xref: /openbmc/qemu/block/qcow2-refcount.c (revision 5ee5c14c)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 #include "qemu/cutils.h"
33 
34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
35                                     uint64_t max);
36 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
37                             int64_t offset, int64_t length, uint64_t addend,
38                             bool decrease, enum qcow2_discard_type type);
39 
40 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
46 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
47 
48 static void set_refcount_ro0(void *refcount_array, uint64_t index,
49                              uint64_t value);
50 static void set_refcount_ro1(void *refcount_array, uint64_t index,
51                              uint64_t value);
52 static void set_refcount_ro2(void *refcount_array, uint64_t index,
53                              uint64_t value);
54 static void set_refcount_ro3(void *refcount_array, uint64_t index,
55                              uint64_t value);
56 static void set_refcount_ro4(void *refcount_array, uint64_t index,
57                              uint64_t value);
58 static void set_refcount_ro5(void *refcount_array, uint64_t index,
59                              uint64_t value);
60 static void set_refcount_ro6(void *refcount_array, uint64_t index,
61                              uint64_t value);
62 
63 
64 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
65     &get_refcount_ro0,
66     &get_refcount_ro1,
67     &get_refcount_ro2,
68     &get_refcount_ro3,
69     &get_refcount_ro4,
70     &get_refcount_ro5,
71     &get_refcount_ro6
72 };
73 
74 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
75     &set_refcount_ro0,
76     &set_refcount_ro1,
77     &set_refcount_ro2,
78     &set_refcount_ro3,
79     &set_refcount_ro4,
80     &set_refcount_ro5,
81     &set_refcount_ro6
82 };
83 
84 
85 /*********************************************************/
86 /* refcount handling */
87 
88 static void update_max_refcount_table_index(BDRVQcow2State *s)
89 {
90     unsigned i = s->refcount_table_size - 1;
91     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
92         i--;
93     }
94     /* Set s->max_refcount_table_index to the index of the last used entry */
95     s->max_refcount_table_index = i;
96 }
97 
98 int qcow2_refcount_init(BlockDriverState *bs)
99 {
100     BDRVQcow2State *s = bs->opaque;
101     unsigned int refcount_table_size2, i;
102     int ret;
103 
104     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
105 
106     s->get_refcount = get_refcount_funcs[s->refcount_order];
107     s->set_refcount = set_refcount_funcs[s->refcount_order];
108 
109     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
110     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
111     s->refcount_table = g_try_malloc(refcount_table_size2);
112 
113     if (s->refcount_table_size > 0) {
114         if (s->refcount_table == NULL) {
115             ret = -ENOMEM;
116             goto fail;
117         }
118         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
119         ret = bdrv_pread(bs->file, s->refcount_table_offset,
120                          s->refcount_table, refcount_table_size2);
121         if (ret < 0) {
122             goto fail;
123         }
124         for(i = 0; i < s->refcount_table_size; i++)
125             be64_to_cpus(&s->refcount_table[i]);
126         update_max_refcount_table_index(s);
127     }
128     return 0;
129  fail:
130     return ret;
131 }
132 
133 void qcow2_refcount_close(BlockDriverState *bs)
134 {
135     BDRVQcow2State *s = bs->opaque;
136     g_free(s->refcount_table);
137 }
138 
139 
140 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
141 {
142     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
143 }
144 
145 static void set_refcount_ro0(void *refcount_array, uint64_t index,
146                              uint64_t value)
147 {
148     assert(!(value >> 1));
149     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
150     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
151 }
152 
153 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
154 {
155     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
156            & 0x3;
157 }
158 
159 static void set_refcount_ro1(void *refcount_array, uint64_t index,
160                              uint64_t value)
161 {
162     assert(!(value >> 2));
163     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
164     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
165 }
166 
167 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
168 {
169     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
170            & 0xf;
171 }
172 
173 static void set_refcount_ro2(void *refcount_array, uint64_t index,
174                              uint64_t value)
175 {
176     assert(!(value >> 4));
177     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
178     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
179 }
180 
181 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
182 {
183     return ((const uint8_t *)refcount_array)[index];
184 }
185 
186 static void set_refcount_ro3(void *refcount_array, uint64_t index,
187                              uint64_t value)
188 {
189     assert(!(value >> 8));
190     ((uint8_t *)refcount_array)[index] = value;
191 }
192 
193 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
194 {
195     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
196 }
197 
198 static void set_refcount_ro4(void *refcount_array, uint64_t index,
199                              uint64_t value)
200 {
201     assert(!(value >> 16));
202     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
203 }
204 
205 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
206 {
207     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
208 }
209 
210 static void set_refcount_ro5(void *refcount_array, uint64_t index,
211                              uint64_t value)
212 {
213     assert(!(value >> 32));
214     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
215 }
216 
217 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
218 {
219     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
220 }
221 
222 static void set_refcount_ro6(void *refcount_array, uint64_t index,
223                              uint64_t value)
224 {
225     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
226 }
227 
228 
229 static int load_refcount_block(BlockDriverState *bs,
230                                int64_t refcount_block_offset,
231                                void **refcount_block)
232 {
233     BDRVQcow2State *s = bs->opaque;
234 
235     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
236     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
237                            refcount_block);
238 }
239 
240 /*
241  * Retrieves the refcount of the cluster given by its index and stores it in
242  * *refcount. Returns 0 on success and -errno on failure.
243  */
244 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
245                        uint64_t *refcount)
246 {
247     BDRVQcow2State *s = bs->opaque;
248     uint64_t refcount_table_index, block_index;
249     int64_t refcount_block_offset;
250     int ret;
251     void *refcount_block;
252 
253     refcount_table_index = cluster_index >> s->refcount_block_bits;
254     if (refcount_table_index >= s->refcount_table_size) {
255         *refcount = 0;
256         return 0;
257     }
258     refcount_block_offset =
259         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
260     if (!refcount_block_offset) {
261         *refcount = 0;
262         return 0;
263     }
264 
265     if (offset_into_cluster(s, refcount_block_offset)) {
266         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
267                                 " unaligned (reftable index: %#" PRIx64 ")",
268                                 refcount_block_offset, refcount_table_index);
269         return -EIO;
270     }
271 
272     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
273                           &refcount_block);
274     if (ret < 0) {
275         return ret;
276     }
277 
278     block_index = cluster_index & (s->refcount_block_size - 1);
279     *refcount = s->get_refcount(refcount_block, block_index);
280 
281     qcow2_cache_put(s->refcount_block_cache, &refcount_block);
282 
283     return 0;
284 }
285 
286 /* Checks if two offsets are described by the same refcount block */
287 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
288     uint64_t offset_b)
289 {
290     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
291     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
292 
293     return (block_a == block_b);
294 }
295 
296 /*
297  * Loads a refcount block. If it doesn't exist yet, it is allocated first
298  * (including growing the refcount table if needed).
299  *
300  * Returns 0 on success or -errno in error case
301  */
302 static int alloc_refcount_block(BlockDriverState *bs,
303                                 int64_t cluster_index, void **refcount_block)
304 {
305     BDRVQcow2State *s = bs->opaque;
306     unsigned int refcount_table_index;
307     int64_t ret;
308 
309     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
310 
311     /* Find the refcount block for the given cluster */
312     refcount_table_index = cluster_index >> s->refcount_block_bits;
313 
314     if (refcount_table_index < s->refcount_table_size) {
315 
316         uint64_t refcount_block_offset =
317             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
318 
319         /* If it's already there, we're done */
320         if (refcount_block_offset) {
321             if (offset_into_cluster(s, refcount_block_offset)) {
322                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
323                                         PRIx64 " unaligned (reftable index: "
324                                         "%#x)", refcount_block_offset,
325                                         refcount_table_index);
326                 return -EIO;
327             }
328 
329              return load_refcount_block(bs, refcount_block_offset,
330                                         refcount_block);
331         }
332     }
333 
334     /*
335      * If we came here, we need to allocate something. Something is at least
336      * a cluster for the new refcount block. It may also include a new refcount
337      * table if the old refcount table is too small.
338      *
339      * Note that allocating clusters here needs some special care:
340      *
341      * - We can't use the normal qcow2_alloc_clusters(), it would try to
342      *   increase the refcount and very likely we would end up with an endless
343      *   recursion. Instead we must place the refcount blocks in a way that
344      *   they can describe them themselves.
345      *
346      * - We need to consider that at this point we are inside update_refcounts
347      *   and potentially doing an initial refcount increase. This means that
348      *   some clusters have already been allocated by the caller, but their
349      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
350      *   need to return -EAGAIN to signal the caller that it needs to restart
351      *   the search for free clusters.
352      *
353      * - alloc_clusters_noref and qcow2_free_clusters may load a different
354      *   refcount block into the cache
355      */
356 
357     *refcount_block = NULL;
358 
359     /* We write to the refcount table, so we might depend on L2 tables */
360     ret = qcow2_cache_flush(bs, s->l2_table_cache);
361     if (ret < 0) {
362         return ret;
363     }
364 
365     /* Allocate the refcount block itself and mark it as used */
366     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX);
367     if (new_block < 0) {
368         return new_block;
369     }
370 
371     /* The offset must fit in the offset field of the refcount table entry */
372     assert((new_block & REFT_OFFSET_MASK) == new_block);
373 
374     /* If we're allocating the block at offset 0 then something is wrong */
375     if (new_block == 0) {
376         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
377                                 "allocation of refcount block at offset 0");
378         return -EIO;
379     }
380 
381 #ifdef DEBUG_ALLOC2
382     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
383         " at %" PRIx64 "\n",
384         refcount_table_index, cluster_index << s->cluster_bits, new_block);
385 #endif
386 
387     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
388         /* Zero the new refcount block before updating it */
389         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
390                                     refcount_block);
391         if (ret < 0) {
392             goto fail;
393         }
394 
395         memset(*refcount_block, 0, s->cluster_size);
396 
397         /* The block describes itself, need to update the cache */
398         int block_index = (new_block >> s->cluster_bits) &
399             (s->refcount_block_size - 1);
400         s->set_refcount(*refcount_block, block_index, 1);
401     } else {
402         /* Described somewhere else. This can recurse at most twice before we
403          * arrive at a block that describes itself. */
404         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
405                               QCOW2_DISCARD_NEVER);
406         if (ret < 0) {
407             goto fail;
408         }
409 
410         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
411         if (ret < 0) {
412             goto fail;
413         }
414 
415         /* Initialize the new refcount block only after updating its refcount,
416          * update_refcount uses the refcount cache itself */
417         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
418                                     refcount_block);
419         if (ret < 0) {
420             goto fail;
421         }
422 
423         memset(*refcount_block, 0, s->cluster_size);
424     }
425 
426     /* Now the new refcount block needs to be written to disk */
427     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
428     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
429     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
430     if (ret < 0) {
431         goto fail;
432     }
433 
434     /* If the refcount table is big enough, just hook the block up there */
435     if (refcount_table_index < s->refcount_table_size) {
436         uint64_t data64 = cpu_to_be64(new_block);
437         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
438         ret = bdrv_pwrite_sync(bs->file,
439             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
440             &data64, sizeof(data64));
441         if (ret < 0) {
442             goto fail;
443         }
444 
445         s->refcount_table[refcount_table_index] = new_block;
446         /* If there's a hole in s->refcount_table then it can happen
447          * that refcount_table_index < s->max_refcount_table_index */
448         s->max_refcount_table_index =
449             MAX(s->max_refcount_table_index, refcount_table_index);
450 
451         /* The new refcount block may be where the caller intended to put its
452          * data, so let it restart the search. */
453         return -EAGAIN;
454     }
455 
456     qcow2_cache_put(s->refcount_block_cache, refcount_block);
457 
458     /*
459      * If we come here, we need to grow the refcount table. Again, a new
460      * refcount table needs some space and we can't simply allocate to avoid
461      * endless recursion.
462      *
463      * Therefore let's grab new refcount blocks at the end of the image, which
464      * will describe themselves and the new refcount table. This way we can
465      * reference them only in the new table and do the switch to the new
466      * refcount table at once without producing an inconsistent state in
467      * between.
468      */
469     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
470 
471     /* Calculate the number of refcount blocks needed so far; this will be the
472      * basis for calculating the index of the first cluster used for the
473      * self-describing refcount structures which we are about to create.
474      *
475      * Because we reached this point, there cannot be any refcount entries for
476      * cluster_index or higher indices yet. However, because new_block has been
477      * allocated to describe that cluster (and it will assume this role later
478      * on), we cannot use that index; also, new_block may actually have a higher
479      * cluster index than cluster_index, so it needs to be taken into account
480      * here (and 1 needs to be added to its value because that cluster is used).
481      */
482     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
483                                             (new_block >> s->cluster_bits) + 1),
484                                         s->refcount_block_size);
485 
486     /* Create the new refcount table and blocks */
487     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
488         s->cluster_size;
489 
490     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
491                               refcount_table_index, new_block);
492     if (ret < 0) {
493         return ret;
494     }
495 
496     ret = load_refcount_block(bs, new_block, refcount_block);
497     if (ret < 0) {
498         return ret;
499     }
500 
501     /* If we were trying to do the initial refcount update for some cluster
502      * allocation, we might have used the same clusters to store newly
503      * allocated metadata. Make the caller search some new space. */
504     return -EAGAIN;
505 
506 fail:
507     if (*refcount_block != NULL) {
508         qcow2_cache_put(s->refcount_block_cache, refcount_block);
509     }
510     return ret;
511 }
512 
513 /*
514  * Starting at @start_offset, this function creates new self-covering refcount
515  * structures: A new refcount table and refcount blocks which cover all of
516  * themselves, and a number of @additional_clusters beyond their end.
