTABLE_ENTRY_SIZE); 113 refcount_table_size2 = s->refcount_table_size * REFTABLE_ENTRY_SIZE; 114 s->refcount_table = g_try_malloc(refcount_table_size2); 115 116 if (s->refcount_table_size > 0) { 117 if (s->refcount_table == NULL) { 118 ret = -ENOMEM; 119 goto fail; 120 } 121 BLKDBG_CO_EVENT(bs->file, BLKDBG_REFTABLE_LOAD); 122 ret = bdrv_co_pread(bs->file, s->refcount_table_offset, 123 refcount_table_size2, s->refcount_table, 0); 124 if (ret < 0) { 125 goto fail; 126 } 127 for(i = 0; i < s->refcount_table_size; i++) 128 be64_to_cpus(&s->refcount_table[i]); 129 update_max_refcount_table_index(s); 130 } 131 return 0; 132 fail: 133 return ret; 134 } 135 136 void qcow2_refcount_close(BlockDriverState *bs) 137 { 138 BDRVQcow2State *s = bs->opaque; 139 g_free(s->refcount_table); 140 } 141 142 143 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index) 144 { 145 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1; 146 } 147 148 static void set_refcount_ro0(void *refcount_array, uint64_t index, 149 uint64_t value) 150 { 151 assert(!(value >> 1)); 152 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8)); 153 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8); 154 } 155 156 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index) 157 { 158 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4))) 159 & 0x3; 160 } 161 162 static void set_refcount_ro1(void *refcount_array, uint64_t index, 163 uint64_t value) 164 { 165 assert(!(value >> 2)); 166 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4))); 167 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4)); 168 } 169 170 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index) 171 { 172 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2))) 173 & 0xf; 174 } 175 176 static void set_refcount_ro2(void *refcount_array, uint64_t index, 177 uint64_t value) 178 { 179 assert(!(value >> 4)); 180 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2))); 181 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2)); 182 } 183 184 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index) 185 { 186 return ((const uint8_t *)refcount_array)[index]; 187 } 188 189 static void set_refcount_ro3(void *refcount_array, uint64_t index, 190 uint64_t value) 191 { 192 assert(!(value >> 8)); 193 ((uint8_t *)refcount_array)[index] = value; 194 } 195 196 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index) 197 { 198 return be16_to_cpu(((const uint16_t *)refcount_array)[index]); 199 } 200 201 static void set_refcount_ro4(void *refcount_array, uint64_t index, 202 uint64_t value) 203 { 204 assert(!(value >> 16)); 205 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value); 206 } 207 208 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index) 209 { 210 return be32_to_cpu(((const uint32_t *)refcount_array)[index]); 211 } 212 213 static void set_refcount_ro5(void *refcount_array, uint64_t index, 214 uint64_t value) 215 { 216 assert(!(value >> 32)); 217 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value); 218 } 219 220 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index) 221 { 222 return be64_to_cpu(((const uint64_t *)refcount_array)[index]); 223 } 224 225 static void set_refcount_ro6(void *refcount_array, uint64_t index, 226 uint64_t value) 227 { 228 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value); 229 } 230 231 232 static int load_refcount_block(BlockDriverState *bs, 233 int64_t refcount_block_offset, 234 void **refcount_block) 235 { 236 BDRVQcow2State *s = bs->opaque; 237 238 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD); 239 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 240 refcount_block); 241 } 242 243 /* 244 * Retrieves the refcount of the cluster given by its index and stores it in 245 * *refcount. Returns 0 on success and -errno on failure. 246 */ 247 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index, 248 uint64_t *refcount) 249 { 250 BDRVQcow2State *s = bs->opaque; 251 uint64_t refcount_table_index, block_index; 252 int64_t refcount_block_offset; 253 int ret; 254 void *refcount_block; 255 256 refcount_table_index = cluster_index >> s->refcount_block_bits; 257 if (refcount_table_index >= s->refcount_table_size) { 258 *refcount = 0; 259 return 0; 260 } 261 refcount_block_offset = 262 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 263 if (!refcount_block_offset) { 264 *refcount = 0; 265 return 0; 266 } 267 268 if (offset_into_cluster(s, refcount_block_offset)) { 269 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64 270 " unaligned (reftable index: %#" PRIx64 ")", 271 refcount_block_offset, refcount_table_index); 272 return -EIO; 273 } 274 275 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 276 &refcount_block); 277 if (ret < 0) { 278 return ret; 279 } 280 281 block_index = cluster_index & (s->refcount_block_size - 1); 282 *refcount = s->get_refcount(refcount_block, block_index); 283 284 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 285 286 return 0; 287 } 288 289 /* Checks if two offsets are described by the same refcount block */ 290 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a, 291 uint64_t offset_b) 292 { 293 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits); 294 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits); 295 296 return (block_a == block_b); 297 } 298 299 /* 300 * Loads a refcount block. If it doesn't exist yet, it is allocated first 301 * (including growing the refcount table if needed). 302 * 303 * Returns 0 on success or -errno in error case 304 */ 305 static int alloc_refcount_block(BlockDriverState *bs, 306 int64_t cluster_index, void **refcount_block) 307 { 308 BDRVQcow2State *s = bs->opaque; 309 unsigned int refcount_table_index; 310 int64_t ret; 311 312 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC); 313 314 /* Find the refcount block for the given cluster */ 315 refcount_table_index = cluster_index >> s->refcount_block_bits; 316 317 if (refcount_table_index < s->refcount_table_size) { 318 319 uint64_t refcount_block_offset = 320 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 321 322 /* If it's already there, we're done */ 323 if (refcount_block_offset) { 324 if (offset_into_cluster(s, refcount_block_offset)) { 325 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 326 PRIx64 " unaligned (reftable index: " 327 "%#x)", refcount_block_offset, 328 refcount_table_index); 329 return -EIO; 330 } 331 332 return load_refcount_block(bs, refcount_block_offset, 333 refcount_block); 334 } 335 } 336 337 /* 338 * If we came here, we need to allocate something. Something is at least 339 * a cluster for the new refcount block. It may also include a new refcount 340 * table if the old refcount table is too small. 341 * 342 * Note that allocating clusters here needs some special care: 343 * 344 * - We can't use the normal qcow2_alloc_clusters(), it would try to 345 * increase the refcount and very likely we would end up with an endless 346 * recursion. Instead we must place the refcount blocks in a way that 347 * they can describe them themselves. 348 * 349 * - We need to consider that at this point we are inside update_refcounts 350 * and potentially doing an initial refcount increase. This means that 351 * some clusters have already been allocated by the caller, but their 352 * refcount isn't accurate yet. If we allocate clusters for metadata, we 353 * need to return -EAGAIN to signal the caller that it needs to restart 354 * the search for free clusters. 355 * 356 * - alloc_clusters_noref and qcow2_free_clusters may load a different 357 * refcount block into the cache 358 */ 359 360 *refcount_block = NULL; 361 362 /* We write to the refcount table, so we might depend on L2 tables */ 363 ret = qcow2_cache_flush(bs, s->l2_table_cache); 364 if (ret < 0) { 365 return ret; 366 } 367 368 /* Allocate the refcount block itself and mark it as used */ 369 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX); 370 if (new_block < 0) { 371 return new_block; 372 } 373 374 /* The offset must fit in the offset field of the refcount table entry */ 375 assert((new_block & REFT_OFFSET_MASK) == new_block); 376 377 /* If we're allocating the block at offset 0 then something is wrong */ 378 if (new_block == 0) { 379 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 380 "allocation of refcount block at offset 0"); 381 return -EIO; 382 } 383 384 #ifdef DEBUG_ALLOC2 385 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64 386 " at %" PRIx64 "\n", 387 refcount_table_index, cluster_index << s->cluster_bits, new_block); 388 #endif 389 390 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) { 391 /* Zero the new refcount block before updating it */ 392 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 393 refcount_block); 394 if (ret < 0) { 395 goto fail; 396 } 397 398 memset(*refcount_block, 0, s->cluster_size); 399 400 /* The block describes itself, need to update the cache */ 401 int block_index = (new_block >> s->cluster_bits) & 402 (s->refcount_block_size - 1); 403 s->set_refcount(*refcount_block, block_index, 1); 404 } else { 405 /* Described somewhere else. This can recurse at most twice before we 406 * arrive at a block that describes itself. */ 407 ret = update_refcount(bs, new_block, s->cluster_size, 1, false, 408 QCOW2_DISCARD_NEVER); 409 if (ret < 0) { 410 goto fail; 411 } 412 413 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 414 if (ret < 0) { 415 goto fail; 416 } 417 418 /* Initialize the new refcount block only after updating its refcount, 419 * update_refcount uses the refcount cache itself */ 420 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 421 refcount_block); 422 if (ret < 0) { 423 goto fail; 424 } 425 426 memset(*refcount_block, 0, s->cluster_size); 427 } 428 429 /* Now the new refcount block needs to be written to disk */ 430 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE); 431 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block); 432 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 433 if (ret < 0) { 434 goto fail; 435 } 436 437 /* If the refcount table is big enough, just hook the block up there */ 438 if (refcount_table_index < s->refcount_table_size) { 439 uint64_t data64 = cpu_to_be64(new_block); 440 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP); 441 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset + 442 refcount_table_index * REFTABLE_ENTRY_SIZE, 443 sizeof(data64), &data64, 0); 444 if (ret < 0) { 445 goto fail; 446 } 447 448 s->refcount_table[refcount_table_index] = new_block; 449 /* If there's a hole in s->refcount_table then it can happen 450 * that refcount_table_index < s->max_refcount_table_index */ 451 s->max_refcount_table_index = 452 MAX(s->max_refcount_table_index, refcount_table_index); 453 454 /* The new refcount block may be where the caller intended to put its 455 * data, so let it restart the search. */ 456 return -EAGAIN; 457 } 458 459 qcow2_cache_put(s->refcount_block_cache, refcount_block); 460 461 /* 462 * If we come here, we need to grow the refcount table. Again, a new 463 * refcount table needs some space and we can't simply allocate to avoid 464 * endless recursion. 465 * 466 * Therefore let's grab new refcount blocks at the end of the image, which 467 * will describe themselves and the new refcount table. This way we can 468 * reference them only in the new table and do the switch to the new 469 * refcount table at once without producing an inconsistent state in 470 * between. 471 */ 472 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW); 473 474 /* Calculate the number of refcount blocks needed so far; this will be the 475 * basis for calculating the index of the first cluster used for the 476 * self-describing refcount structures which we are about to create. 477 * 478 * Because we reached this point, there cannot be any refcount entries for 479 * cluster_index or higher indices yet. However, because new_block has been 480 * allocated to describe that cluster (and it will assume this role later 481 * on), we cannot use that index; also, new_block may actually have a higher 482 * cluster index than cluster_index, so it needs to be taken into account 483 * here (and 1 needs to be added to its value because that cluster is used). 484 */ 485 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1, 486 (new_block >> s->cluster_bits) + 1), 487 s->refcount_block_size); 488 489 /* Create the new refcount table and blocks */ 490 uint64_t meta_offset = (blocks_used * s->refcount_block_size) * 491 s->cluster_size; 492 493 ret = qcow2_refcount_area(bs, meta_offset, 0, false, 494 refcount_table_index, new_block); 495 if (ret < 0) { 496 return ret; 497 } 498 499 ret = load_refcount_block(bs, new_block, refcount_block); 500 if (ret < 0) { 501 return ret; 502 } 503 504 /* If we were trying to do the initial refcount update for some cluster 505 * allocation, we might have used the same clusters to store newly 506 * allocated metadata. Make the caller search some new space. */ 507 return -EAGAIN; 508 509 fail: 510 if (*refcount_block != NULL) { 511 qcow2_cache_put(s->refcount_block_cache, refcount_block); 512 } 513 return ret; 514 } 515 516 /* 517 * Starting at @start_offset, this function creates new self-covering refcount 518 * structures: A new refcount table and refcount blocks which cover all of 519 * themselves, and a number of @additional_clusters beyond their end. 520 * @start_offset must be at the end of the image file, that is, there must be 521 * only empty space beyond it. 522 * If @exact_size is false, the refcount table will have 50 % more entries than 523 * necessary so it will not need to grow again soon. 524 * If @new_refblock_offset is not zero, it contains the offset of a refcount 525 * block that should be entered into the new refcount table at index 526 * @new_refblock_index. 527 * 528 * Returns: The offset after the new refcount structures (i.e. where the 529 * @additional_clusters may be placed) on success, -errno on error. 