xref: /openbmc/qemu/block/qcow2-refcount.c (revision 520e210c)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 #include "qemu/cutils.h"
33 
34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
35                                     uint64_t max);
36 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
37                             int64_t offset, int64_t length, uint64_t addend,
38                             bool decrease, enum qcow2_discard_type type);
39 
40 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
46 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
47 
48 static void set_refcount_ro0(void *refcount_array, uint64_t index,
49                              uint64_t value);
50 static void set_refcount_ro1(void *refcount_array, uint64_t index,
51                              uint64_t value);
52 static void set_refcount_ro2(void *refcount_array, uint64_t index,
53                              uint64_t value);
54 static void set_refcount_ro3(void *refcount_array, uint64_t index,
55                              uint64_t value);
56 static void set_refcount_ro4(void *refcount_array, uint64_t index,
57                              uint64_t value);
58 static void set_refcount_ro5(void *refcount_array, uint64_t index,
59                              uint64_t value);
60 static void set_refcount_ro6(void *refcount_array, uint64_t index,
61                              uint64_t value);
62 
63 
64 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
65     &get_refcount_ro0,
66     &get_refcount_ro1,
67     &get_refcount_ro2,
68     &get_refcount_ro3,
69     &get_refcount_ro4,
70     &get_refcount_ro5,
71     &get_refcount_ro6
72 };
73 
74 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
75     &set_refcount_ro0,
76     &set_refcount_ro1,
77     &set_refcount_ro2,
78     &set_refcount_ro3,
79     &set_refcount_ro4,
80     &set_refcount_ro5,
81     &set_refcount_ro6
82 };
83 
84 
85 /*********************************************************/
86 /* refcount handling */
87 
88 static void update_max_refcount_table_index(BDRVQcow2State *s)
89 {
90     unsigned i = s->refcount_table_size - 1;
91     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
92         i--;
93     }
94     /* Set s->max_refcount_table_index to the index of the last used entry */
95     s->max_refcount_table_index = i;
96 }
97 
98 int qcow2_refcount_init(BlockDriverState *bs)
99 {
100     BDRVQcow2State *s = bs->opaque;
101     unsigned int refcount_table_size2, i;
102     int ret;
103 
104     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
105 
106     s->get_refcount = get_refcount_funcs[s->refcount_order];
107     s->set_refcount = set_refcount_funcs[s->refcount_order];
108 
109     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
110     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
111     s->refcount_table = g_try_malloc(refcount_table_size2);
112 
113     if (s->refcount_table_size > 0) {
114         if (s->refcount_table == NULL) {
115             ret = -ENOMEM;
116             goto fail;
117         }
118         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
119         ret = bdrv_pread(bs->file, s->refcount_table_offset,
120                          s->refcount_table, refcount_table_size2);
121         if (ret < 0) {
122             goto fail;
123         }
124         for(i = 0; i < s->refcount_table_size; i++)
125             be64_to_cpus(&s->refcount_table[i]);
126         update_max_refcount_table_index(s);
127     }
128     return 0;
129  fail:
130     return ret;
131 }
132 
133 void qcow2_refcount_close(BlockDriverState *bs)
134 {
135     BDRVQcow2State *s = bs->opaque;
136     g_free(s->refcount_table);
137 }
138 
139 
140 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
141 {
142     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
143 }
144 
145 static void set_refcount_ro0(void *refcount_array, uint64_t index,
146                              uint64_t value)
147 {
148     assert(!(value >> 1));
149     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
150     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
151 }
152 
153 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
154 {
155     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
156            & 0x3;
157 }
158 
159 static void set_refcount_ro1(void *refcount_array, uint64_t index,
160                              uint64_t value)
161 {
162     assert(!(value >> 2));
163     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
164     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
165 }
166 
167 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
168 {
169     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
170            & 0xf;
171 }
172 
173 static void set_refcount_ro2(void *refcount_array, uint64_t index,
174                              uint64_t value)
175 {
176     assert(!(value >> 4));
177     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
178     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
179 }
180 
181 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
182 {
183     return ((const uint8_t *)refcount_array)[index];
184 }
185 
186 static void set_refcount_ro3(void *refcount_array, uint64_t index,
187                              uint64_t value)
188 {
189     assert(!(value >> 8));
190     ((uint8_t *)refcount_array)[index] = value;
191 }
192 
193 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
194 {
195     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
196 }
197 
198 static void set_refcount_ro4(void *refcount_array, uint64_t index,
199                              uint64_t value)
200 {
201     assert(!(value >> 16));
202     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
203 }
204 
205 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
206 {
207     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
208 }
209 
210 static void set_refcount_ro5(void *refcount_array, uint64_t index,
211                              uint64_t value)
212 {
213     assert(!(value >> 32));
214     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
215 }
216 
217 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
218 {
219     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
220 }
221 
222 static void set_refcount_ro6(void *refcount_array, uint64_t index,
223                              uint64_t value)
224 {
225     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
226 }
227 
228 
229 static int load_refcount_block(BlockDriverState *bs,
230                                int64_t refcount_block_offset,
231                                void **refcount_block)
232 {
233     BDRVQcow2State *s = bs->opaque;
234 
235     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
236     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
237                            refcount_block);
238 }
239 
240 /*
241  * Retrieves the refcount of the cluster given by its index and stores it in
242  * *refcount. Returns 0 on success and -errno on failure.
243  */
244 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
245                        uint64_t *refcount)
246 {
247     BDRVQcow2State *s = bs->opaque;
248     uint64_t refcount_table_index, block_index;
249     int64_t refcount_block_offset;
250     int ret;
251     void *refcount_block;
252 
253     refcount_table_index = cluster_index >> s->refcount_block_bits;
254     if (refcount_table_index >= s->refcount_table_size) {
255         *refcount = 0;
256         return 0;
257     }
258     refcount_block_offset =
259         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
260     if (!refcount_block_offset) {
261         *refcount = 0;
262         return 0;
263     }
264 
265     if (offset_into_cluster(s, refcount_block_offset)) {
266         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
267                                 " unaligned (reftable index: %#" PRIx64 ")",
268                                 refcount_block_offset, refcount_table_index);
269         return -EIO;
270     }
271 
272     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
273                           &refcount_block);
274     if (ret < 0) {
275         return ret;
276     }
277 
278     block_index = cluster_index & (s->refcount_block_size - 1);
279     *refcount = s->get_refcount(refcount_block, block_index);
280 
281     qcow2_cache_put(s->refcount_block_cache, &refcount_block);
282 
283     return 0;
284 }
285 
286 /* Checks if two offsets are described by the same refcount block */
287 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
288     uint64_t offset_b)
289 {
290     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
291     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
292 
293     return (block_a == block_b);
294 }
295 
296 /*
297  * Loads a refcount block. If it doesn't exist yet, it is allocated first
298  * (including growing the refcount table if needed).
299  *
300  * Returns 0 on success or -errno in error case
301  */
302 static int alloc_refcount_block(BlockDriverState *bs,
303                                 int64_t cluster_index, void **refcount_block)
304 {
305     BDRVQcow2State *s = bs->opaque;
306     unsigned int refcount_table_index;
307     int64_t ret;
308 
309     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
310 
311     /* Find the refcount block for the given cluster */
312     refcount_table_index = cluster_index >> s->refcount_block_bits;
313 
314     if (refcount_table_index < s->refcount_table_size) {
315 
316         uint64_t refcount_block_offset =
317             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
318 
319         /* If it's already there, we're done */
320         if (refcount_block_offset) {
321             if (offset_into_cluster(s, refcount_block_offset)) {
322                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
323                                         PRIx64 " unaligned (reftable index: "
324                                         "%#x)", refcount_block_offset,
325                                         refcount_table_index);
326                 return -EIO;
327             }
328 
329              return load_refcount_block(bs, refcount_block_offset,
330                                         refcount_block);
331         }
332     }
333 
334     /*
335      * If we came here, we need to allocate something. Something is at least
336      * a cluster for the new refcount block. It may also include a new refcount
337      * table if the old refcount table is too small.
338      *
339      * Note that allocating clusters here needs some special care:
340      *
341      * - We can't use the normal qcow2_alloc_clusters(), it would try to
342      *   increase the refcount and very likely we would end up with an endless
343      *   recursion. Instead we must place the refcount blocks in a way that
344      *   they can describe them themselves.
345      *
346      * - We need to consider that at this point we are inside update_refcounts
347      *   and potentially doing an initial refcount increase. This means that
348      *   some clusters have already been allocated by the caller, but their
349      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
350      *   need to return -EAGAIN to signal the caller that it needs to restart
351      *   the search for free clusters.
352      *
353      * - alloc_clusters_noref and qcow2_free_clusters may load a different
354      *   refcount block into the cache
355      */
356 
357     *refcount_block = NULL;
358 
359     /* We write to the refcount table, so we might depend on L2 tables */
360     ret = qcow2_cache_flush(bs, s->l2_table_cache);
361     if (ret < 0) {
362         return ret;
363     }
364 
365     /* Allocate the refcount block itself and mark it as used */
366     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX);
367     if (new_block < 0) {
368         return new_block;
369     }
370 
371     /* The offset must fit in the offset field of the refcount table entry */
372     assert((new_block & REFT_OFFSET_MASK) == new_block);
373 
374     /* If we're allocating the block at offset 0 then something is wrong */
375     if (new_block == 0) {
376         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
377                                 "allocation of refcount block at offset 0");
378         return -EIO;
379     }
380 
381 #ifdef DEBUG_ALLOC2
382     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
383         " at %" PRIx64 "\n",
384         refcount_table_index, cluster_index << s->cluster_bits, new_block);
385 #endif
386 
387     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
388         /* Zero the new refcount block before updating it */
389         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
390                                     refcount_block);
391         if (ret < 0) {
392             goto fail;
393         }
394 
395         memset(*refcount_block, 0, s->cluster_size);
396 
397         /* The block describes itself, need to update the cache */
398         int block_index = (new_block >> s->cluster_bits) &
399             (s->refcount_block_size - 1);
400         s->set_refcount(*refcount_block, block_index, 1);
401     } else {
402         /* Described somewhere else. This can recurse at most twice before we
403          * arrive at a block that describes itself. */
404         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
405                               QCOW2_DISCARD_NEVER);
406         if (ret < 0) {
407             goto fail;
408         }
409 
410         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
411         if (ret < 0) {
412             goto fail;
413         }
414 
415         /* Initialize the new refcount block only after updating its refcount,
416          * update_refcount uses the refcount cache itself */
417         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
418                                     refcount_block);
419         if (ret < 0) {
420             goto fail;
421         }
422 
423         memset(*refcount_block, 0, s->cluster_size);
424     }
425 
426     /* Now the new refcount block needs to be written to disk */
427     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
428     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
429     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
430     if (ret < 0) {
431         goto fail;
432     }
433 
434     /* If the refcount table is big enough, just hook the block up there */
435     if (refcount_table_index < s->refcount_table_size) {
436         uint64_t data64 = cpu_to_be64(new_block);
437         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
438         ret = bdrv_pwrite_sync(bs->file,
439             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
440             &data64, sizeof(data64));
441         if (ret < 0) {
442             goto fail;
443         }
444 
445         s->refcount_table[refcount_table_index] = new_block;
446         /* If there's a hole in s->refcount_table then it can happen
447          * that refcount_table_index < s->max_refcount_table_index */
448         s->max_refcount_table_index =
449             MAX(s->max_refcount_table_index, refcount_table_index);
450 
451         /* The new refcount block may be where the caller intended to put its
452          * data, so let it restart the search. */
453         return -EAGAIN;
454     }
455 
456     qcow2_cache_put(s->refcount_block_cache, refcount_block);
457 
458     /*
459      * If we come here, we need to grow the refcount table. Again, a new
460      * refcount table needs some space and we can't simply allocate to avoid
461      * endless recursion.
462      *
463      * Therefore let's grab new refcount blocks at the end of the image, which
464      * will describe themselves and the new refcount table. This way we can
465      * reference them only in the new table and do the switch to the new
466      * refcount table at once without producing an inconsistent state in
467      * between.
468      */
469     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
470 
471     /* Calculate the number of refcount blocks needed so far; this will be the
472      * basis for calculating the index of the first cluster used for the
473      * self-describing refcount structures which we are about to create.
474      *
475      * Because we reached this point, there cannot be any refcount entries for
476      * cluster_index or higher indices yet. However, because new_block has been
477      * allocated to describe that cluster (and it will assume this role later
478      * on), we cannot use that index; also, new_block may actually have a higher
479      * cluster index than cluster_index, so it needs to be taken into account
480      * here (and 1 needs to be added to its value because that cluster is used).