517  * @start_offset must be at the end of the image file, that is, there must be
518  * only empty space beyond it.
519  * If @exact_size is false, the refcount table will have 50 % more entries than
520  * necessary so it will not need to grow again soon.
521  * If @new_refblock_offset is not zero, it contains the offset of a refcount
522  * block that should be entered into the new refcount table at index
523  * @new_refblock_index.
524  *
525  * Returns: The offset after the new refcount structures (i.e. where the
526  *          @additional_clusters may be placed) on success, -errno on error.
527  */
528 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
529                             uint64_t additional_clusters, bool exact_size,
530                             int new_refblock_index,
531                             uint64_t new_refblock_offset)
532 {
533     BDRVQcow2State *s = bs->opaque;
534     uint64_t total_refblock_count_u64, additional_refblock_count;
535     int total_refblock_count, table_size, area_reftable_index, table_clusters;
536     int i;
537     uint64_t table_offset, block_offset, end_offset;
538     int ret;
539     uint64_t *new_table;
540 
541     assert(!(start_offset % s->cluster_size));
542 
543     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
544                                  additional_clusters,
545                                  s->cluster_size, s->refcount_order,
546                                  !exact_size, &total_refblock_count_u64);
547     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
548         return -EFBIG;
549     }
550     total_refblock_count = total_refblock_count_u64;
551 
552     /* Index in the refcount table of the first refcount block to cover the area
553      * of refcount structures we are about to create; we know that
554      * @total_refblock_count can cover @start_offset, so this will definitely
555      * fit into an int. */
556     area_reftable_index = (start_offset / s->cluster_size) /
557                           s->refcount_block_size;
558 
559     if (exact_size) {
560         table_size = total_refblock_count;
561     } else {
562         table_size = total_refblock_count +
563                      DIV_ROUND_UP(total_refblock_count, 2);
564     }
565     /* The qcow2 file can only store the reftable size in number of clusters */
566     table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
567     table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
568 
569     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
570         return -EFBIG;
571     }
572 
573     new_table = g_try_new0(uint64_t, table_size);
574 
575     assert(table_size > 0);
576     if (new_table == NULL) {
577         ret = -ENOMEM;
578         goto fail;
579     }
580 
581     /* Fill the new refcount table */
582     if (table_size > s->max_refcount_table_index) {
583         /* We're actually growing the reftable */
584         memcpy(new_table, s->refcount_table,
585                (s->max_refcount_table_index + 1) * sizeof(uint64_t));
586     } else {
587         /* Improbable case: We're shrinking the reftable. However, the caller
588          * has assured us that there is only empty space beyond @start_offset,
589          * so we can simply drop all of the refblocks that won't fit into the
590          * new reftable. */
591         memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
592     }
593 
594     if (new_refblock_offset) {
595         assert(new_refblock_index < total_refblock_count);
596         new_table[new_refblock_index] = new_refblock_offset;
597     }
598 
599     /* Count how many new refblocks we have to create */
600     additional_refblock_count = 0;
601     for (i = area_reftable_index; i < total_refblock_count; i++) {
602         if (!new_table[i]) {
603             additional_refblock_count++;
604         }
605     }
606 
607     table_offset = start_offset + additional_refblock_count * s->cluster_size;
608     end_offset = table_offset + table_clusters * s->cluster_size;
609 
610     /* Fill the refcount blocks, and create new ones, if necessary */
611     block_offset = start_offset;
612     for (i = area_reftable_index; i < total_refblock_count; i++) {
613         void *refblock_data;
614         uint64_t first_offset_covered;
615 
616         /* Reuse an existing refblock if possible, create a new one otherwise */
617         if (new_table[i]) {
618             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
619                                   &refblock_data);
620             if (ret < 0) {
621                 goto fail;
622             }
623         } else {
624             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
625                                         block_offset, &refblock_data);
626             if (ret < 0) {
627                 goto fail;
628             }
629             memset(refblock_data, 0, s->cluster_size);
630             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
631                                          refblock_data);
632 
633             new_table[i] = block_offset;
634             block_offset += s->cluster_size;
635         }
636 
637         /* First host offset covered by this refblock */
638         first_offset_covered = (uint64_t)i * s->refcount_block_size *
639                                s->cluster_size;
640         if (first_offset_covered < end_offset) {
641             int j, end_index;
642 
643             /* Set the refcount of all of the new refcount structures to 1 */
644 
645             if (first_offset_covered < start_offset) {
646                 assert(i == area_reftable_index);
647                 j = (start_offset - first_offset_covered) / s->cluster_size;
648                 assert(j < s->refcount_block_size);
649             } else {
650                 j = 0;
651             }
652 
653             end_index = MIN((end_offset - first_offset_covered) /
654                             s->cluster_size,
655                             s->refcount_block_size);
656 
657             for (; j < end_index; j++) {
658                 /* The caller guaranteed us this space would be empty */
659                 assert(s->get_refcount(refblock_data, j) == 0);
660                 s->set_refcount(refblock_data, j, 1);
661             }
662 
663             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
664                                          refblock_data);
665         }
666 
667         qcow2_cache_put(s->refcount_block_cache, &refblock_data);
668     }
669 
670     assert(block_offset == table_offset);
671 
672     /* Write refcount blocks to disk */
673     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
674     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
675     if (ret < 0) {
676         goto fail;
677     }
678 
679     /* Write refcount table to disk */
680     for (i = 0; i < total_refblock_count; i++) {
681         cpu_to_be64s(&new_table[i]);
682     }
683 
684     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
685     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
686         table_size * sizeof(uint64_t));
687     if (ret < 0) {
688         goto fail;
689     }
690 
691     for (i = 0; i < total_refblock_count; i++) {
692         be64_to_cpus(&new_table[i]);
693     }
694 
695     /* Hook up the new refcount table in the qcow2 header */
696     struct QEMU_PACKED {
697         uint64_t d64;
698         uint32_t d32;
699     } data;
700     data.d64 = cpu_to_be64(table_offset);
701     data.d32 = cpu_to_be32(table_clusters);
702     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
703     ret = bdrv_pwrite_sync(bs->file,
704                            offsetof(QCowHeader, refcount_table_offset),
705                            &data, sizeof(data));
706     if (ret < 0) {
707         goto fail;
708     }
709 
710     /* And switch it in memory */
711     uint64_t old_table_offset = s->refcount_table_offset;
712     uint64_t old_table_size = s->refcount_table_size;
713 
714     g_free(s->refcount_table);
715     s->refcount_table = new_table;
716     s->refcount_table_size = table_size;
717     s->refcount_table_offset = table_offset;
718     update_max_refcount_table_index(s);
719 
720     /* Free old table. */
721     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
722                         QCOW2_DISCARD_OTHER);
723 
724     return end_offset;
725 
726 fail:
727     g_free(new_table);
728     return ret;
729 }
730 
731 void qcow2_process_discards(BlockDriverState *bs, int ret)
732 {
733     BDRVQcow2State *s = bs->opaque;
734     Qcow2DiscardRegion *d, *next;
735 
736     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
737         QTAILQ_REMOVE(&s->discards, d, next);
738 
739         /* Discard is optional, ignore the return value */
740         if (ret >= 0) {
741             bdrv_pdiscard(bs->file, d->offset, d->bytes);
742         }
743 
744         g_free(d);
745     }
746 }
747 
748 static void update_refcount_discard(BlockDriverState *bs,
749                                     uint64_t offset, uint64_t length)
750 {
751     BDRVQcow2State *s = bs->opaque;
752     Qcow2DiscardRegion *d, *p, *next;
753 
754     QTAILQ_FOREACH(d, &s->discards, next) {
755         uint64_t new_start = MIN(offset, d->offset);
756         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
757 
758         if (new_end - new_start <= length + d->bytes) {
759             /* There can't be any overlap, areas ending up here have no
760              * references any more and therefore shouldn't get freed another
761              * time. */
762             assert(d->bytes + length == new_end - new_start);
763             d->offset = new_start;
764             d->bytes = new_end - new_start;
765             goto found;
766         }
767     }
768 
769     d = g_malloc(sizeof(*d));
770     *d = (Qcow2DiscardRegion) {
771         .bs     = bs,
772         .offset = offset,
773         .bytes  = length,
774     };
775     QTAILQ_INSERT_TAIL(&s->discards, d, next);
776 
777 found:
778     /* Merge discard requests if they are adjacent now */
779     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
780         if (p == d
781             || p->offset > d->offset + d->bytes
782             || d->offset > p->offset + p->bytes)
783         {
784             continue;
785         }
786 
787         /* Still no overlap possible */
788         assert(p->offset == d->offset + d->bytes
789             || d->offset == p->offset + p->bytes);
790 
791         QTAILQ_REMOVE(&s->discards, p, next);
792         d->offset = MIN(d->offset, p->offset);
793         d->bytes += p->bytes;
794         g_free(p);
795     }
796 }
797 
798 /* XXX: cache several refcount block clusters ? */
799 /* @addend is the absolute value of the addend; if @decrease is set, @addend
800  * will be subtracted from the current refcount, otherwise it will be added */
801 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
802                                                    int64_t offset,
803                                                    int64_t length,
804                                                    uint64_t addend,
805                                                    bool decrease,
806                                                    enum qcow2_discard_type type)
807 {
808     BDRVQcow2State *s = bs->opaque;
809     int64_t start, last, cluster_offset;
810     void *refcount_block = NULL;
811     int64_t old_table_index = -1;
812     int ret;
813 
814 #ifdef DEBUG_ALLOC2
815     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
816             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
817             addend);
818 #endif
819     if (length < 0) {
820         return -EINVAL;
821     } else if (length == 0) {
822         return 0;
823     }
824 
825     if (decrease) {
826         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
827             s->l2_table_cache);
828     }
829 
830     start = start_of_cluster(s, offset);
831     last = start_of_cluster(s, offset + length - 1);
832     for(cluster_offset = start; cluster_offset <= last;
833         cluster_offset += s->cluster_size)
834     {
835         int block_index;
836         uint64_t refcount;
837         int64_t cluster_index = cluster_offset >> s->cluster_bits;
838         int64_t table_index = cluster_index >> s->refcount_block_bits;
839 
840         /* Load the refcount block and allocate it if needed */
841         if (table_index != old_table_index) {
842             if (refcount_block) {
843                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
844             }
845             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
846             /* If the caller needs to restart the search for free clusters,
847              * try the same ones first to see if they're still free. */
848             if (ret == -EAGAIN) {
849                 if (s->free_cluster_index > (start >> s->cluster_bits)) {
850                     s->free_cluster_index = (start >> s->cluster_bits);
851                 }
852             }
853             if (ret < 0) {
854                 goto fail;
855             }
856         }
857         old_table_index = table_index;
858 
859         qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
860 
861         /* we can update the count and save it */
862         block_index = cluster_index & (s->refcount_block_size - 1);
863 
864         refcount = s->get_refcount(refcount_block, block_index);
865         if (decrease ? (refcount - addend > refcount)
866                      : (refcount + addend < refcount ||
867                         refcount + addend > s->refcount_max))
868         {
869             ret = -EINVAL;
870             goto fail;
871         }
872         if (decrease) {
873             refcount -= addend;
874         } else {
875             refcount += addend;
876         }
877         if (refcount == 0 && cluster_index < s->free_cluster_index) {
878             s->free_cluster_index = cluster_index;
879         }
880         s->set_refcount(refcount_block, block_index, refcount);
881 
882         if (refcount == 0) {
883             void *table;
884 
885             table = qcow2_cache_is_table_offset(s->refcount_block_cache,
886                                                 offset);
887             if (table != NULL) {
888                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
889                 qcow2_cache_discard(s->refcount_block_cache, table);
890             }
891 
892             table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
893             if (table != NULL) {
894                 qcow2_cache_discard(s->l2_table_cache, table);
895             }
896 
897             if (s->discard_passthrough[type]) {
898                 update_refcount_discard(bs, cluster_offset, s->cluster_size);
899             }
900         }
901     }
902 
903     ret = 0;
904 fail:
905     if (!s->cache_discards) {
906         qcow2_process_discards(bs, ret);
907     }
908 
909     /* Write last changed block to disk */
910     if (refcount_block) {
911         qcow2_cache_put(s->refcount_block_cache, &refcount_block);
912     }
913 
914     /*
915      * Try do undo any updates if an error is returned (This may succeed in
916      * some cases like ENOSPC for allocating a new refcount block)
917      */
918     if (ret < 0) {
919         int dummy;
920         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
921                                 !decrease, QCOW2_DISCARD_NEVER);
922         (void)dummy;
923     }
924 
925     return ret;
926 }
927 
928 /*
929  * Increases or decreases the refcount of a given cluster.