530 */ 531 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset, 532 uint64_t additional_clusters, bool exact_size, 533 int new_refblock_index, 534 uint64_t new_refblock_offset) 535 { 536 BDRVQcow2State *s = bs->opaque; 537 uint64_t total_refblock_count_u64, additional_refblock_count; 538 int total_refblock_count, table_size, area_reftable_index, table_clusters; 539 int i; 540 uint64_t table_offset, block_offset, end_offset; 541 int ret; 542 uint64_t *new_table; 543 544 assert(!(start_offset % s->cluster_size)); 545 546 qcow2_refcount_metadata_size(start_offset / s->cluster_size + 547 additional_clusters, 548 s->cluster_size, s->refcount_order, 549 !exact_size, &total_refblock_count_u64); 550 if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) { 551 return -EFBIG; 552 } 553 total_refblock_count = total_refblock_count_u64; 554 555 /* Index in the refcount table of the first refcount block to cover the area 556 * of refcount structures we are about to create; we know that 557 * @total_refblock_count can cover @start_offset, so this will definitely 558 * fit into an int. */ 559 area_reftable_index = (start_offset / s->cluster_size) / 560 s->refcount_block_size; 561 562 if (exact_size) { 563 table_size = total_refblock_count; 564 } else { 565 table_size = total_refblock_count + 566 DIV_ROUND_UP(total_refblock_count, 2); 567 } 568 /* The qcow2 file can only store the reftable size in number of clusters */ 569 table_size = ROUND_UP(table_size, s->cluster_size / REFTABLE_ENTRY_SIZE); 570 table_clusters = (table_size * REFTABLE_ENTRY_SIZE) / s->cluster_size; 571 572 if (table_size > QCOW_MAX_REFTABLE_SIZE) { 573 return -EFBIG; 574 } 575 576 new_table = g_try_new0(uint64_t, table_size); 577 578 assert(table_size > 0); 579 if (new_table == NULL) { 580 ret = -ENOMEM; 581 goto fail; 582 } 583 584 /* Fill the new refcount table */ 585 if (table_size > s->max_refcount_table_index) { 586 /* We're actually growing the reftable */ 587 memcpy(new_table, s->refcount_table, 588 (s->max_refcount_table_index + 1) * REFTABLE_ENTRY_SIZE); 589 } else { 590 /* Improbable case: We're shrinking the reftable. However, the caller 591 * has assured us that there is only empty space beyond @start_offset, 592 * so we can simply drop all of the refblocks that won't fit into the 593 * new reftable. */ 594 memcpy(new_table, s->refcount_table, table_size * REFTABLE_ENTRY_SIZE); 595 } 596 597 if (new_refblock_offset) { 598 assert(new_refblock_index < total_refblock_count); 599 new_table[new_refblock_index] = new_refblock_offset; 600 } 601 602 /* Count how many new refblocks we have to create */ 603 additional_refblock_count = 0; 604 for (i = area_reftable_index; i < total_refblock_count; i++) { 605 if (!new_table[i]) { 606 additional_refblock_count++; 607 } 608 } 609 610 table_offset = start_offset + additional_refblock_count * s->cluster_size; 611 end_offset = table_offset + table_clusters * s->cluster_size; 612 613 /* Fill the refcount blocks, and create new ones, if necessary */ 614 block_offset = start_offset; 615 for (i = area_reftable_index; i < total_refblock_count; i++) { 616 void *refblock_data; 617 uint64_t first_offset_covered; 618 619 /* Reuse an existing refblock if possible, create a new one otherwise */ 620 if (new_table[i]) { 621 ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i], 622 &refblock_data); 623 if (ret < 0) { 624 goto fail; 625 } 626 } else { 627 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, 628 block_offset, &refblock_data); 629 if (ret < 0) { 630 goto fail; 631 } 632 memset(refblock_data, 0, s->cluster_size); 633 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, 634 refblock_data); 635 636 new_table[i] = block_offset; 637 block_offset += s->cluster_size; 638 } 639 640 /* First host offset covered by this refblock */ 641 first_offset_covered = (uint64_t)i * s->refcount_block_size * 642 s->cluster_size; 643 if (first_offset_covered < end_offset) { 644 int j, end_index; 645 646 /* Set the refcount of all of the new refcount structures to 1 */ 647 648 if (first_offset_covered < start_offset) { 649 assert(i == area_reftable_index); 650 j = (start_offset - first_offset_covered) / s->cluster_size; 651 assert(j < s->refcount_block_size); 652 } else { 653 j = 0; 654 } 655 656 end_index = MIN((end_offset - first_offset_covered) / 657 s->cluster_size, 658 s->refcount_block_size); 659 660 for (; j < end_index; j++) { 661 /* The caller guaranteed us this space would be empty */ 662 assert(s->get_refcount(refblock_data, j) == 0); 663 s->set_refcount(refblock_data, j, 1); 664 } 665 666 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, 667 refblock_data); 668 } 669 670 qcow2_cache_put(s->refcount_block_cache, &refblock_data); 671 } 672 673 assert(block_offset == table_offset); 674 675 /* Write refcount blocks to disk */ 676 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS); 677 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 678 if (ret < 0) { 679 goto fail; 680 } 681 682 /* Write refcount table to disk */ 683 for (i = 0; i < total_refblock_count; i++) { 684 cpu_to_be64s(&new_table[i]); 685 } 686 687 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE); 688 ret = bdrv_pwrite_sync(bs->file, table_offset, 689 table_size * REFTABLE_ENTRY_SIZE, new_table, 0); 690 if (ret < 0) { 691 goto fail; 692 } 693 694 for (i = 0; i < total_refblock_count; i++) { 695 be64_to_cpus(&new_table[i]); 696 } 697 698 /* Hook up the new refcount table in the qcow2 header */ 699 struct QEMU_PACKED { 700 uint64_t d64; 701 uint32_t d32; 702 } data; 703 data.d64 = cpu_to_be64(table_offset); 704 data.d32 = cpu_to_be32(table_clusters); 705 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE); 706 ret = bdrv_pwrite_sync(bs->file, 707 offsetof(QCowHeader, refcount_table_offset), 708 sizeof(data), &data, 0); 709 if (ret < 0) { 710 goto fail; 711 } 712 713 /* And switch it in memory */ 714 uint64_t old_table_offset = s->refcount_table_offset; 715 uint64_t old_table_size = s->refcount_table_size; 716 717 g_free(s->refcount_table); 718 s->refcount_table = new_table; 719 s->refcount_table_size = table_size; 720 s->refcount_table_offset = table_offset; 721 update_max_refcount_table_index(s); 722 723 /* Free old table. */ 724 qcow2_free_clusters(bs, old_table_offset, 725 old_table_size * REFTABLE_ENTRY_SIZE, 726 QCOW2_DISCARD_OTHER); 727 728 return end_offset; 729 730 fail: 731 g_free(new_table); 732 return ret; 733 } 734 735 void qcow2_process_discards(BlockDriverState *bs, int ret) 736 { 737 BDRVQcow2State *s = bs->opaque; 738 Qcow2DiscardRegion *d, *next; 739 740 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) { 741 QTAILQ_REMOVE(&s->discards, d, next); 742 743 /* Discard is optional, ignore the return value */ 744 if (ret >= 0) { 745 int r2 = bdrv_pdiscard(bs->file, d->offset, d->bytes); 746 if (r2 < 0) { 747 trace_qcow2_process_discards_failed_region(d->offset, d->bytes, 748 r2); 749 } 750 } 751 752 g_free(d); 753 } 754 } 755 756 static void update_refcount_discard(BlockDriverState *bs, 757 uint64_t offset, uint64_t length) 758 { 759 BDRVQcow2State *s = bs->opaque; 760 Qcow2DiscardRegion *d, *p, *next; 761 762 QTAILQ_FOREACH(d, &s->discards, next) { 763 uint64_t new_start = MIN(offset, d->offset); 764 uint64_t new_end = MAX(offset + length, d->offset + d->bytes); 765 766 if (new_end - new_start <= length + d->bytes) { 767 /* There can't be any overlap, areas ending up here have no 768 * references any more and therefore shouldn't get freed another 769 * time. */ 770 assert(d->bytes + length == new_end - new_start); 771 d->offset = new_start; 772 d->bytes = new_end - new_start; 773 goto found; 774 } 775 } 776 777 d = g_malloc(sizeof(*d)); 778 *d = (Qcow2DiscardRegion) { 779 .bs = bs, 780 .offset = offset, 781 .bytes = length, 782 }; 783 QTAILQ_INSERT_TAIL(&s->discards, d, next); 784 785 found: 786 /* Merge discard requests if they are adjacent now */ 787 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) { 788 if (p == d 789 || p->offset > d->offset + d->bytes 790 || d->offset > p->offset + p->bytes) 791 { 792 continue; 793 } 794 795 /* Still no overlap possible */ 796 assert(p->offset == d->offset + d->bytes 797 || d->offset == p->offset + p->bytes); 798 799 QTAILQ_REMOVE(&s->discards, p, next); 800 d->offset = MIN(d->offset, p->offset); 801 d->bytes += p->bytes; 802 g_free(p); 803 } 804 } 805 806 /* XXX: cache several refcount block clusters ? */ 807 /* @addend is the absolute value of the addend; if @decrease is set, @addend 808 * will be subtracted from the current refcount, otherwise it will be added */ 809 static int update_refcount(BlockDriverState *bs, 810 int64_t offset, 811 int64_t length, 812 uint64_t addend, 813 bool decrease, 814 enum qcow2_discard_type type) 815 { 816 BDRVQcow2State *s = bs->opaque; 817 int64_t start, last, cluster_offset; 818 void *refcount_block = NULL; 819 int64_t old_table_index = -1; 820 int ret; 821 822 #ifdef DEBUG_ALLOC2 823 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64 824 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "", 825 addend); 826 #endif 827 if (length < 0) { 828 return -EINVAL; 829 } else if (length == 0) { 830 return 0; 831 } 832 833 if (decrease) { 834 qcow2_cache_set_dependency(bs, s->refcount_block_cache, 835 s->l2_table_cache); 836 } 837 838 start = start_of_cluster(s, offset); 839 last = start_of_cluster(s, offset + length - 1); 840 for(cluster_offset = start; cluster_offset <= last; 841 cluster_offset += s->cluster_size) 842 { 843 int block_index; 844 uint64_t refcount; 845 int64_t cluster_index = cluster_offset >> s->cluster_bits; 846 int64_t table_index = cluster_index >> s->refcount_block_bits; 847 848 /* Load the refcount block and allocate it if needed */ 849 if (table_index != old_table_index) { 850 if (refcount_block) { 851 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 852 } 853 ret = alloc_refcount_block(bs, cluster_index, &refcount_block); 854 /* If the caller needs to restart the search for free clusters, 855 * try the same ones first to see if they're still free. */ 856 if (ret == -EAGAIN) { 857 if (s->free_cluster_index > (start >> s->cluster_bits)) { 858 s->free_cluster_index = (start >> s->cluster_bits); 859 } 860 } 861 if (ret < 0) { 862 goto fail; 863 } 864 } 865 old_table_index = table_index; 866 867 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block); 868 869 /* we can update the count and save it */ 870 block_index = cluster_index & (s->refcount_block_size - 1); 871 872 refcount = s->get_refcount(refcount_block, block_index); 873 if (decrease ? (refcount - addend > refcount) 874 : (refcount + addend < refcount || 875 refcount + addend > s->refcount_max)) 876 { 877 ret = -EINVAL; 878 goto fail; 879 } 880 if (decrease) { 881 refcount -= addend; 882 } else { 883 refcount += addend; 884 } 885 if (refcount == 0 && cluster_index < s->free_cluster_index) { 886 s->free_cluster_index = cluster_index; 887 } 888 s->set_refcount(refcount_block, block_index, refcount); 889 890 if (refcount == 0) { 891 void *table; 892 893 table = qcow2_cache_is_table_offset(s->refcount_block_cache, 894 offset); 895 if (table != NULL) { 896 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 897 old_table_index = -1; 898 qcow2_cache_discard(s->refcount_block_cache, table); 899 } 900 901 table = qcow2_cache_is_table_offset(s->l2_table_cache, offset); 902 if (table != NULL) { 903 qcow2_cache_discard(s->l2_table_cache, table); 904 } 905 906 if (s->discard_passthrough[type]) { 907 update_refcount_discard(bs, cluster_offset, s->cluster_size); 908 } 909 } 910 } 911 912 ret = 0; 913 fail: 914 if (!s->cache_discards) { 915 qcow2_process_discards(bs, ret); 916 } 917 918 /* Write last changed block to disk */ 919 if (refcount_block) { 920 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 921 } 922 923 /* 924 * Try do undo any updates if an error is returned (This may succeed in 925 * some cases like ENOSPC for allocating a new refcount block) 926 */ 927 if (ret < 0) { 928 int dummy; 929 dummy = update_refcount(bs, offset, cluster_offset - offset, addend, 930 !decrease, QCOW2_DISCARD_NEVER); 931 (void)dummy; 932 } 933 934 return ret; 935 } 936 937 /* 938 * Increases or decreases the refcount of a given cluster. 939 * 940 * @addend is the absolute value of the addend; if @decrease is set, @addend 941 * will be subtracted from the current refcount, otherwise it will be added. 942 * 943 * On success 0 is returned; on failure -errno is returned. 