481      */
482     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
483                                             (new_block >> s->cluster_bits) + 1),
484                                         s->refcount_block_size);
485 
486     /* Create the new refcount table and blocks */
487     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
488         s->cluster_size;
489 
490     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
491                               refcount_table_index, new_block);
492     if (ret < 0) {
493         return ret;
494     }
495 
496     ret = load_refcount_block(bs, new_block, refcount_block);
497     if (ret < 0) {
498         return ret;
499     }
500 
501     /* If we were trying to do the initial refcount update for some cluster
502      * allocation, we might have used the same clusters to store newly
503      * allocated metadata. Make the caller search some new space. */
504     return -EAGAIN;
505 
506 fail:
507     if (*refcount_block != NULL) {
508         qcow2_cache_put(s->refcount_block_cache, refcount_block);
509     }
510     return ret;
511 }
512 
513 /*
514  * Starting at @start_offset, this function creates new self-covering refcount
515  * structures: A new refcount table and refcount blocks which cover all of
516  * themselves, and a number of @additional_clusters beyond their end.
517  * @start_offset must be at the end of the image file, that is, there must be
518  * only empty space beyond it.
519  * If @exact_size is false, the refcount table will have 50 % more entries than
520  * necessary so it will not need to grow again soon.
521  * If @new_refblock_offset is not zero, it contains the offset of a refcount
522  * block that should be entered into the new refcount table at index
523  * @new_refblock_index.
524  *
525  * Returns: The offset after the new refcount structures (i.e. where the
526  *          @additional_clusters may be placed) on success, -errno on error.
527  */
528 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
529                             uint64_t additional_clusters, bool exact_size,
530                             int new_refblock_index,
531                             uint64_t new_refblock_offset)
532 {
533     BDRVQcow2State *s = bs->opaque;
534     uint64_t total_refblock_count_u64, additional_refblock_count;
535     int total_refblock_count, table_size, area_reftable_index, table_clusters;
536     int i;
537     uint64_t table_offset, block_offset, end_offset;
538     int ret;
539     uint64_t *new_table;
540 
541     assert(!(start_offset % s->cluster_size));
542 
543     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
544                                  additional_clusters,
545                                  s->cluster_size, s->refcount_order,
546                                  !exact_size, &total_refblock_count_u64);
547     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
548         return -EFBIG;
549     }
550     total_refblock_count = total_refblock_count_u64;
551 
552     /* Index in the refcount table of the first refcount block to cover the area
553      * of refcount structures we are about to create; we know that
554      * @total_refblock_count can cover @start_offset, so this will definitely
555      * fit into an int. */
556     area_reftable_index = (start_offset / s->cluster_size) /
557                           s->refcount_block_size;
558 
559     if (exact_size) {
560         table_size = total_refblock_count;
561     } else {
562         table_size = total_refblock_count +
563                      DIV_ROUND_UP(total_refblock_count, 2);
564     }
565     /* The qcow2 file can only store the reftable size in number of clusters */
566     table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
567     table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
568 
569     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
570         return -EFBIG;
571     }
572 
573     new_table = g_try_new0(uint64_t, table_size);
574 
575     assert(table_size > 0);
576     if (new_table == NULL) {
577         ret = -ENOMEM;
578         goto fail;
579     }
580 
581     /* Fill the new refcount table */
582     if (table_size > s->max_refcount_table_index) {
583         /* We're actually growing the reftable */
584         memcpy(new_table, s->refcount_table,
585                (s->max_refcount_table_index + 1) * sizeof(uint64_t));
586     } else {
587         /* Improbable case: We're shrinking the reftable. However, the caller
588          * has assured us that there is only empty space beyond @start_offset,
589          * so we can simply drop all of the refblocks that won't fit into the
590          * new reftable. */
591         memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
592     }
593 
594     if (new_refblock_offset) {
595         assert(new_refblock_index < total_refblock_count);
596         new_table[new_refblock_index] = new_refblock_offset;
597     }
598 
599     /* Count how many new refblocks we have to create */
600     additional_refblock_count = 0;
601     for (i = area_reftable_index; i < total_refblock_count; i++) {
602         if (!new_table[i]) {
603             additional_refblock_count++;
604         }
605     }
606 
607     table_offset = start_offset + additional_refblock_count * s->cluster_size;
608     end_offset = table_offset + table_clusters * s->cluster_size;
609 
610     /* Fill the refcount blocks, and create new ones, if necessary */
611     block_offset = start_offset;
612     for (i = area_reftable_index; i < total_refblock_count; i++) {
613         void *refblock_data;
614         uint64_t first_offset_covered;
615 
616         /* Reuse an existing refblock if possible, create a new one otherwise */
617         if (new_table[i]) {
618             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
619                                   &refblock_data);
620             if (ret < 0) {
621                 goto fail;
622             }
623         } else {
624             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
625                                         block_offset, &refblock_data);
626             if (ret < 0) {
627                 goto fail;
628             }
629             memset(refblock_data, 0, s->cluster_size);
630             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
631                                          refblock_data);
632 
633             new_table[i] = block_offset;
634             block_offset += s->cluster_size;
635         }
636 
637         /* First host offset covered by this refblock */
638         first_offset_covered = (uint64_t)i * s->refcount_block_size *
639                                s->cluster_size;
640         if (first_offset_covered < end_offset) {
641             int j, end_index;
642 
643             /* Set the refcount of all of the new refcount structures to 1 */
644 
645             if (first_offset_covered < start_offset) {
646                 assert(i == area_reftable_index);
647                 j = (start_offset - first_offset_covered) / s->cluster_size;
648                 assert(j < s->refcount_block_size);
649             } else {
650                 j = 0;
651             }
652 
653             end_index = MIN((end_offset - first_offset_covered) /
654                             s->cluster_size,
655                             s->refcount_block_size);
656 
657             for (; j < end_index; j++) {
658                 /* The caller guaranteed us this space would be empty */
659                 assert(s->get_refcount(refblock_data, j) == 0);
660                 s->set_refcount(refblock_data, j, 1);
661             }
662 
663             qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
664                                          refblock_data);
665         }
666 
667         qcow2_cache_put(s->refcount_block_cache, &refblock_data);
668     }
669 
670     assert(block_offset == table_offset);
671 
672     /* Write refcount blocks to disk */
673     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
674     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
675     if (ret < 0) {
676         goto fail;
677     }
678 
679     /* Write refcount table to disk */
680     for (i = 0; i < total_refblock_count; i++) {
681         cpu_to_be64s(&new_table[i]);
682     }
683 
684     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
685     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
686         table_size * sizeof(uint64_t));
687     if (ret < 0) {
688         goto fail;
689     }
690 
691     for (i = 0; i < total_refblock_count; i++) {
692         be64_to_cpus(&new_table[i]);
693     }
694 
695     /* Hook up the new refcount table in the qcow2 header */
696     struct QEMU_PACKED {
697         uint64_t d64;
698         uint32_t d32;
699     } data;
700     data.d64 = cpu_to_be64(table_offset);
701     data.d32 = cpu_to_be32(table_clusters);
702     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
703     ret = bdrv_pwrite_sync(bs->file,
704                            offsetof(QCowHeader, refcount_table_offset),
705                            &data, sizeof(data));
706     if (ret < 0) {
707         goto fail;
708     }
709 
710     /* And switch it in memory */
711     uint64_t old_table_offset = s->refcount_table_offset;
712     uint64_t old_table_size = s->refcount_table_size;
713 
714     g_free(s->refcount_table);
715     s->refcount_table = new_table;
716     s->refcount_table_size = table_size;
717     s->refcount_table_offset = table_offset;
718     update_max_refcount_table_index(s);
719 
720     /* Free old table. */
721     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
722                         QCOW2_DISCARD_OTHER);
723 
724     return end_offset;
725 
726 fail:
727     g_free(new_table);
728     return ret;
729 }
730 
731 void qcow2_process_discards(BlockDriverState *bs, int ret)
732 {
733     BDRVQcow2State *s = bs->opaque;
734     Qcow2DiscardRegion *d, *next;
735 
736     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
737         QTAILQ_REMOVE(&s->discards, d, next);
738 
739         /* Discard is optional, ignore the return value */
740         if (ret >= 0) {
741             bdrv_pdiscard(bs->file, d->offset, d->bytes);
742         }
743 
744         g_free(d);
745     }
746 }
747 
748 static void update_refcount_discard(BlockDriverState *bs,
749                                     uint64_t offset, uint64_t length)
750 {
751     BDRVQcow2State *s = bs->opaque;
752     Qcow2DiscardRegion *d, *p, *next;
753 
754     QTAILQ_FOREACH(d, &s->discards, next) {
755         uint64_t new_start = MIN(offset, d->offset);
756         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
757 
758         if (new_end - new_start <= length + d->bytes) {
759             /* There can't be any overlap, areas ending up here have no
760              * references any more and therefore shouldn't get freed another
761              * time. */
762             assert(d->bytes + length == new_end - new_start);
763             d->offset = new_start;
764             d->bytes = new_end - new_start;
765             goto found;
766         }
767     }
768 
769     d = g_malloc(sizeof(*d));
770     *d = (Qcow2DiscardRegion) {
771         .bs     = bs,
772         .offset = offset,
773         .bytes  = length,
774     };
775     QTAILQ_INSERT_TAIL(&s->discards, d, next);
776 
777 found:
778     /* Merge discard requests if they are adjacent now */
779     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
780         if (p == d
781             || p->offset > d->offset + d->bytes
782             || d->offset > p->offset + p->bytes)
783         {
784             continue;
785         }
786 
787         /* Still no overlap possible */
788         assert(p->offset == d->offset + d->bytes
789             || d->offset == p->offset + p->bytes);
790 
791         QTAILQ_REMOVE(&s->discards, p, next);
792         d->offset = MIN(d->offset, p->offset);
793         d->bytes += p->bytes;
794         g_free(p);
795     }
796 }
797 
798 /* XXX: cache several refcount block clusters ? */
799 /* @addend is the absolute value of the addend; if @decrease is set, @addend
800  * will be subtracted from the current refcount, otherwise it will be added */
801 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
802                                                    int64_t offset,
803                                                    int64_t length,
804                                                    uint64_t addend,
805                                                    bool decrease,
806                                                    enum qcow2_discard_type type)
807 {
808     BDRVQcow2State *s = bs->opaque;
809     int64_t start, last, cluster_offset;
810     void *refcount_block = NULL;
811     int64_t old_table_index = -1;
812     int ret;
813 
814 #ifdef DEBUG_ALLOC2
815     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
816             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
817             addend);
818 #endif
819     if (length < 0) {
820         return -EINVAL;
821     } else if (length == 0) {
822         return 0;
823     }
824 
825     if (decrease) {
826         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
827             s->l2_table_cache);
828     }
829 
830     start = start_of_cluster(s, offset);
831     last = start_of_cluster(s, offset + length - 1);
832     for(cluster_offset = start; cluster_offset <= last;
833         cluster_offset += s->cluster_size)
834     {
835         int block_index;
836         uint64_t refcount;
837         int64_t cluster_index = cluster_offset >> s->cluster_bits;
838         int64_t table_index = cluster_index >> s->refcount_block_bits;
839 
840         /* Load the refcount block and allocate it if needed */
841         if (table_index != old_table_index) {
842             if (refcount_block) {
843                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
844             }
845             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
846             /* If the caller needs to restart the search for free clusters,
847              * try the same ones first to see if they're still free. */
848             if (ret == -EAGAIN) {
849                 if (s->free_cluster_index > (start >> s->cluster_bits)) {
850                     s->free_cluster_index = (start >> s->cluster_bits);
851                 }
852             }
853             if (ret < 0) {
854                 goto fail;
855             }
856         }
857         old_table_index = table_index;
858 
859         qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
860 
861         /* we can update the count and save it */
862         block_index = cluster_index & (s->refcount_block_size - 1);
863 
864         refcount = s->get_refcount(refcount_block, block_index);
865         if (decrease ? (refcount - addend > refcount)
866                      : (refcount + addend < refcount ||
867                         refcount + addend > s->refcount_max))
868         {
869             ret = -EINVAL;
870             goto fail;
871         }
872         if (decrease) {
873             refcount -= addend;
874         } else {
875             refcount += addend;
876         }
877         if (refcount == 0 && cluster_index < s->free_cluster_index) {
878             s->free_cluster_index = cluster_index;
879         }
880         s->set_refcount(refcount_block, block_index, refcount);
881 
882         if (refcount == 0) {
883             void *table;
884 
885             table = qcow2_cache_is_table_offset(s->refcount_block_cache,
886                                                 offset);
887             if (table != NULL) {
888                 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
889                 qcow2_cache_discard(s->refcount_block_cache, table);
890             }
891 
892             table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
893             if (table != NULL) {
894                 qcow2_cache_discard(s->l2_table_cache, table);
895             }
896 
897             if (s->discard_passthrough[type]) {
898                 update_refcount_discard(bs, cluster_offset, s->cluster_size);
899             }
900         }
901     }
902 
903     ret = 0;
904 fail:
905     if (!s->cache_discards) {
906         qcow2_process_discards(bs, ret);
907     }
908 
909     /* Write last changed block to disk */
910     if (refcount_block) {
911         qcow2_cache_put(s->refcount_block_cache, &refcount_block);
912     }
913 
914     /*
915      * Try do undo any updates if an error is returned (This may succeed in
916      * some cases like ENOSPC for allocating a new refcount block)
917      */
918     if (ret < 0) {
919         int dummy;
920         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
921                                 !decrease, QCOW2_DISCARD_NEVER);
922         (void)dummy;
923     }
924 
925     return ret;
926 }
927 
928 /*
929  * Increases or decreases the refcount of a given cluster.