930  *
931  * @addend is the absolute value of the addend; if @decrease is set, @addend
932  * will be subtracted from the current refcount, otherwise it will be added.
933  *
934  * On success 0 is returned; on failure -errno is returned.
935  */
936 int qcow2_update_cluster_refcount(BlockDriverState *bs,
937                                   int64_t cluster_index,
938                                   uint64_t addend, bool decrease,
939                                   enum qcow2_discard_type type)
940 {
941     BDRVQcow2State *s = bs->opaque;
942     int ret;
943 
944     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
945                           decrease, type);
946     if (ret < 0) {
947         return ret;
948     }
949 
950     return 0;
951 }
952 
953 
954 
955 /*********************************************************/
956 /* cluster allocation functions */
957 
958 
959 
960 /* return < 0 if error */
961 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
962                                     uint64_t max)
963 {
964     BDRVQcow2State *s = bs->opaque;
965     uint64_t i, nb_clusters, refcount;
966     int ret;
967 
968     /* We can't allocate clusters if they may still be queued for discard. */
969     if (s->cache_discards) {
970         qcow2_process_discards(bs, 0);
971     }
972 
973     nb_clusters = size_to_clusters(s, size);
974 retry:
975     for(i = 0; i < nb_clusters; i++) {
976         uint64_t next_cluster_index = s->free_cluster_index++;
977         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
978 
979         if (ret < 0) {
980             return ret;
981         } else if (refcount != 0) {
982             goto retry;
983         }
984     }
985 
986     /* Make sure that all offsets in the "allocated" range are representable
987      * in the requested max */
988     if (s->free_cluster_index > 0 &&
989         s->free_cluster_index - 1 > (max >> s->cluster_bits))
990     {
991         return -EFBIG;
992     }
993 
994 #ifdef DEBUG_ALLOC2
995     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
996             size,
997             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
998 #endif
999     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
1000 }
1001 
1002 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
1003 {
1004     int64_t offset;
1005     int ret;
1006 
1007     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
1008     do {
1009         offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET);
1010         if (offset < 0) {
1011             return offset;
1012         }
1013 
1014         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1015     } while (ret == -EAGAIN);
1016 
1017     if (ret < 0) {
1018         return ret;
1019     }
1020 
1021     return offset;
1022 }
1023 
1024 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1025                                 int64_t nb_clusters)
1026 {
1027     BDRVQcow2State *s = bs->opaque;
1028     uint64_t cluster_index, refcount;
1029     uint64_t i;
1030     int ret;
1031 
1032     assert(nb_clusters >= 0);
1033     if (nb_clusters == 0) {
1034         return 0;
1035     }
1036 
1037     do {
1038         /* Check how many clusters there are free */
1039         cluster_index = offset >> s->cluster_bits;
1040         for(i = 0; i < nb_clusters; i++) {
1041             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1042             if (ret < 0) {
1043                 return ret;
1044             } else if (refcount != 0) {
1045                 break;
1046             }
1047         }
1048 
1049         /* And then allocate them */
1050         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1051                               QCOW2_DISCARD_NEVER);
1052     } while (ret == -EAGAIN);
1053 
1054     if (ret < 0) {
1055         return ret;
1056     }
1057 
1058     return i;
1059 }
1060 
1061 /* only used to allocate compressed sectors. We try to allocate
1062    contiguous sectors. size must be <= cluster_size */
1063 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1064 {
1065     BDRVQcow2State *s = bs->opaque;
1066     int64_t offset;
1067     size_t free_in_cluster;
1068     int ret;
1069 
1070     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1071     assert(size > 0 && size <= s->cluster_size);
1072     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1073 
1074     offset = s->free_byte_offset;
1075 
1076     if (offset) {
1077         uint64_t refcount;
1078         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1079         if (ret < 0) {
1080             return ret;
1081         }
1082 
1083         if (refcount == s->refcount_max) {
1084             offset = 0;
1085         }
1086     }
1087 
1088     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1089     do {
1090         if (!offset || free_in_cluster < size) {
1091             int64_t new_cluster;
1092 
1093             new_cluster = alloc_clusters_noref(bs, s->cluster_size,
1094                                                MIN(s->cluster_offset_mask,
1095                                                    QCOW_MAX_CLUSTER_OFFSET));
1096             if (new_cluster < 0) {
1097                 return new_cluster;
1098             }
1099 
1100             if (new_cluster == 0) {
1101                 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1102                                         "allocation of compressed cluster "
1103                                         "at offset 0");
1104                 return -EIO;
1105             }
1106 
1107             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1108                 offset = new_cluster;
1109                 free_in_cluster = s->cluster_size;
1110             } else {
1111                 free_in_cluster += s->cluster_size;
1112             }
1113         }
1114 
1115         assert(offset);
1116         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1117         if (ret < 0) {
1118             offset = 0;
1119         }
1120     } while (ret == -EAGAIN);
1121     if (ret < 0) {
1122         return ret;
1123     }
1124 
1125     /* The cluster refcount was incremented; refcount blocks must be flushed
1126      * before the caller's L2 table updates. */
1127     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1128 
1129     s->free_byte_offset = offset + size;
1130     if (!offset_into_cluster(s, s->free_byte_offset)) {
1131         s->free_byte_offset = 0;
1132     }
1133 
1134     return offset;
1135 }
1136 
1137 void qcow2_free_clusters(BlockDriverState *bs,
1138                           int64_t offset, int64_t size,
1139                           enum qcow2_discard_type type)
1140 {
1141     int ret;
1142 
1143     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1144     ret = update_refcount(bs, offset, size, 1, true, type);
1145     if (ret < 0) {
1146         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1147         /* TODO Remember the clusters to free them later and avoid leaking */
1148     }
1149 }
1150 
1151 /*
1152  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1153  * normal cluster, compressed cluster, etc.)
1154  */
1155 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1156                              int nb_clusters, enum qcow2_discard_type type)
1157 {
1158     BDRVQcow2State *s = bs->opaque;
1159     QCow2ClusterType ctype = qcow2_get_cluster_type(bs, l2_entry);
1160 
1161     if (has_data_file(bs)) {
1162         if (s->discard_passthrough[type] &&
1163             (ctype == QCOW2_CLUSTER_NORMAL ||
1164              ctype == QCOW2_CLUSTER_ZERO_ALLOC))
1165         {
1166             bdrv_pdiscard(s->data_file, l2_entry & L2E_OFFSET_MASK,
1167                           nb_clusters << s->cluster_bits);
1168         }
1169         return;
1170     }
1171 
1172     switch (ctype) {
1173     case QCOW2_CLUSTER_COMPRESSED:
1174         {
1175             int nb_csectors;
1176             nb_csectors = ((l2_entry >> s->csize_shift) &
1177                            s->csize_mask) + 1;
1178             qcow2_free_clusters(bs,
1179                 (l2_entry & s->cluster_offset_mask) & ~511,
1180                 nb_csectors * 512, type);
1181         }
1182         break;
1183     case QCOW2_CLUSTER_NORMAL:
1184     case QCOW2_CLUSTER_ZERO_ALLOC:
1185         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1186             qcow2_signal_corruption(bs, false, -1, -1,
1187                                     "Cannot free unaligned cluster %#llx",
1188                                     l2_entry & L2E_OFFSET_MASK);
1189         } else {
1190             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1191                                 nb_clusters << s->cluster_bits, type);
1192         }
1193         break;
1194     case QCOW2_CLUSTER_ZERO_PLAIN:
1195     case QCOW2_CLUSTER_UNALLOCATED:
1196         break;
1197     default:
1198         abort();
1199     }
1200 }
1201 
1202 int coroutine_fn qcow2_write_caches(BlockDriverState *bs)
1203 {
1204     BDRVQcow2State *s = bs->opaque;
1205     int ret;
1206 
1207     ret = qcow2_cache_write(bs, s->l2_table_cache);
1208     if (ret < 0) {
1209         return ret;
1210     }
1211 
1212     if (qcow2_need_accurate_refcounts(s)) {
1213         ret = qcow2_cache_write(bs, s->refcount_block_cache);
1214         if (ret < 0) {
1215             return ret;
1216         }
1217     }
1218 
1219     return 0;
1220 }
1221 
1222 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs)
1223 {
1224     int ret = qcow2_write_caches(bs);
1225     if (ret < 0) {
1226         return ret;
1227     }
1228 
1229     return bdrv_flush(bs->file->bs);
1230 }
1231 
1232 /*********************************************************/
1233 /* snapshots and image creation */
1234 
1235 
1236 
1237 /* update the refcounts of snapshots and the copied flag */
1238 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1239     int64_t l1_table_offset, int l1_size, int addend)
1240 {
1241     BDRVQcow2State *s = bs->opaque;
1242     uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1243     bool l1_allocated = false;
1244     int64_t old_entry, old_l2_offset;
1245     unsigned slice, slice_size2, n_slices;
1246     int i, j, l1_modified = 0, nb_csectors;
1247     int ret;
1248 
1249     assert(addend >= -1 && addend <= 1);
1250 
1251     l2_slice = NULL;
1252     l1_table = NULL;
1253     l1_size2 = l1_size * sizeof(uint64_t);
1254     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1255     n_slices = s->cluster_size / slice_size2;
1256 
1257     s->cache_discards = true;
1258 
1259     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1260      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1261      * when changing this! */
1262     if (l1_table_offset != s->l1_table_offset) {
1263         l1_table = g_try_malloc0(ROUND_UP(l1_size2, 512));
1264         if (l1_size2 && l1_table == NULL) {
1265             ret = -ENOMEM;
1266             goto fail;
1267         }
1268         l1_allocated = true;
1269 
1270         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1271         if (ret < 0) {
1272             goto fail;
1273         }
1274 
1275         for (i = 0; i < l1_size; i++) {
1276             be64_to_cpus(&l1_table[i]);
1277         }
1278     } else {
1279         assert(l1_size == s->l1_size);
1280         l1_table = s->l1_table;
1281         l1_allocated = false;
1282     }
1283 
1284     for (i = 0; i < l1_size; i++) {
1285         l2_offset = l1_table[i];
1286         if (l2_offset) {
1287             old_l2_offset = l2_offset;
1288             l2_offset &= L1E_OFFSET_MASK;
1289 
1290             if (offset_into_cluster(s, l2_offset)) {
1291                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1292                                         PRIx64 " unaligned (L1 index: %#x)",
1293                                         l2_offset, i);
1294                 ret = -EIO;
1295                 goto fail;
1296             }
1297 
1298             for (slice = 0; slice < n_slices; slice++) {
1299                 ret = qcow2_cache_get(bs, s->l2_table_cache,
1300                                       l2_offset + slice * slice_size2,
1301                                       (void **) &l2_slice);
1302                 if (ret < 0) {
1303                     goto fail;
1304                 }
1305 
1306                 for (j = 0; j < s->l2_slice_size; j++) {
1307                     uint64_t cluster_index;
1308                     uint64_t offset;
1309 
1310                     entry = be64_to_cpu(l2_slice[j]);
1311                     old_entry = entry;
1312                     entry &= ~QCOW_OFLAG_COPIED;
1313                     offset = entry & L2E_OFFSET_MASK;
1314 
1315                     switch (qcow2_get_cluster_type(bs, entry)) {
1316                     case QCOW2_CLUSTER_COMPRESSED:
1317                         nb_csectors = ((entry >> s->csize_shift) &
1318                                        s->csize_mask) + 1;
1319                         if (addend != 0) {
1320                             ret = update_refcount(
1321                                 bs, (entry & s->cluster_offset_mask) & ~511,
1322                                 nb_csectors * 512, abs(addend), addend < 0,
1323                                 QCOW2_DISCARD_SNAPSHOT);
1324                             if (ret < 0) {
1325                                 goto fail;
1326                             }
1327                         }
1328                         /* compressed clusters are never modified */
1329                         refcount = 2;
1330                         break;
1331 
1332                     case QCOW2_CLUSTER_NORMAL:
1333                     case QCOW2_CLUSTER_ZERO_ALLOC:
1334                         if (offset_into_cluster(s, offset)) {
1335                             /* Here l2_index means table (not slice) index */
1336                             int l2_index = slice * s->l2_slice_size + j;
1337                             qcow2_signal_corruption(
1338                                 bs, true, -1, -1, "Cluster "
1339                                 "allocation offset %#" PRIx64
1340                                 " unaligned (L2 offset: %#"
1341                                 PRIx64 ", L2 index: %#x)",
1342                                 offset, l2_offset, l2_index);
1343                             ret = -EIO;
1344                             goto fail;
1345                         }
1346 
1347                         cluster_index = offset >> s->cluster_bits;
1348                         assert(cluster_index);
1349                         if (addend != 0) {
1350                             ret = qcow2_update_cluster_refcount(
1351                                 bs, cluster_index, abs(addend), addend < 0,
1352                                 QCOW2_DISCARD_SNAPSHOT);
1353                             if (ret < 0) {
1354                                 goto fail;
1355                             }
1356                         }
1357 
1358                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1359                         if (ret < 0) {
1360                             goto fail;
1361                         }
1362                         break;
1363 
1364                     case QCOW2_CLUSTER_ZERO_PLAIN:
1365                     case QCOW2_CLUSTER_UNALLOCATED:
1366                         refcount = 0;
1367                         break;
1368 
1369                     default:
1370                         abort();
1371                     }
1372 
1373                     if (refcount == 1) {
1374                         entry |= QCOW_OFLAG_COPIED;
1375                     }
1376                     if (entry != old_entry) {
1377                         if (addend > 0) {
1378                             qcow2_cache_set_dependency(bs, s->l2_table_cache,
1379                                                        s->refcount_block_cache);
1380                         }
1381                         l2_slice[j] = cpu_to_be64(entry);
1382                         qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1383                                                      l2_slice);
1384                     }
1385                 }
1386 
1387                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1388             }
1389 
1390             if (addend != 0) {
1391                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1392                                                         s->cluster_bits,
1393                                                     abs(addend), addend < 0,
1394                                                     QCOW2_DISCARD_SNAPSHOT);
1395                 if (ret < 0) {
1396                     goto fail;
1397                 }
1398             }
1399             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1400                                      &refcount);
1401             if (ret < 0) {
1402                 goto fail;
1403             } else if (refcount == 1) {
1404                 l2_offset |= QCOW_OFLAG_COPIED;
1405             }
1406             if (l2_offset != old_l2_offset) {
1407                 l1_table[i] = l2_offset;
1408                 l1_modified = 1;
1409             }
1410         }
1411     }
1412 
1413     ret = bdrv_flush(bs);
1414 fail:
1415     if (l2_slice) {
1416         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1417     }
1418 
1419     s->cache_discards = false;
1420     qcow2_process_discards(bs, ret);
1421 
1422     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1423     if (ret == 0 && addend >= 0 && l1_modified) {
1424         for (i = 0; i < l1_size; i++) {
1425             cpu_to_be64s(&l1_table[i]);
1426         }
1427 
1428         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1429                                l1_table, l1_size2);
1430 
1431         for (i = 0; i < l1_size; i++) {
1432             be64_to_cpus(&l1_table[i]);
1433         }
1434     }
1435     if (l1_allocated)
1436         g_free(l1_table);
1437     return ret;
1438 }
1439 
1440 
1441 
1442 
1443 /*********************************************************/
1444 /* refcount checking functions */
1445 
1446 
1447 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1448 {
1449     /* This assertion holds because there is no way we can address more than
1450      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1451      * offsets have to be representable in bytes); due to every cluster
1452      * corresponding to one refcount entry, we are well below that limit */
1453     assert(entries < (UINT64_C(1) << (64 - 9)));
1454 
1455     /* Thanks to the assertion this will not overflow, because
1456      * s->refcount_order < 7.