944 */ 945 int qcow2_update_cluster_refcount(BlockDriverState *bs, 946 int64_t cluster_index, 947 uint64_t addend, bool decrease, 948 enum qcow2_discard_type type) 949 { 950 BDRVQcow2State *s = bs->opaque; 951 int ret; 952 953 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend, 954 decrease, type); 955 if (ret < 0) { 956 return ret; 957 } 958 959 return 0; 960 } 961 962 963 964 /*********************************************************/ 965 /* cluster allocation functions */ 966 967 968 969 /* return < 0 if error */ 970 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size, 971 uint64_t max) 972 { 973 BDRVQcow2State *s = bs->opaque; 974 uint64_t i, nb_clusters, refcount; 975 int ret; 976 977 /* We can't allocate clusters if they may still be queued for discard. */ 978 if (s->cache_discards) { 979 qcow2_process_discards(bs, 0); 980 } 981 982 nb_clusters = size_to_clusters(s, size); 983 retry: 984 for(i = 0; i < nb_clusters; i++) { 985 uint64_t next_cluster_index = s->free_cluster_index++; 986 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount); 987 988 if (ret < 0) { 989 return ret; 990 } else if (refcount != 0) { 991 goto retry; 992 } 993 } 994 995 /* Make sure that all offsets in the "allocated" range are representable 996 * in the requested max */ 997 if (s->free_cluster_index > 0 && 998 s->free_cluster_index - 1 > (max >> s->cluster_bits)) 999 { 1000 return -EFBIG; 1001 } 1002 1003 #ifdef DEBUG_ALLOC2 1004 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n", 1005 size, 1006 (s->free_cluster_index - nb_clusters) << s->cluster_bits); 1007 #endif 1008 return (s->free_cluster_index - nb_clusters) << s->cluster_bits; 1009 } 1010 1011 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size) 1012 { 1013 int64_t offset; 1014 int ret; 1015 1016 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC); 1017 do { 1018 offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET); 1019 if (offset < 0) { 1020 return offset; 1021 } 1022 1023 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 1024 } while (ret == -EAGAIN); 1025 1026 if (ret < 0) { 1027 return ret; 1028 } 1029 1030 return offset; 1031 } 1032 1033 int64_t coroutine_fn qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset, 1034 int64_t nb_clusters) 1035 { 1036 BDRVQcow2State *s = bs->opaque; 1037 uint64_t cluster_index, refcount; 1038 uint64_t i; 1039 int ret; 1040 1041 assert(nb_clusters >= 0); 1042 if (nb_clusters == 0) { 1043 return 0; 1044 } 1045 1046 do { 1047 /* Check how many clusters there are free */ 1048 cluster_index = offset >> s->cluster_bits; 1049 for(i = 0; i < nb_clusters; i++) { 1050 ret = qcow2_get_refcount(bs, cluster_index++, &refcount); 1051 if (ret < 0) { 1052 return ret; 1053 } else if (refcount != 0) { 1054 break; 1055 } 1056 } 1057 1058 /* And then allocate them */ 1059 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false, 1060 QCOW2_DISCARD_NEVER); 1061 } while (ret == -EAGAIN); 1062 1063 if (ret < 0) { 1064 return ret; 1065 } 1066 1067 return i; 1068 } 1069 1070 /* only used to allocate compressed sectors. We try to allocate 1071 contiguous sectors. size must be <= cluster_size */ 1072 int64_t coroutine_fn GRAPH_RDLOCK qcow2_alloc_bytes(BlockDriverState *bs, int size) 1073 { 1074 BDRVQcow2State *s = bs->opaque; 1075 int64_t offset; 1076 size_t free_in_cluster; 1077 int ret; 1078 1079 BLKDBG_CO_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES); 1080 assert(size > 0 && size <= s->cluster_size); 1081 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset)); 1082 1083 offset = s->free_byte_offset; 1084 1085 if (offset) { 1086 uint64_t refcount; 1087 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount); 1088 if (ret < 0) { 1089 return ret; 1090 } 1091 1092 if (refcount == s->refcount_max) { 1093 offset = 0; 1094 } 1095 } 1096 1097 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset); 1098 do { 1099 if (!offset || free_in_cluster < size) { 1100 int64_t new_cluster; 1101 1102 new_cluster = alloc_clusters_noref(bs, s->cluster_size, 1103 MIN(s->cluster_offset_mask, 1104 QCOW_MAX_CLUSTER_OFFSET)); 1105 if (new_cluster < 0) { 1106 return new_cluster; 1107 } 1108 1109 if (new_cluster == 0) { 1110 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 1111 "allocation of compressed cluster " 1112 "at offset 0"); 1113 return -EIO; 1114 } 1115 1116 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) { 1117 offset = new_cluster; 1118 free_in_cluster = s->cluster_size; 1119 } else { 1120 free_in_cluster += s->cluster_size; 1121 } 1122 } 1123 1124 assert(offset); 1125 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 1126 if (ret < 0) { 1127 offset = 0; 1128 } 1129 } while (ret == -EAGAIN); 1130 if (ret < 0) { 1131 return ret; 1132 } 1133 1134 /* The cluster refcount was incremented; refcount blocks must be flushed 1135 * before the caller's L2 table updates. */ 1136 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache); 1137 1138 s->free_byte_offset = offset + size; 1139 if (!offset_into_cluster(s, s->free_byte_offset)) { 1140 s->free_byte_offset = 0; 1141 } 1142 1143 return offset; 1144 } 1145 1146 void qcow2_free_clusters(BlockDriverState *bs, 1147 int64_t offset, int64_t size, 1148 enum qcow2_discard_type type) 1149 { 1150 int ret; 1151 1152 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE); 1153 ret = update_refcount(bs, offset, size, 1, true, type); 1154 if (ret < 0) { 1155 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret)); 1156 /* TODO Remember the clusters to free them later and avoid leaking */ 1157 } 1158 } 1159 1160 /* 1161 * Free a cluster using its L2 entry (handles clusters of all types, e.g. 1162 * normal cluster, compressed cluster, etc.) 1163 */ 1164 void qcow2_free_any_cluster(BlockDriverState *bs, uint64_t l2_entry, 1165 enum qcow2_discard_type type) 1166 { 1167 BDRVQcow2State *s = bs->opaque; 1168 QCow2ClusterType ctype = qcow2_get_cluster_type(bs, l2_entry); 1169 1170 if (has_data_file(bs)) { 1171 if (s->discard_passthrough[type] && 1172 (ctype == QCOW2_CLUSTER_NORMAL || 1173 ctype == QCOW2_CLUSTER_ZERO_ALLOC)) 1174 { 1175 bdrv_pdiscard(s->data_file, l2_entry & L2E_OFFSET_MASK, 1176 s->cluster_size); 1177 } 1178 return; 1179 } 1180 1181 switch (ctype) { 1182 case QCOW2_CLUSTER_COMPRESSED: 1183 { 1184 uint64_t coffset; 1185 int csize; 1186 1187 qcow2_parse_compressed_l2_entry(bs, l2_entry, &coffset, &csize); 1188 qcow2_free_clusters(bs, coffset, csize, type); 1189 } 1190 break; 1191 case QCOW2_CLUSTER_NORMAL: 1192 case QCOW2_CLUSTER_ZERO_ALLOC: 1193 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) { 1194 qcow2_signal_corruption(bs, false, -1, -1, 1195 "Cannot free unaligned cluster %#llx", 1196 l2_entry & L2E_OFFSET_MASK); 1197 } else { 1198 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK, 1199 s->cluster_size, type); 1200 } 1201 break; 1202 case QCOW2_CLUSTER_ZERO_PLAIN: 1203 case QCOW2_CLUSTER_UNALLOCATED: 1204 break; 1205 default: 1206 abort(); 1207 } 1208 } 1209 1210 int qcow2_write_caches(BlockDriverState *bs) 1211 { 1212 BDRVQcow2State *s = bs->opaque; 1213 int ret; 1214 1215 ret = qcow2_cache_write(bs, s->l2_table_cache); 1216 if (ret < 0) { 1217 return ret; 1218 } 1219 1220 if (qcow2_need_accurate_refcounts(s)) { 1221 ret = qcow2_cache_write(bs, s->refcount_block_cache); 1222 if (ret < 0) { 1223 return ret; 1224 } 1225 } 1226 1227 return 0; 1228 } 1229 1230 int qcow2_flush_caches(BlockDriverState *bs) 1231 { 1232 int ret = qcow2_write_caches(bs); 1233 if (ret < 0) { 1234 return ret; 1235 } 1236 1237 return bdrv_flush(bs->file->bs); 1238 } 1239 1240 /*********************************************************/ 1241 /* snapshots and image creation */ 1242 1243 1244 1245 /* update the refcounts of snapshots and the copied flag */ 1246 int qcow2_update_snapshot_refcount(BlockDriverState *bs, 1247 int64_t l1_table_offset, int l1_size, int addend) 1248 { 1249 BDRVQcow2State *s = bs->opaque; 1250 uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount; 1251 bool l1_allocated = false; 1252 int64_t old_entry, old_l2_offset; 1253 unsigned slice, slice_size2, n_slices; 1254 int i, j, l1_modified = 0; 1255 int ret; 1256 1257 assert(addend >= -1 && addend <= 1); 1258 1259 l2_slice = NULL; 1260 l1_table = NULL; 1261 l1_size2 = l1_size * L1E_SIZE; 1262 slice_size2 = s->l2_slice_size * l2_entry_size(s); 1263 n_slices = s->cluster_size / slice_size2; 1264 1265 s->cache_discards = true; 1266 1267 /* WARNING: qcow2_snapshot_goto relies on this function not using the 1268 * l1_table_offset when it is the current s->l1_table_offset! Be careful 1269 * when changing this! */ 1270 if (l1_table_offset != s->l1_table_offset) { 1271 l1_table = g_try_malloc0(l1_size2); 1272 if (l1_size2 && l1_table == NULL) { 1273 ret = -ENOMEM; 1274 goto fail; 1275 } 1276 l1_allocated = true; 1277 1278 ret = bdrv_pread(bs->file, l1_table_offset, l1_size2, l1_table, 0); 1279 if (ret < 0) { 1280 goto fail; 1281 } 1282 1283 for (i = 0; i < l1_size; i++) { 1284 be64_to_cpus(&l1_table[i]); 1285 } 1286 } else { 1287 assert(l1_size == s->l1_size); 1288 l1_table = s->l1_table; 1289 l1_allocated = false; 1290 } 1291 1292 for (i = 0; i < l1_size; i++) { 1293 l2_offset = l1_table[i]; 1294 if (l2_offset) { 1295 old_l2_offset = l2_offset; 1296 l2_offset &= L1E_OFFSET_MASK; 1297 1298 if (offset_into_cluster(s, l2_offset)) { 1299 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1300 PRIx64 " unaligned (L1 index: %#x)", 1301 l2_offset, i); 1302 ret = -EIO; 1303 goto fail; 1304 } 1305 1306 for (slice = 0; slice < n_slices; slice++) { 1307 ret = qcow2_cache_get(bs, s->l2_table_cache, 1308 l2_offset + slice * slice_size2, 1309 (void **) &l2_slice); 1310 if (ret < 0) { 1311 goto fail; 1312 } 1313 1314 for (j = 0; j < s->l2_slice_size; j++) { 1315 uint64_t cluster_index; 1316 uint64_t offset; 1317 1318 entry = get_l2_entry(s, l2_slice, j); 1319 old_entry = entry; 1320 entry &= ~QCOW_OFLAG_COPIED; 1321 offset = entry & L2E_OFFSET_MASK; 1322 1323 switch (qcow2_get_cluster_type(bs, entry)) { 1324 case QCOW2_CLUSTER_COMPRESSED: 1325 if (addend != 0) { 1326 uint64_t coffset; 1327 int csize; 1328 1329 qcow2_parse_compressed_l2_entry(bs, entry, 1330 &coffset, &csize); 1331 ret = update_refcount( 1332 bs, coffset, csize, 1333 abs(addend), addend < 0, 1334 QCOW2_DISCARD_SNAPSHOT); 1335 if (ret < 0) { 1336 goto fail; 1337 } 1338 } 1339 /* compressed clusters are never modified */ 1340 refcount = 2; 1341 break; 1342 1343 case QCOW2_CLUSTER_NORMAL: 1344 case QCOW2_CLUSTER_ZERO_ALLOC: 1345 if (offset_into_cluster(s, offset)) { 1346 /* Here l2_index means table (not slice) index */ 1347 int l2_index = slice * s->l2_slice_size + j; 1348 qcow2_signal_corruption( 1349 bs, true, -1, -1, "Cluster " 1350 "allocation offset %#" PRIx64 1351 " unaligned (L2 offset: %#" 1352 PRIx64 ", L2 index: %#x)", 1353 offset, l2_offset, l2_index); 1354 ret = -EIO; 1355 goto fail; 1356 } 1357 1358 cluster_index = offset >> s->cluster_bits; 1359 assert(cluster_index); 1360 if (addend != 0) { 1361 ret = qcow2_update_cluster_refcount( 1362 bs, cluster_index, abs(addend), addend < 0, 1363 QCOW2_DISCARD_SNAPSHOT); 1364 if (ret < 0) { 1365 goto fail; 1366 } 1367 } 1368 1369 ret = qcow2_get_refcount(bs, cluster_index, &refcount); 1370 if (ret < 0) { 1371 goto fail; 1372 } 1373 break; 1374 1375 case QCOW2_CLUSTER_ZERO_PLAIN: 1376 case QCOW2_CLUSTER_UNALLOCATED: 1377 refcount = 0; 1378 break; 1379 1380 default: 1381 abort(); 1382 } 1383 1384 if (refcount == 1) { 1385 entry |= QCOW_OFLAG_COPIED; 1386 } 1387 if (entry != old_entry) { 1388 if (addend > 0) { 1389 qcow2_cache_set_dependency(bs, s->l2_table_cache, 1390 s->refcount_block_cache); 1391 } 1392 set_l2_entry(s, l2_slice, j, entry); 1393 qcow2_cache_entry_mark_dirty(s->l2_table_cache, 1394 l2_slice); 1395 } 1396 } 1397 1398 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1399 } 1400 1401 if (addend != 0) { 1402 ret = qcow2_update_cluster_refcount(bs, l2_offset >> 1403 s->cluster_bits, 1404 abs(addend), addend < 0, 1405 QCOW2_DISCARD_SNAPSHOT); 1406 if (ret < 0) { 1407 goto fail; 1408 } 1409 } 1410 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1411 &refcount); 1412 if (ret < 0) { 1413 goto fail; 1414 } else if (refcount == 1) { 1415 l2_offset |= QCOW_OFLAG_COPIED; 1416 } 1417 if (l2_offset != old_l2_offset) { 1418 l1_table[i] = l2_offset; 1419 l1_modified = 1; 1420 } 1421 } 1422 } 1423 1424 ret = bdrv_flush(bs); 1425 fail: 1426 if (l2_slice) { 1427 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1428 } 1429 1430 s->cache_discards = false; 1431 qcow2_process_discards(bs, ret); 1432 1433 /* Update L1 only if it isn't deleted anyway (addend = -1) */ 1434 if (ret == 0 && addend >= 0 && l1_modified) { 1435 for (i = 0; i < l1_size; i++) { 1436 cpu_to_be64s(&l1_table[i]); 1437 } 1438 1439 ret = bdrv_pwrite_sync(bs->file, l1_table_offset, l1_size2, l1_table, 1440 0); 1441 1442 for (i = 0; i < l1_size; i++) { 1443 be64_to_cpus(&l1_table[i]); 1444 } 1445 } 1446 if (l1_allocated) 1447 g_free(l1_table); 1448 return ret; 1449 } 1450 1451 1452 1453 1454 /*********************************************************/ 1455 /* refcount checking functions */ 1456 1457 1458 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries) 1459 { 1460 /* This assertion holds because there is no way we can address more than 1461 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because 1462 * offsets have to be representable in bytes); due to every cluster 1463 * corresponding to one refcount entry, we are well below that limit */ 1464 assert(entries < (UINT64_C(1) << (64 - 9))); 1465 1466 /* Thanks to the assertion this will not overflow, because 1467 * s->refcount_order < 7. 1468 * (note: x << s->refcount_order == x * s->refcount_bits) */ 1469 return DIV_ROUND_UP(entries << s->refcount_order, 8); 1470 } 1471 1472 /** 1473 * Reallocates *array so that it can hold new_size entries. *size must contain 1474 * the current number of entries in *array. If the reallocation fails, *array 1475 * and *size will not be modified and -errno will be returned. If the 1476 * reallocation is successful, *array will be set to the new buffer, *size 1477 * will be set to new_size and 0 will be returned. The size of the reallocated 1478 * refcount array buffer will be aligned to a cluster boundary, and the newly 1479 * allocated area will be zeroed. 1480 */ 1481 static int realloc_refcount_array(BDRVQcow2State *s, void **array, 1482 int64_t *size, int64_t new_size) 1483 { 1484 int64_t old_byte_size, new_byte_size; 1485 void *new_ptr; 1486 1487 /* Round to clusters so the array can be directly written to disk */ 1488 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size)) 1489 * s->cluster_size; 1490 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size)) 1491 * s->cluster_size; 1492 1493 if (new_byte_size == old_byte_size) { 1494 *size = new_size; 1495 return 0; 1496 } 1497 1498 assert(new_byte_size > 0); 1499 1500 if (new_byte_size > SIZE_MAX) { 1501 return -ENOMEM; 1502 } 1503 1504 new_ptr = g_try_realloc(*array, new_byte_size); 1505 if (!new_ptr) { 1506 return -ENOMEM; 1507 } 1508 1509 if (new_byte_size > old_byte_size) { 1510 memset((char *)new_ptr + old_byte_size, 0, 1511 new_byte_size - old_byte_size); 1512 } 1513 1514 *array = new_ptr; 1515 *size = new_size; 1516 1517 return 0; 1518 } 1519 1520 /* 1521 * Increases the refcount for a range of clusters in a given refcount table. 