930  *
931  * @addend is the absolute value of the addend; if @decrease is set, @addend
932  * will be subtracted from the current refcount, otherwise it will be added.
933  *
934  * On success 0 is returned; on failure -errno is returned.
935  */
936 int qcow2_update_cluster_refcount(BlockDriverState *bs,
937                                   int64_t cluster_index,
938                                   uint64_t addend, bool decrease,
939                                   enum qcow2_discard_type type)
940 {
941     BDRVQcow2State *s = bs->opaque;
942     int ret;
943 
944     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
945                           decrease, type);
946     if (ret < 0) {
947         return ret;
948     }
949 
950     return 0;
951 }
952 
953 
954 
955 /*********************************************************/
956 /* cluster allocation functions */
957 
958 
959 
960 /* return < 0 if error */
961 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
962                                     uint64_t max)
963 {
964     BDRVQcow2State *s = bs->opaque;
965     uint64_t i, nb_clusters, refcount;
966     int ret;
967 
968     /* We can't allocate clusters if they may still be queued for discard. */
969     if (s->cache_discards) {
970         qcow2_process_discards(bs, 0);
971     }
972 
973     nb_clusters = size_to_clusters(s, size);
974 retry:
975     for(i = 0; i < nb_clusters; i++) {
976         uint64_t next_cluster_index = s->free_cluster_index++;
977         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
978 
979         if (ret < 0) {
980             return ret;
981         } else if (refcount != 0) {
982             goto retry;
983         }
984     }
985 
986     /* Make sure that all offsets in the "allocated" range are representable
987      * in the requested max */
988     if (s->free_cluster_index > 0 &&
989         s->free_cluster_index - 1 > (max >> s->cluster_bits))
990     {
991         return -EFBIG;
992     }
993 
994 #ifdef DEBUG_ALLOC2
995     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
996             size,
997             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
998 #endif
999     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
1000 }
1001 
1002 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
1003 {
1004     int64_t offset;
1005     int ret;
1006 
1007     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
1008     do {
1009         offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET);
1010         if (offset < 0) {
1011             return offset;
1012         }
1013 
1014         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1015     } while (ret == -EAGAIN);
1016 
1017     if (ret < 0) {
1018         return ret;
1019     }
1020 
1021     return offset;
1022 }
1023 
1024 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1025                                 int64_t nb_clusters)
1026 {
1027     BDRVQcow2State *s = bs->opaque;
1028     uint64_t cluster_index, refcount;
1029     uint64_t i;
1030     int ret;
1031 
1032     assert(nb_clusters >= 0);
1033     if (nb_clusters == 0) {
1034         return 0;
1035     }
1036 
1037     do {
1038         /* Check how many clusters there are free */
1039         cluster_index = offset >> s->cluster_bits;
1040         for(i = 0; i < nb_clusters; i++) {
1041             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1042             if (ret < 0) {
1043                 return ret;
1044             } else if (refcount != 0) {
1045                 break;
1046             }
1047         }
1048 
1049         /* And then allocate them */
1050         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1051                               QCOW2_DISCARD_NEVER);
1052     } while (ret == -EAGAIN);
1053 
1054     if (ret < 0) {
1055         return ret;
1056     }
1057 
1058     return i;
1059 }
1060 
1061 /* only used to allocate compressed sectors. We try to allocate
1062    contiguous sectors. size must be <= cluster_size */
1063 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1064 {
1065     BDRVQcow2State *s = bs->opaque;
1066     int64_t offset;
1067     size_t free_in_cluster;
1068     int ret;
1069 
1070     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1071     assert(size > 0 && size <= s->cluster_size);
1072     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1073 
1074     offset = s->free_byte_offset;
1075 
1076     if (offset) {
1077         uint64_t refcount;
1078         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1079         if (ret < 0) {
1080             return ret;
1081         }
1082 
1083         if (refcount == s->refcount_max) {
1084             offset = 0;
1085         }
1086     }
1087 
1088     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1089     do {
1090         if (!offset || free_in_cluster < size) {
1091             int64_t new_cluster;
1092 
1093             new_cluster = alloc_clusters_noref(bs, s->cluster_size,
1094                                                MIN(s->cluster_offset_mask,
1095                                                    QCOW_MAX_CLUSTER_OFFSET));
1096             if (new_cluster < 0) {
1097                 return new_cluster;
1098             }
1099 
1100             if (new_cluster == 0) {
1101                 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1102                                         "allocation of compressed cluster "
1103                                         "at offset 0");
1104                 return -EIO;
1105             }
1106 
1107             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1108                 offset = new_cluster;
1109                 free_in_cluster = s->cluster_size;
1110             } else {
1111                 free_in_cluster += s->cluster_size;
1112             }
1113         }
1114 
1115         assert(offset);
1116         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1117         if (ret < 0) {
1118             offset = 0;
1119         }
1120     } while (ret == -EAGAIN);
1121     if (ret < 0) {
1122         return ret;
1123     }
1124 
1125     /* The cluster refcount was incremented; refcount blocks must be flushed
1126      * before the caller's L2 table updates. */
1127     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1128 
1129     s->free_byte_offset = offset + size;
1130     if (!offset_into_cluster(s, s->free_byte_offset)) {
1131         s->free_byte_offset = 0;
1132     }
1133 
1134     return offset;
1135 }
1136 
1137 void qcow2_free_clusters(BlockDriverState *bs,
1138                           int64_t offset, int64_t size,
1139                           enum qcow2_discard_type type)
1140 {
1141     int ret;
1142 
1143     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1144     ret = update_refcount(bs, offset, size, 1, true, type);
1145     if (ret < 0) {
1146         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1147         /* TODO Remember the clusters to free them later and avoid leaking */
1148     }
1149 }
1150 
1151 /*
1152  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1153  * normal cluster, compressed cluster, etc.)
1154  */
1155 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1156                              int nb_clusters, enum qcow2_discard_type type)
1157 {
1158     BDRVQcow2State *s = bs->opaque;
1159 
1160     switch (qcow2_get_cluster_type(l2_entry)) {
1161     case QCOW2_CLUSTER_COMPRESSED:
1162         {
1163             int nb_csectors;
1164             nb_csectors = ((l2_entry >> s->csize_shift) &
1165                            s->csize_mask) + 1;
1166             qcow2_free_clusters(bs,
1167                 (l2_entry & s->cluster_offset_mask) & ~511,
1168                 nb_csectors * 512, type);
1169         }
1170         break;
1171     case QCOW2_CLUSTER_NORMAL:
1172     case QCOW2_CLUSTER_ZERO_ALLOC:
1173         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1174             qcow2_signal_corruption(bs, false, -1, -1,
1175                                     "Cannot free unaligned cluster %#llx",
1176                                     l2_entry & L2E_OFFSET_MASK);
1177         } else {
1178             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1179                                 nb_clusters << s->cluster_bits, type);
1180         }
1181         break;
1182     case QCOW2_CLUSTER_ZERO_PLAIN:
1183     case QCOW2_CLUSTER_UNALLOCATED:
1184         break;
1185     default:
1186         abort();
1187     }
1188 }
1189 
1190 int coroutine_fn qcow2_write_caches(BlockDriverState *bs)
1191 {
1192     BDRVQcow2State *s = bs->opaque;
1193     int ret;
1194 
1195     ret = qcow2_cache_write(bs, s->l2_table_cache);
1196     if (ret < 0) {
1197         return ret;
1198     }
1199 
1200     if (qcow2_need_accurate_refcounts(s)) {
1201         ret = qcow2_cache_write(bs, s->refcount_block_cache);
1202         if (ret < 0) {
1203             return ret;
1204         }
1205     }
1206 
1207     return 0;
1208 }
1209 
1210 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs)
1211 {
1212     int ret = qcow2_write_caches(bs);
1213     if (ret < 0) {
1214         return ret;
1215     }
1216 
1217     return bdrv_flush(bs->file->bs);
1218 }
1219 
1220 /*********************************************************/
1221 /* snapshots and image creation */
1222 
1223 
1224 
1225 /* update the refcounts of snapshots and the copied flag */
1226 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1227     int64_t l1_table_offset, int l1_size, int addend)
1228 {
1229     BDRVQcow2State *s = bs->opaque;
1230     uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1231     bool l1_allocated = false;
1232     int64_t old_entry, old_l2_offset;
1233     unsigned slice, slice_size2, n_slices;
1234     int i, j, l1_modified = 0, nb_csectors;
1235     int ret;
1236 
1237     assert(addend >= -1 && addend <= 1);
1238 
1239     l2_slice = NULL;
1240     l1_table = NULL;
1241     l1_size2 = l1_size * sizeof(uint64_t);
1242     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1243     n_slices = s->cluster_size / slice_size2;
1244 
1245     s->cache_discards = true;
1246 
1247     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1248      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1249      * when changing this! */
1250     if (l1_table_offset != s->l1_table_offset) {
1251         l1_table = g_try_malloc0(ROUND_UP(l1_size2, 512));
1252         if (l1_size2 && l1_table == NULL) {
1253             ret = -ENOMEM;
1254             goto fail;
1255         }
1256         l1_allocated = true;
1257 
1258         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1259         if (ret < 0) {
1260             goto fail;
1261         }
1262 
1263         for (i = 0; i < l1_size; i++) {
1264             be64_to_cpus(&l1_table[i]);
1265         }
1266     } else {
1267         assert(l1_size == s->l1_size);
1268         l1_table = s->l1_table;
1269         l1_allocated = false;
1270     }
1271 
1272     for (i = 0; i < l1_size; i++) {
1273         l2_offset = l1_table[i];
1274         if (l2_offset) {
1275             old_l2_offset = l2_offset;
1276             l2_offset &= L1E_OFFSET_MASK;
1277 
1278             if (offset_into_cluster(s, l2_offset)) {
1279                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1280                                         PRIx64 " unaligned (L1 index: %#x)",
1281                                         l2_offset, i);
1282                 ret = -EIO;
1283                 goto fail;
1284             }
1285 
1286             for (slice = 0; slice < n_slices; slice++) {
1287                 ret = qcow2_cache_get(bs, s->l2_table_cache,
1288                                       l2_offset + slice * slice_size2,
1289                                       (void **) &l2_slice);
1290                 if (ret < 0) {
1291                     goto fail;
1292                 }
1293 
1294                 for (j = 0; j < s->l2_slice_size; j++) {
1295                     uint64_t cluster_index;
1296                     uint64_t offset;
1297 
1298                     entry = be64_to_cpu(l2_slice[j]);
1299                     old_entry = entry;
1300                     entry &= ~QCOW_OFLAG_COPIED;
1301                     offset = entry & L2E_OFFSET_MASK;
1302 
1303                     switch (qcow2_get_cluster_type(entry)) {
1304                     case QCOW2_CLUSTER_COMPRESSED:
1305                         nb_csectors = ((entry >> s->csize_shift) &
1306                                        s->csize_mask) + 1;
1307                         if (addend != 0) {
1308                             ret = update_refcount(
1309                                 bs, (entry & s->cluster_offset_mask) & ~511,
1310                                 nb_csectors * 512, abs(addend), addend < 0,
1311                                 QCOW2_DISCARD_SNAPSHOT);
1312                             if (ret < 0) {
1313                                 goto fail;
1314                             }
1315                         }
1316                         /* compressed clusters are never modified */
1317                         refcount = 2;
1318                         break;
1319 
1320                     case QCOW2_CLUSTER_NORMAL:
1321                     case QCOW2_CLUSTER_ZERO_ALLOC:
1322                         if (offset_into_cluster(s, offset)) {
1323                             /* Here l2_index means table (not slice) index */
1324                             int l2_index = slice * s->l2_slice_size + j;
1325                             qcow2_signal_corruption(
1326                                 bs, true, -1, -1, "Cluster "
1327                                 "allocation offset %#" PRIx64
1328                                 " unaligned (L2 offset: %#"
1329                                 PRIx64 ", L2 index: %#x)",
1330                                 offset, l2_offset, l2_index);
1331                             ret = -EIO;
1332                             goto fail;
1333                         }
1334 
1335                         cluster_index = offset >> s->cluster_bits;
1336                         assert(cluster_index);
1337                         if (addend != 0) {
1338                             ret = qcow2_update_cluster_refcount(
1339                                 bs, cluster_index, abs(addend), addend < 0,
1340                                 QCOW2_DISCARD_SNAPSHOT);
1341                             if (ret < 0) {
1342                                 goto fail;
1343                             }
1344                         }
1345 
1346                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1347                         if (ret < 0) {
1348                             goto fail;
1349                         }
1350                         break;
1351 
1352                     case QCOW2_CLUSTER_ZERO_PLAIN:
1353                     case QCOW2_CLUSTER_UNALLOCATED:
1354                         refcount = 0;
1355                         break;
1356 
1357                     default:
1358                         abort();
1359                     }
1360 
1361                     if (refcount == 1) {
1362                         entry |= QCOW_OFLAG_COPIED;
1363                     }
1364                     if (entry != old_entry) {
1365                         if (addend > 0) {
1366                             qcow2_cache_set_dependency(bs, s->l2_table_cache,
1367                                                        s->refcount_block_cache);
1368                         }
1369                         l2_slice[j] = cpu_to_be64(entry);
1370                         qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1371                                                      l2_slice);
1372                     }
1373                 }
1374 
1375                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1376             }
1377 
1378             if (addend != 0) {
1379                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1380                                                         s->cluster_bits,
1381                                                     abs(addend), addend < 0,
1382                                                     QCOW2_DISCARD_SNAPSHOT);
1383                 if (ret < 0) {
1384                     goto fail;
1385                 }
1386             }
1387             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1388                                      &refcount);
1389             if (ret < 0) {
1390                 goto fail;
1391             } else if (refcount == 1) {
1392                 l2_offset |= QCOW_OFLAG_COPIED;
1393             }
1394             if (l2_offset != old_l2_offset) {
1395                 l1_table[i] = l2_offset;
1396                 l1_modified = 1;
1397             }
1398         }
1399     }
1400 
1401     ret = bdrv_flush(bs);
1402 fail:
1403     if (l2_slice) {
1404         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1405     }
1406 
1407     s->cache_discards = false;
1408     qcow2_process_discards(bs, ret);
1409 
1410     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1411     if (ret == 0 && addend >= 0 && l1_modified) {
1412         for (i = 0; i < l1_size; i++) {
1413             cpu_to_be64s(&l1_table[i]);
1414         }
1415 
1416         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1417                                l1_table, l1_size2);
1418 
1419         for (i = 0; i < l1_size; i++) {
1420             be64_to_cpus(&l1_table[i]);
1421         }
1422     }
1423     if (l1_allocated)
1424         g_free(l1_table);
1425     return ret;
1426 }
1427 
1428 
1429 
1430 
1431 /*********************************************************/
1432 /* refcount checking functions */
1433 
1434 
1435 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1436 {
1437     /* This assertion holds because there is no way we can address more than
1438      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1439      * offsets have to be representable in bytes); due to every cluster
1440      * corresponding to one refcount entry, we are well below that limit */
1441     assert(entries < (UINT64_C(1) << (64 - 9)));
1442 
1443     /* Thanks to the assertion this will not overflow, because
1444      * s->refcount_order < 7.