1457      * (note: x << s->refcount_order == x * s->refcount_bits) */
1458     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1459 }
1460 
1461 /**
1462  * Reallocates *array so that it can hold new_size entries. *size must contain
1463  * the current number of entries in *array. If the reallocation fails, *array
1464  * and *size will not be modified and -errno will be returned. If the
1465  * reallocation is successful, *array will be set to the new buffer, *size
1466  * will be set to new_size and 0 will be returned. The size of the reallocated
1467  * refcount array buffer will be aligned to a cluster boundary, and the newly
1468  * allocated area will be zeroed.
1469  */
1470 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1471                                   int64_t *size, int64_t new_size)
1472 {
1473     int64_t old_byte_size, new_byte_size;
1474     void *new_ptr;
1475 
1476     /* Round to clusters so the array can be directly written to disk */
1477     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1478                     * s->cluster_size;
1479     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1480                     * s->cluster_size;
1481 
1482     if (new_byte_size == old_byte_size) {
1483         *size = new_size;
1484         return 0;
1485     }
1486 
1487     assert(new_byte_size > 0);
1488 
1489     if (new_byte_size > SIZE_MAX) {
1490         return -ENOMEM;
1491     }
1492 
1493     new_ptr = g_try_realloc(*array, new_byte_size);
1494     if (!new_ptr) {
1495         return -ENOMEM;
1496     }
1497 
1498     if (new_byte_size > old_byte_size) {
1499         memset((char *)new_ptr + old_byte_size, 0,
1500                new_byte_size - old_byte_size);
1501     }
1502 
1503     *array = new_ptr;
1504     *size  = new_size;
1505 
1506     return 0;
1507 }
1508 
1509 /*
1510  * Increases the refcount for a range of clusters in a given refcount table.
1511  * This is used to construct a temporary refcount table out of L1 and L2 tables
1512  * which can be compared to the refcount table saved in the image.
1513  *
1514  * Modifies the number of errors in res.
1515  */
1516 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1517                              void **refcount_table,
1518                              int64_t *refcount_table_size,
1519                              int64_t offset, int64_t size)
1520 {
1521     BDRVQcow2State *s = bs->opaque;
1522     uint64_t start, last, cluster_offset, k, refcount;
1523     int64_t file_len;
1524     int ret;
1525 
1526     if (size <= 0) {
1527         return 0;
1528     }
1529 
1530     file_len = bdrv_getlength(bs->file->bs);
1531     if (file_len < 0) {
1532         return file_len;
1533     }
1534 
1535     /*
1536      * Last cluster of qcow2 image may be semi-allocated, so it may be OK to
1537      * reference some space after file end but it should be less than one
1538      * cluster.
1539      */
1540     if (offset + size - file_len >= s->cluster_size) {
1541         fprintf(stderr, "ERROR: counting reference for region exceeding the "
1542                 "end of the file by one cluster or more: offset 0x%" PRIx64
1543                 " size 0x%" PRIx64 "\n", offset, size);
1544         res->corruptions++;
1545         return 0;
1546     }
1547 
1548     start = start_of_cluster(s, offset);
1549     last = start_of_cluster(s, offset + size - 1);
1550     for(cluster_offset = start; cluster_offset <= last;
1551         cluster_offset += s->cluster_size) {
1552         k = cluster_offset >> s->cluster_bits;
1553         if (k >= *refcount_table_size) {
1554             ret = realloc_refcount_array(s, refcount_table,
1555                                          refcount_table_size, k + 1);
1556             if (ret < 0) {
1557                 res->check_errors++;
1558                 return ret;
1559             }
1560         }
1561 
1562         refcount = s->get_refcount(*refcount_table, k);
1563         if (refcount == s->refcount_max) {
1564             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1565                     "\n", cluster_offset);
1566             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1567                     "width or qemu-img convert to create a clean copy if the "
1568                     "image cannot be opened for writing\n");
1569             res->corruptions++;
1570             continue;
1571         }
1572         s->set_refcount(*refcount_table, k, refcount + 1);
1573     }
1574 
1575     return 0;
1576 }
1577 
1578 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1579 enum {
1580     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1581 };
1582 
1583 /*
1584  * Increases the refcount in the given refcount table for the all clusters
1585  * referenced in the L2 table. While doing so, performs some checks on L2
1586  * entries.
1587  *
1588  * Returns the number of errors found by the checks or -errno if an internal
1589  * error occurred.
1590  */
1591 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1592                               void **refcount_table,
1593                               int64_t *refcount_table_size, int64_t l2_offset,
1594                               int flags, BdrvCheckMode fix, bool active)
1595 {
1596     BDRVQcow2State *s = bs->opaque;
1597     uint64_t *l2_table, l2_entry;
1598     uint64_t next_contiguous_offset = 0;
1599     int i, l2_size, nb_csectors, ret;
1600 
1601     /* Read L2 table from disk */
1602     l2_size = s->l2_size * sizeof(uint64_t);
1603     l2_table = g_malloc(l2_size);
1604 
1605     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1606     if (ret < 0) {
1607         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1608         res->check_errors++;
1609         goto fail;
1610     }
1611 
1612     /* Do the actual checks */
1613     for(i = 0; i < s->l2_size; i++) {
1614         l2_entry = be64_to_cpu(l2_table[i]);
1615 
1616         switch (qcow2_get_cluster_type(bs, l2_entry)) {
1617         case QCOW2_CLUSTER_COMPRESSED:
1618             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1619             if (l2_entry & QCOW_OFLAG_COPIED) {
1620                 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
1621                     "copied flag must never be set for compressed "
1622                     "clusters\n", l2_entry & s->cluster_offset_mask);
1623                 l2_entry &= ~QCOW_OFLAG_COPIED;
1624                 res->corruptions++;
1625             }
1626 
1627             if (has_data_file(bs)) {
1628                 fprintf(stderr, "ERROR compressed cluster %d with data file, "
1629                         "entry=0x%" PRIx64 "\n", i, l2_entry);
1630                 res->corruptions++;
1631                 break;
1632             }
1633 
1634             /* Mark cluster as used */
1635             nb_csectors = ((l2_entry >> s->csize_shift) &
1636                            s->csize_mask) + 1;
1637             l2_entry &= s->cluster_offset_mask;
1638             ret = qcow2_inc_refcounts_imrt(bs, res,
1639                                            refcount_table, refcount_table_size,
1640                                            l2_entry & ~511, nb_csectors * 512);
1641             if (ret < 0) {
1642                 goto fail;
1643             }
1644 
1645             if (flags & CHECK_FRAG_INFO) {
1646                 res->bfi.allocated_clusters++;
1647                 res->bfi.compressed_clusters++;
1648 
1649                 /* Compressed clusters are fragmented by nature.  Since they
1650                  * take up sub-sector space but we only have sector granularity
1651                  * I/O we need to re-read the same sectors even for adjacent
1652                  * compressed clusters.
1653                  */
1654                 res->bfi.fragmented_clusters++;
1655             }
1656             break;
1657 
1658         case QCOW2_CLUSTER_ZERO_ALLOC:
1659         case QCOW2_CLUSTER_NORMAL:
1660         {
1661             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1662 
1663             /* Correct offsets are cluster aligned */
1664             if (offset_into_cluster(s, offset)) {
1665                 res->corruptions++;
1666 
1667                 if (qcow2_get_cluster_type(bs, l2_entry) ==
1668                     QCOW2_CLUSTER_ZERO_ALLOC)
1669                 {
1670                     fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated zero "
1671                             "cluster is not properly aligned; L2 entry "
1672                             "corrupted.\n",
1673                             fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1674                             offset);
1675                     if (fix & BDRV_FIX_ERRORS) {
1676                         uint64_t l2e_offset =
1677                             l2_offset + (uint64_t)i * sizeof(uint64_t);
1678                         int ign = active ? QCOW2_OL_ACTIVE_L2 :
1679                                            QCOW2_OL_INACTIVE_L2;
1680 
1681                         l2_entry = QCOW_OFLAG_ZERO;
1682                         l2_table[i] = cpu_to_be64(l2_entry);
1683                         ret = qcow2_pre_write_overlap_check(bs, ign,
1684                                 l2e_offset, sizeof(uint64_t), false);
1685                         if (ret < 0) {
1686                             fprintf(stderr, "ERROR: Overlap check failed\n");
1687                             res->check_errors++;
1688                             /* Something is seriously wrong, so abort checking
1689                              * this L2 table */
1690                             goto fail;
1691                         }
1692 
1693                         ret = bdrv_pwrite_sync(bs->file, l2e_offset,
1694                                                &l2_table[i], sizeof(uint64_t));
1695                         if (ret < 0) {
1696                             fprintf(stderr, "ERROR: Failed to overwrite L2 "
1697                                     "table entry: %s\n", strerror(-ret));
1698                             res->check_errors++;
1699                             /* Do not abort, continue checking the rest of this
1700                              * L2 table's entries */
1701                         } else {
1702                             res->corruptions--;
1703                             res->corruptions_fixed++;
1704                             /* Skip marking the cluster as used
1705                              * (it is unused now) */
1706                             continue;
1707                         }
1708                     }
1709                 } else {
1710                     fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1711                         "not properly aligned; L2 entry corrupted.\n", offset);
1712                 }
1713             }
1714 
1715             if (flags & CHECK_FRAG_INFO) {
1716                 res->bfi.allocated_clusters++;
1717                 if (next_contiguous_offset &&
1718                     offset != next_contiguous_offset) {
1719                     res->bfi.fragmented_clusters++;
1720                 }
1721                 next_contiguous_offset = offset + s->cluster_size;
1722             }
1723 
1724             /* Mark cluster as used */
1725             if (!has_data_file(bs)) {
1726                 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table,
1727                                                refcount_table_size,
1728                                                offset, s->cluster_size);
1729                 if (ret < 0) {
1730                     goto fail;
1731                 }
1732             }
1733             break;
1734         }
1735 
1736         case QCOW2_CLUSTER_ZERO_PLAIN:
1737         case QCOW2_CLUSTER_UNALLOCATED:
1738             break;
1739 
1740         default:
1741             abort();
1742         }
1743     }
1744 
1745     g_free(l2_table);
1746     return 0;
1747 
1748 fail:
1749     g_free(l2_table);
1750     return ret;
1751 }
1752 
1753 /*
1754  * Increases the refcount for the L1 table, its L2 tables and all referenced
1755  * clusters in the given refcount table. While doing so, performs some checks
1756  * on L1 and L2 entries.
1757  *
1758  * Returns the number of errors found by the checks or -errno if an internal
1759  * error occurred.