1522 * This is used to construct a temporary refcount table out of L1 and L2 tables 1523 * which can be compared to the refcount table saved in the image. 1524 * 1525 * Modifies the number of errors in res. 1526 */ 1527 int coroutine_fn GRAPH_RDLOCK 1528 qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res, 1529 void **refcount_table, 1530 int64_t *refcount_table_size, 1531 int64_t offset, int64_t size) 1532 { 1533 BDRVQcow2State *s = bs->opaque; 1534 uint64_t start, last, cluster_offset, k, refcount; 1535 int64_t file_len; 1536 int ret; 1537 1538 if (size <= 0) { 1539 return 0; 1540 } 1541 1542 file_len = bdrv_co_getlength(bs->file->bs); 1543 if (file_len < 0) { 1544 return file_len; 1545 } 1546 1547 /* 1548 * Last cluster of qcow2 image may be semi-allocated, so it may be OK to 1549 * reference some space after file end but it should be less than one 1550 * cluster. 1551 */ 1552 if (offset + size - file_len >= s->cluster_size) { 1553 fprintf(stderr, "ERROR: counting reference for region exceeding the " 1554 "end of the file by one cluster or more: offset 0x%" PRIx64 1555 " size 0x%" PRIx64 "\n", offset, size); 1556 res->corruptions++; 1557 return 0; 1558 } 1559 1560 start = start_of_cluster(s, offset); 1561 last = start_of_cluster(s, offset + size - 1); 1562 for(cluster_offset = start; cluster_offset <= last; 1563 cluster_offset += s->cluster_size) { 1564 k = cluster_offset >> s->cluster_bits; 1565 if (k >= *refcount_table_size) { 1566 ret = realloc_refcount_array(s, refcount_table, 1567 refcount_table_size, k + 1); 1568 if (ret < 0) { 1569 res->check_errors++; 1570 return ret; 1571 } 1572 } 1573 1574 refcount = s->get_refcount(*refcount_table, k); 1575 if (refcount == s->refcount_max) { 1576 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64 1577 "\n", cluster_offset); 1578 fprintf(stderr, "Use qemu-img amend to increase the refcount entry " 1579 "width or qemu-img convert to create a clean copy if the " 1580 "image cannot be opened for writing\n"); 1581 res->corruptions++; 1582 continue; 1583 } 1584 s->set_refcount(*refcount_table, k, refcount + 1); 1585 } 1586 1587 return 0; 1588 } 1589 1590 /* Flags for check_refcounts_l1() and check_refcounts_l2() */ 1591 enum { 1592 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */ 1593 }; 1594 1595 /* 1596 * Fix L2 entry by making it QCOW2_CLUSTER_ZERO_PLAIN (or making all its present 1597 * subclusters QCOW2_SUBCLUSTER_ZERO_PLAIN). 1598 * 1599 * This function decrements res->corruptions on success, so the caller is 1600 * responsible to increment res->corruptions prior to the call. 1601 * 1602 * On failure in-memory @l2_table may be modified. 1603 */ 1604 static int coroutine_fn GRAPH_RDLOCK 1605 fix_l2_entry_by_zero(BlockDriverState *bs, BdrvCheckResult *res, 1606 uint64_t l2_offset, uint64_t *l2_table, 1607 int l2_index, bool active, 1608 bool *metadata_overlap) 1609 { 1610 BDRVQcow2State *s = bs->opaque; 1611 int ret; 1612 int idx = l2_index * (l2_entry_size(s) / sizeof(uint64_t)); 1613 uint64_t l2e_offset = l2_offset + (uint64_t)l2_index * l2_entry_size(s); 1614 int ign = active ? QCOW2_OL_ACTIVE_L2 : QCOW2_OL_INACTIVE_L2; 1615 1616 if (has_subclusters(s)) { 1617 uint64_t l2_bitmap = get_l2_bitmap(s, l2_table, l2_index); 1618 1619 /* Allocated subclusters become zero */ 1620 l2_bitmap |= l2_bitmap << 32; 1621 l2_bitmap &= QCOW_L2_BITMAP_ALL_ZEROES; 1622 1623 set_l2_bitmap(s, l2_table, l2_index, l2_bitmap); 1624 set_l2_entry(s, l2_table, l2_index, 0); 1625 } else { 1626 set_l2_entry(s, l2_table, l2_index, QCOW_OFLAG_ZERO); 1627 } 1628 1629 ret = qcow2_pre_write_overlap_check(bs, ign, l2e_offset, l2_entry_size(s), 1630 false); 1631 if (metadata_overlap) { 1632 *metadata_overlap = ret < 0; 1633 } 1634 if (ret < 0) { 1635 fprintf(stderr, "ERROR: Overlap check failed\n"); 1636 goto fail; 1637 } 1638 1639 ret = bdrv_co_pwrite_sync(bs->file, l2e_offset, l2_entry_size(s), 1640 &l2_table[idx], 0); 1641 if (ret < 0) { 1642 fprintf(stderr, "ERROR: Failed to overwrite L2 " 1643 "table entry: %s\n", strerror(-ret)); 1644 goto fail; 1645 } 1646 1647 res->corruptions--; 1648 res->corruptions_fixed++; 1649 return 0; 1650 1651 fail: 1652 res->check_errors++; 1653 return ret; 1654 } 1655 1656 /* 1657 * Increases the refcount in the given refcount table for the all clusters 1658 * referenced in the L2 table. While doing so, performs some checks on L2 1659 * entries. 1660 * 1661 * Returns the number of errors found by the checks or -errno if an internal 1662 * error occurred. 1663 */ 1664 static int coroutine_fn GRAPH_RDLOCK 1665 check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res, 1666 void **refcount_table, 1667 int64_t *refcount_table_size, int64_t l2_offset, 1668 int flags, BdrvCheckMode fix, bool active) 1669 { 1670 BDRVQcow2State *s = bs->opaque; 1671 uint64_t l2_entry, l2_bitmap; 1672 uint64_t next_contiguous_offset = 0; 1673 int i, ret; 1674 size_t l2_size_bytes = s->l2_size * l2_entry_size(s); 1675 g_autofree uint64_t *l2_table = g_malloc(l2_size_bytes); 1676 bool metadata_overlap; 1677 1678 /* Read L2 table from disk */ 1679 ret = bdrv_co_pread(bs->file, l2_offset, l2_size_bytes, l2_table, 0); 1680 if (ret < 0) { 1681 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n"); 1682 res->check_errors++; 1683 return ret; 1684 } 1685 1686 /* Do the actual checks */ 1687 for (i = 0; i < s->l2_size; i++) { 1688 uint64_t coffset; 1689 int csize; 1690 QCow2ClusterType type; 1691 1692 l2_entry = get_l2_entry(s, l2_table, i); 1693 l2_bitmap = get_l2_bitmap(s, l2_table, i); 1694 type = qcow2_get_cluster_type(bs, l2_entry); 1695 1696 if (type != QCOW2_CLUSTER_COMPRESSED) { 1697 /* Check reserved bits of Standard Cluster Descriptor */ 1698 if (l2_entry & L2E_STD_RESERVED_MASK) { 1699 fprintf(stderr, "ERROR found l2 entry with reserved bits set: " 1700 "%" PRIx64 "\n", l2_entry); 1701 res->corruptions++; 1702 } 1703 } 1704 1705 switch (type) { 1706 case QCOW2_CLUSTER_COMPRESSED: 1707 /* Compressed clusters don't have QCOW_OFLAG_COPIED */ 1708 if (l2_entry & QCOW_OFLAG_COPIED) { 1709 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": " 1710 "copied flag must never be set for compressed " 1711 "clusters\n", l2_entry & s->cluster_offset_mask); 1712 l2_entry &= ~QCOW_OFLAG_COPIED; 1713 res->corruptions++; 1714 } 1715 1716 if (has_data_file(bs)) { 1717 fprintf(stderr, "ERROR compressed cluster %d with data file, " 1718 "entry=0x%" PRIx64 "\n", i, l2_entry); 1719 res->corruptions++; 1720 break; 1721 } 1722 1723 if (l2_bitmap) { 1724 fprintf(stderr, "ERROR compressed cluster %d with non-zero " 1725 "subcluster allocation bitmap, entry=0x%" PRIx64 "\n", 1726 i, l2_entry); 1727 res->corruptions++; 1728 break; 1729 } 1730 1731 /* Mark cluster as used */ 1732 qcow2_parse_compressed_l2_entry(bs, l2_entry, &coffset, &csize); 1733 ret = qcow2_inc_refcounts_imrt( 1734 bs, res, refcount_table, refcount_table_size, coffset, csize); 1735 if (ret < 0) { 1736 return ret; 1737 } 1738 1739 if (flags & CHECK_FRAG_INFO) { 1740 res->bfi.allocated_clusters++; 1741 res->bfi.compressed_clusters++; 1742 1743 /* 1744 * Compressed clusters are fragmented by nature. Since they 1745 * take up sub-sector space but we only have sector granularity 1746 * I/O we need to re-read the same sectors even for adjacent 1747 * compressed clusters. 1748 */ 1749 res->bfi.fragmented_clusters++; 1750 } 1751 break; 1752 1753 case QCOW2_CLUSTER_ZERO_ALLOC: 1754 case QCOW2_CLUSTER_NORMAL: 1755 { 1756 uint64_t offset = l2_entry & L2E_OFFSET_MASK; 1757 1758 if ((l2_bitmap >> 32) & l2_bitmap) { 1759 res->corruptions++; 1760 fprintf(stderr, "ERROR offset=%" PRIx64 ": Allocated " 1761 "cluster has corrupted subcluster allocation bitmap\n", 1762 offset); 1763 } 1764 1765 /* Correct offsets are cluster aligned */ 1766 if (offset_into_cluster(s, offset)) { 1767 bool contains_data; 1768 res->corruptions++; 1769 1770 if (has_subclusters(s)) { 1771 contains_data = (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC); 1772 } else { 1773 contains_data = !(l2_entry & QCOW_OFLAG_ZERO); 1774 } 1775 1776 if (!contains_data) { 1777 fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated " 1778 "cluster is not properly aligned; L2 entry " 1779 "corrupted.\n", 1780 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", 1781 offset); 1782 if (fix & BDRV_FIX_ERRORS) { 1783 ret = fix_l2_entry_by_zero(bs, res, l2_offset, 1784 l2_table, i, active, 1785 &metadata_overlap); 1786 if (metadata_overlap) { 1787 /* 1788 * Something is seriously wrong, so abort checking 1789 * this L2 table. 1790 */ 1791 return ret; 1792 } 1793 1794 if (ret == 0) { 1795 /* 1796 * Skip marking the cluster as used 1797 * (it is unused now). 1798 */ 1799 continue; 1800 } 1801 1802 /* 1803 * Failed to fix. 1804 * Do not abort, continue checking the rest of this 1805 * L2 table's entries. 1806 */ 1807 } 1808 } else { 1809 fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is " 1810 "not properly aligned; L2 entry corrupted.\n", offset); 1811 } 1812 } 1813 1814 if (flags & CHECK_FRAG_INFO) { 1815 res->bfi.allocated_clusters++; 1816 if (next_contiguous_offset && 1817 offset != next_contiguous_offset) { 1818 res->bfi.fragmented_clusters++; 1819 } 1820 next_contiguous_offset = offset + s->cluster_size; 1821 } 1822 1823 /* Mark cluster as used */ 1824 if (!has_data_file(bs)) { 1825 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, 1826 refcount_table_size, 1827 offset, s->cluster_size); 1828 if (ret < 0) { 1829 return ret; 1830 } 1831 } 1832 break; 1833 } 1834 1835 case QCOW2_CLUSTER_ZERO_PLAIN: 1836 /* Impossible when image has subclusters */ 1837 assert(!l2_bitmap); 1838 break; 1839 1840 case QCOW2_CLUSTER_UNALLOCATED: 1841 if (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC) { 1842 res->corruptions++; 1843 fprintf(stderr, "ERROR: Unallocated " 1844 "cluster has non-zero subcluster allocation map\n"); 1845 } 1846 break; 1847 1848 default: 1849 abort(); 1850 } 1851 } 1852 1853 return 0; 1854 } 1855 1856 /* 1857 * Increases the refcount for the L1 table, its L2 tables and all referenced 1858 * clusters in the given refcount table. While doing so, performs some checks 1859 * on L1 and L2 entries. 1860 * 1861 * Returns the number of errors found by the checks or -errno if an internal 1862 * error occurred. 1863 */ 1864 static int coroutine_fn GRAPH_RDLOCK 1865 check_refcounts_l1(BlockDriverState *bs, BdrvCheckResult *res, 1866 void **refcount_table, int64_t *refcount_table_size, 1867 int64_t l1_table_offset, int l1_size, 1868 int flags, BdrvCheckMode fix, bool active) 1869 { 1870 BDRVQcow2State *s = bs->opaque; 1871 size_t l1_size_bytes = l1_size * L1E_SIZE; 1872 g_autofree uint64_t *l1_table = NULL; 1873 uint64_t l2_offset; 1874 int i, ret; 1875 1876 if (!l1_size) { 1877 return 0; 1878 } 1879 1880 /* Mark L1 table as used */ 1881 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size, 1882 l1_table_offset, l1_size_bytes); 1883 if (ret < 0) { 1884 return ret; 1885 } 1886 1887 l1_table = g_try_malloc(l1_size_bytes); 1888 if (l1_table == NULL) { 1889 res->check_errors++; 1890 return -ENOMEM; 1891 } 1892 1893 /* Read L1 table entries from disk */ 1894 ret = bdrv_co_pread(bs->file, l1_table_offset, l1_size_bytes, l1_table, 0); 1895 if (ret < 0) { 1896 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n"); 1897 res->check_errors++; 1898 return ret; 1899 } 1900 1901 for (i = 0; i < l1_size; i++) { 1902 be64_to_cpus(&l1_table[i]); 1903 } 1904 1905 /* Do the actual checks */ 1906 for (i = 0; i < l1_size; i++) { 1907 if (!l1_table[i]) { 1908 continue; 1909 } 1910 1911 if (l1_table[i] & L1E_RESERVED_MASK) { 1912 fprintf(stderr, "ERROR found L1 entry with reserved bits set: " 1913 "%" PRIx64 "\n", l1_table[i]); 1914 res->corruptions++; 1915 } 1916 1917 l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1918 1919 /* Mark L2 table as used */ 1920 ret = qcow2_inc_refcounts_imrt(bs, res, 1921 refcount_table, refcount_table_size, 1922 l2_offset, s->cluster_size); 1923 if (ret < 0) { 1924 return ret; 1925 } 1926 1927 /* L2 tables are cluster aligned */ 1928 if (offset_into_cluster(s, l2_offset)) { 1929 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not " 1930 "cluster aligned; L1 entry corrupted\n", l2_offset); 1931 res->corruptions++; 1932 } 1933 1934 /* Process and check L2 entries */ 1935 ret = check_refcounts_l2(bs, res, refcount_table, 1936 refcount_table_size, l2_offset, flags, 1937 fix, active); 1938 if (ret < 0) { 1939 return ret; 1940 } 1941 } 1942 1943 return 0; 1944 } 1945 1946 /* 1947 * Checks the OFLAG_COPIED flag for all L1 and L2 entries. 1948 * 1949 * This function does not print an error message nor does it increment 1950 * check_errors if qcow2_get_refcount fails (this is because such an error will 1951 * have been already detected and sufficiently signaled by the calling function 1952 * (qcow2_check_refcounts) by the time this function is called). 