1445      * (note: x << s->refcount_order == x * s->refcount_bits) */
1446     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1447 }
1448 
1449 /**
1450  * Reallocates *array so that it can hold new_size entries. *size must contain
1451  * the current number of entries in *array. If the reallocation fails, *array
1452  * and *size will not be modified and -errno will be returned. If the
1453  * reallocation is successful, *array will be set to the new buffer, *size
1454  * will be set to new_size and 0 will be returned. The size of the reallocated
1455  * refcount array buffer will be aligned to a cluster boundary, and the newly
1456  * allocated area will be zeroed.
1457  */
1458 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1459                                   int64_t *size, int64_t new_size)
1460 {
1461     int64_t old_byte_size, new_byte_size;
1462     void *new_ptr;
1463 
1464     /* Round to clusters so the array can be directly written to disk */
1465     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1466                     * s->cluster_size;
1467     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1468                     * s->cluster_size;
1469 
1470     if (new_byte_size == old_byte_size) {
1471         *size = new_size;
1472         return 0;
1473     }
1474 
1475     assert(new_byte_size > 0);
1476 
1477     if (new_byte_size > SIZE_MAX) {
1478         return -ENOMEM;
1479     }
1480 
1481     new_ptr = g_try_realloc(*array, new_byte_size);
1482     if (!new_ptr) {
1483         return -ENOMEM;
1484     }
1485 
1486     if (new_byte_size > old_byte_size) {
1487         memset((char *)new_ptr + old_byte_size, 0,
1488                new_byte_size - old_byte_size);
1489     }
1490 
1491     *array = new_ptr;
1492     *size  = new_size;
1493 
1494     return 0;
1495 }
1496 
1497 /*
1498  * Increases the refcount for a range of clusters in a given refcount table.
1499  * This is used to construct a temporary refcount table out of L1 and L2 tables
1500  * which can be compared to the refcount table saved in the image.
1501  *
1502  * Modifies the number of errors in res.
1503  */
1504 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1505                              void **refcount_table,
1506                              int64_t *refcount_table_size,
1507                              int64_t offset, int64_t size)
1508 {
1509     BDRVQcow2State *s = bs->opaque;
1510     uint64_t start, last, cluster_offset, k, refcount;
1511     int ret;
1512 
1513     if (size <= 0) {
1514         return 0;
1515     }
1516 
1517     start = start_of_cluster(s, offset);
1518     last = start_of_cluster(s, offset + size - 1);
1519     for(cluster_offset = start; cluster_offset <= last;
1520         cluster_offset += s->cluster_size) {
1521         k = cluster_offset >> s->cluster_bits;
1522         if (k >= *refcount_table_size) {
1523             ret = realloc_refcount_array(s, refcount_table,
1524                                          refcount_table_size, k + 1);
1525             if (ret < 0) {
1526                 res->check_errors++;
1527                 return ret;
1528             }
1529         }
1530 
1531         refcount = s->get_refcount(*refcount_table, k);
1532         if (refcount == s->refcount_max) {
1533             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1534                     "\n", cluster_offset);
1535             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1536                     "width or qemu-img convert to create a clean copy if the "
1537                     "image cannot be opened for writing\n");
1538             res->corruptions++;
1539             continue;
1540         }
1541         s->set_refcount(*refcount_table, k, refcount + 1);
1542     }
1543 
1544     return 0;
1545 }
1546 
1547 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1548 enum {
1549     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1550 };
1551 
1552 /*
1553  * Increases the refcount in the given refcount table for the all clusters
1554  * referenced in the L2 table. While doing so, performs some checks on L2
1555  * entries.
1556  *
1557  * Returns the number of errors found by the checks or -errno if an internal
1558  * error occurred.
1559  */
1560 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1561                               void **refcount_table,
1562                               int64_t *refcount_table_size, int64_t l2_offset,
1563                               int flags, BdrvCheckMode fix)
1564 {
1565     BDRVQcow2State *s = bs->opaque;
1566     uint64_t *l2_table, l2_entry;
1567     uint64_t next_contiguous_offset = 0;
1568     int i, l2_size, nb_csectors, ret;
1569 
1570     /* Read L2 table from disk */
1571     l2_size = s->l2_size * sizeof(uint64_t);
1572     l2_table = g_malloc(l2_size);
1573 
1574     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1575     if (ret < 0) {
1576         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1577         res->check_errors++;
1578         goto fail;
1579     }
1580 
1581     /* Do the actual checks */
1582     for(i = 0; i < s->l2_size; i++) {
1583         l2_entry = be64_to_cpu(l2_table[i]);
1584 
1585         switch (qcow2_get_cluster_type(l2_entry)) {
1586         case QCOW2_CLUSTER_COMPRESSED:
1587             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1588             if (l2_entry & QCOW_OFLAG_COPIED) {
1589                 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
1590                     "copied flag must never be set for compressed "
1591                     "clusters\n", l2_entry & s->cluster_offset_mask);
1592                 l2_entry &= ~QCOW_OFLAG_COPIED;
1593                 res->corruptions++;
1594             }
1595 
1596             /* Mark cluster as used */
1597             nb_csectors = ((l2_entry >> s->csize_shift) &
1598                            s->csize_mask) + 1;
1599             l2_entry &= s->cluster_offset_mask;
1600             ret = qcow2_inc_refcounts_imrt(bs, res,
1601                                            refcount_table, refcount_table_size,
1602                                            l2_entry & ~511, nb_csectors * 512);
1603             if (ret < 0) {
1604                 goto fail;
1605             }
1606 
1607             if (flags & CHECK_FRAG_INFO) {
1608                 res->bfi.allocated_clusters++;
1609                 res->bfi.compressed_clusters++;
1610 
1611                 /* Compressed clusters are fragmented by nature.  Since they
1612                  * take up sub-sector space but we only have sector granularity
1613                  * I/O we need to re-read the same sectors even for adjacent
1614                  * compressed clusters.
1615                  */
1616                 res->bfi.fragmented_clusters++;
1617             }
1618             break;
1619 
1620         case QCOW2_CLUSTER_ZERO_ALLOC:
1621         case QCOW2_CLUSTER_NORMAL:
1622         {
1623             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1624 
1625             if (flags & CHECK_FRAG_INFO) {
1626                 res->bfi.allocated_clusters++;
1627                 if (next_contiguous_offset &&
1628                     offset != next_contiguous_offset) {
1629                     res->bfi.fragmented_clusters++;
1630                 }
1631                 next_contiguous_offset = offset + s->cluster_size;
1632             }
1633 
1634             /* Correct offsets are cluster aligned */
1635             if (offset_into_cluster(s, offset)) {
1636                 if (qcow2_get_cluster_type(l2_entry) ==
1637                     QCOW2_CLUSTER_ZERO_ALLOC)
1638                 {
1639                     fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated zero "
1640                             "cluster is not properly aligned; L2 entry "
1641                             "corrupted.\n",
1642                             fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1643                             offset);
1644                     if (fix & BDRV_FIX_ERRORS) {
1645                         uint64_t l2e_offset =
1646                             l2_offset + (uint64_t)i * sizeof(uint64_t);
1647 
1648                         l2_entry = QCOW_OFLAG_ZERO;
1649                         l2_table[i] = cpu_to_be64(l2_entry);
1650                         ret = qcow2_pre_write_overlap_check(bs,
1651                                 QCOW2_OL_ACTIVE_L2 | QCOW2_OL_INACTIVE_L2,
1652                                 l2e_offset, sizeof(uint64_t));
1653                         if (ret < 0) {
1654                             fprintf(stderr, "ERROR: Overlap check failed\n");
1655                             res->check_errors++;
1656                             /* Something is seriously wrong, so abort checking
1657                              * this L2 table */
1658                             goto fail;
1659                         }
1660 
1661                         ret = bdrv_pwrite_sync(bs->file, l2e_offset,
1662                                                &l2_table[i], sizeof(uint64_t));
1663                         if (ret < 0) {
1664                             fprintf(stderr, "ERROR: Failed to overwrite L2 "
1665                                     "table entry: %s\n", strerror(-ret));
1666                             res->check_errors++;
1667                             /* Do not abort, continue checking the rest of this
1668                              * L2 table's entries */
1669                         } else {
1670                             res->corruptions_fixed++;
1671                             /* Skip marking the cluster as used
1672                              * (it is unused now) */
1673                             continue;
1674                         }
1675                     } else {
1676                         res->corruptions++;
1677                     }
1678                 } else {
1679                     fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1680                         "not properly aligned; L2 entry corrupted.\n", offset);
1681                     res->corruptions++;
1682                 }
1683             }
1684 
1685             /* Mark cluster as used */
1686             ret = qcow2_inc_refcounts_imrt(bs, res,
1687                                            refcount_table, refcount_table_size,
1688                                            offset, s->cluster_size);
1689             if (ret < 0) {
1690                 goto fail;
1691             }
1692             break;
1693         }
1694 
1695         case QCOW2_CLUSTER_ZERO_PLAIN:
1696         case QCOW2_CLUSTER_UNALLOCATED:
1697             break;
1698 
1699         default:
1700             abort();
1701         }
1702     }
1703 
1704     g_free(l2_table);
1705     return 0;
1706 
1707 fail:
1708     g_free(l2_table);
1709     return ret;
1710 }
1711 
1712 /*
1713  * Increases the refcount for the L1 table, its L2 tables and all referenced
1714  * clusters in the given refcount table. While doing so, performs some checks
1715  * on L1 and L2 entries.
1716  *
1717  * Returns the number of errors found by the checks or -errno if an internal
1718  * error occurred.