1760  */
1761 static int check_refcounts_l1(BlockDriverState *bs,
1762                               BdrvCheckResult *res,
1763                               void **refcount_table,
1764                               int64_t *refcount_table_size,
1765                               int64_t l1_table_offset, int l1_size,
1766                               int flags, BdrvCheckMode fix, bool active)
1767 {
1768     BDRVQcow2State *s = bs->opaque;
1769     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1770     int i, ret;
1771 
1772     l1_size2 = l1_size * sizeof(uint64_t);
1773 
1774     /* Mark L1 table as used */
1775     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1776                                    l1_table_offset, l1_size2);
1777     if (ret < 0) {
1778         goto fail;
1779     }
1780 
1781     /* Read L1 table entries from disk */
1782     if (l1_size2 > 0) {
1783         l1_table = g_try_malloc(l1_size2);
1784         if (l1_table == NULL) {
1785             ret = -ENOMEM;
1786             res->check_errors++;
1787             goto fail;
1788         }
1789         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1790         if (ret < 0) {
1791             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1792             res->check_errors++;
1793             goto fail;
1794         }
1795         for(i = 0;i < l1_size; i++)
1796             be64_to_cpus(&l1_table[i]);
1797     }
1798 
1799     /* Do the actual checks */
1800     for(i = 0; i < l1_size; i++) {
1801         l2_offset = l1_table[i];
1802         if (l2_offset) {
1803             /* Mark L2 table as used */
1804             l2_offset &= L1E_OFFSET_MASK;
1805             ret = qcow2_inc_refcounts_imrt(bs, res,
1806                                            refcount_table, refcount_table_size,
1807                                            l2_offset, s->cluster_size);
1808             if (ret < 0) {
1809                 goto fail;
1810             }
1811 
1812             /* L2 tables are cluster aligned */
1813             if (offset_into_cluster(s, l2_offset)) {
1814                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1815                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1816                 res->corruptions++;
1817             }
1818 
1819             /* Process and check L2 entries */
1820             ret = check_refcounts_l2(bs, res, refcount_table,
1821                                      refcount_table_size, l2_offset, flags,
1822                                      fix, active);
1823             if (ret < 0) {
1824                 goto fail;
1825             }
1826         }
1827     }
1828     g_free(l1_table);
1829     return 0;
1830 
1831 fail:
1832     g_free(l1_table);
1833     return ret;
1834 }
1835 
1836 /*
1837  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1838  *
1839  * This function does not print an error message nor does it increment
1840  * check_errors if qcow2_get_refcount fails (this is because such an error will
1841  * have been already detected and sufficiently signaled by the calling function
1842  * (qcow2_check_refcounts) by the time this function is called).
1843  */
1844 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1845                               BdrvCheckMode fix)
1846 {
1847     BDRVQcow2State *s = bs->opaque;
1848     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1849     int ret;
1850     uint64_t refcount;
1851     int i, j;
1852     bool repair;
1853 
1854     if (fix & BDRV_FIX_ERRORS) {
1855         /* Always repair */
1856         repair = true;
1857     } else if (fix & BDRV_FIX_LEAKS) {
1858         /* Repair only if that seems safe: This function is always
1859          * called after the refcounts have been fixed, so the refcount
1860          * is accurate if that repair was successful */
1861         repair = !res->check_errors && !res->corruptions && !res->leaks;
1862     } else {
1863         repair = false;
1864     }
1865 
1866     for (i = 0; i < s->l1_size; i++) {
1867         uint64_t l1_entry = s->l1_table[i];
1868         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1869         int l2_dirty = 0;
1870 
1871         if (!l2_offset) {
1872             continue;
1873         }
1874 
1875         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1876                                  &refcount);
1877         if (ret < 0) {
1878             /* don't print message nor increment check_errors */
1879             continue;
1880         }
1881         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1882             res->corruptions++;
1883             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1884                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1885                     repair ? "Repairing" : "ERROR", i, l1_entry, refcount);
1886             if (repair) {
1887                 s->l1_table[i] = refcount == 1
1888                                ? l1_entry |  QCOW_OFLAG_COPIED
1889                                : l1_entry & ~QCOW_OFLAG_COPIED;
1890                 ret = qcow2_write_l1_entry(bs, i);
1891                 if (ret < 0) {
1892                     res->check_errors++;
1893                     goto fail;
1894                 }
1895                 res->corruptions--;
1896                 res->corruptions_fixed++;
1897             }
1898         }
1899 
1900         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1901                          s->l2_size * sizeof(uint64_t));
1902         if (ret < 0) {
1903             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1904                     strerror(-ret));
1905             res->check_errors++;
1906             goto fail;
1907         }
1908 
1909         for (j = 0; j < s->l2_size; j++) {
1910             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1911             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1912             QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1913 
1914             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1915                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1916                 if (has_data_file(bs)) {
1917                     refcount = 1;
1918                 } else {
1919                     ret = qcow2_get_refcount(bs,
1920                                              data_offset >> s->cluster_bits,
1921                                              &refcount);
1922                     if (ret < 0) {
1923                         /* don't print message nor increment check_errors */
1924                         continue;
1925                     }
1926                 }
1927                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1928                     res->corruptions++;
1929                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1930                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1931                             repair ? "Repairing" : "ERROR", l2_entry, refcount);
1932                     if (repair) {
1933                         l2_table[j] = cpu_to_be64(refcount == 1
1934                                     ? l2_entry |  QCOW_OFLAG_COPIED
1935                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1936                         l2_dirty++;
1937                     }
1938                 }
1939             }
1940         }
1941 
1942         if (l2_dirty > 0) {
1943             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1944                                                 l2_offset, s->cluster_size,
1945                                                 false);
1946             if (ret < 0) {
1947                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1948                         "overlap check failed: %s\n", strerror(-ret));
1949                 res->check_errors++;
1950                 goto fail;
1951             }
1952 
1953             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1954                               s->cluster_size);
1955             if (ret < 0) {
1956                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1957                         strerror(-ret));
1958                 res->check_errors++;
1959                 goto fail;
1960             }
1961             res->corruptions -= l2_dirty;
1962             res->corruptions_fixed += l2_dirty;
1963         }
1964     }
1965 
1966     ret = 0;
1967 
1968 fail:
1969     qemu_vfree(l2_table);
1970     return ret;
1971 }
1972 
1973 /*
1974  * Checks consistency of refblocks and accounts for each refblock in
1975  * *refcount_table.
1976  */
1977 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1978                            BdrvCheckMode fix, bool *rebuild,
1979                            void **refcount_table, int64_t *nb_clusters)
1980 {
1981     BDRVQcow2State *s = bs->opaque;
1982     int64_t i, size;
1983     int ret;
1984 
1985     for(i = 0; i < s->refcount_table_size; i++) {
1986         uint64_t offset, cluster;
1987         offset = s->refcount_table[i];
1988         cluster = offset >> s->cluster_bits;
1989 
1990         /* Refcount blocks are cluster aligned */
1991         if (offset_into_cluster(s, offset)) {
1992             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1993                 "cluster aligned; refcount table entry corrupted\n", i);
1994             res->corruptions++;
1995             *rebuild = true;
1996             continue;
1997         }
1998 
1999         if (cluster >= *nb_clusters) {
2000             res->corruptions++;
2001             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
2002                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
2003 
2004             if (fix & BDRV_FIX_ERRORS) {
2005                 int64_t new_nb_clusters;
2006                 Error *local_err = NULL;
2007 
2008                 if (offset > INT64_MAX - s->cluster_size) {
2009                     ret = -EINVAL;
2010                     goto resize_fail;
2011                 }
2012 
2013                 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
2014                                     PREALLOC_MODE_OFF, &local_err);
2015                 if (ret < 0) {
2016                     error_report_err(local_err);
2017                     goto resize_fail;
2018                 }
2019                 size = bdrv_getlength(bs->file->bs);
2020                 if (size < 0) {
2021                     ret = size;
2022                     goto resize_fail;
2023                 }
2024 
2025                 new_nb_clusters = size_to_clusters(s, size);
2026                 assert(new_nb_clusters >= *nb_clusters);
2027 
2028                 ret = realloc_refcount_array(s, refcount_table,
2029                                              nb_clusters, new_nb_clusters);
2030                 if (ret < 0) {
2031                     res->check_errors++;
2032                     return ret;
2033                 }
2034 
2035                 if (cluster >= *nb_clusters) {
2036                     ret = -EINVAL;
2037                     goto resize_fail;
2038                 }
2039 
2040                 res->corruptions--;
2041                 res->corruptions_fixed++;
2042                 ret = qcow2_inc_refcounts_imrt(bs, res,
2043                                                refcount_table, nb_clusters,
2044                                                offset, s->cluster_size);
2045                 if (ret < 0) {
2046                     return ret;
2047                 }
2048                 /* No need to check whether the refcount is now greater than 1:
2049                  * This area was just allocated and zeroed, so it can only be
2050                  * exactly 1 after qcow2_inc_refcounts_imrt() */
2051                 continue;
2052 
2053 resize_fail:
2054                 *rebuild = true;
2055                 fprintf(stderr, "ERROR could not resize image: %s\n",
2056                         strerror(-ret));
2057             }
2058             continue;
2059         }
2060 
2061         if (offset != 0) {
2062             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2063                                            offset, s->cluster_size);
2064             if (ret < 0) {
2065                 return ret;
2066             }
2067             if (s->get_refcount(*refcount_table, cluster) != 1) {
2068                 fprintf(stderr, "ERROR refcount block %" PRId64
2069                         " refcount=%" PRIu64 "\n", i,
2070                         s->get_refcount(*refcount_table, cluster));
2071                 res->corruptions++;
2072                 *rebuild = true;
2073             }
2074         }
2075     }
2076 
2077     return 0;
2078 }
2079 
2080 /*
2081  * Calculates an in-memory refcount table.
2082  */
2083 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2084                                BdrvCheckMode fix, bool *rebuild,
2085                                void **refcount_table, int64_t *nb_clusters)
2086 {
2087     BDRVQcow2State *s = bs->opaque;
2088     int64_t i;
2089     QCowSnapshot *sn;
2090     int ret;
2091 
2092     if (!*refcount_table) {
2093         int64_t old_size = 0;
2094         ret = realloc_refcount_array(s, refcount_table,
2095                                      &old_size, *nb_clusters);
2096         if (ret < 0) {
2097             res->check_errors++;
2098             return ret;
2099         }
2100     }
2101 
2102     /* header */
2103     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2104                                    0, s->cluster_size);
2105     if (ret < 0) {
2106         return ret;
2107     }
2108 
2109     /* current L1 table */
2110     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2111                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2112                              fix, true);
2113     if (ret < 0) {
2114         return ret;
2115     }
2116 
2117     /* snapshots */
2118     if (has_data_file(bs) && s->nb_snapshots) {
2119         fprintf(stderr, "ERROR %d snapshots in image with data file\n",
2120                 s->nb_snapshots);
2121         res->corruptions++;
2122     }
2123 
2124     for (i = 0; i < s->nb_snapshots; i++) {
2125         sn = s->snapshots + i;
2126         if (offset_into_cluster(s, sn->l1_table_offset)) {
2127             fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": "
2128                     "L1 table is not cluster aligned; snapshot table entry "
2129                     "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset);
2130             res->corruptions++;
2131             continue;
2132         }
2133         if (sn->l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2134             fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": "
2135                     "L1 table is too large; snapshot table entry corrupted\n",
2136                     sn->id_str, sn->name, sn->l1_size);
2137             res->corruptions++;
2138             continue;
2139         }
2140         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2141                                  sn->l1_table_offset, sn->l1_size, 0, fix,
2142                                  false);
2143         if (ret < 0) {
2144             return ret;
2145         }
2146     }
2147     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2148                                    s->snapshots_offset, s->snapshots_size);
2149     if (ret < 0) {
2150         return ret;
2151     }
2152 
2153     /* refcount data */
2154     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2155                                    s->refcount_table_offset,
2156                                    s->refcount_table_size * sizeof(uint64_t));
2157     if (ret < 0) {
2158         return ret;
2159     }
2160 
2161     /* encryption */
2162     if (s->crypto_header.length) {
2163         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2164                                        s->crypto_header.offset,
2165                                        s->crypto_header.length);
2166         if (ret < 0) {
2167             return ret;
2168         }
2169     }
2170 
2171     /* bitmaps */
2172     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2173     if (ret < 0) {
2174         return ret;
2175     }
2176 
2177     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2178 }
2179 
2180 /*
2181  * Compares the actual reference count for each cluster in the image against the
2182  * refcount as reported by the refcount structures on-disk.