1953 */ 1954 static int coroutine_fn GRAPH_RDLOCK 1955 check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1956 { 1957 BDRVQcow2State *s = bs->opaque; 1958 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size); 1959 int ret; 1960 uint64_t refcount; 1961 int i, j; 1962 bool repair; 1963 1964 if (fix & BDRV_FIX_ERRORS) { 1965 /* Always repair */ 1966 repair = true; 1967 } else if (fix & BDRV_FIX_LEAKS) { 1968 /* Repair only if that seems safe: This function is always 1969 * called after the refcounts have been fixed, so the refcount 1970 * is accurate if that repair was successful */ 1971 repair = !res->check_errors && !res->corruptions && !res->leaks; 1972 } else { 1973 repair = false; 1974 } 1975 1976 for (i = 0; i < s->l1_size; i++) { 1977 uint64_t l1_entry = s->l1_table[i]; 1978 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK; 1979 int l2_dirty = 0; 1980 1981 if (!l2_offset) { 1982 continue; 1983 } 1984 1985 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1986 &refcount); 1987 if (ret < 0) { 1988 /* don't print message nor increment check_errors */ 1989 continue; 1990 } 1991 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) { 1992 res->corruptions++; 1993 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d " 1994 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 1995 repair ? "Repairing" : "ERROR", i, l1_entry, refcount); 1996 if (repair) { 1997 s->l1_table[i] = refcount == 1 1998 ? l1_entry | QCOW_OFLAG_COPIED 1999 : l1_entry & ~QCOW_OFLAG_COPIED; 2000 ret = qcow2_write_l1_entry(bs, i); 2001 if (ret < 0) { 2002 res->check_errors++; 2003 goto fail; 2004 } 2005 res->corruptions--; 2006 res->corruptions_fixed++; 2007 } 2008 } 2009 2010 ret = bdrv_co_pread(bs->file, l2_offset, s->l2_size * l2_entry_size(s), 2011 l2_table, 0); 2012 if (ret < 0) { 2013 fprintf(stderr, "ERROR: Could not read L2 table: %s\n", 2014 strerror(-ret)); 2015 res->check_errors++; 2016 goto fail; 2017 } 2018 2019 for (j = 0; j < s->l2_size; j++) { 2020 uint64_t l2_entry = get_l2_entry(s, l2_table, j); 2021 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK; 2022 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry); 2023 2024 if (cluster_type == QCOW2_CLUSTER_NORMAL || 2025 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) { 2026 if (has_data_file(bs)) { 2027 refcount = 1; 2028 } else { 2029 ret = qcow2_get_refcount(bs, 2030 data_offset >> s->cluster_bits, 2031 &refcount); 2032 if (ret < 0) { 2033 /* don't print message nor increment check_errors */ 2034 continue; 2035 } 2036 } 2037 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) { 2038 res->corruptions++; 2039 fprintf(stderr, "%s OFLAG_COPIED data cluster: " 2040 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 2041 repair ? "Repairing" : "ERROR", l2_entry, refcount); 2042 if (repair) { 2043 set_l2_entry(s, l2_table, j, 2044 refcount == 1 ? 2045 l2_entry | QCOW_OFLAG_COPIED : 2046 l2_entry & ~QCOW_OFLAG_COPIED); 2047 l2_dirty++; 2048 } 2049 } 2050 } 2051 } 2052 2053 if (l2_dirty > 0) { 2054 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2, 2055 l2_offset, s->cluster_size, 2056 false); 2057 if (ret < 0) { 2058 fprintf(stderr, "ERROR: Could not write L2 table; metadata " 2059 "overlap check failed: %s\n", strerror(-ret)); 2060 res->check_errors++; 2061 goto fail; 2062 } 2063 2064 ret = bdrv_co_pwrite(bs->file, l2_offset, s->cluster_size, l2_table, 0); 2065 if (ret < 0) { 2066 fprintf(stderr, "ERROR: Could not write L2 table: %s\n", 2067 strerror(-ret)); 2068 res->check_errors++; 2069 goto fail; 2070 } 2071 res->corruptions -= l2_dirty; 2072 res->corruptions_fixed += l2_dirty; 2073 } 2074 } 2075 2076 ret = 0; 2077 2078 fail: 2079 qemu_vfree(l2_table); 2080 return ret; 2081 } 2082 2083 /* 2084 * Checks consistency of refblocks and accounts for each refblock in 2085 * *refcount_table. 2086 */ 2087 static int coroutine_fn GRAPH_RDLOCK 2088 check_refblocks(BlockDriverState *bs, BdrvCheckResult *res, 2089 BdrvCheckMode fix, bool *rebuild, 2090 void **refcount_table, int64_t *nb_clusters) 2091 { 2092 BDRVQcow2State *s = bs->opaque; 2093 int64_t i, size; 2094 int ret; 2095 2096 for(i = 0; i < s->refcount_table_size; i++) { 2097 uint64_t offset, cluster; 2098 offset = s->refcount_table[i] & REFT_OFFSET_MASK; 2099 cluster = offset >> s->cluster_bits; 2100 2101 if (s->refcount_table[i] & REFT_RESERVED_MASK) { 2102 fprintf(stderr, "ERROR refcount table entry %" PRId64 " has " 2103 "reserved bits set\n", i); 2104 res->corruptions++; 2105 *rebuild = true; 2106 continue; 2107 } 2108 2109 /* Refcount blocks are cluster aligned */ 2110 if (offset_into_cluster(s, offset)) { 2111 fprintf(stderr, "ERROR refcount block %" PRId64 " is not " 2112 "cluster aligned; refcount table entry corrupted\n", i); 2113 res->corruptions++; 2114 *rebuild = true; 2115 continue; 2116 } 2117 2118 if (cluster >= *nb_clusters) { 2119 res->corruptions++; 2120 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n", 2121 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i); 2122 2123 if (fix & BDRV_FIX_ERRORS) { 2124 int64_t new_nb_clusters; 2125 Error *local_err = NULL; 2126 2127 if (offset > INT64_MAX - s->cluster_size) { 2128 ret = -EINVAL; 2129 goto resize_fail; 2130 } 2131 2132 ret = bdrv_co_truncate(bs->file, offset + s->cluster_size, false, 2133 PREALLOC_MODE_OFF, 0, &local_err); 2134 if (ret < 0) { 2135 error_report_err(local_err); 2136 goto resize_fail; 2137 } 2138 size = bdrv_co_getlength(bs->file->bs); 2139 if (size < 0) { 2140 ret = size; 2141 goto resize_fail; 2142 } 2143 2144 new_nb_clusters = size_to_clusters(s, size); 2145 assert(new_nb_clusters >= *nb_clusters); 2146 2147 ret = realloc_refcount_array(s, refcount_table, 2148 nb_clusters, new_nb_clusters); 2149 if (ret < 0) { 2150 res->check_errors++; 2151 return ret; 2152 } 2153 2154 if (cluster >= *nb_clusters) { 2155 ret = -EINVAL; 2156 goto resize_fail; 2157 } 2158 2159 res->corruptions--; 2160 res->corruptions_fixed++; 2161 ret = qcow2_inc_refcounts_imrt(bs, res, 2162 refcount_table, nb_clusters, 2163 offset, s->cluster_size); 2164 if (ret < 0) { 2165 return ret; 2166 } 2167 /* No need to check whether the refcount is now greater than 1: 2168 * This area was just allocated and zeroed, so it can only be 2169 * exactly 1 after qcow2_inc_refcounts_imrt() */ 2170 continue; 2171 2172 resize_fail: 2173 *rebuild = true; 2174 fprintf(stderr, "ERROR could not resize image: %s\n", 2175 strerror(-ret)); 2176 } 2177 continue; 2178 } 2179 2180 if (offset != 0) { 2181 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2182 offset, s->cluster_size); 2183 if (ret < 0) { 2184 return ret; 2185 } 2186 if (s->get_refcount(*refcount_table, cluster) != 1) { 2187 fprintf(stderr, "ERROR refcount block %" PRId64 2188 " refcount=%" PRIu64 "\n", i, 2189 s->get_refcount(*refcount_table, cluster)); 2190 res->corruptions++; 2191 *rebuild = true; 2192 } 2193 } 2194 } 2195 2196 return 0; 2197 } 2198 2199 /* 2200 * Calculates an in-memory refcount table. 2201 */ 2202 static int coroutine_fn GRAPH_RDLOCK 2203 calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2204 BdrvCheckMode fix, bool *rebuild, 2205 void **refcount_table, int64_t *nb_clusters) 2206 { 2207 BDRVQcow2State *s = bs->opaque; 2208 int64_t i; 2209 QCowSnapshot *sn; 2210 int ret; 2211 2212 if (!*refcount_table) { 2213 int64_t old_size = 0; 2214 ret = realloc_refcount_array(s, refcount_table, 2215 &old_size, *nb_clusters); 2216 if (ret < 0) { 2217 res->check_errors++; 2218 return ret; 2219 } 2220 } 2221 2222 /* header */ 2223 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2224 0, s->cluster_size); 2225 if (ret < 0) { 2226 return ret; 2227 } 2228 2229 /* current L1 table */ 2230 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 2231 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO, 2232 fix, true); 2233 if (ret < 0) { 2234 return ret; 2235 } 2236 2237 /* snapshots */ 2238 if (has_data_file(bs) && s->nb_snapshots) { 2239 fprintf(stderr, "ERROR %d snapshots in image with data file\n", 2240 s->nb_snapshots); 2241 res->corruptions++; 2242 } 2243 2244 for (i = 0; i < s->nb_snapshots; i++) { 2245 sn = s->snapshots + i; 2246 if (offset_into_cluster(s, sn->l1_table_offset)) { 2247 fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": " 2248 "L1 table is not cluster aligned; snapshot table entry " 2249 "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset); 2250 res->corruptions++; 2251 continue; 2252 } 2253 if (sn->l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) { 2254 fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": " 2255 "L1 table is too large; snapshot table entry corrupted\n", 2256 sn->id_str, sn->name, sn->l1_size); 2257 res->corruptions++; 2258 continue; 2259 } 2260 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 2261 sn->l1_table_offset, sn->l1_size, 0, fix, 2262 false); 2263 if (ret < 0) { 2264 return ret; 2265 } 2266 } 2267 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2268 s->snapshots_offset, s->snapshots_size); 2269 if (ret < 0) { 2270 return ret; 2271 } 2272 2273 /* refcount data */ 2274 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2275 s->refcount_table_offset, 2276 s->refcount_table_size * 2277 REFTABLE_ENTRY_SIZE); 2278 if (ret < 0) { 2279 return ret; 2280 } 2281 2282 /* encryption */ 2283 if (s->crypto_header.length) { 2284 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2285 s->crypto_header.offset, 2286 s->crypto_header.length); 2287 if (ret < 0) { 2288 return ret; 2289 } 2290 } 2291 2292 /* bitmaps */ 2293 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters); 2294 if (ret < 0) { 2295 return ret; 2296 } 2297 2298 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters); 2299 } 2300 2301 /* 2302 * Compares the actual reference count for each cluster in the image against the 2303 * refcount as reported by the refcount structures on-disk. 2304 */ 2305 static void coroutine_fn 2306 compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2307 BdrvCheckMode fix, bool *rebuild, 2308 int64_t *highest_cluster, 2309 void *refcount_table, int64_t nb_clusters) 2310 { 2311 BDRVQcow2State *s = bs->opaque; 2312 int64_t i; 2313 uint64_t refcount1, refcount2; 2314 int ret; 2315 2316 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) { 2317 ret = qcow2_get_refcount(bs, i, &refcount1); 2318 if (ret < 0) { 2319 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 2320 i, strerror(-ret)); 2321 res->check_errors++; 2322 continue; 2323 } 2324 2325 refcount2 = s->get_refcount(refcount_table, i); 2326 2327 if (refcount1 > 0 || refcount2 > 0) { 2328 *highest_cluster = i; 2329 } 2330 2331 if (refcount1 != refcount2) { 2332 /* Check if we're allowed to fix the mismatch */ 2333 int *num_fixed = NULL; 2334 if (refcount1 == 0) { 2335 *rebuild = true; 2336 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) { 2337 num_fixed = &res->leaks_fixed; 2338 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) { 2339 num_fixed = &res->corruptions_fixed; 2340 } 2341 2342 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64 2343 " reference=%" PRIu64 "\n", 2344 num_fixed != NULL ? "Repairing" : 2345 refcount1 < refcount2 ? "ERROR" : 2346 "Leaked", 2347 i, refcount1, refcount2); 2348 2349 if (num_fixed) { 2350 ret = update_refcount(bs, i << s->cluster_bits, 1, 2351 refcount_diff(refcount1, refcount2), 2352 refcount1 > refcount2, 2353 QCOW2_DISCARD_ALWAYS); 2354 if (ret >= 0) { 2355 (*num_fixed)++; 2356 continue; 2357 } 2358 } 2359 2360 /* And if we couldn't, print an error */ 2361 if (refcount1 < refcount2) { 2362 res->corruptions++; 2363 } else { 2364 res->leaks++; 2365 } 2366 } 2367 } 2368 } 2369 2370 /* 2371 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to 2372 * the on-disk refcount structures. 2373 * 2374 * On input, *first_free_cluster tells where to start looking, and need not 2375 * actually be a free cluster; the returned offset will not be before that 2376 * cluster. On output, *first_free_cluster points to the first gap found, even 2377 * if that gap was too small to be used as the returned offset. 2378 * 2379 * Note that *first_free_cluster is a cluster index whereas the return value is 2380 * an offset. 2381 */ 2382 static int64_t alloc_clusters_imrt(BlockDriverState *bs, 2383 int cluster_count, 2384 void **refcount_table, 2385 int64_t *imrt_nb_clusters, 2386 int64_t *first_free_cluster) 2387 { 2388 BDRVQcow2State *s = bs->opaque; 2389 int64_t cluster = *first_free_cluster, i; 2390 bool first_gap = true; 2391 int contiguous_free_clusters; 2392 int ret; 2393 2394 /* Starting at *first_free_cluster, find a range of at least cluster_count 2395 * continuously free clusters */ 2396 for (contiguous_free_clusters = 0; 2397 cluster < *imrt_nb_clusters && 2398 contiguous_free_clusters < cluster_count; 2399 cluster++) 2400 { 2401 if (!s->get_refcount(*refcount_table, cluster)) { 2402 contiguous_free_clusters++; 2403 if (first_gap) { 2404 /* If this is the first free cluster found, update 2405 * *first_free_cluster accordingly */ 2406 *first_free_cluster = cluster; 2407 first_gap = false; 2408 } 2409 } else if (contiguous_free_clusters) { 2410 contiguous_free_clusters = 0; 2411 } 2412 } 2413 2414 /* If contiguous_free_clusters is greater than zero, it contains the number 2415 * of continuously free clusters until the current cluster; the first free 2416 * cluster in the current "gap" is therefore 2417 * cluster - contiguous_free_clusters */ 2418 2419 /* If no such range could be found, grow the in-memory refcount table 2420 * accordingly to append free clusters at the end of the image */ 2421 if (contiguous_free_clusters < cluster_count) { 2422 /* contiguous_free_clusters clusters are already empty at the image end; 2423 * we need cluster_count clusters; therefore, we have to allocate 2424 * cluster_count - contiguous_free_clusters new clusters at the end of 2425 * the image (which is the current value of cluster; note that cluster 2426 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond 2427 * the image end) */ 2428 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters, 2429 cluster + cluster_count 2430 - contiguous_free_clusters); 2431 if (ret < 0) { 2432 return ret; 2433 } 2434 } 2435 2436 /* Go back to the first free cluster */ 2437 cluster -= contiguous_free_clusters; 2438 for (i = 0; i < cluster_count; i++) { 2439 s->set_refcount(*refcount_table, cluster + i, 1); 2440 } 2441 2442 return cluster << s->cluster_bits; 2443 } 2444 2445 /* 2446 * Helper function for rebuild_refcount_structure(). 2447 * 2448 * Scan the range of clusters [first_cluster, end_cluster) for allocated 2449 * clusters and write all corresponding refblocks to disk. The refblock 2450 * and allocation data is taken from the in-memory refcount table 2451 * *refcount_table[] (of size *nb_clusters), which is basically one big 2452 * (unlimited size) refblock for the whole image. 