1719  */
1720 static int check_refcounts_l1(BlockDriverState *bs,
1721                               BdrvCheckResult *res,
1722                               void **refcount_table,
1723                               int64_t *refcount_table_size,
1724                               int64_t l1_table_offset, int l1_size,
1725                               int flags, BdrvCheckMode fix)
1726 {
1727     BDRVQcow2State *s = bs->opaque;
1728     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1729     int i, ret;
1730 
1731     l1_size2 = l1_size * sizeof(uint64_t);
1732 
1733     /* Mark L1 table as used */
1734     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1735                                    l1_table_offset, l1_size2);
1736     if (ret < 0) {
1737         goto fail;
1738     }
1739 
1740     /* Read L1 table entries from disk */
1741     if (l1_size2 > 0) {
1742         l1_table = g_try_malloc(l1_size2);
1743         if (l1_table == NULL) {
1744             ret = -ENOMEM;
1745             res->check_errors++;
1746             goto fail;
1747         }
1748         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1749         if (ret < 0) {
1750             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1751             res->check_errors++;
1752             goto fail;
1753         }
1754         for(i = 0;i < l1_size; i++)
1755             be64_to_cpus(&l1_table[i]);
1756     }
1757 
1758     /* Do the actual checks */
1759     for(i = 0; i < l1_size; i++) {
1760         l2_offset = l1_table[i];
1761         if (l2_offset) {
1762             /* Mark L2 table as used */
1763             l2_offset &= L1E_OFFSET_MASK;
1764             ret = qcow2_inc_refcounts_imrt(bs, res,
1765                                            refcount_table, refcount_table_size,
1766                                            l2_offset, s->cluster_size);
1767             if (ret < 0) {
1768                 goto fail;
1769             }
1770 
1771             /* L2 tables are cluster aligned */
1772             if (offset_into_cluster(s, l2_offset)) {
1773                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1774                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1775                 res->corruptions++;
1776             }
1777 
1778             /* Process and check L2 entries */
1779             ret = check_refcounts_l2(bs, res, refcount_table,
1780                                      refcount_table_size, l2_offset, flags,
1781                                      fix);
1782             if (ret < 0) {
1783                 goto fail;
1784             }
1785         }
1786     }
1787     g_free(l1_table);
1788     return 0;
1789 
1790 fail:
1791     g_free(l1_table);
1792     return ret;
1793 }
1794 
1795 /*
1796  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1797  *
1798  * This function does not print an error message nor does it increment
1799  * check_errors if qcow2_get_refcount fails (this is because such an error will
1800  * have been already detected and sufficiently signaled by the calling function
1801  * (qcow2_check_refcounts) by the time this function is called).
1802  */
1803 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1804                               BdrvCheckMode fix)
1805 {
1806     BDRVQcow2State *s = bs->opaque;
1807     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1808     int ret;
1809     uint64_t refcount;
1810     int i, j;
1811     bool repair;
1812 
1813     if (fix & BDRV_FIX_ERRORS) {
1814         /* Always repair */
1815         repair = true;
1816     } else if (fix & BDRV_FIX_LEAKS) {
1817         /* Repair only if that seems safe: This function is always
1818          * called after the refcounts have been fixed, so the refcount
1819          * is accurate if that repair was successful */
1820         repair = !res->check_errors && !res->corruptions && !res->leaks;
1821     } else {
1822         repair = false;
1823     }
1824 
1825     for (i = 0; i < s->l1_size; i++) {
1826         uint64_t l1_entry = s->l1_table[i];
1827         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1828         bool l2_dirty = false;
1829 
1830         if (!l2_offset) {
1831             continue;
1832         }
1833 
1834         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1835                                  &refcount);
1836         if (ret < 0) {
1837             /* don't print message nor increment check_errors */
1838             continue;
1839         }
1840         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1841             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1842                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1843                     repair ? "Repairing" : "ERROR", i, l1_entry, refcount);
1844             if (repair) {
1845                 s->l1_table[i] = refcount == 1
1846                                ? l1_entry |  QCOW_OFLAG_COPIED
1847                                : l1_entry & ~QCOW_OFLAG_COPIED;
1848                 ret = qcow2_write_l1_entry(bs, i);
1849                 if (ret < 0) {
1850                     res->check_errors++;
1851                     goto fail;
1852                 }
1853                 res->corruptions_fixed++;
1854             } else {
1855                 res->corruptions++;
1856             }
1857         }
1858 
1859         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1860                          s->l2_size * sizeof(uint64_t));
1861         if (ret < 0) {
1862             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1863                     strerror(-ret));
1864             res->check_errors++;
1865             goto fail;
1866         }
1867 
1868         for (j = 0; j < s->l2_size; j++) {
1869             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1870             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1871             QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1872 
1873             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1874                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1875                 ret = qcow2_get_refcount(bs,
1876                                          data_offset >> s->cluster_bits,
1877                                          &refcount);
1878                 if (ret < 0) {
1879                     /* don't print message nor increment check_errors */
1880                     continue;
1881                 }
1882                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1883                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1884                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1885                             repair ? "Repairing" : "ERROR", l2_entry, refcount);
1886                     if (repair) {
1887                         l2_table[j] = cpu_to_be64(refcount == 1
1888                                     ? l2_entry |  QCOW_OFLAG_COPIED
1889                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1890                         l2_dirty = true;
1891                         res->corruptions_fixed++;
1892                     } else {
1893                         res->corruptions++;
1894                     }
1895                 }
1896             }
1897         }
1898 
1899         if (l2_dirty) {
1900             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1901                                                 l2_offset, s->cluster_size);
1902             if (ret < 0) {
1903                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1904                         "overlap check failed: %s\n", strerror(-ret));
1905                 res->check_errors++;
1906                 goto fail;
1907             }
1908 
1909             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1910                               s->cluster_size);
1911             if (ret < 0) {
1912                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1913                         strerror(-ret));
1914                 res->check_errors++;
1915                 goto fail;
1916             }
1917         }
1918     }
1919 
1920     ret = 0;
1921 
1922 fail:
1923     qemu_vfree(l2_table);
1924     return ret;
1925 }
1926 
1927 /*
1928  * Checks consistency of refblocks and accounts for each refblock in
1929  * *refcount_table.
1930  */
1931 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1932                            BdrvCheckMode fix, bool *rebuild,
1933                            void **refcount_table, int64_t *nb_clusters)
1934 {
1935     BDRVQcow2State *s = bs->opaque;
1936     int64_t i, size;
1937     int ret;
1938 
1939     for(i = 0; i < s->refcount_table_size; i++) {
1940         uint64_t offset, cluster;
1941         offset = s->refcount_table[i];
1942         cluster = offset >> s->cluster_bits;
1943 
1944         /* Refcount blocks are cluster aligned */
1945         if (offset_into_cluster(s, offset)) {
1946             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1947                 "cluster aligned; refcount table entry corrupted\n", i);
1948             res->corruptions++;
1949             *rebuild = true;
1950             continue;
1951         }
1952 
1953         if (cluster >= *nb_clusters) {
1954             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1955                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1956 
1957             if (fix & BDRV_FIX_ERRORS) {
1958                 int64_t new_nb_clusters;
1959                 Error *local_err = NULL;
1960 
1961                 if (offset > INT64_MAX - s->cluster_size) {
1962                     ret = -EINVAL;
1963                     goto resize_fail;
1964                 }
1965 
1966                 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1967                                     PREALLOC_MODE_OFF, &local_err);
1968                 if (ret < 0) {
1969                     error_report_err(local_err);
1970                     goto resize_fail;
1971                 }
1972                 size = bdrv_getlength(bs->file->bs);
1973                 if (size < 0) {
1974                     ret = size;
1975                     goto resize_fail;
1976                 }
1977 
1978                 new_nb_clusters = size_to_clusters(s, size);
1979                 assert(new_nb_clusters >= *nb_clusters);
1980 
1981                 ret = realloc_refcount_array(s, refcount_table,
1982                                              nb_clusters, new_nb_clusters);
1983                 if (ret < 0) {
1984                     res->check_errors++;
1985                     return ret;
1986                 }
1987 
1988                 if (cluster >= *nb_clusters) {
1989                     ret = -EINVAL;
1990                     goto resize_fail;
1991                 }
1992 
1993                 res->corruptions_fixed++;
1994                 ret = qcow2_inc_refcounts_imrt(bs, res,
1995                                                refcount_table, nb_clusters,
1996                                                offset, s->cluster_size);
1997                 if (ret < 0) {
1998                     return ret;
1999                 }
2000                 /* No need to check whether the refcount is now greater than 1:
2001                  * This area was just allocated and zeroed, so it can only be
2002                  * exactly 1 after qcow2_inc_refcounts_imrt() */
2003                 continue;
2004 
2005 resize_fail:
2006                 res->corruptions++;
2007                 *rebuild = true;
2008                 fprintf(stderr, "ERROR could not resize image: %s\n",
2009                         strerror(-ret));
2010             } else {
2011                 res->corruptions++;
2012             }
2013             continue;
2014         }
2015 
2016         if (offset != 0) {
2017             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2018                                            offset, s->cluster_size);
2019             if (ret < 0) {
2020                 return ret;
2021             }
2022             if (s->get_refcount(*refcount_table, cluster) != 1) {
2023                 fprintf(stderr, "ERROR refcount block %" PRId64
2024                         " refcount=%" PRIu64 "\n", i,
2025                         s->get_refcount(*refcount_table, cluster));
2026                 res->corruptions++;
2027                 *rebuild = true;
2028             }
2029         }
2030     }
2031 
2032     return 0;
2033 }
2034 
2035 /*
2036  * Calculates an in-memory refcount table.
2037  */
2038 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2039                                BdrvCheckMode fix, bool *rebuild,
2040                                void **refcount_table, int64_t *nb_clusters)
2041 {
2042     BDRVQcow2State *s = bs->opaque;
2043     int64_t i;
2044     QCowSnapshot *sn;
2045     int ret;
2046 
2047     if (!*refcount_table) {
2048         int64_t old_size = 0;
2049         ret = realloc_refcount_array(s, refcount_table,
2050                                      &old_size, *nb_clusters);
2051         if (ret < 0) {
2052             res->check_errors++;
2053             return ret;
2054         }
2055     }
2056 
2057     /* header */
2058     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2059                                    0, s->cluster_size);
2060     if (ret < 0) {
2061         return ret;
2062     }
2063 
2064     /* current L1 table */
2065     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2066                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2067                              fix);
2068     if (ret < 0) {
2069         return ret;
2070     }
2071 
2072     /* snapshots */
2073     for (i = 0; i < s->nb_snapshots; i++) {
2074         sn = s->snapshots + i;
2075         if (offset_into_cluster(s, sn->l1_table_offset)) {
2076             fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": "
2077                     "L1 table is not cluster aligned; snapshot table entry "
2078                     "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset);
2079             res->corruptions++;
2080             continue;
2081         }
2082         if (sn->l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2083             fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": "
2084                     "L1 table is too large; snapshot table entry corrupted\n",
2085                     sn->id_str, sn->name, sn->l1_size);
2086             res->corruptions++;
2087             continue;
2088         }
2089         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2090                                  sn->l1_table_offset, sn->l1_size, 0, fix);
2091         if (ret < 0) {
2092             return ret;
2093         }
2094     }
2095     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2096                                    s->snapshots_offset, s->snapshots_size);
2097     if (ret < 0) {
2098         return ret;
2099     }
2100 
2101     /* refcount data */
2102     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2103                                    s->refcount_table_offset,
2104                                    s->refcount_table_size * sizeof(uint64_t));
2105     if (ret < 0) {
2106         return ret;
2107     }
2108 
2109     /* encryption */
2110     if (s->crypto_header.length) {
2111         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2112                                        s->crypto_header.offset,
2113                                        s->crypto_header.length);
2114         if (ret < 0) {
2115             return ret;
2116         }
2117     }
2118 
2119     /* bitmaps */
2120     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2121     if (ret < 0) {
2122         return ret;
2123     }
2124 
2125     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2126 }
2127 
2128 /*
2129  * Compares the actual reference count for each cluster in the image against the
2130  * refcount as reported by the refcount structures on-disk.
2131  */
2132 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2133                               BdrvCheckMode fix, bool *rebuild,
2134                               int64_t *highest_cluster,
2135                               void *refcount_table, int64_t nb_clusters)
2136 {
2137     BDRVQcow2State *s = bs->opaque;
2138     int64_t i;
2139     uint64_t refcount1, refcount2;
2140     int ret;
2141 
2142     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2143         ret = qcow2_get_refcount(bs, i, &refcount1);
2144         if (ret < 0) {
2145             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2146                     i, strerror(-ret));
2147             res->check_errors++;
2148             continue;
2149         }
2150 
2151         refcount2 = s->get_refcount(refcount_table, i);
2152 
2153         if (refcount1 > 0 || refcount2 > 0) {
2154             *highest_cluster = i;
2155         }
2156 
2157         if (refcount1 != refcount2) {
2158             /* Check if we're allowed to fix the mismatch */
2159             int *num_fixed = NULL;
2160             if (refcount1 == 0) {
2161                 *rebuild = true;
2162             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2163                 num_fixed = &res->leaks_fixed;
2164             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2165                 num_fixed = &res->corruptions_fixed;
2166             }
2167 
2168             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2169                     " reference=%" PRIu64 "\n",
2170                    num_fixed != NULL     ? "Repairing" :
2171                    refcount1 < refcount2 ? "ERROR" :
2172                                            "Leaked",
2173                    i, refcount1, refcount2);
2174 
2175             if (num_fixed) {
2176                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2177                                       refcount_diff(refcount1, refcount2),
2178                                       refcount1 > refcount2,
2179                                       QCOW2_DISCARD_ALWAYS);
2180                 if (ret >= 0) {
2181                     (*num_fixed)++;
2182                     continue;
2183                 }
2184             }
2185 
2186             /* And if we couldn't, print an error */
2187             if (refcount1 < refcount2) {
2188                 res->corruptions++;
2189             } else {
2190                 res->leaks++;
2191             }
2192         }
2193     }
2194 }
2195 
2196 /*
2197  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2198  * the on-disk refcount structures.