2183  */
2184 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2185                               BdrvCheckMode fix, bool *rebuild,
2186                               int64_t *highest_cluster,
2187                               void *refcount_table, int64_t nb_clusters)
2188 {
2189     BDRVQcow2State *s = bs->opaque;
2190     int64_t i;
2191     uint64_t refcount1, refcount2;
2192     int ret;
2193 
2194     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2195         ret = qcow2_get_refcount(bs, i, &refcount1);
2196         if (ret < 0) {
2197             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2198                     i, strerror(-ret));
2199             res->check_errors++;
2200             continue;
2201         }
2202 
2203         refcount2 = s->get_refcount(refcount_table, i);
2204 
2205         if (refcount1 > 0 || refcount2 > 0) {
2206             *highest_cluster = i;
2207         }
2208 
2209         if (refcount1 != refcount2) {
2210             /* Check if we're allowed to fix the mismatch */
2211             int *num_fixed = NULL;
2212             if (refcount1 == 0) {
2213                 *rebuild = true;
2214             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2215                 num_fixed = &res->leaks_fixed;
2216             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2217                 num_fixed = &res->corruptions_fixed;
2218             }
2219 
2220             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2221                     " reference=%" PRIu64 "\n",
2222                    num_fixed != NULL     ? "Repairing" :
2223                    refcount1 < refcount2 ? "ERROR" :
2224                                            "Leaked",
2225                    i, refcount1, refcount2);
2226 
2227             if (num_fixed) {
2228                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2229                                       refcount_diff(refcount1, refcount2),
2230                                       refcount1 > refcount2,
2231                                       QCOW2_DISCARD_ALWAYS);
2232                 if (ret >= 0) {
2233                     (*num_fixed)++;
2234                     continue;
2235                 }
2236             }
2237 
2238             /* And if we couldn't, print an error */
2239             if (refcount1 < refcount2) {
2240                 res->corruptions++;
2241             } else {
2242                 res->leaks++;
2243             }
2244         }
2245     }
2246 }
2247 
2248 /*
2249  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2250  * the on-disk refcount structures.
2251  *
2252  * On input, *first_free_cluster tells where to start looking, and need not
2253  * actually be a free cluster; the returned offset will not be before that
2254  * cluster.  On output, *first_free_cluster points to the first gap found, even
2255  * if that gap was too small to be used as the returned offset.
2256  *
2257  * Note that *first_free_cluster is a cluster index whereas the return value is
2258  * an offset.
2259  */
2260 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2261                                    int cluster_count,
2262                                    void **refcount_table,
2263                                    int64_t *imrt_nb_clusters,
2264                                    int64_t *first_free_cluster)
2265 {
2266     BDRVQcow2State *s = bs->opaque;
2267     int64_t cluster = *first_free_cluster, i;
2268     bool first_gap = true;
2269     int contiguous_free_clusters;
2270     int ret;
2271 
2272     /* Starting at *first_free_cluster, find a range of at least cluster_count
2273      * continuously free clusters */
2274     for (contiguous_free_clusters = 0;
2275          cluster < *imrt_nb_clusters &&
2276          contiguous_free_clusters < cluster_count;
2277          cluster++)
2278     {
2279         if (!s->get_refcount(*refcount_table, cluster)) {
2280             contiguous_free_clusters++;
2281             if (first_gap) {
2282                 /* If this is the first free cluster found, update
2283                  * *first_free_cluster accordingly */
2284                 *first_free_cluster = cluster;
2285                 first_gap = false;
2286             }
2287         } else if (contiguous_free_clusters) {
2288             contiguous_free_clusters = 0;
2289         }
2290     }
2291 
2292     /* If contiguous_free_clusters is greater than zero, it contains the number
2293      * of continuously free clusters until the current cluster; the first free
2294      * cluster in the current "gap" is therefore
2295      * cluster - contiguous_free_clusters */
2296 
2297     /* If no such range could be found, grow the in-memory refcount table
2298      * accordingly to append free clusters at the end of the image */
2299     if (contiguous_free_clusters < cluster_count) {
2300         /* contiguous_free_clusters clusters are already empty at the image end;
2301          * we need cluster_count clusters; therefore, we have to allocate
2302          * cluster_count - contiguous_free_clusters new clusters at the end of
2303          * the image (which is the current value of cluster; note that cluster
2304          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2305          * the image end) */
2306         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2307                                      cluster + cluster_count
2308                                      - contiguous_free_clusters);
2309         if (ret < 0) {
2310             return ret;
2311         }
2312     }
2313 
2314     /* Go back to the first free cluster */
2315     cluster -= contiguous_free_clusters;
2316     for (i = 0; i < cluster_count; i++) {
2317         s->set_refcount(*refcount_table, cluster + i, 1);
2318     }
2319 
2320     return cluster << s->cluster_bits;
2321 }
2322 
2323 /*
2324  * Creates a new refcount structure based solely on the in-memory information
2325  * given through *refcount_table. All necessary allocations will be reflected
2326  * in that array.
2327  *
2328  * On success, the old refcount structure is leaked (it will be covered by the
2329  * new refcount structure).
2330  */
2331 static int rebuild_refcount_structure(BlockDriverState *bs,
2332                                       BdrvCheckResult *res,
2333                                       void **refcount_table,
2334                                       int64_t *nb_clusters)
2335 {
2336     BDRVQcow2State *s = bs->opaque;
2337     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2338     int64_t refblock_offset, refblock_start, refblock_index;
2339     uint32_t reftable_size = 0;
2340     uint64_t *on_disk_reftable = NULL;
2341     void *on_disk_refblock;
2342     int ret = 0;
2343     struct {
2344         uint64_t reftable_offset;
2345         uint32_t reftable_clusters;
2346     } QEMU_PACKED reftable_offset_and_clusters;
2347 
2348     qcow2_cache_empty(bs, s->refcount_block_cache);
2349 
2350 write_refblocks:
2351     for (; cluster < *nb_clusters; cluster++) {
2352         if (!s->get_refcount(*refcount_table, cluster)) {
2353             continue;
2354         }
2355 
2356         refblock_index = cluster >> s->refcount_block_bits;
2357         refblock_start = refblock_index << s->refcount_block_bits;
2358 
2359         /* Don't allocate a cluster in a refblock already written to disk */
2360         if (first_free_cluster < refblock_start) {
2361             first_free_cluster = refblock_start;
2362         }
2363         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2364                                               nb_clusters, &first_free_cluster);
2365         if (refblock_offset < 0) {
2366             fprintf(stderr, "ERROR allocating refblock: %s\n",
2367                     strerror(-refblock_offset));
2368             res->check_errors++;
2369             ret = refblock_offset;
2370             goto fail;
2371         }
2372 
2373         if (reftable_size <= refblock_index) {
2374             uint32_t old_reftable_size = reftable_size;
2375             uint64_t *new_on_disk_reftable;
2376 
2377             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2378                                      s->cluster_size) / sizeof(uint64_t);
2379             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2380                                                  reftable_size *
2381                                                  sizeof(uint64_t));
2382             if (!new_on_disk_reftable) {
2383                 res->check_errors++;
2384                 ret = -ENOMEM;
2385                 goto fail;
2386             }
2387             on_disk_reftable = new_on_disk_reftable;
2388 
2389             memset(on_disk_reftable + old_reftable_size, 0,
2390                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2391 
2392             /* The offset we have for the reftable is now no longer valid;
2393              * this will leak that range, but we can easily fix that by running
2394              * a leak-fixing check after this rebuild operation */
2395             reftable_offset = -1;
2396         } else {
2397             assert(on_disk_reftable);
2398         }
2399         on_disk_reftable[refblock_index] = refblock_offset;
2400 
2401         /* If this is apparently the last refblock (for now), try to squeeze the
2402          * reftable in */
2403         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2404             reftable_offset < 0)
2405         {
2406             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2407                                                           sizeof(uint64_t));
2408             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2409                                                   refcount_table, nb_clusters,
2410                                                   &first_free_cluster);
2411             if (reftable_offset < 0) {
2412                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2413                         strerror(-reftable_offset));
2414                 res->check_errors++;
2415                 ret = reftable_offset;
2416                 goto fail;
2417             }
2418         }
2419 
2420         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2421                                             s->cluster_size, false);
2422         if (ret < 0) {
2423             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2424             goto fail;
2425         }
2426 
2427         /* The size of *refcount_table is always cluster-aligned, therefore the
2428          * write operation will not overflow */
2429         on_disk_refblock = (void *)((char *) *refcount_table +
2430                                     refblock_index * s->cluster_size);
2431 
2432         ret = bdrv_pwrite(bs->file, refblock_offset, on_disk_refblock,
2433                           s->cluster_size);
2434         if (ret < 0) {
2435             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2436             goto fail;
2437         }
2438 
2439         /* Go to the end of this refblock */
2440         cluster = refblock_start + s->refcount_block_size - 1;
2441     }
2442 
2443     if (reftable_offset < 0) {
2444         uint64_t post_refblock_start, reftable_clusters;
2445 
2446         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2447         reftable_clusters = size_to_clusters(s,
2448                                              reftable_size * sizeof(uint64_t));
2449         /* Not pretty but simple */
2450         if (first_free_cluster < post_refblock_start) {
2451             first_free_cluster = post_refblock_start;
2452         }
2453         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2454                                               refcount_table, nb_clusters,
2455                                               &first_free_cluster);
2456         if (reftable_offset < 0) {
2457             fprintf(stderr, "ERROR allocating reftable: %s\n",
2458                     strerror(-reftable_offset));
2459             res->check_errors++;
2460             ret = reftable_offset;
2461             goto fail;
2462         }
2463 
2464         goto write_refblocks;
2465     }
2466 
2467     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2468         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2469     }
2470 
2471     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2472                                         reftable_size * sizeof(uint64_t),
2473                                         false);
2474     if (ret < 0) {
2475         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2476         goto fail;
2477     }
2478 
2479     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2480     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2481                       reftable_size * sizeof(uint64_t));
2482     if (ret < 0) {
2483         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2484         goto fail;
2485     }
2486 
2487     /* Enter new reftable into the image header */
2488     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2489     reftable_offset_and_clusters.reftable_clusters =
2490         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2491     ret = bdrv_pwrite_sync(bs->file,
2492                            offsetof(QCowHeader, refcount_table_offset),
2493                            &reftable_offset_and_clusters,
2494                            sizeof(reftable_offset_and_clusters));
2495     if (ret < 0) {
2496         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2497         goto fail;
2498     }
2499 
2500     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2501         be64_to_cpus(&on_disk_reftable[refblock_index]);
2502     }
2503     s->refcount_table = on_disk_reftable;
2504     s->refcount_table_offset = reftable_offset;
2505     s->refcount_table_size = reftable_size;
2506     update_max_refcount_table_index(s);
2507 
2508     return 0;
2509 
2510 fail:
2511     g_free(on_disk_reftable);
2512     return ret;
2513 }
2514 
2515 /*
2516  * Checks an image for refcount consistency.
2517  *
2518  * Returns 0 if no errors are found, the number of errors in case the image is
2519  * detected as corrupted, and -errno when an internal error occurred.
2520  */
2521 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2522                           BdrvCheckMode fix)
2523 {
2524     BDRVQcow2State *s = bs->opaque;
2525     BdrvCheckResult pre_compare_res;
2526     int64_t size, highest_cluster, nb_clusters;
2527     void *refcount_table = NULL;
2528     bool rebuild = false;
2529     int ret;
2530 
2531     size = bdrv_getlength(bs->file->bs);
2532     if (size < 0) {
2533         res->check_errors++;
2534         return size;
2535     }
2536 
2537     nb_clusters = size_to_clusters(s, size);
2538     if (nb_clusters > INT_MAX) {
2539         res->check_errors++;
2540         return -EFBIG;
2541     }
2542 
2543     res->bfi.total_clusters =
2544         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2545 
2546     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2547                               &nb_clusters);
2548     if (ret < 0) {
2549         goto fail;
2550     }
2551 
2552     /* In case we don't need to rebuild the refcount structure (but want to fix
2553      * something), this function is immediately called again, in which case the
2554      * result should be ignored */
2555     pre_compare_res = *res;
2556     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2557                       nb_clusters);
2558 
2559     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2560         BdrvCheckResult old_res = *res;
2561         int fresh_leaks = 0;
2562 
2563         fprintf(stderr, "Rebuilding refcount structure\n");
2564         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2565                                          &nb_clusters);
2566         if (ret < 0) {
2567             goto fail;
2568         }
2569 
2570         res->corruptions = 0;
2571         res->leaks = 0;
2572 
2573         /* Because the old reftable has been exchanged for a new one the
2574          * references have to be recalculated */
2575         rebuild = false;
2576         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2577         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2578                                   &nb_clusters);
2579         if (ret < 0) {
2580             goto fail;
2581         }
2582 
2583         if (fix & BDRV_FIX_LEAKS) {
2584             /* The old refcount structures are now leaked, fix it; the result
2585              * can be ignored, aside from leaks which were introduced by
2586              * rebuild_refcount_structure() that could not be fixed */
2587             BdrvCheckResult saved_res = *res;
2588             *res = (BdrvCheckResult){ 0 };
2589 
2590             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2591                               &highest_cluster, refcount_table, nb_clusters);
2592             if (rebuild) {
2593                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2594                         "broken\n");
2595             }
2596 
2597             /* Any leaks accounted for here were introduced by
2598              * rebuild_refcount_structure() because that function has created a
2599              * new refcount structure from scratch */
2600             fresh_leaks = res->leaks;
2601             *res = saved_res;
2602         }
2603 
2604         if (res->corruptions < old_res.corruptions) {
2605             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2606         }
2607         if (res->leaks < old_res.leaks) {
2608             res->leaks_fixed += old_res.leaks - res->leaks;
2609         }
2610         res->leaks += fresh_leaks;
2611     } else if (fix) {
2612         if (rebuild) {
2613             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2614             res->check_errors++;
2615             ret = -EIO;
2616             goto fail;
2617         }
2618 
2619         if (res->leaks || res->corruptions) {
2620             *res = pre_compare_res;
2621             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2622                               refcount_table, nb_clusters);
2623         }
2624     }
2625 
2626     /* check OFLAG_COPIED */
2627     ret = check_oflag_copied(bs, res, fix);
2628     if (ret < 0) {
2629         goto fail;
2630     }
2631 
2632     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2633     ret = 0;
2634 
2635 fail:
2636     g_free(refcount_table);
2637 
2638     return ret;
2639 }
2640 
2641 #define overlaps_with(ofs, sz) \
2642     ranges_overlap(offset, size, ofs, sz)
2643 
2644 /*
2645  * Checks if the given offset into the image file is actually free to use by
2646  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2647  * i.e. a sanity check without relying on the refcount tables.