2453 * 2454 * For these refblocks, clusters are allocated using said in-memory 2455 * refcount table. Care is taken that these allocations are reflected 2456 * in the refblocks written to disk. 2457 * 2458 * The refblocks' offsets are written into a reftable, which is 2459 * *on_disk_reftable_ptr[] (of size *on_disk_reftable_entries_ptr). If 2460 * that reftable is of insufficient size, it will be resized to fit. 2461 * This reftable is not written to disk. 2462 * 2463 * (If *on_disk_reftable_ptr is not NULL, the entries within are assumed 2464 * to point to existing valid refblocks that do not need to be allocated 2465 * again.) 2466 * 2467 * Return whether the on-disk reftable array was resized (true/false), 2468 * or -errno on error. 2469 */ 2470 static int coroutine_fn GRAPH_RDLOCK 2471 rebuild_refcounts_write_refblocks( 2472 BlockDriverState *bs, void **refcount_table, int64_t *nb_clusters, 2473 int64_t first_cluster, int64_t end_cluster, 2474 uint64_t **on_disk_reftable_ptr, uint32_t *on_disk_reftable_entries_ptr, 2475 Error **errp 2476 ) 2477 { 2478 BDRVQcow2State *s = bs->opaque; 2479 int64_t cluster; 2480 int64_t refblock_offset, refblock_start, refblock_index; 2481 int64_t first_free_cluster = 0; 2482 uint64_t *on_disk_reftable = *on_disk_reftable_ptr; 2483 uint32_t on_disk_reftable_entries = *on_disk_reftable_entries_ptr; 2484 void *on_disk_refblock; 2485 bool reftable_grown = false; 2486 int ret; 2487 2488 for (cluster = first_cluster; cluster < end_cluster; cluster++) { 2489 /* Check all clusters to find refblocks that contain non-zero entries */ 2490 if (!s->get_refcount(*refcount_table, cluster)) { 2491 continue; 2492 } 2493 2494 /* 2495 * This cluster is allocated, so we need to create a refblock 2496 * for it. The data we will write to disk is just the 2497 * respective slice from *refcount_table, so it will contain 2498 * accurate refcounts for all clusters belonging to this 2499 * refblock. After we have written it, we will therefore skip 2500 * all remaining clusters in this refblock. 2501 */ 2502 2503 refblock_index = cluster >> s->refcount_block_bits; 2504 refblock_start = refblock_index << s->refcount_block_bits; 2505 2506 if (on_disk_reftable_entries > refblock_index && 2507 on_disk_reftable[refblock_index]) 2508 { 2509 /* 2510 * We can get here after a `goto write_refblocks`: We have a 2511 * reftable from a previous run, and the refblock is already 2512 * allocated. No need to allocate it again. 2513 */ 2514 refblock_offset = on_disk_reftable[refblock_index]; 2515 } else { 2516 int64_t refblock_cluster_index; 2517 2518 /* Don't allocate a cluster in a refblock already written to disk */ 2519 if (first_free_cluster < refblock_start) { 2520 first_free_cluster = refblock_start; 2521 } 2522 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table, 2523 nb_clusters, 2524 &first_free_cluster); 2525 if (refblock_offset < 0) { 2526 error_setg_errno(errp, -refblock_offset, 2527 "ERROR allocating refblock"); 2528 return refblock_offset; 2529 } 2530 2531 refblock_cluster_index = refblock_offset / s->cluster_size; 2532 if (refblock_cluster_index >= end_cluster) { 2533 /* 2534 * We must write the refblock that holds this refblock's 2535 * refcount 2536 */ 2537 end_cluster = refblock_cluster_index + 1; 2538 } 2539 2540 if (on_disk_reftable_entries <= refblock_index) { 2541 on_disk_reftable_entries = 2542 ROUND_UP((refblock_index + 1) * REFTABLE_ENTRY_SIZE, 2543 s->cluster_size) / REFTABLE_ENTRY_SIZE; 2544 on_disk_reftable = 2545 g_try_realloc(on_disk_reftable, 2546 on_disk_reftable_entries * 2547 REFTABLE_ENTRY_SIZE); 2548 if (!on_disk_reftable) { 2549 error_setg(errp, "ERROR allocating reftable memory"); 2550 return -ENOMEM; 2551 } 2552 2553 memset(on_disk_reftable + *on_disk_reftable_entries_ptr, 0, 2554 (on_disk_reftable_entries - 2555 *on_disk_reftable_entries_ptr) * 2556 REFTABLE_ENTRY_SIZE); 2557 2558 *on_disk_reftable_ptr = on_disk_reftable; 2559 *on_disk_reftable_entries_ptr = on_disk_reftable_entries; 2560 2561 reftable_grown = true; 2562 } else { 2563 assert(on_disk_reftable); 2564 } 2565 on_disk_reftable[refblock_index] = refblock_offset; 2566 } 2567 2568 /* Refblock is allocated, write it to disk */ 2569 2570 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset, 2571 s->cluster_size, false); 2572 if (ret < 0) { 2573 error_setg_errno(errp, -ret, "ERROR writing refblock"); 2574 return ret; 2575 } 2576 2577 /* 2578 * The refblock is simply a slice of *refcount_table. 2579 * Note that the size of *refcount_table is always aligned to 2580 * whole clusters, so the write operation will not result in 2581 * out-of-bounds accesses. 2582 */ 2583 on_disk_refblock = (void *)((char *) *refcount_table + 2584 refblock_index * s->cluster_size); 2585 2586 ret = bdrv_co_pwrite(bs->file, refblock_offset, s->cluster_size, 2587 on_disk_refblock, 0); 2588 if (ret < 0) { 2589 error_setg_errno(errp, -ret, "ERROR writing refblock"); 2590 return ret; 2591 } 2592 2593 /* This refblock is done, skip to its end */ 2594 cluster = refblock_start + s->refcount_block_size - 1; 2595 } 2596 2597 return reftable_grown; 2598 } 2599 2600 /* 2601 * Creates a new refcount structure based solely on the in-memory information 2602 * given through *refcount_table (this in-memory information is basically just 2603 * the concatenation of all refblocks). All necessary allocations will be 2604 * reflected in that array. 2605 * 2606 * On success, the old refcount structure is leaked (it will be covered by the 2607 * new refcount structure). 2608 */ 2609 static int coroutine_fn GRAPH_RDLOCK 2610 rebuild_refcount_structure(BlockDriverState *bs, BdrvCheckResult *res, 2611 void **refcount_table, int64_t *nb_clusters, 2612 Error **errp) 2613 { 2614 BDRVQcow2State *s = bs->opaque; 2615 int64_t reftable_offset = -1; 2616 int64_t reftable_length = 0; 2617 int64_t reftable_clusters; 2618 int64_t refblock_index; 2619 uint32_t on_disk_reftable_entries = 0; 2620 uint64_t *on_disk_reftable = NULL; 2621 int ret = 0; 2622 int reftable_size_changed = 0; 2623 struct { 2624 uint64_t reftable_offset; 2625 uint32_t reftable_clusters; 2626 } QEMU_PACKED reftable_offset_and_clusters; 2627 2628 qcow2_cache_empty(bs, s->refcount_block_cache); 2629 2630 /* 2631 * For each refblock containing entries, we try to allocate a 2632 * cluster (in the in-memory refcount table) and write its offset 2633 * into on_disk_reftable[]. We then write the whole refblock to 2634 * disk (as a slice of the in-memory refcount table). 2635 * This is done by rebuild_refcounts_write_refblocks(). 2636 * 2637 * Once we have scanned all clusters, we try to find space for the 2638 * reftable. This will dirty the in-memory refcount table (i.e. 2639 * make it differ from the refblocks we have already written), so we 2640 * need to run rebuild_refcounts_write_refblocks() again for the 2641 * range of clusters where the reftable has been allocated. 2642 * 2643 * This second run might make the reftable grow again, in which case 2644 * we will need to allocate another space for it, which is why we 2645 * repeat all this until the reftable stops growing. 2646 * 2647 * (This loop will terminate, because with every cluster the 2648 * reftable grows, it can accommodate a multitude of more refcounts, 2649 * so that at some point this must be able to cover the reftable 2650 * and all refblocks describing it.) 2651 * 2652 * We then convert the reftable to big-endian and write it to disk. 2653 * 2654 * Note that we never free any reftable allocations. Doing so would 2655 * needlessly complicate the algorithm: The eventual second check 2656 * run we do will clean up all leaks we have caused. 2657 */ 2658 2659 reftable_size_changed = 2660 rebuild_refcounts_write_refblocks(bs, refcount_table, nb_clusters, 2661 0, *nb_clusters, 2662 &on_disk_reftable, 2663 &on_disk_reftable_entries, errp); 2664 if (reftable_size_changed < 0) { 2665 res->check_errors++; 2666 ret = reftable_size_changed; 2667 goto fail; 2668 } 2669 2670 /* 2671 * There was no reftable before, so rebuild_refcounts_write_refblocks() 2672 * must have increased its size (from 0 to something). 2673 */ 2674 assert(reftable_size_changed); 2675 2676 do { 2677 int64_t reftable_start_cluster, reftable_end_cluster; 2678 int64_t first_free_cluster = 0; 2679 2680 reftable_length = on_disk_reftable_entries * REFTABLE_ENTRY_SIZE; 2681 reftable_clusters = size_to_clusters(s, reftable_length); 2682 2683 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2684 refcount_table, nb_clusters, 2685 &first_free_cluster); 2686 if (reftable_offset < 0) { 2687 error_setg_errno(errp, -reftable_offset, 2688 "ERROR allocating reftable"); 2689 res->check_errors++; 2690 ret = reftable_offset; 2691 goto fail; 2692 } 2693 2694 /* 2695 * We need to update the affected refblocks, so re-run the 2696 * write_refblocks loop for the reftable's range of clusters. 2697 */ 2698 assert(offset_into_cluster(s, reftable_offset) == 0); 2699 reftable_start_cluster = reftable_offset / s->cluster_size; 2700 reftable_end_cluster = reftable_start_cluster + reftable_clusters; 2701 reftable_size_changed = 2702 rebuild_refcounts_write_refblocks(bs, refcount_table, nb_clusters, 2703 reftable_start_cluster, 2704 reftable_end_cluster, 2705 &on_disk_reftable, 2706 &on_disk_reftable_entries, errp); 2707 if (reftable_size_changed < 0) { 2708 res->check_errors++; 2709 ret = reftable_size_changed; 2710 goto fail; 2711 } 2712 2713 /* 2714 * If the reftable size has changed, we will need to find a new 2715 * allocation, repeating the loop. 2716 */ 2717 } while (reftable_size_changed); 2718 2719 /* The above loop must have run at least once */ 2720 assert(reftable_offset >= 0); 2721 2722 /* 2723 * All allocations are done, all refblocks are written, convert the 2724 * reftable to big-endian and write it to disk. 2725 */ 2726 2727 for (refblock_index = 0; refblock_index < on_disk_reftable_entries; 2728 refblock_index++) 2729 { 2730 cpu_to_be64s(&on_disk_reftable[refblock_index]); 2731 } 2732 2733 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset, reftable_length, 2734 false); 2735 if (ret < 0) { 2736 error_setg_errno(errp, -ret, "ERROR writing reftable"); 2737 goto fail; 2738 } 2739 2740 assert(reftable_length < INT_MAX); 2741 ret = bdrv_co_pwrite(bs->file, reftable_offset, reftable_length, 2742 on_disk_reftable, 0); 2743 if (ret < 0) { 2744 error_setg_errno(errp, -ret, "ERROR writing reftable"); 2745 goto fail; 2746 } 2747 2748 /* Enter new reftable into the image header */ 2749 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset); 2750 reftable_offset_and_clusters.reftable_clusters = 2751 cpu_to_be32(reftable_clusters); 2752 ret = bdrv_co_pwrite_sync(bs->file, 2753 offsetof(QCowHeader, refcount_table_offset), 2754 sizeof(reftable_offset_and_clusters), 2755 &reftable_offset_and_clusters, 0); 2756 if (ret < 0) { 2757 error_setg_errno(errp, -ret, "ERROR setting reftable"); 2758 goto fail; 2759 } 2760 2761 for (refblock_index = 0; refblock_index < on_disk_reftable_entries; 2762 refblock_index++) 2763 { 2764 be64_to_cpus(&on_disk_reftable[refblock_index]); 2765 } 2766 s->refcount_table = on_disk_reftable; 2767 s->refcount_table_offset = reftable_offset; 2768 s->refcount_table_size = on_disk_reftable_entries; 2769 update_max_refcount_table_index(s); 2770 2771 return 0; 2772 2773 fail: 2774 g_free(on_disk_reftable); 2775 return ret; 2776 } 2777 2778 /* 2779 * Checks an image for refcount consistency. 2780 * 2781 * Returns 0 if no errors are found, the number of errors in case the image is 2782 * detected as corrupted, and -errno when an internal error occurred. 2783 */ 2784 int coroutine_fn GRAPH_RDLOCK 2785 qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 2786 { 2787 BDRVQcow2State *s = bs->opaque; 2788 BdrvCheckResult pre_compare_res; 2789 int64_t size, highest_cluster, nb_clusters; 2790 void *refcount_table = NULL; 2791 bool rebuild = false; 2792 int ret; 2793 2794 size = bdrv_co_getlength(bs->file->bs); 2795 if (size < 0) { 2796 res->check_errors++; 2797 return size; 2798 } 2799 2800 nb_clusters = size_to_clusters(s, size); 2801 if (nb_clusters > INT_MAX) { 2802 res->check_errors++; 2803 return -EFBIG; 2804 } 2805 2806 res->bfi.total_clusters = 2807 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE); 2808 2809 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table, 2810 &nb_clusters); 2811 if (ret < 0) { 2812 goto fail; 2813 } 2814 2815 /* In case we don't need to rebuild the refcount structure (but want to fix 2816 * something), this function is immediately called again, in which case the 2817 * result should be ignored */ 2818 pre_compare_res = *res; 2819 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table, 2820 nb_clusters); 2821 2822 if (rebuild && (fix & BDRV_FIX_ERRORS)) { 2823 BdrvCheckResult old_res = *res; 2824 int fresh_leaks = 0; 2825 Error *local_err = NULL; 2826 2827 fprintf(stderr, "Rebuilding refcount structure\n"); 2828 ret = rebuild_refcount_structure(bs, res, &refcount_table, 2829 &nb_clusters, &local_err); 2830 if (ret < 0) { 2831 error_report_err(local_err); 2832 goto fail; 2833 } 2834 2835 res->corruptions = 0; 2836 res->leaks = 0; 2837 2838 /* Because the old reftable has been exchanged for a new one the 2839 * references have to be recalculated */ 2840 rebuild = false; 2841 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters)); 2842 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table, 2843 &nb_clusters); 2844 if (ret < 0) { 2845 goto fail; 2846 } 2847 2848 if (fix & BDRV_FIX_LEAKS) { 2849 /* The old refcount structures are now leaked, fix it; the result 2850 * can be ignored, aside from leaks which were introduced by 2851 * rebuild_refcount_structure() that could not be fixed */ 2852 BdrvCheckResult saved_res = *res; 2853 *res = (BdrvCheckResult){ 0 }; 2854 2855 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild, 2856 &highest_cluster, refcount_table, nb_clusters); 2857 if (rebuild) { 2858 fprintf(stderr, "ERROR rebuilt refcount structure is still " 2859 "broken\n"); 2860 } 2861 2862 /* Any leaks accounted for here were introduced by 2863 * rebuild_refcount_structure() because that function has created a 2864 * new refcount structure from scratch */ 2865 fresh_leaks = res->leaks; 2866 *res = saved_res; 2867 } 2868 2869 if (res->corruptions < old_res.corruptions) { 2870 res->corruptions_fixed += old_res.corruptions - res->corruptions; 2871 } 2872 if (res->leaks < old_res.leaks) { 2873 res->leaks_fixed += old_res.leaks - res->leaks; 2874 } 2875 res->leaks += fresh_leaks; 2876 } else if (fix) { 2877 if (rebuild) { 2878 fprintf(stderr, "ERROR need to rebuild refcount structures\n"); 2879 res->check_errors++; 2880 ret = -EIO; 2881 goto fail; 2882 } 2883 2884 if (res->leaks || res->corruptions) { 2885 *res = pre_compare_res; 2886 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster, 2887 refcount_table, nb_clusters); 2888 } 2889 } 2890 2891 /* check OFLAG_COPIED */ 2892 ret = check_oflag_copied(bs, res, fix); 2893 if (ret < 0) { 2894 goto fail; 2895 } 2896 2897 res->image_end_offset = (highest_cluster + 1) * s->cluster_size; 2898 ret = 0; 2899 2900 fail: 2901 g_free(refcount_table); 2902 2903 return ret; 2904 } 2905 2906 #define overlaps_with(ofs, sz) \ 2907 ranges_overlap(offset, size, ofs, sz) 2908 2909 /* 2910 * Checks if the given offset into the image file is actually free to use by 2911 * looking for overlaps with important metadata sections (L1/L2 tables etc.), 2912 * i.e. a sanity check without relying on the refcount tables. 