2199  *
2200  * On input, *first_free_cluster tells where to start looking, and need not
2201  * actually be a free cluster; the returned offset will not be before that
2202  * cluster.  On output, *first_free_cluster points to the first gap found, even
2203  * if that gap was too small to be used as the returned offset.
2204  *
2205  * Note that *first_free_cluster is a cluster index whereas the return value is
2206  * an offset.
2207  */
2208 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2209                                    int cluster_count,
2210                                    void **refcount_table,
2211                                    int64_t *imrt_nb_clusters,
2212                                    int64_t *first_free_cluster)
2213 {
2214     BDRVQcow2State *s = bs->opaque;
2215     int64_t cluster = *first_free_cluster, i;
2216     bool first_gap = true;
2217     int contiguous_free_clusters;
2218     int ret;
2219 
2220     /* Starting at *first_free_cluster, find a range of at least cluster_count
2221      * continuously free clusters */
2222     for (contiguous_free_clusters = 0;
2223          cluster < *imrt_nb_clusters &&
2224          contiguous_free_clusters < cluster_count;
2225          cluster++)
2226     {
2227         if (!s->get_refcount(*refcount_table, cluster)) {
2228             contiguous_free_clusters++;
2229             if (first_gap) {
2230                 /* If this is the first free cluster found, update
2231                  * *first_free_cluster accordingly */
2232                 *first_free_cluster = cluster;
2233                 first_gap = false;
2234             }
2235         } else if (contiguous_free_clusters) {
2236             contiguous_free_clusters = 0;
2237         }
2238     }
2239 
2240     /* If contiguous_free_clusters is greater than zero, it contains the number
2241      * of continuously free clusters until the current cluster; the first free
2242      * cluster in the current "gap" is therefore
2243      * cluster - contiguous_free_clusters */
2244 
2245     /* If no such range could be found, grow the in-memory refcount table
2246      * accordingly to append free clusters at the end of the image */
2247     if (contiguous_free_clusters < cluster_count) {
2248         /* contiguous_free_clusters clusters are already empty at the image end;
2249          * we need cluster_count clusters; therefore, we have to allocate
2250          * cluster_count - contiguous_free_clusters new clusters at the end of
2251          * the image (which is the current value of cluster; note that cluster
2252          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2253          * the image end) */
2254         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2255                                      cluster + cluster_count
2256                                      - contiguous_free_clusters);
2257         if (ret < 0) {
2258             return ret;
2259         }
2260     }
2261 
2262     /* Go back to the first free cluster */
2263     cluster -= contiguous_free_clusters;
2264     for (i = 0; i < cluster_count; i++) {
2265         s->set_refcount(*refcount_table, cluster + i, 1);
2266     }
2267 
2268     return cluster << s->cluster_bits;
2269 }
2270 
2271 /*
2272  * Creates a new refcount structure based solely on the in-memory information
2273  * given through *refcount_table. All necessary allocations will be reflected
2274  * in that array.
2275  *
2276  * On success, the old refcount structure is leaked (it will be covered by the
2277  * new refcount structure).
2278  */
2279 static int rebuild_refcount_structure(BlockDriverState *bs,
2280                                       BdrvCheckResult *res,
2281                                       void **refcount_table,
2282                                       int64_t *nb_clusters)
2283 {
2284     BDRVQcow2State *s = bs->opaque;
2285     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2286     int64_t refblock_offset, refblock_start, refblock_index;
2287     uint32_t reftable_size = 0;
2288     uint64_t *on_disk_reftable = NULL;
2289     void *on_disk_refblock;
2290     int ret = 0;
2291     struct {
2292         uint64_t reftable_offset;
2293         uint32_t reftable_clusters;
2294     } QEMU_PACKED reftable_offset_and_clusters;
2295 
2296     qcow2_cache_empty(bs, s->refcount_block_cache);
2297 
2298 write_refblocks:
2299     for (; cluster < *nb_clusters; cluster++) {
2300         if (!s->get_refcount(*refcount_table, cluster)) {
2301             continue;
2302         }
2303 
2304         refblock_index = cluster >> s->refcount_block_bits;
2305         refblock_start = refblock_index << s->refcount_block_bits;
2306 
2307         /* Don't allocate a cluster in a refblock already written to disk */
2308         if (first_free_cluster < refblock_start) {
2309             first_free_cluster = refblock_start;
2310         }
2311         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2312                                               nb_clusters, &first_free_cluster);
2313         if (refblock_offset < 0) {
2314             fprintf(stderr, "ERROR allocating refblock: %s\n",
2315                     strerror(-refblock_offset));
2316             res->check_errors++;
2317             ret = refblock_offset;
2318             goto fail;
2319         }
2320 
2321         if (reftable_size <= refblock_index) {
2322             uint32_t old_reftable_size = reftable_size;
2323             uint64_t *new_on_disk_reftable;
2324 
2325             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2326                                      s->cluster_size) / sizeof(uint64_t);
2327             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2328                                                  reftable_size *
2329                                                  sizeof(uint64_t));
2330             if (!new_on_disk_reftable) {
2331                 res->check_errors++;
2332                 ret = -ENOMEM;
2333                 goto fail;
2334             }
2335             on_disk_reftable = new_on_disk_reftable;
2336 
2337             memset(on_disk_reftable + old_reftable_size, 0,
2338                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2339 
2340             /* The offset we have for the reftable is now no longer valid;
2341              * this will leak that range, but we can easily fix that by running
2342              * a leak-fixing check after this rebuild operation */
2343             reftable_offset = -1;
2344         } else {
2345             assert(on_disk_reftable);
2346         }
2347         on_disk_reftable[refblock_index] = refblock_offset;
2348 
2349         /* If this is apparently the last refblock (for now), try to squeeze the
2350          * reftable in */
2351         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2352             reftable_offset < 0)
2353         {
2354             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2355                                                           sizeof(uint64_t));
2356             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2357                                                   refcount_table, nb_clusters,
2358                                                   &first_free_cluster);
2359             if (reftable_offset < 0) {
2360                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2361                         strerror(-reftable_offset));
2362                 res->check_errors++;
2363                 ret = reftable_offset;
2364                 goto fail;
2365             }
2366         }
2367 
2368         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2369                                             s->cluster_size);
2370         if (ret < 0) {
2371             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2372             goto fail;
2373         }
2374 
2375         /* The size of *refcount_table is always cluster-aligned, therefore the
2376          * write operation will not overflow */
2377         on_disk_refblock = (void *)((char *) *refcount_table +
2378                                     refblock_index * s->cluster_size);
2379 
2380         ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2381                          on_disk_refblock, s->cluster_sectors);
2382         if (ret < 0) {
2383             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2384             goto fail;
2385         }
2386 
2387         /* Go to the end of this refblock */
2388         cluster = refblock_start + s->refcount_block_size - 1;
2389     }
2390 
2391     if (reftable_offset < 0) {
2392         uint64_t post_refblock_start, reftable_clusters;
2393 
2394         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2395         reftable_clusters = size_to_clusters(s,
2396                                              reftable_size * sizeof(uint64_t));
2397         /* Not pretty but simple */
2398         if (first_free_cluster < post_refblock_start) {
2399             first_free_cluster = post_refblock_start;
2400         }
2401         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2402                                               refcount_table, nb_clusters,
2403                                               &first_free_cluster);
2404         if (reftable_offset < 0) {
2405             fprintf(stderr, "ERROR allocating reftable: %s\n",
2406                     strerror(-reftable_offset));
2407             res->check_errors++;
2408             ret = reftable_offset;
2409             goto fail;
2410         }
2411 
2412         goto write_refblocks;
2413     }
2414 
2415     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2416         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2417     }
2418 
2419     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2420                                         reftable_size * sizeof(uint64_t));
2421     if (ret < 0) {
2422         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2423         goto fail;
2424     }
2425 
2426     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2427     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2428                       reftable_size * sizeof(uint64_t));
2429     if (ret < 0) {
2430         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2431         goto fail;
2432     }
2433 
2434     /* Enter new reftable into the image header */
2435     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2436     reftable_offset_and_clusters.reftable_clusters =
2437         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2438     ret = bdrv_pwrite_sync(bs->file,
2439                            offsetof(QCowHeader, refcount_table_offset),
2440                            &reftable_offset_and_clusters,
2441                            sizeof(reftable_offset_and_clusters));
2442     if (ret < 0) {
2443         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2444         goto fail;
2445     }
2446 
2447     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2448         be64_to_cpus(&on_disk_reftable[refblock_index]);
2449     }
2450     s->refcount_table = on_disk_reftable;
2451     s->refcount_table_offset = reftable_offset;
2452     s->refcount_table_size = reftable_size;
2453     update_max_refcount_table_index(s);
2454 
2455     return 0;
2456 
2457 fail:
2458     g_free(on_disk_reftable);
2459     return ret;
2460 }
2461 
2462 /*
2463  * Checks an image for refcount consistency.
2464  *
2465  * Returns 0 if no errors are found, the number of errors in case the image is
2466  * detected as corrupted, and -errno when an internal error occurred.
2467  */
2468 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2469                           BdrvCheckMode fix)
2470 {
2471     BDRVQcow2State *s = bs->opaque;
2472     BdrvCheckResult pre_compare_res;
2473     int64_t size, highest_cluster, nb_clusters;
2474     void *refcount_table = NULL;
2475     bool rebuild = false;
2476     int ret;
2477 
2478     size = bdrv_getlength(bs->file->bs);
2479     if (size < 0) {
2480         res->check_errors++;
2481         return size;
2482     }
2483 
2484     nb_clusters = size_to_clusters(s, size);
2485     if (nb_clusters > INT_MAX) {
2486         res->check_errors++;
2487         return -EFBIG;
2488     }
2489 
2490     res->bfi.total_clusters =
2491         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2492 
2493     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2494                               &nb_clusters);
2495     if (ret < 0) {
2496         goto fail;
2497     }
2498 
2499     /* In case we don't need to rebuild the refcount structure (but want to fix
2500      * something), this function is immediately called again, in which case the
2501      * result should be ignored */
2502     pre_compare_res = *res;
2503     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2504                       nb_clusters);
2505 
2506     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2507         BdrvCheckResult old_res = *res;
2508         int fresh_leaks = 0;
2509 
2510         fprintf(stderr, "Rebuilding refcount structure\n");
2511         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2512                                          &nb_clusters);
2513         if (ret < 0) {
2514             goto fail;
2515         }
2516 
2517         res->corruptions = 0;
2518         res->leaks = 0;
2519 
2520         /* Because the old reftable has been exchanged for a new one the
2521          * references have to be recalculated */
2522         rebuild = false;
2523         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2524         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2525                                   &nb_clusters);
2526         if (ret < 0) {
2527             goto fail;
2528         }
2529 
2530         if (fix & BDRV_FIX_LEAKS) {
2531             /* The old refcount structures are now leaked, fix it; the result
2532              * can be ignored, aside from leaks which were introduced by
2533              * rebuild_refcount_structure() that could not be fixed */
2534             BdrvCheckResult saved_res = *res;
2535             *res = (BdrvCheckResult){ 0 };
2536 
2537             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2538                               &highest_cluster, refcount_table, nb_clusters);
2539             if (rebuild) {
2540                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2541                         "broken\n");
2542             }
2543 
2544             /* Any leaks accounted for here were introduced by
2545              * rebuild_refcount_structure() because that function has created a
2546              * new refcount structure from scratch */
2547             fresh_leaks = res->leaks;
2548             *res = saved_res;
2549         }
2550 
2551         if (res->corruptions < old_res.corruptions) {
2552             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2553         }
2554         if (res->leaks < old_res.leaks) {
2555             res->leaks_fixed += old_res.leaks - res->leaks;
2556         }
2557         res->leaks += fresh_leaks;
2558     } else if (fix) {
2559         if (rebuild) {
2560             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2561             res->check_errors++;
2562             ret = -EIO;
2563             goto fail;
2564         }
2565 
2566         if (res->leaks || res->corruptions) {
2567             *res = pre_compare_res;
2568             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2569                               refcount_table, nb_clusters);
2570         }
2571     }
2572 
2573     /* check OFLAG_COPIED */
2574     ret = check_oflag_copied(bs, res, fix);
2575     if (ret < 0) {
2576         goto fail;
2577     }
2578 
2579     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2580     ret = 0;
2581 
2582 fail:
2583     g_free(refcount_table);
2584 
2585     return ret;
2586 }
2587 
2588 #define overlaps_with(ofs, sz) \
2589     ranges_overlap(offset, size, ofs, sz)
2590 
2591 /*
2592  * Checks if the given offset into the image file is actually free to use by
2593  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2594  * i.e. a sanity check without relying on the refcount tables.