2648  *
2649  * The ign parameter specifies what checks not to perform (being a bitmask of
2650  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2651  *
2652  * Returns:
2653  * - 0 if writing to this offset will not affect the mentioned metadata
2654  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2655  * - a negative value (-errno) indicating an error while performing a check,
2656  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2657  */
2658 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2659                                  int64_t size)
2660 {
2661     BDRVQcow2State *s = bs->opaque;
2662     int chk = s->overlap_check & ~ign;
2663     int i, j;
2664 
2665     if (!size) {
2666         return 0;
2667     }
2668 
2669     if (chk & QCOW2_OL_MAIN_HEADER) {
2670         if (offset < s->cluster_size) {
2671             return QCOW2_OL_MAIN_HEADER;
2672         }
2673     }
2674 
2675     /* align range to test to cluster boundaries */
2676     size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2677     offset = start_of_cluster(s, offset);
2678 
2679     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2680         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2681             return QCOW2_OL_ACTIVE_L1;
2682         }
2683     }
2684 
2685     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2686         if (overlaps_with(s->refcount_table_offset,
2687             s->refcount_table_size * sizeof(uint64_t))) {
2688             return QCOW2_OL_REFCOUNT_TABLE;
2689         }
2690     }
2691 
2692     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2693         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2694             return QCOW2_OL_SNAPSHOT_TABLE;
2695         }
2696     }
2697 
2698     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2699         for (i = 0; i < s->nb_snapshots; i++) {
2700             if (s->snapshots[i].l1_size &&
2701                 overlaps_with(s->snapshots[i].l1_table_offset,
2702                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2703                 return QCOW2_OL_INACTIVE_L1;
2704             }
2705         }
2706     }
2707 
2708     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2709         for (i = 0; i < s->l1_size; i++) {
2710             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2711                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2712                 s->cluster_size)) {
2713                 return QCOW2_OL_ACTIVE_L2;
2714             }
2715         }
2716     }
2717 
2718     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2719         unsigned last_entry = s->max_refcount_table_index;
2720         assert(last_entry < s->refcount_table_size);
2721         assert(last_entry + 1 == s->refcount_table_size ||
2722                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2723         for (i = 0; i <= last_entry; i++) {
2724             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2725                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2726                 s->cluster_size)) {
2727                 return QCOW2_OL_REFCOUNT_BLOCK;
2728             }
2729         }
2730     }
2731 
2732     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2733         for (i = 0; i < s->nb_snapshots; i++) {
2734             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2735             uint32_t l1_sz  = s->snapshots[i].l1_size;
2736             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2737             uint64_t *l1;
2738             int ret;
2739 
2740             ret = qcow2_validate_table(bs, l1_ofs, l1_sz, sizeof(uint64_t),
2741                                        QCOW_MAX_L1_SIZE, "", NULL);
2742             if (ret < 0) {
2743                 return ret;
2744             }
2745 
2746             l1 = g_try_malloc(l1_sz2);
2747 
2748             if (l1_sz2 && l1 == NULL) {
2749                 return -ENOMEM;
2750             }
2751 
2752             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2753             if (ret < 0) {
2754                 g_free(l1);
2755                 return ret;
2756             }
2757 
2758             for (j = 0; j < l1_sz; j++) {
2759                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2760                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2761                     g_free(l1);
2762                     return QCOW2_OL_INACTIVE_L2;
2763                 }
2764             }
2765 
2766             g_free(l1);
2767         }
2768     }
2769 
2770     if ((chk & QCOW2_OL_BITMAP_DIRECTORY) &&
2771         (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS))
2772     {
2773         if (overlaps_with(s->bitmap_directory_offset,
2774                           s->bitmap_directory_size))
2775         {
2776             return QCOW2_OL_BITMAP_DIRECTORY;
2777         }
2778     }
2779 
2780     return 0;
2781 }
2782 
2783 static const char *metadata_ol_names[] = {
2784     [QCOW2_OL_MAIN_HEADER_BITNR]        = "qcow2_header",
2785     [QCOW2_OL_ACTIVE_L1_BITNR]          = "active L1 table",
2786     [QCOW2_OL_ACTIVE_L2_BITNR]          = "active L2 table",
2787     [QCOW2_OL_REFCOUNT_TABLE_BITNR]     = "refcount table",
2788     [QCOW2_OL_REFCOUNT_BLOCK_BITNR]     = "refcount block",
2789     [QCOW2_OL_SNAPSHOT_TABLE_BITNR]     = "snapshot table",
2790     [QCOW2_OL_INACTIVE_L1_BITNR]        = "inactive L1 table",
2791     [QCOW2_OL_INACTIVE_L2_BITNR]        = "inactive L2 table",
2792     [QCOW2_OL_BITMAP_DIRECTORY_BITNR]   = "bitmap directory",
2793 };
2794 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names));
2795 
2796 /*
2797  * First performs a check for metadata overlaps (through
2798  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2799  * while performing a check), that value is returned. If an impending overlap
2800  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2801  * and -EIO returned.
2802  *
2803  * Returns 0 if there were neither overlaps nor errors while checking for
2804  * overlaps; or a negative value (-errno) on error.
2805  */
2806 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2807                                   int64_t size, bool data_file)
2808 {
2809     int ret;
2810 
2811     if (data_file && has_data_file(bs)) {
2812         return 0;
2813     }
2814 
2815     ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2816     if (ret < 0) {
2817         return ret;
2818     } else if (ret > 0) {
2819         int metadata_ol_bitnr = ctz32(ret);
2820         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2821 
2822         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2823                                 "write on metadata (overlaps with %s)",
2824                                 metadata_ol_names[metadata_ol_bitnr]);
2825         return -EIO;
2826     }
2827 
2828     return 0;
2829 }
2830 
2831 /* A pointer to a function of this type is given to walk_over_reftable(). That
2832  * function will create refblocks and pass them to a RefblockFinishOp once they
2833  * are completed (@refblock). @refblock_empty is set if the refblock is
2834  * completely empty.
2835  *
2836  * Along with the refblock, a corresponding reftable entry is passed, in the
2837  * reftable @reftable (which may be reallocated) at @reftable_index.
2838  *
2839  * @allocated should be set to true if a new cluster has been allocated.
2840  */
2841 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2842                                uint64_t reftable_index, uint64_t *reftable_size,
2843                                void *refblock, bool refblock_empty,
2844                                bool *allocated, Error **errp);
2845 
2846 /**
2847  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2848  * it is not empty) and inserts its offset into the new reftable. The size of
2849  * this new reftable is increased as required.
2850  */
2851 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2852                           uint64_t reftable_index, uint64_t *reftable_size,
2853                           void *refblock, bool refblock_empty, bool *allocated,
2854                           Error **errp)
2855 {
2856     BDRVQcow2State *s = bs->opaque;
2857     int64_t offset;
2858 
2859     if (!refblock_empty && reftable_index >= *reftable_size) {
2860         uint64_t *new_reftable;
2861         uint64_t new_reftable_size;
2862 
2863         new_reftable_size = ROUND_UP(reftable_index + 1,
2864                                      s->cluster_size / sizeof(uint64_t));
2865         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2866             error_setg(errp,
2867                        "This operation would make the refcount table grow "
2868                        "beyond the maximum size supported by QEMU, aborting");
2869             return -ENOTSUP;
2870         }
2871 
2872         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2873                                                 sizeof(uint64_t));
2874         if (!new_reftable) {
2875             error_setg(errp, "Failed to increase reftable buffer size");
2876             return -ENOMEM;
2877         }
2878 
2879         memset(new_reftable + *reftable_size, 0,
2880                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2881 
2882         *reftable      = new_reftable;
2883         *reftable_size = new_reftable_size;
2884     }
2885 
2886     if (!refblock_empty && !(*reftable)[reftable_index]) {
2887         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2888         if (offset < 0) {
2889             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2890             return offset;
2891         }
2892         (*reftable)[reftable_index] = offset;
2893         *allocated = true;
2894     }
2895 
2896     return 0;
2897 }
2898 
2899 /**
2900  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2901  * offset specified by the new reftable's entry. It does not modify the new
2902  * reftable or change any refcounts.
2903  */
2904 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2905                           uint64_t reftable_index, uint64_t *reftable_size,
2906                           void *refblock, bool refblock_empty, bool *allocated,
2907                           Error **errp)
2908 {
2909     BDRVQcow2State *s = bs->opaque;
2910     int64_t offset;
2911     int ret;
2912 
2913     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2914         offset = (*reftable)[reftable_index];
2915 
2916         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size,
2917                                             false);
2918         if (ret < 0) {
2919             error_setg_errno(errp, -ret, "Overlap check failed");
2920             return ret;
2921         }
2922 
2923         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2924         if (ret < 0) {
2925             error_setg_errno(errp, -ret, "Failed to write refblock");
2926             return ret;
2927         }
2928     } else {
2929         assert(refblock_empty);
2930     }
2931 
2932     return 0;
2933 }
2934 
2935 /**
2936  * This function walks over the existing reftable and every referenced refblock;
2937  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2938  * create an equal new entry in the passed @new_refblock. Once that
2939  * @new_refblock is completely filled, @operation will be called.
2940  *
2941  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2942  * @index is the index of the walk_over_reftable() calls and @total is the total
2943  * number of walk_over_reftable() calls per amend operation. Both are used for
2944  * calculating the parameters for the status callback.
2945  *
2946  * @allocated is set to true if a new cluster has been allocated.