2913 * 2914 * The ign parameter specifies what checks not to perform (being a bitmask of 2915 * QCow2MetadataOverlap values), i.e., what sections to ignore. 2916 * 2917 * Returns: 2918 * - 0 if writing to this offset will not affect the mentioned metadata 2919 * - a positive QCow2MetadataOverlap value indicating one overlapping section 2920 * - a negative value (-errno) indicating an error while performing a check, 2921 * e.g. when bdrv_pread failed on QCOW2_OL_INACTIVE_L2 2922 */ 2923 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset, 2924 int64_t size) 2925 { 2926 BDRVQcow2State *s = bs->opaque; 2927 int chk = s->overlap_check & ~ign; 2928 int i, j; 2929 2930 if (!size) { 2931 return 0; 2932 } 2933 2934 if (chk & QCOW2_OL_MAIN_HEADER) { 2935 if (offset < s->cluster_size) { 2936 return QCOW2_OL_MAIN_HEADER; 2937 } 2938 } 2939 2940 /* align range to test to cluster boundaries */ 2941 size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size); 2942 offset = start_of_cluster(s, offset); 2943 2944 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) { 2945 if (overlaps_with(s->l1_table_offset, s->l1_size * L1E_SIZE)) { 2946 return QCOW2_OL_ACTIVE_L1; 2947 } 2948 } 2949 2950 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) { 2951 if (overlaps_with(s->refcount_table_offset, 2952 s->refcount_table_size * REFTABLE_ENTRY_SIZE)) { 2953 return QCOW2_OL_REFCOUNT_TABLE; 2954 } 2955 } 2956 2957 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) { 2958 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) { 2959 return QCOW2_OL_SNAPSHOT_TABLE; 2960 } 2961 } 2962 2963 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) { 2964 for (i = 0; i < s->nb_snapshots; i++) { 2965 if (s->snapshots[i].l1_size && 2966 overlaps_with(s->snapshots[i].l1_table_offset, 2967 s->snapshots[i].l1_size * L1E_SIZE)) { 2968 return QCOW2_OL_INACTIVE_L1; 2969 } 2970 } 2971 } 2972 2973 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) { 2974 for (i = 0; i < s->l1_size; i++) { 2975 if ((s->l1_table[i] & L1E_OFFSET_MASK) && 2976 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK, 2977 s->cluster_size)) { 2978 return QCOW2_OL_ACTIVE_L2; 2979 } 2980 } 2981 } 2982 2983 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) { 2984 unsigned last_entry = s->max_refcount_table_index; 2985 assert(last_entry < s->refcount_table_size); 2986 assert(last_entry + 1 == s->refcount_table_size || 2987 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0); 2988 for (i = 0; i <= last_entry; i++) { 2989 if ((s->refcount_table[i] & REFT_OFFSET_MASK) && 2990 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK, 2991 s->cluster_size)) { 2992 return QCOW2_OL_REFCOUNT_BLOCK; 2993 } 2994 } 2995 } 2996 2997 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) { 2998 for (i = 0; i < s->nb_snapshots; i++) { 2999 uint64_t l1_ofs = s->snapshots[i].l1_table_offset; 3000 uint32_t l1_sz = s->snapshots[i].l1_size; 3001 uint64_t l1_sz2 = l1_sz * L1E_SIZE; 3002 uint64_t *l1; 3003 int ret; 3004 3005 ret = qcow2_validate_table(bs, l1_ofs, l1_sz, L1E_SIZE, 3006 QCOW_MAX_L1_SIZE, "", NULL); 3007 if (ret < 0) { 3008 return ret; 3009 } 3010 3011 l1 = g_try_malloc(l1_sz2); 3012 3013 if (l1_sz2 && l1 == NULL) { 3014 return -ENOMEM; 3015 } 3016 3017 ret = bdrv_pread(bs->file, l1_ofs, l1_sz2, l1, 0); 3018 if (ret < 0) { 3019 g_free(l1); 3020 return ret; 3021 } 3022 3023 for (j = 0; j < l1_sz; j++) { 3024 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK; 3025 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) { 3026 g_free(l1); 3027 return QCOW2_OL_INACTIVE_L2; 3028 } 3029 } 3030 3031 g_free(l1); 3032 } 3033 } 3034 3035 if ((chk & QCOW2_OL_BITMAP_DIRECTORY) && 3036 (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS)) 3037 { 3038 if (overlaps_with(s->bitmap_directory_offset, 3039 s->bitmap_directory_size)) 3040 { 3041 return QCOW2_OL_BITMAP_DIRECTORY; 3042 } 3043 } 3044 3045 return 0; 3046 } 3047 3048 static const char *metadata_ol_names[] = { 3049 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header", 3050 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table", 3051 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table", 3052 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table", 3053 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block", 3054 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table", 3055 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table", 3056 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table", 3057 [QCOW2_OL_BITMAP_DIRECTORY_BITNR] = "bitmap directory", 3058 }; 3059 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names)); 3060 3061 /* 3062 * First performs a check for metadata overlaps (through 3063 * qcow2_check_metadata_overlap); if that fails with a negative value (error 3064 * while performing a check), that value is returned. If an impending overlap 3065 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt 3066 * and -EIO returned. 3067 * 3068 * Returns 0 if there were neither overlaps nor errors while checking for 3069 * overlaps; or a negative value (-errno) on error. 3070 */ 3071 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset, 3072 int64_t size, bool data_file) 3073 { 3074 int ret; 3075 3076 if (data_file && has_data_file(bs)) { 3077 return 0; 3078 } 3079 3080 ret = qcow2_check_metadata_overlap(bs, ign, offset, size); 3081 if (ret < 0) { 3082 return ret; 3083 } else if (ret > 0) { 3084 int metadata_ol_bitnr = ctz32(ret); 3085 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR); 3086 3087 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid " 3088 "write on metadata (overlaps with %s)", 3089 metadata_ol_names[metadata_ol_bitnr]); 3090 return -EIO; 3091 } 3092 3093 return 0; 3094 } 3095 3096 /* A pointer to a function of this type is given to walk_over_reftable(). That 3097 * function will create refblocks and pass them to a RefblockFinishOp once they 3098 * are completed (@refblock). @refblock_empty is set if the refblock is 3099 * completely empty. 3100 * 3101 * Along with the refblock, a corresponding reftable entry is passed, in the 3102 * reftable @reftable (which may be reallocated) at @reftable_index. 3103 * 3104 * @allocated should be set to true if a new cluster has been allocated. 3105 */ 3106 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable, 3107 uint64_t reftable_index, uint64_t *reftable_size, 3108 void *refblock, bool refblock_empty, 3109 bool *allocated, Error **errp); 3110 3111 /** 3112 * This "operation" for walk_over_reftable() allocates the refblock on disk (if 3113 * it is not empty) and inserts its offset into the new reftable. The size of 3114 * this new reftable is increased as required. 3115 */ 3116 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable, 3117 uint64_t reftable_index, uint64_t *reftable_size, 3118 void *refblock, bool refblock_empty, bool *allocated, 3119 Error **errp) 3120 { 3121 BDRVQcow2State *s = bs->opaque; 3122 int64_t offset; 3123 3124 if (!refblock_empty && reftable_index >= *reftable_size) { 3125 uint64_t *new_reftable; 3126 uint64_t new_reftable_size; 3127 3128 new_reftable_size = ROUND_UP(reftable_index + 1, 3129 s->cluster_size / REFTABLE_ENTRY_SIZE); 3130 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / REFTABLE_ENTRY_SIZE) { 3131 error_setg(errp, 3132 "This operation would make the refcount table grow " 3133 "beyond the maximum size supported by QEMU, aborting"); 3134 return -ENOTSUP; 3135 } 3136 3137 new_reftable = g_try_realloc(*reftable, new_reftable_size * 3138 REFTABLE_ENTRY_SIZE); 3139 if (!new_reftable) { 3140 error_setg(errp, "Failed to increase reftable buffer size"); 3141 return -ENOMEM; 3142 } 3143 3144 memset(new_reftable + *reftable_size, 0, 3145 (new_reftable_size - *reftable_size) * REFTABLE_ENTRY_SIZE); 3146 3147 *reftable = new_reftable; 3148 *reftable_size = new_reftable_size; 3149 } 3150 3151 if (!refblock_empty && !(*reftable)[reftable_index]) { 3152 offset = qcow2_alloc_clusters(bs, s->cluster_size); 3153 if (offset < 0) { 3154 error_setg_errno(errp, -offset, "Failed to allocate refblock"); 3155 return offset; 3156 } 3157 (*reftable)[reftable_index] = offset; 3158 *allocated = true; 3159 } 3160 3161 return 0; 3162 } 3163 3164 /** 3165 * This "operation" for walk_over_reftable() writes the refblock to disk at the 3166 * offset specified by the new reftable's entry. It does not modify the new 3167 * reftable or change any refcounts. 3168 */ 3169 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable, 3170 uint64_t reftable_index, uint64_t *reftable_size, 3171 void *refblock, bool refblock_empty, bool *allocated, 3172 Error **errp) 3173 { 3174 BDRVQcow2State *s = bs->opaque; 3175 int64_t offset; 3176 int ret; 3177 3178 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) { 3179 offset = (*reftable)[reftable_index]; 3180 3181 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size, 3182 false); 3183 if (ret < 0) { 3184 error_setg_errno(errp, -ret, "Overlap check failed"); 3185 return ret; 3186 } 3187 3188 ret = bdrv_pwrite(bs->file, offset, s->cluster_size, refblock, 0); 3189 if (ret < 0) { 3190 error_setg_errno(errp, -ret, "Failed to write refblock"); 3191 return ret; 3192 } 3193 } else { 3194 assert(refblock_empty); 3195 } 3196 3197 return 0; 3198 } 3199 3200 /** 3201 * This function walks over the existing reftable and every referenced refblock; 3202 * if @new_set_refcount is non-NULL, it is called for every refcount entry to 3203 * create an equal new entry in the passed @new_refblock. Once that 3204 * @new_refblock is completely filled, @operation will be called. 3205 * 3206 * @status_cb and @cb_opaque are used for the amend operation's status callback. 3207 * @index is the index of the walk_over_reftable() calls and @total is the total 3208 * number of walk_over_reftable() calls per amend operation. Both are used for 3209 * calculating the parameters for the status callback. 3210 * 3211 * @allocated is set to true if a new cluster has been allocated. 3212 */ 3213 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable, 3214 uint64_t *new_reftable_index, 3215 uint64_t *new_reftable_size, 3216 void *new_refblock, int new_refblock_size, 3217 int new_refcount_bits, 3218 RefblockFinishOp *operation, bool *allocated, 3219 Qcow2SetRefcountFunc *new_set_refcount, 3220 BlockDriverAmendStatusCB *status_cb, 3221 void *cb_opaque, int index, int total, 3222 Error **errp) 3223 { 3224 BDRVQcow2State *s = bs->opaque; 3225 uint64_t reftable_index; 3226 bool new_refblock_empty = true; 3227 int refblock_index; 3228 int new_refblock_index = 0; 3229 int ret; 3230 3231 for (reftable_index = 0; reftable_index < s->refcount_table_size; 3232 reftable_index++) 3233 { 3234 uint64_t refblock_offset = s->refcount_table[reftable_index] 3235 & REFT_OFFSET_MASK; 3236 3237 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index, 3238 (uint64_t)total * s->refcount_table_size, cb_opaque); 3239 3240 if (refblock_offset) { 3241 void *refblock; 3242 3243 if (offset_into_cluster(s, refblock_offset)) { 3244 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 3245 PRIx64 " unaligned (reftable index: %#" 3246 PRIx64 ")", refblock_offset, 3247 reftable_index); 3248 error_setg(errp, 3249 "Image is corrupt (unaligned refblock offset)"); 3250 return -EIO; 3251 } 3252 3253 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset, 3254 &refblock); 3255 if (ret < 0) { 3256 error_setg_errno(errp, -ret, "Failed to retrieve refblock"); 3257 return ret; 3258 } 3259 3260 for (refblock_index = 0; refblock_index < s->refcount_block_size; 3261 refblock_index++) 3262 { 3263 uint64_t refcount; 3264 3265 if (new_refblock_index >= new_refblock_size) { 3266 /* new_refblock is now complete */ 3267 ret = operation(bs, new_reftable, *new_reftable_index, 3268 new_reftable_size, new_refblock, 3269 new_refblock_empty, allocated, errp); 3270 if (ret < 0) { 3271 qcow2_cache_put(s->refcount_block_cache, &refblock); 3272 return ret; 3273 } 3274 3275 (*new_reftable_index)++; 3276 new_refblock_index = 0; 3277 new_refblock_empty = true; 3278 } 3279 3280 refcount = s->get_refcount(refblock, refblock_index); 3281 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) { 3282 uint64_t offset; 3283 3284 qcow2_cache_put(s->refcount_block_cache, &refblock); 3285 3286 offset = ((reftable_index << s->refcount_block_bits) 3287 + refblock_index) << s->cluster_bits; 3288 3289 error_setg(errp, "Cannot decrease refcount entry width to " 3290 "%i bits: Cluster at offset %#" PRIx64 " has a " 3291 "refcount of %" PRIu64, new_refcount_bits, 3292 offset, refcount); 3293 return -EINVAL; 3294 } 3295 3296 if (new_set_refcount) { 