2595  *
2596  * The ign parameter specifies what checks not to perform (being a bitmask of
2597  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2598  *
2599  * Returns:
2600  * - 0 if writing to this offset will not affect the mentioned metadata
2601  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2602  * - a negative value (-errno) indicating an error while performing a check,
2603  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2604  */
2605 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2606                                  int64_t size)
2607 {
2608     BDRVQcow2State *s = bs->opaque;
2609     int chk = s->overlap_check & ~ign;
2610     int i, j;
2611 
2612     if (!size) {
2613         return 0;
2614     }
2615 
2616     if (chk & QCOW2_OL_MAIN_HEADER) {
2617         if (offset < s->cluster_size) {
2618             return QCOW2_OL_MAIN_HEADER;
2619         }
2620     }
2621 
2622     /* align range to test to cluster boundaries */
2623     size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2624     offset = start_of_cluster(s, offset);
2625 
2626     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2627         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2628             return QCOW2_OL_ACTIVE_L1;
2629         }
2630     }
2631 
2632     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2633         if (overlaps_with(s->refcount_table_offset,
2634             s->refcount_table_size * sizeof(uint64_t))) {
2635             return QCOW2_OL_REFCOUNT_TABLE;
2636         }
2637     }
2638 
2639     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2640         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2641             return QCOW2_OL_SNAPSHOT_TABLE;
2642         }
2643     }
2644 
2645     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2646         for (i = 0; i < s->nb_snapshots; i++) {
2647             if (s->snapshots[i].l1_size &&
2648                 overlaps_with(s->snapshots[i].l1_table_offset,
2649                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2650                 return QCOW2_OL_INACTIVE_L1;
2651             }
2652         }
2653     }
2654 
2655     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2656         for (i = 0; i < s->l1_size; i++) {
2657             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2658                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2659                 s->cluster_size)) {
2660                 return QCOW2_OL_ACTIVE_L2;
2661             }
2662         }
2663     }
2664 
2665     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2666         unsigned last_entry = s->max_refcount_table_index;
2667         assert(last_entry < s->refcount_table_size);
2668         assert(last_entry + 1 == s->refcount_table_size ||
2669                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2670         for (i = 0; i <= last_entry; i++) {
2671             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2672                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2673                 s->cluster_size)) {
2674                 return QCOW2_OL_REFCOUNT_BLOCK;
2675             }
2676         }
2677     }
2678 
2679     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2680         for (i = 0; i < s->nb_snapshots; i++) {
2681             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2682             uint32_t l1_sz  = s->snapshots[i].l1_size;
2683             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2684             uint64_t *l1;
2685             int ret;
2686 
2687             ret = qcow2_validate_table(bs, l1_ofs, l1_sz, sizeof(uint64_t),
2688                                        QCOW_MAX_L1_SIZE, "", NULL);
2689             if (ret < 0) {
2690                 return ret;
2691             }
2692 
2693             l1 = g_try_malloc(l1_sz2);
2694 
2695             if (l1_sz2 && l1 == NULL) {
2696                 return -ENOMEM;
2697             }
2698 
2699             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2700             if (ret < 0) {
2701                 g_free(l1);
2702                 return ret;
2703             }
2704 
2705             for (j = 0; j < l1_sz; j++) {
2706                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2707                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2708                     g_free(l1);
2709                     return QCOW2_OL_INACTIVE_L2;
2710                 }
2711             }
2712 
2713             g_free(l1);
2714         }
2715     }
2716 
2717     if ((chk & QCOW2_OL_BITMAP_DIRECTORY) &&
2718         (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS))
2719     {
2720         if (overlaps_with(s->bitmap_directory_offset,
2721                           s->bitmap_directory_size))
2722         {
2723             return QCOW2_OL_BITMAP_DIRECTORY;
2724         }
2725     }
2726 
2727     return 0;
2728 }
2729 
2730 static const char *metadata_ol_names[] = {
2731     [QCOW2_OL_MAIN_HEADER_BITNR]        = "qcow2_header",
2732     [QCOW2_OL_ACTIVE_L1_BITNR]          = "active L1 table",
2733     [QCOW2_OL_ACTIVE_L2_BITNR]          = "active L2 table",
2734     [QCOW2_OL_REFCOUNT_TABLE_BITNR]     = "refcount table",
2735     [QCOW2_OL_REFCOUNT_BLOCK_BITNR]     = "refcount block",
2736     [QCOW2_OL_SNAPSHOT_TABLE_BITNR]     = "snapshot table",
2737     [QCOW2_OL_INACTIVE_L1_BITNR]        = "inactive L1 table",
2738     [QCOW2_OL_INACTIVE_L2_BITNR]        = "inactive L2 table",
2739     [QCOW2_OL_BITMAP_DIRECTORY_BITNR]   = "bitmap directory",
2740 };
2741 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names));
2742 
2743 /*
2744  * First performs a check for metadata overlaps (through
2745  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2746  * while performing a check), that value is returned. If an impending overlap
2747  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2748  * and -EIO returned.
2749  *
2750  * Returns 0 if there were neither overlaps nor errors while checking for
2751  * overlaps; or a negative value (-errno) on error.
2752  */
2753 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2754                                   int64_t size)
2755 {
2756     int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2757 
2758     if (ret < 0) {
2759         return ret;
2760     } else if (ret > 0) {
2761         int metadata_ol_bitnr = ctz32(ret);
2762         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2763 
2764         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2765                                 "write on metadata (overlaps with %s)",
2766                                 metadata_ol_names[metadata_ol_bitnr]);
2767         return -EIO;
2768     }
2769 
2770     return 0;
2771 }
2772 
2773 /* A pointer to a function of this type is given to walk_over_reftable(). That
2774  * function will create refblocks and pass them to a RefblockFinishOp once they
2775  * are completed (@refblock). @refblock_empty is set if the refblock is
2776  * completely empty.
2777  *
2778  * Along with the refblock, a corresponding reftable entry is passed, in the
2779  * reftable @reftable (which may be reallocated) at @reftable_index.
2780  *
2781  * @allocated should be set to true if a new cluster has been allocated.
2782  */
2783 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2784                                uint64_t reftable_index, uint64_t *reftable_size,
2785                                void *refblock, bool refblock_empty,
2786                                bool *allocated, Error **errp);
2787 
2788 /**
2789  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2790  * it is not empty) and inserts its offset into the new reftable. The size of
2791  * this new reftable is increased as required.
2792  */
2793 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2794                           uint64_t reftable_index, uint64_t *reftable_size,
2795                           void *refblock, bool refblock_empty, bool *allocated,
2796                           Error **errp)
2797 {
2798     BDRVQcow2State *s = bs->opaque;
2799     int64_t offset;
2800 
2801     if (!refblock_empty && reftable_index >= *reftable_size) {
2802         uint64_t *new_reftable;
2803         uint64_t new_reftable_size;
2804 
2805         new_reftable_size = ROUND_UP(reftable_index + 1,
2806                                      s->cluster_size / sizeof(uint64_t));
2807         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2808             error_setg(errp,
2809                        "This operation would make the refcount table grow "
2810                        "beyond the maximum size supported by QEMU, aborting");
2811             return -ENOTSUP;
2812         }
2813 
2814         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2815                                                 sizeof(uint64_t));
2816         if (!new_reftable) {
2817             error_setg(errp, "Failed to increase reftable buffer size");
2818             return -ENOMEM;
2819         }
2820 
2821         memset(new_reftable + *reftable_size, 0,
2822                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2823 
2824         *reftable      = new_reftable;
2825         *reftable_size = new_reftable_size;
2826     }
2827 
2828     if (!refblock_empty && !(*reftable)[reftable_index]) {
2829         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2830         if (offset < 0) {
2831             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2832             return offset;
2833         }
2834         (*reftable)[reftable_index] = offset;
2835         *allocated = true;
2836     }
2837 
2838     return 0;
2839 }
2840 
2841 /**
2842  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2843  * offset specified by the new reftable's entry. It does not modify the new
2844  * reftable or change any refcounts.
2845  */
2846 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2847                           uint64_t reftable_index, uint64_t *reftable_size,
2848                           void *refblock, bool refblock_empty, bool *allocated,
2849                           Error **errp)
2850 {
2851     BDRVQcow2State *s = bs->opaque;
2852     int64_t offset;
2853     int ret;
2854 
2855     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2856         offset = (*reftable)[reftable_index];
2857 
2858         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2859         if (ret < 0) {
2860             error_setg_errno(errp, -ret, "Overlap check failed");
2861             return ret;
2862         }
2863 
2864         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2865         if (ret < 0) {
2866             error_setg_errno(errp, -ret, "Failed to write refblock");
2867             return ret;
2868         }
2869     } else {
2870         assert(refblock_empty);
2871     }
2872 
2873     return 0;
2874 }
2875 
2876 /**
2877  * This function walks over the existing reftable and every referenced refblock;
2878  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2879  * create an equal new entry in the passed @new_refblock. Once that
2880  * @new_refblock is completely filled, @operation will be called.
2881  *
2882  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2883  * @index is the index of the walk_over_reftable() calls and @total is the total
2884  * number of walk_over_reftable() calls per amend operation. Both are used for
2885  * calculating the parameters for the status callback.
2886  *
2887  * @allocated is set to true if a new cluster has been allocated.