2947  */
2948 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2949                               uint64_t *new_reftable_index,
2950                               uint64_t *new_reftable_size,
2951                               void *new_refblock, int new_refblock_size,
2952                               int new_refcount_bits,
2953                               RefblockFinishOp *operation, bool *allocated,
2954                               Qcow2SetRefcountFunc *new_set_refcount,
2955                               BlockDriverAmendStatusCB *status_cb,
2956                               void *cb_opaque, int index, int total,
2957                               Error **errp)
2958 {
2959     BDRVQcow2State *s = bs->opaque;
2960     uint64_t reftable_index;
2961     bool new_refblock_empty = true;
2962     int refblock_index;
2963     int new_refblock_index = 0;
2964     int ret;
2965 
2966     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2967          reftable_index++)
2968     {
2969         uint64_t refblock_offset = s->refcount_table[reftable_index]
2970                                  & REFT_OFFSET_MASK;
2971 
2972         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2973                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2974 
2975         if (refblock_offset) {
2976             void *refblock;
2977 
2978             if (offset_into_cluster(s, refblock_offset)) {
2979                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2980                                         PRIx64 " unaligned (reftable index: %#"
2981                                         PRIx64 ")", refblock_offset,
2982                                         reftable_index);
2983                 error_setg(errp,
2984                            "Image is corrupt (unaligned refblock offset)");
2985                 return -EIO;
2986             }
2987 
2988             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2989                                   &refblock);
2990             if (ret < 0) {
2991                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2992                 return ret;
2993             }
2994 
2995             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2996                  refblock_index++)
2997             {
2998                 uint64_t refcount;
2999 
3000                 if (new_refblock_index >= new_refblock_size) {
3001                     /* new_refblock is now complete */
3002                     ret = operation(bs, new_reftable, *new_reftable_index,
3003                                     new_reftable_size, new_refblock,
3004                                     new_refblock_empty, allocated, errp);
3005                     if (ret < 0) {
3006                         qcow2_cache_put(s->refcount_block_cache, &refblock);
3007                         return ret;
3008                     }
3009 
3010                     (*new_reftable_index)++;
3011                     new_refblock_index = 0;
3012                     new_refblock_empty = true;
3013                 }
3014 
3015                 refcount = s->get_refcount(refblock, refblock_index);
3016                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
3017                     uint64_t offset;
3018 
3019                     qcow2_cache_put(s->refcount_block_cache, &refblock);
3020 
3021                     offset = ((reftable_index << s->refcount_block_bits)
3022                               + refblock_index) << s->cluster_bits;
3023 
3024                     error_setg(errp, "Cannot decrease refcount entry width to "
3025                                "%i bits: Cluster at offset %#" PRIx64 " has a "
3026                                "refcount of %" PRIu64, new_refcount_bits,
3027                                offset, refcount);
3028                     return -EINVAL;
3029                 }
3030 
3031                 if (new_set_refcount) {
3032                     new_set_refcount(new_refblock, new_refblock_index++,
3033                                      refcount);
3034                 } else {
3035                     new_refblock_index++;
3036                 }
3037                 new_refblock_empty = new_refblock_empty && refcount == 0;
3038             }
3039 
3040             qcow2_cache_put(s->refcount_block_cache, &refblock);
3041         } else {
3042             /* No refblock means every refcount is 0 */
3043             for (refblock_index = 0; refblock_index < s->refcount_block_size;
3044                  refblock_index++)
3045             {
3046                 if (new_refblock_index >= new_refblock_size) {
3047                     /* new_refblock is now complete */
3048                     ret = operation(bs, new_reftable, *new_reftable_index,
3049                                     new_reftable_size, new_refblock,
3050                                     new_refblock_empty, allocated, errp);
3051                     if (ret < 0) {
3052                         return ret;
3053                     }
3054 
3055                     (*new_reftable_index)++;
3056                     new_refblock_index = 0;
3057                     new_refblock_empty = true;
3058                 }
3059 
3060                 if (new_set_refcount) {
3061                     new_set_refcount(new_refblock, new_refblock_index++, 0);
3062                 } else {
3063                     new_refblock_index++;
3064                 }
3065             }
3066         }
3067     }
3068 
3069     if (new_refblock_index > 0) {
3070         /* Complete the potentially existing partially filled final refblock */
3071         if (new_set_refcount) {
3072             for (; new_refblock_index < new_refblock_size;
3073                  new_refblock_index++)
3074             {
3075                 new_set_refcount(new_refblock, new_refblock_index, 0);
3076             }
3077         }
3078 
3079         ret = operation(bs, new_reftable, *new_reftable_index,
3080                         new_reftable_size, new_refblock, new_refblock_empty,
3081                         allocated, errp);
3082         if (ret < 0) {
3083             return ret;
3084         }
3085 
3086         (*new_reftable_index)++;
3087     }
3088 
3089     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
3090               (uint64_t)total * s->refcount_table_size, cb_opaque);
3091 
3092     return 0;
3093 }
3094 
3095 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
3096                                 BlockDriverAmendStatusCB *status_cb,
3097                                 void *cb_opaque, Error **errp)
3098 {
3099     BDRVQcow2State *s = bs->opaque;
3100     Qcow2GetRefcountFunc *new_get_refcount;
3101     Qcow2SetRefcountFunc *new_set_refcount;
3102     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
3103     uint64_t *new_reftable = NULL, new_reftable_size = 0;
3104     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
3105     uint64_t new_reftable_index = 0;
3106     uint64_t i;
3107     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
3108     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
3109     int old_refcount_order;
3110     int walk_index = 0;
3111     int ret;
3112     bool new_allocation;
3113 
3114     assert(s->qcow_version >= 3);
3115     assert(refcount_order >= 0 && refcount_order <= 6);
3116 
3117     /* see qcow2_open() */
3118     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3119 
3120     new_get_refcount = get_refcount_funcs[refcount_order];
3121     new_set_refcount = set_refcount_funcs[refcount_order];
3122 
3123 
3124     do {
3125         int total_walks;
3126 
3127         new_allocation = false;
3128 
3129         /* At least we have to do this walk and the one which writes the
3130          * refblocks; also, at least we have to do this loop here at least
3131          * twice (normally), first to do the allocations, and second to
3132          * determine that everything is correctly allocated, this then makes
3133          * three walks in total */
3134         total_walks = MAX(walk_index + 2, 3);
3135 
3136         /* First, allocate the structures so they are present in the refcount
3137          * structures */
3138         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3139                                  &new_reftable_size, NULL, new_refblock_size,
3140                                  new_refcount_bits, &alloc_refblock,
3141                                  &new_allocation, NULL, status_cb, cb_opaque,
3142                                  walk_index++, total_walks, errp);
3143         if (ret < 0) {
3144             goto done;
3145         }
3146 
3147         new_reftable_index = 0;
3148 
3149         if (new_allocation) {
3150             if (new_reftable_offset) {
3151                 qcow2_free_clusters(bs, new_reftable_offset,
3152                                     allocated_reftable_size * sizeof(uint64_t),
3153                                     QCOW2_DISCARD_NEVER);
3154             }
3155 
3156             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3157                                                            sizeof(uint64_t));
3158             if (new_reftable_offset < 0) {
3159                 error_setg_errno(errp, -new_reftable_offset,
3160                                  "Failed to allocate the new reftable");
3161                 ret = new_reftable_offset;
3162                 goto done;
3163             }
3164             allocated_reftable_size = new_reftable_size;
3165         }
3166     } while (new_allocation);
3167 
3168     /* Second, write the new refblocks */
3169     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3170                              &new_reftable_size, new_refblock,
3171                              new_refblock_size, new_refcount_bits,
3172                              &flush_refblock, &new_allocation, new_set_refcount,
3173                              status_cb, cb_opaque, walk_index, walk_index + 1,
3174                              errp);
3175     if (ret < 0) {
3176         goto done;
3177     }
3178     assert(!new_allocation);
3179 
3180 
3181     /* Write the new reftable */
3182     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3183                                         new_reftable_size * sizeof(uint64_t),
3184                                         false);
3185     if (ret < 0) {
3186         error_setg_errno(errp, -ret, "Overlap check failed");
3187         goto done;
3188     }
3189 
3190     for (i = 0; i < new_reftable_size; i++) {
3191         cpu_to_be64s(&new_reftable[i]);
3192     }
3193 
3194     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
3195                       new_reftable_size * sizeof(uint64_t));
3196 
3197     for (i = 0; i < new_reftable_size; i++) {
3198         be64_to_cpus(&new_reftable[i]);
3199     }
3200 
3201     if (ret < 0) {
3202         error_setg_errno(errp, -ret, "Failed to write the new reftable");
3203         goto done;
3204     }
3205 
3206 
3207     /* Empty the refcount cache */
3208     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3209     if (ret < 0) {
3210         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3211         goto done;
3212     }
3213 
3214     /* Update the image header to point to the new reftable; this only updates
3215      * the fields which are relevant to qcow2_update_header(); other fields
3216      * such as s->refcount_table or s->refcount_bits stay stale for now
3217      * (because we have to restore everything if qcow2_update_header() fails) */
3218     old_refcount_order  = s->refcount_order;
3219     old_reftable_size   = s->refcount_table_size;
3220     old_reftable_offset = s->refcount_table_offset;
3221 
3222     s->refcount_order        = refcount_order;
3223     s->refcount_table_size   = new_reftable_size;
3224     s->refcount_table_offset = new_reftable_offset;
3225 
3226     ret = qcow2_update_header(bs);
3227     if (ret < 0) {
3228         s->refcount_order        = old_refcount_order;
3229         s->refcount_table_size   = old_reftable_size;
3230         s->refcount_table_offset = old_reftable_offset;
3231         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3232         goto done;
3233     }
3234 
3235     /* Now update the rest of the in-memory information */
3236     old_reftable = s->refcount_table;
3237     s->refcount_table = new_reftable;
3238     update_max_refcount_table_index(s);
3239 
3240     s->refcount_bits = 1 << refcount_order;
3241     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3242     s->refcount_max += s->refcount_max - 1;
3243 
3244     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3245     s->refcount_block_size = 1 << s->refcount_block_bits;
3246 
3247     s->get_refcount = new_get_refcount;
3248     s->set_refcount = new_set_refcount;
3249 
3250     /* For cleaning up all old refblocks and the old reftable below the "done"
3251      * label */
3252     new_reftable        = old_reftable;
3253     new_reftable_size   = old_reftable_size;
3254     new_reftable_offset = old_reftable_offset;
3255 
3256 done:
3257     if (new_reftable) {
3258         /* On success, new_reftable actually points to the old reftable (and
3259          * new_reftable_size is the old reftable's size); but that is just
3260          * fine */
3261         for (i = 0; i < new_reftable_size; i++) {
3262             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3263             if (offset) {
3264                 qcow2_free_clusters(bs, offset, s->cluster_size,
3265                                     QCOW2_DISCARD_OTHER);
3266             }
3267         }
3268         g_free(new_reftable);
3269 
3270         if (new_reftable_offset > 0) {
3271             qcow2_free_clusters(bs, new_reftable_offset,
3272                                 new_reftable_size * sizeof(uint64_t),
3273                                 QCOW2_DISCARD_OTHER);
3274         }
3275     }
3276 
3277     qemu_vfree(new_refblock);
3278     return ret;
3279 }
3280 
3281 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3282 {
3283     BDRVQcow2State *s = bs->opaque;
3284     uint32_t index = offset_to_reftable_index(s, offset);
3285     int64_t covering_refblock_offset = 0;
3286 
3287     if (index < s->refcount_table_size) {
3288         covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3289     }
3290     if (!covering_refblock_offset) {
3291         qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3292                                 "not covered by the refcount structures",
3293                                 offset);
3294         return -EIO;
3295     }
3296 
3297     return covering_refblock_offset;
3298 }
3299 
3300 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3301                                         uint64_t discard_block_offs)
3302 {
3303     BDRVQcow2State *s = bs->opaque;
3304     int64_t refblock_offs;
3305     uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3306     uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3307     void *refblock;
3308     int ret;
3309 
3310     refblock_offs = get_refblock_offset(bs, discard_block_offs);
3311     if (refblock_offs < 0) {
3312         return refblock_offs;
3313     }
3314 
3315     assert(discard_block_offs != 0);
3316 
3317     ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3318                           &refblock);
3319     if (ret < 0) {
3320         return ret;
3321     }
3322 
3323     if (s->get_refcount(refblock, block_index) != 1) {
3324         qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3325                                 " refblock offset %#" PRIx64
3326                                 ", reftable index %u"
3327                                 ", block offset %#" PRIx64
3328                                 ", refcount %#" PRIx64,
3329                                 refblock_offs,
3330                                 offset_to_reftable_index(s, discard_block_offs),
3331                                 discard_block_offs,
3332                                 s->get_refcount(refblock, block_index));
3333         qcow2_cache_put(s->refcount_block_cache, &refblock);
3334         return -EINVAL;
3335     }
3336     s->set_refcount(refblock, block_index, 0);
3337 
3338     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3339 
3340     qcow2_cache_put(s->refcount_block_cache, &refblock);
3341 
3342     if (cluster_index < s->free_cluster_index) {
3343         s->free_cluster_index = cluster_index;
3344     }
3345 
3346     refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3347                                            discard_block_offs);
3348     if (refblock) {
3349         /* discard refblock from the cache if refblock is cached */
3350         qcow2_cache_discard(s->refcount_block_cache, refblock);
3351     }
3352     update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3353 
3354     return 0;
3355 }
3356 
3357 int qcow2_shrink_reftable(BlockDriverState *bs)
3358 {
3359     BDRVQcow2State *s = bs->opaque;
3360     uint64_t *reftable_tmp =
3361         g_malloc(s->refcount_table_size * sizeof(uint64_t));
3362     int i, ret;
3363 
3364     for (i = 0; i < s->refcount_table_size; i++) {
3365         int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3366         void *refblock;
3367         bool unused_block;
3368 
3369         if (refblock_offs == 0) {
3370             reftable_tmp[i] = 0;
3371             continue;
3372         }
3373         ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3374                               &refblock);
3375         if (ret < 0) {
3376             goto out;
3377         }
3378 
3379         /* the refblock has own reference */
3380         if (i == offset_to_reftable_index(s, refblock_offs)) {
3381             uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3382                                    (s->refcount_block_size - 1);
3383             uint64_t refcount = s->get_refcount(refblock, block_index);
3384 
3385             s->set_refcount(refblock, block_index, 0);
3386 
3387             unused_block = buffer_is_zero(refblock, s->cluster_size);
3388 
3389             s->set_refcount(refblock, block_index, refcount);
3390         } else {
3391             unused_block = buffer_is_zero(refblock, s->cluster_size);
3392         }
3393         qcow2_cache_put(s->refcount_block_cache, &refblock);
3394 
3395         reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3396     }
3397 
3398     ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3399                            s->refcount_table_size * sizeof(uint64_t));
3400     /*
3401      * If the write in the reftable failed the image may contain a partially
3402      * overwritten reftable. In this case it would be better to clear the
3403      * reftable in memory to avoid possible image corruption.
3404      */
3405     for (i = 0; i < s->refcount_table_size; i++) {
3406         if (s->refcount_table[i] && !reftable_tmp[i]) {
3407             if (ret == 0) {
3408                 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3409                                                        REFT_OFFSET_MASK);
3410             }
3411             s->refcount_table[i] = 0;
3412         }
3413     }
3414 
3415     if (!s->cache_discards) {
3416         qcow2_process_discards(bs, ret);
3417     }
3418 
3419 out:
3420     g_free(reftable_tmp);
3421     return ret;
3422 }
3423 
3424 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3425 {
3426     BDRVQcow2State *s = bs->opaque;
3427     int64_t i;
3428 
3429     for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3430         uint64_t refcount;
3431         int ret = qcow2_get_refcount(bs, i, &refcount);
3432         if (ret < 0) {
3433             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3434                     i, strerror(-ret));
3435             return ret;
3436         }
3437         if (refcount > 0) {
3438             return i;
3439         }
3440     }
3441     qcow2_signal_corruption(bs, true, -1, -1,
3442                             "There are no references in the refcount table.");
3443     return -EIO;
3444 }
3445