3297 new_set_refcount(new_refblock, new_refblock_index++, 3298 refcount); 3299 } else { 3300 new_refblock_index++; 3301 } 3302 new_refblock_empty = new_refblock_empty && refcount == 0; 3303 } 3304 3305 qcow2_cache_put(s->refcount_block_cache, &refblock); 3306 } else { 3307 /* No refblock means every refcount is 0 */ 3308 for (refblock_index = 0; refblock_index < s->refcount_block_size; 3309 refblock_index++) 3310 { 3311 if (new_refblock_index >= new_refblock_size) { 3312 /* new_refblock is now complete */ 3313 ret = operation(bs, new_reftable, *new_reftable_index, 3314 new_reftable_size, new_refblock, 3315 new_refblock_empty, allocated, errp); 3316 if (ret < 0) { 3317 return ret; 3318 } 3319 3320 (*new_reftable_index)++; 3321 new_refblock_index = 0; 3322 new_refblock_empty = true; 3323 } 3324 3325 if (new_set_refcount) { 3326 new_set_refcount(new_refblock, new_refblock_index++, 0); 3327 } else { 3328 new_refblock_index++; 3329 } 3330 } 3331 } 3332 } 3333 3334 if (new_refblock_index > 0) { 3335 /* Complete the potentially existing partially filled final refblock */ 3336 if (new_set_refcount) { 3337 for (; new_refblock_index < new_refblock_size; 3338 new_refblock_index++) 3339 { 3340 new_set_refcount(new_refblock, new_refblock_index, 0); 3341 } 3342 } 3343 3344 ret = operation(bs, new_reftable, *new_reftable_index, 3345 new_reftable_size, new_refblock, new_refblock_empty, 3346 allocated, errp); 3347 if (ret < 0) { 3348 return ret; 3349 } 3350 3351 (*new_reftable_index)++; 3352 } 3353 3354 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size, 3355 (uint64_t)total * s->refcount_table_size, cb_opaque); 3356 3357 return 0; 3358 } 3359 3360 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order, 3361 BlockDriverAmendStatusCB *status_cb, 3362 void *cb_opaque, Error **errp) 3363 { 3364 BDRVQcow2State *s = bs->opaque; 3365 Qcow2GetRefcountFunc *new_get_refcount; 3366 Qcow2SetRefcountFunc *new_set_refcount; 3367 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size); 3368 uint64_t *new_reftable = NULL, new_reftable_size = 0; 3369 uint64_t *old_reftable, old_reftable_size, old_reftable_offset; 3370 uint64_t new_reftable_index = 0; 3371 uint64_t i; 3372 int64_t new_reftable_offset = 0, allocated_reftable_size = 0; 3373 int new_refblock_size, new_refcount_bits = 1 << refcount_order; 3374 int old_refcount_order; 3375 int walk_index = 0; 3376 int ret; 3377 bool new_allocation; 3378 3379 assert(s->qcow_version >= 3); 3380 assert(refcount_order >= 0 && refcount_order <= 6); 3381 3382 /* see qcow2_open() */ 3383 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3)); 3384 3385 new_get_refcount = get_refcount_funcs[refcount_order]; 3386 new_set_refcount = set_refcount_funcs[refcount_order]; 3387 3388 3389 do { 3390 int total_walks; 3391 3392 new_allocation = false; 3393 3394 /* At least we have to do this walk and the one which writes the 3395 * refblocks; also, at least we have to do this loop here at least 3396 * twice (normally), first to do the allocations, and second to 3397 * determine that everything is correctly allocated, this then makes 3398 * three walks in total */ 3399 total_walks = MAX(walk_index + 2, 3); 3400 3401 /* First, allocate the structures so they are present in the refcount 3402 * structures */ 3403 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 3404 &new_reftable_size, NULL, new_refblock_size, 3405 new_refcount_bits, &alloc_refblock, 3406 &new_allocation, NULL, status_cb, cb_opaque, 3407 walk_index++, total_walks, errp); 3408 if (ret < 0) { 3409 goto done; 3410 } 3411 3412 new_reftable_index = 0; 3413 3414 if (new_allocation) { 3415 if (new_reftable_offset) { 3416 qcow2_free_clusters( 3417 bs, new_reftable_offset, 3418 allocated_reftable_size * REFTABLE_ENTRY_SIZE, 3419 QCOW2_DISCARD_NEVER); 3420 } 3421 3422 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size * 3423 REFTABLE_ENTRY_SIZE); 3424 if (new_reftable_offset < 0) { 3425 error_setg_errno(errp, -new_reftable_offset, 3426 "Failed to allocate the new reftable"); 3427 ret = new_reftable_offset; 3428 goto done; 3429 } 3430 allocated_reftable_size = new_reftable_size; 3431 } 3432 } while (new_allocation); 3433 3434 /* Second, write the new refblocks */ 3435 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 3436 &new_reftable_size, new_refblock, 3437 new_refblock_size, new_refcount_bits, 3438 &flush_refblock, &new_allocation, new_set_refcount, 3439 status_cb, cb_opaque, walk_index, walk_index + 1, 3440 errp); 3441 if (ret < 0) { 3442 goto done; 3443 } 3444 assert(!new_allocation); 3445 3446 3447 /* Write the new reftable */ 3448 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset, 3449 new_reftable_size * REFTABLE_ENTRY_SIZE, 3450 false); 3451 if (ret < 0) { 3452 error_setg_errno(errp, -ret, "Overlap check failed"); 3453 goto done; 3454 } 3455 3456 for (i = 0; i < new_reftable_size; i++) { 3457 cpu_to_be64s(&new_reftable[i]); 3458 } 3459 3460 ret = bdrv_pwrite(bs->file, new_reftable_offset, 3461 new_reftable_size * REFTABLE_ENTRY_SIZE, new_reftable, 3462 0); 3463 3464 for (i = 0; i < new_reftable_size; i++) { 3465 be64_to_cpus(&new_reftable[i]); 3466 } 3467 3468 if (ret < 0) { 3469 error_setg_errno(errp, -ret, "Failed to write the new reftable"); 3470 goto done; 3471 } 3472 3473 3474 /* Empty the refcount cache */ 3475 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 3476 if (ret < 0) { 3477 error_setg_errno(errp, -ret, "Failed to flush the refblock cache"); 3478 goto done; 3479 } 3480 3481 /* Update the image header to point to the new reftable; this only updates 3482 * the fields which are relevant to qcow2_update_header(); other fields 3483 * such as s->refcount_table or s->refcount_bits stay stale for now 3484 * (because we have to restore everything if qcow2_update_header() fails) */ 3485 old_refcount_order = s->refcount_order; 3486 old_reftable_size = s->refcount_table_size; 3487 old_reftable_offset = s->refcount_table_offset; 3488 3489 s->refcount_order = refcount_order; 3490 s->refcount_table_size = new_reftable_size; 3491 s->refcount_table_offset = new_reftable_offset; 3492 3493 ret = qcow2_update_header(bs); 3494 if (ret < 0) { 3495 s->refcount_order = old_refcount_order; 3496 s->refcount_table_size = old_reftable_size; 3497 s->refcount_table_offset = old_reftable_offset; 3498 error_setg_errno(errp, -ret, "Failed to update the qcow2 header"); 3499 goto done; 3500 } 3501 3502 /* Now update the rest of the in-memory information */ 3503 old_reftable = s->refcount_table; 3504 s->refcount_table = new_reftable; 3505 update_max_refcount_table_index(s); 3506 3507 s->refcount_bits = 1 << refcount_order; 3508 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1); 3509 s->refcount_max += s->refcount_max - 1; 3510 3511 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3); 3512 s->refcount_block_size = 1 << s->refcount_block_bits; 3513 3514 s->get_refcount = new_get_refcount; 3515 s->set_refcount = new_set_refcount; 3516 3517 /* For cleaning up all old refblocks and the old reftable below the "done" 3518 * label */ 3519 new_reftable = old_reftable; 3520 new_reftable_size = old_reftable_size; 3521 new_reftable_offset = old_reftable_offset; 3522 3523 done: 3524 if (new_reftable) { 3525 /* On success, new_reftable actually points to the old reftable (and 3526 * new_reftable_size is the old reftable's size); but that is just 3527 * fine */ 3528 for (i = 0; i < new_reftable_size; i++) { 3529 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK; 3530 if (offset) { 3531 qcow2_free_clusters(bs, offset, s->cluster_size, 3532 QCOW2_DISCARD_OTHER); 3533 } 3534 } 3535 g_free(new_reftable); 3536 3537 if (new_reftable_offset > 0) { 3538 qcow2_free_clusters(bs, new_reftable_offset, 3539 new_reftable_size * REFTABLE_ENTRY_SIZE, 3540 QCOW2_DISCARD_OTHER); 3541 } 3542 } 3543 3544 qemu_vfree(new_refblock); 3545 return ret; 3546 } 3547 3548 static int64_t coroutine_fn get_refblock_offset(BlockDriverState *bs, 3549 uint64_t offset) 3550 { 3551 BDRVQcow2State *s = bs->opaque; 3552 uint32_t index = offset_to_reftable_index(s, offset); 3553 int64_t covering_refblock_offset = 0; 3554 3555 if (index < s->refcount_table_size) { 3556 covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK; 3557 } 3558 if (!covering_refblock_offset) { 3559 qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is " 3560 "not covered by the refcount structures", 3561 offset); 3562 return -EIO; 3563 } 3564 3565 return covering_refblock_offset; 3566 } 3567 3568 static int coroutine_fn 3569 qcow2_discard_refcount_block(BlockDriverState *bs, uint64_t discard_block_offs) 3570 { 3571 BDRVQcow2State *s = bs->opaque; 3572 int64_t refblock_offs; 3573 uint64_t cluster_index = discard_block_offs >> s->cluster_bits; 3574 uint32_t block_index = cluster_index & (s->refcount_block_size - 1); 3575 void *refblock; 3576 int ret; 3577 3578 refblock_offs = get_refblock_offset(bs, discard_block_offs); 3579 if (refblock_offs < 0) { 3580 return refblock_offs; 3581 } 3582 3583 assert(discard_block_offs != 0); 3584 3585 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs, 3586 &refblock); 3587 if (ret < 0) { 3588 return ret; 3589 } 3590 3591 if (s->get_refcount(refblock, block_index) != 1) { 3592 qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:" 3593 " refblock offset %#" PRIx64 3594 ", reftable index %u" 3595 ", block offset %#" PRIx64 3596 ", refcount %#" PRIx64, 3597 refblock_offs, 3598 offset_to_reftable_index(s, discard_block_offs), 3599 discard_block_offs, 3600 s->get_refcount(refblock, block_index)); 3601 qcow2_cache_put(s->refcount_block_cache, &refblock); 3602 return -EINVAL; 3603 } 3604 s->set_refcount(refblock, block_index, 0); 3605 3606 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock); 3607 3608 qcow2_cache_put(s->refcount_block_cache, &refblock); 3609 3610 if (cluster_index < s->free_cluster_index) { 3611 s->free_cluster_index = cluster_index; 3612 } 3613 3614 refblock = qcow2_cache_is_table_offset(s->refcount_block_cache, 3615 discard_block_offs); 3616 if (refblock) { 3617 /* discard refblock from the cache if refblock is cached */ 3618 qcow2_cache_discard(s->refcount_block_cache, refblock); 3619 } 3620 update_refcount_discard(bs, discard_block_offs, s->cluster_size); 3621 3622 return 0; 3623 } 3624 3625 int coroutine_fn qcow2_shrink_reftable(BlockDriverState *bs) 3626 { 3627 BDRVQcow2State *s = bs->opaque; 3628 uint64_t *reftable_tmp = 3629 g_malloc(s->refcount_table_size * REFTABLE_ENTRY_SIZE); 3630 int i, ret; 3631 3632 for (i = 0; i < s->refcount_table_size; i++) { 3633 int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK; 3634 void *refblock; 3635 bool unused_block; 3636 3637 if (refblock_offs == 0) { 3638 reftable_tmp[i] = 0; 3639 continue; 3640 } 3641 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs, 3642 &refblock); 3643 if (ret < 0) { 3644 goto out; 3645 } 3646 3647 /* the refblock has own reference */ 3648 if (i == offset_to_reftable_index(s, refblock_offs)) { 3649 uint64_t block_index = (refblock_offs >> s->cluster_bits) & 3650 (s->refcount_block_size - 1); 3651 uint64_t refcount = s->get_refcount(refblock, block_index); 3652 3653 s->set_refcount(refblock, block_index, 0); 3654 3655 unused_block = buffer_is_zero(refblock, s->cluster_size); 3656 3657 s->set_refcount(refblock, block_index, refcount); 3658 } else { 3659 unused_block = buffer_is_zero(refblock, s->cluster_size); 3660 } 3661 qcow2_cache_put(s->refcount_block_cache, &refblock); 3662 3663 reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]); 3664 } 3665 3666 ret = bdrv_co_pwrite_sync(bs->file, s->refcount_table_offset, 3667 s->refcount_table_size * REFTABLE_ENTRY_SIZE, 3668 reftable_tmp, 0); 3669 /* 3670 * If the write in the reftable failed the image may contain a partially 3671 * overwritten reftable. In this case it would be better to clear the 3672 * reftable in memory to avoid possible image corruption. 3673 */ 3674 for (i = 0; i < s->refcount_table_size; i++) { 3675 if (s->refcount_table[i] && !reftable_tmp[i]) { 3676 if (ret == 0) { 3677 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] & 3678 REFT_OFFSET_MASK); 3679 } 3680 s->refcount_table[i] = 0; 3681 } 3682 } 3683 3684 if (!s->cache_discards) { 3685 qcow2_process_discards(bs, ret); 3686 } 3687 3688 out: 3689 g_free(reftable_tmp); 3690 return ret; 3691 } 3692 3693 int64_t coroutine_fn qcow2_get_last_cluster(BlockDriverState *bs, int64_t size) 3694 { 3695 BDRVQcow2State *s = bs->opaque; 3696 int64_t i; 3697 3698 for (i = size_to_clusters(s, size) - 1; i >= 0; i--) { 3699 uint64_t refcount; 3700 int ret = qcow2_get_refcount(bs, i, &refcount); 3701 if (ret < 0) { 3702 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 3703 i, strerror(-ret)); 3704 return ret; 3705 } 3706 if (refcount > 0) { 3707 return i; 3708 } 3709 } 3710 qcow2_signal_corruption(bs, true, -1, -1, 3711 "There are no references in the refcount table."); 3712 return -EIO; 3713 } 3714 3715 int coroutine_fn GRAPH_RDLOCK 3716 qcow2_detect_metadata_preallocation(BlockDriverState *bs) 3717 { 3718 BDRVQcow2State *s = bs->opaque; 3719 int64_t i, end_cluster, cluster_count = 0, threshold; 3720 int64_t file_length, real_allocation, real_clusters; 3721 3722 qemu_co_mutex_assert_locked(&s->lock); 3723 3724 file_length = bdrv_co_getlength(bs->file->bs); 3725 if (file_length < 0) { 3726 return file_length; 3727 } 3728 3729 real_allocation = bdrv_co_get_allocated_file_size(bs->file->bs); 3730 if (real_allocation < 0) { 3731 return real_allocation; 3732 } 3733 3734 real_clusters = real_allocation / s->cluster_size; 3735 threshold = MAX(real_clusters * 10 / 9, real_clusters + 2); 3736 3737 end_cluster = size_to_clusters(s, file_length); 3738 for (i = 0; i < end_cluster && cluster_count < threshold; i++) { 3739 uint64_t refcount; 3740 int ret = qcow2_get_refcount(bs, i, &refcount); 3741 if (ret < 0) { 3742 return ret; 3743 } 3744 cluster_count += !!refcount; 3745 } 3746 3747 return cluster_count >= threshold; 3748 } 3749