2888  */
2889 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2890                               uint64_t *new_reftable_index,
2891                               uint64_t *new_reftable_size,
2892                               void *new_refblock, int new_refblock_size,
2893                               int new_refcount_bits,
2894                               RefblockFinishOp *operation, bool *allocated,
2895                               Qcow2SetRefcountFunc *new_set_refcount,
2896                               BlockDriverAmendStatusCB *status_cb,
2897                               void *cb_opaque, int index, int total,
2898                               Error **errp)
2899 {
2900     BDRVQcow2State *s = bs->opaque;
2901     uint64_t reftable_index;
2902     bool new_refblock_empty = true;
2903     int refblock_index;
2904     int new_refblock_index = 0;
2905     int ret;
2906 
2907     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2908          reftable_index++)
2909     {
2910         uint64_t refblock_offset = s->refcount_table[reftable_index]
2911                                  & REFT_OFFSET_MASK;
2912 
2913         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2914                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2915 
2916         if (refblock_offset) {
2917             void *refblock;
2918 
2919             if (offset_into_cluster(s, refblock_offset)) {
2920                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2921                                         PRIx64 " unaligned (reftable index: %#"
2922                                         PRIx64 ")", refblock_offset,
2923                                         reftable_index);
2924                 error_setg(errp,
2925                            "Image is corrupt (unaligned refblock offset)");
2926                 return -EIO;
2927             }
2928 
2929             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2930                                   &refblock);
2931             if (ret < 0) {
2932                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2933                 return ret;
2934             }
2935 
2936             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2937                  refblock_index++)
2938             {
2939                 uint64_t refcount;
2940 
2941                 if (new_refblock_index >= new_refblock_size) {
2942                     /* new_refblock is now complete */
2943                     ret = operation(bs, new_reftable, *new_reftable_index,
2944                                     new_reftable_size, new_refblock,
2945                                     new_refblock_empty, allocated, errp);
2946                     if (ret < 0) {
2947                         qcow2_cache_put(s->refcount_block_cache, &refblock);
2948                         return ret;
2949                     }
2950 
2951                     (*new_reftable_index)++;
2952                     new_refblock_index = 0;
2953                     new_refblock_empty = true;
2954                 }
2955 
2956                 refcount = s->get_refcount(refblock, refblock_index);
2957                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2958                     uint64_t offset;
2959 
2960                     qcow2_cache_put(s->refcount_block_cache, &refblock);
2961 
2962                     offset = ((reftable_index << s->refcount_block_bits)
2963                               + refblock_index) << s->cluster_bits;
2964 
2965                     error_setg(errp, "Cannot decrease refcount entry width to "
2966                                "%i bits: Cluster at offset %#" PRIx64 " has a "
2967                                "refcount of %" PRIu64, new_refcount_bits,
2968                                offset, refcount);
2969                     return -EINVAL;
2970                 }
2971 
2972                 if (new_set_refcount) {
2973                     new_set_refcount(new_refblock, new_refblock_index++,
2974                                      refcount);
2975                 } else {
2976                     new_refblock_index++;
2977                 }
2978                 new_refblock_empty = new_refblock_empty && refcount == 0;
2979             }
2980 
2981             qcow2_cache_put(s->refcount_block_cache, &refblock);
2982         } else {
2983             /* No refblock means every refcount is 0 */
2984             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2985                  refblock_index++)
2986             {
2987                 if (new_refblock_index >= new_refblock_size) {
2988                     /* new_refblock is now complete */
2989                     ret = operation(bs, new_reftable, *new_reftable_index,
2990                                     new_reftable_size, new_refblock,
2991                                     new_refblock_empty, allocated, errp);
2992                     if (ret < 0) {
2993                         return ret;
2994                     }
2995 
2996                     (*new_reftable_index)++;
2997                     new_refblock_index = 0;
2998                     new_refblock_empty = true;
2999                 }
3000 
3001                 if (new_set_refcount) {
3002                     new_set_refcount(new_refblock, new_refblock_index++, 0);
3003                 } else {
3004                     new_refblock_index++;
3005                 }
3006             }
3007         }
3008     }
3009 
3010     if (new_refblock_index > 0) {
3011         /* Complete the potentially existing partially filled final refblock */
3012         if (new_set_refcount) {
3013             for (; new_refblock_index < new_refblock_size;
3014                  new_refblock_index++)
3015             {
3016                 new_set_refcount(new_refblock, new_refblock_index, 0);
3017             }
3018         }
3019 
3020         ret = operation(bs, new_reftable, *new_reftable_index,
3021                         new_reftable_size, new_refblock, new_refblock_empty,
3022                         allocated, errp);
3023         if (ret < 0) {
3024             return ret;
3025         }
3026 
3027         (*new_reftable_index)++;
3028     }
3029 
3030     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
3031               (uint64_t)total * s->refcount_table_size, cb_opaque);
3032 
3033     return 0;
3034 }
3035 
3036 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
3037                                 BlockDriverAmendStatusCB *status_cb,
3038                                 void *cb_opaque, Error **errp)
3039 {
3040     BDRVQcow2State *s = bs->opaque;
3041     Qcow2GetRefcountFunc *new_get_refcount;
3042     Qcow2SetRefcountFunc *new_set_refcount;
3043     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
3044     uint64_t *new_reftable = NULL, new_reftable_size = 0;
3045     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
3046     uint64_t new_reftable_index = 0;
3047     uint64_t i;
3048     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
3049     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
3050     int old_refcount_order;
3051     int walk_index = 0;
3052     int ret;
3053     bool new_allocation;
3054 
3055     assert(s->qcow_version >= 3);
3056     assert(refcount_order >= 0 && refcount_order <= 6);
3057 
3058     /* see qcow2_open() */
3059     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3060 
3061     new_get_refcount = get_refcount_funcs[refcount_order];
3062     new_set_refcount = set_refcount_funcs[refcount_order];
3063 
3064 
3065     do {
3066         int total_walks;
3067 
3068         new_allocation = false;
3069 
3070         /* At least we have to do this walk and the one which writes the
3071          * refblocks; also, at least we have to do this loop here at least
3072          * twice (normally), first to do the allocations, and second to
3073          * determine that everything is correctly allocated, this then makes
3074          * three walks in total */
3075         total_walks = MAX(walk_index + 2, 3);
3076 
3077         /* First, allocate the structures so they are present in the refcount
3078          * structures */
3079         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3080                                  &new_reftable_size, NULL, new_refblock_size,
3081                                  new_refcount_bits, &alloc_refblock,
3082                                  &new_allocation, NULL, status_cb, cb_opaque,
3083                                  walk_index++, total_walks, errp);
3084         if (ret < 0) {
3085             goto done;
3086         }
3087 
3088         new_reftable_index = 0;
3089 
3090         if (new_allocation) {
3091             if (new_reftable_offset) {
3092                 qcow2_free_clusters(bs, new_reftable_offset,
3093                                     allocated_reftable_size * sizeof(uint64_t),
3094                                     QCOW2_DISCARD_NEVER);
3095             }
3096 
3097             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3098                                                            sizeof(uint64_t));
3099             if (new_reftable_offset < 0) {
3100                 error_setg_errno(errp, -new_reftable_offset,
3101                                  "Failed to allocate the new reftable");
3102                 ret = new_reftable_offset;
3103                 goto done;
3104             }
3105             allocated_reftable_size = new_reftable_size;
3106         }
3107     } while (new_allocation);
3108 
3109     /* Second, write the new refblocks */
3110     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3111                              &new_reftable_size, new_refblock,
3112                              new_refblock_size, new_refcount_bits,
3113                              &flush_refblock, &new_allocation, new_set_refcount,
3114                              status_cb, cb_opaque, walk_index, walk_index + 1,
3115                              errp);
3116     if (ret < 0) {
3117         goto done;
3118     }
3119     assert(!new_allocation);
3120 
3121 
3122     /* Write the new reftable */
3123     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3124                                         new_reftable_size * sizeof(uint64_t));
3125     if (ret < 0) {
3126         error_setg_errno(errp, -ret, "Overlap check failed");
3127         goto done;
3128     }
3129 
3130     for (i = 0; i < new_reftable_size; i++) {
3131         cpu_to_be64s(&new_reftable[i]);
3132     }
3133 
3134     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
3135                       new_reftable_size * sizeof(uint64_t));
3136 
3137     for (i = 0; i < new_reftable_size; i++) {
3138         be64_to_cpus(&new_reftable[i]);
3139     }
3140 
3141     if (ret < 0) {
3142         error_setg_errno(errp, -ret, "Failed to write the new reftable");
3143         goto done;
3144     }
3145 
3146 
3147     /* Empty the refcount cache */
3148     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3149     if (ret < 0) {
3150         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3151         goto done;
3152     }
3153 
3154     /* Update the image header to point to the new reftable; this only updates
3155      * the fields which are relevant to qcow2_update_header(); other fields
3156      * such as s->refcount_table or s->refcount_bits stay stale for now
3157      * (because we have to restore everything if qcow2_update_header() fails) */
3158     old_refcount_order  = s->refcount_order;
3159     old_reftable_size   = s->refcount_table_size;
3160     old_reftable_offset = s->refcount_table_offset;
3161 
3162     s->refcount_order        = refcount_order;
3163     s->refcount_table_size   = new_reftable_size;
3164     s->refcount_table_offset = new_reftable_offset;
3165 
3166     ret = qcow2_update_header(bs);
3167     if (ret < 0) {
3168         s->refcount_order        = old_refcount_order;
3169         s->refcount_table_size   = old_reftable_size;
3170         s->refcount_table_offset = old_reftable_offset;
3171         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3172         goto done;
3173     }
3174 
3175     /* Now update the rest of the in-memory information */
3176     old_reftable = s->refcount_table;
3177     s->refcount_table = new_reftable;
3178     update_max_refcount_table_index(s);
3179 
3180     s->refcount_bits = 1 << refcount_order;
3181     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3182     s->refcount_max += s->refcount_max - 1;
3183 
3184     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3185     s->refcount_block_size = 1 << s->refcount_block_bits;
3186 
3187     s->get_refcount = new_get_refcount;
3188     s->set_refcount = new_set_refcount;
3189 
3190     /* For cleaning up all old refblocks and the old reftable below the "done"
3191      * label */
3192     new_reftable        = old_reftable;
3193     new_reftable_size   = old_reftable_size;
3194     new_reftable_offset = old_reftable_offset;
3195 
3196 done:
3197     if (new_reftable) {
3198         /* On success, new_reftable actually points to the old reftable (and
3199          * new_reftable_size is the old reftable's size); but that is just
3200          * fine */
3201         for (i = 0; i < new_reftable_size; i++) {
3202             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3203             if (offset) {
3204                 qcow2_free_clusters(bs, offset, s->cluster_size,
3205                                     QCOW2_DISCARD_OTHER);
3206             }
3207         }
3208         g_free(new_reftable);
3209 
3210         if (new_reftable_offset > 0) {
3211             qcow2_free_clusters(bs, new_reftable_offset,
3212                                 new_reftable_size * sizeof(uint64_t),
3213                                 QCOW2_DISCARD_OTHER);
3214         }
3215     }
3216 
3217     qemu_vfree(new_refblock);
3218     return ret;
3219 }
3220 
3221 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3222 {
3223     BDRVQcow2State *s = bs->opaque;
3224     uint32_t index = offset_to_reftable_index(s, offset);
3225     int64_t covering_refblock_offset = 0;
3226 
3227     if (index < s->refcount_table_size) {
3228         covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3229     }
3230     if (!covering_refblock_offset) {
3231         qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3232                                 "not covered by the refcount structures",
3233                                 offset);
3234         return -EIO;
3235     }
3236 
3237     return covering_refblock_offset;
3238 }
3239 
3240 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3241                                         uint64_t discard_block_offs)
3242 {
3243     BDRVQcow2State *s = bs->opaque;
3244     int64_t refblock_offs;
3245     uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3246     uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3247     void *refblock;
3248     int ret;
3249 
3250     refblock_offs = get_refblock_offset(bs, discard_block_offs);
3251     if (refblock_offs < 0) {
3252         return refblock_offs;
3253     }
3254 
3255     assert(discard_block_offs != 0);
3256 
3257     ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3258                           &refblock);
3259     if (ret < 0) {
3260         return ret;
3261     }
3262 
3263     if (s->get_refcount(refblock, block_index) != 1) {
3264         qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3265                                 " refblock offset %#" PRIx64
3266                                 ", reftable index %u"
3267                                 ", block offset %#" PRIx64
3268                                 ", refcount %#" PRIx64,
3269                                 refblock_offs,
3270                                 offset_to_reftable_index(s, discard_block_offs),
3271                                 discard_block_offs,
3272                                 s->get_refcount(refblock, block_index));
3273         qcow2_cache_put(s->refcount_block_cache, &refblock);
3274         return -EINVAL;
3275     }
3276     s->set_refcount(refblock, block_index, 0);
3277 
3278     qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3279 
3280     qcow2_cache_put(s->refcount_block_cache, &refblock);
3281 
3282     if (cluster_index < s->free_cluster_index) {
3283         s->free_cluster_index = cluster_index;
3284     }
3285 
3286     refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3287                                            discard_block_offs);
3288     if (refblock) {
3289         /* discard refblock from the cache if refblock is cached */
3290         qcow2_cache_discard(s->refcount_block_cache, refblock);
3291     }
3292     update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3293 
3294     return 0;
3295 }
3296 
3297 int qcow2_shrink_reftable(BlockDriverState *bs)
3298 {
3299     BDRVQcow2State *s = bs->opaque;
3300     uint64_t *reftable_tmp =
3301         g_malloc(s->refcount_table_size * sizeof(uint64_t));
3302     int i, ret;
3303 
3304     for (i = 0; i < s->refcount_table_size; i++) {
3305         int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3306         void *refblock;
3307         bool unused_block;
3308 
3309         if (refblock_offs == 0) {
3310             reftable_tmp[i] = 0;
3311             continue;
3312         }
3313         ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3314                               &refblock);
3315         if (ret < 0) {
3316             goto out;
3317         }
3318 
3319         /* the refblock has own reference */
3320         if (i == offset_to_reftable_index(s, refblock_offs)) {
3321             uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3322                                    (s->refcount_block_size - 1);
3323             uint64_t refcount = s->get_refcount(refblock, block_index);
3324 
3325             s->set_refcount(refblock, block_index, 0);
3326 
3327             unused_block = buffer_is_zero(refblock, s->cluster_size);
3328 
3329             s->set_refcount(refblock, block_index, refcount);
3330         } else {
3331             unused_block = buffer_is_zero(refblock, s->cluster_size);
3332         }
3333         qcow2_cache_put(s->refcount_block_cache, &refblock);
3334 
3335         reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3336     }
3337 
3338     ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3339                            s->refcount_table_size * sizeof(uint64_t));
3340     /*
3341      * If the write in the reftable failed the image may contain a partially
3342      * overwritten reftable. In this case it would be better to clear the
3343      * reftable in memory to avoid possible image corruption.
3344      */
3345     for (i = 0; i < s->refcount_table_size; i++) {
3346         if (s->refcount_table[i] && !reftable_tmp[i]) {
3347             if (ret == 0) {
3348                 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3349                                                        REFT_OFFSET_MASK);
3350             }
3351             s->refcount_table[i] = 0;
3352         }
3353     }
3354 
3355     if (!s->cache_discards) {
3356         qcow2_process_discards(bs, ret);
3357     }
3358 
3359 out:
3360     g_free(reftable_tmp);
3361     return ret;
3362 }
3363 
3364 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3365 {
3366     BDRVQcow2State *s = bs->opaque;
3367     int64_t i;
3368 
3369     for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3370         uint64_t refcount;
3371         int ret = qcow2_get_refcount(bs, i, &refcount);
3372         if (ret < 0) {
3373             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3374                     i, strerror(-ret));
3375             return ret;
3376         }
3377         if (refcount > 0) {
3378             return i;
3379         }
3380     }
3381     qcow2_signal_corruption(bs, true, -1, -1,
3382                             "There are no references in the refcount table.");
3383     return -EIO;
3384 }
3385