1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qcow2.h" 28 #include "qemu/range.h" 29 #include "qemu/bswap.h" 30 #include "qemu/cutils.h" 31 #include "qemu/memalign.h" 32 #include "trace.h" 33 34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size, 35 uint64_t max); 36 37 G_GNUC_WARN_UNUSED_RESULT 38 static int update_refcount(BlockDriverState *bs, 39 int64_t offset, int64_t length, uint64_t addend, 40 bool decrease, enum qcow2_discard_type type); 41 42 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index); 43 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index); 44 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index); 45 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index); 46 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index); 47 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index); 48 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index); 49 50 static void set_refcount_ro0(void *refcount_array, uint64_t index, 51 uint64_t value); 52 static void set_refcount_ro1(void *refcount_array, uint64_t index, 53 uint64_t value); 54 static void set_refcount_ro2(void *refcount_array, uint64_t index, 55 uint64_t value); 56 static void set_refcount_ro3(void *refcount_array, uint64_t index, 57 uint64_t value); 58 static void set_refcount_ro4(void *refcount_array, uint64_t index, 59 uint64_t value); 60 static void set_refcount_ro5(void *refcount_array, uint64_t index, 61 uint64_t value); 62 static void set_refcount_ro6(void *refcount_array, uint64_t index, 63 uint64_t value); 64 65 66 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = { 67 &get_refcount_ro0, 68 &get_refcount_ro1, 69 &get_refcount_ro2, 70 &get_refcount_ro3, 71 &get_refcount_ro4, 72 &get_refcount_ro5, 73 &get_refcount_ro6 74 }; 75 76 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = { 77 &set_refcount_ro0, 78 &set_refcount_ro1, 79 &set_refcount_ro2, 80 &set_refcount_ro3, 81 &set_refcount_ro4, 82 &set_refcount_ro5, 83 &set_refcount_ro6 84 }; 85 86 87 /*********************************************************/ 88 /* refcount handling */ 89 90 static void update_max_refcount_table_index(BDRVQcow2State *s) 91 { 92 unsigned i = s->refcount_table_size - 1; 93 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) { 94 i--; 95 } 96 /* Set s->max_refcount_table_index to the index of the last used entry */ 97 s->max_refcount_table_index = i; 98 } 99 100 int qcow2_refcount_init(BlockDriverState *bs) 101 { 102 BDRVQcow2State *s = bs->opaque; 103 unsigned int refcount_table_size2, i; 104 int ret; 105 106 assert(s->refcount_order >= 0 && s->refcount_order <= 6); 107 108 s->get_refcount = get_refcount_funcs[s->refcount_order]; 109 s->set_refcount = set_refcount_funcs[s->refcount_order]; 110 111 assert(s->refcount_table_size <= INT_MAX / REFTABLE_ENTRY_SIZE); 112 refcount_table_size2 = s->refcount_table_size * REFTABLE_ENTRY_SIZE; 113 s->refcount_table = g_try_malloc(refcount_table_size2); 114 115 if (s->refcount_table_size > 0) { 116 if (s->refcount_table == NULL) { 117 ret = -ENOMEM; 118 goto fail; 119 } 120 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD); 121 ret = bdrv_pread(bs->file, s->refcount_table_offset, 122 refcount_table_size2, s->refcount_table, 0); 123 if (ret < 0) { 124 goto fail; 125 } 126 for(i = 0; i < s->refcount_table_size; i++) 127 be64_to_cpus(&s->refcount_table[i]); 128 update_max_refcount_table_index(s); 129 } 130 return 0; 131 fail: 132 return ret; 133 } 134 135 void qcow2_refcount_close(BlockDriverState *bs) 136 { 137 BDRVQcow2State *s = bs->opaque; 138 g_free(s->refcount_table); 139 } 140 141 142 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index) 143 { 144 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1; 145 } 146 147 static void set_refcount_ro0(void *refcount_array, uint64_t index, 148 uint64_t value) 149 { 150 assert(!(value >> 1)); 151 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8)); 152 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8); 153 } 154 155 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index) 156 { 157 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4))) 158 & 0x3; 159 } 160 161 static void set_refcount_ro1(void *refcount_array, uint64_t index, 162 uint64_t value) 163 { 164 assert(!(value >> 2)); 165 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4))); 166 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4)); 167 } 168 169 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index) 170 { 171 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2))) 172 & 0xf; 173 } 174 175 static void set_refcount_ro2(void *refcount_array, uint64_t index, 176 uint64_t value) 177 { 178 assert(!(value >> 4)); 179 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2))); 180 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2)); 181 } 182 183 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index) 184 { 185 return ((const uint8_t *)refcount_array)[index]; 186 } 187 188 static void set_refcount_ro3(void *refcount_array, uint64_t index, 189 uint64_t value) 190 { 191 assert(!(value >> 8)); 192 ((uint8_t *)refcount_array)[index] = value; 193 } 194 195 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index) 196 { 197 return be16_to_cpu(((const uint16_t *)refcount_array)[index]); 198 } 199 200 static void set_refcount_ro4(void *refcount_array, uint64_t index, 201 uint64_t value) 202 { 203 assert(!(value >> 16)); 204 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value); 205 } 206 207 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index) 208 { 209 return be32_to_cpu(((const uint32_t *)refcount_array)[index]); 210 } 211 212 static void set_refcount_ro5(void *refcount_array, uint64_t index, 213 uint64_t value) 214 { 215 assert(!(value >> 32)); 216 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value); 217 } 218 219 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index) 220 { 221 return be64_to_cpu(((const uint64_t *)refcount_array)[index]); 222 } 223 224 static void set_refcount_ro6(void *refcount_array, uint64_t index, 225 uint64_t value) 226 { 227 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value); 228 } 229 230 231 static int load_refcount_block(BlockDriverState *bs, 232 int64_t refcount_block_offset, 233 void **refcount_block) 234 { 235 BDRVQcow2State *s = bs->opaque; 236 237 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD); 238 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 239 refcount_block); 240 } 241 242 /* 243 * Retrieves the refcount of the cluster given by its index and stores it in 244 * *refcount. Returns 0 on success and -errno on failure. 245 */ 246 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index, 247 uint64_t *refcount) 248 { 249 BDRVQcow2State *s = bs->opaque; 250 uint64_t refcount_table_index, block_index; 251 int64_t refcount_block_offset; 252 int ret; 253 void *refcount_block; 254 255 refcount_table_index = cluster_index >> s->refcount_block_bits; 256 if (refcount_table_index >= s->refcount_table_size) { 257 *refcount = 0; 258 return 0; 259 } 260 refcount_block_offset = 261 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 262 if (!refcount_block_offset) { 263 *refcount = 0; 264 return 0; 265 } 266 267 if (offset_into_cluster(s, refcount_block_offset)) { 268 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64 269 " unaligned (reftable index: %#" PRIx64 ")", 270 refcount_block_offset, refcount_table_index); 271 return -EIO; 272 } 273 274 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 275 &refcount_block); 276 if (ret < 0) { 277 return ret; 278 } 279 280 block_index = cluster_index & (s->refcount_block_size - 1); 281 *refcount = s->get_refcount(refcount_block, block_index); 282 283 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 284 285 return 0; 286 } 287 288 /* Checks if two offsets are described by the same refcount block */ 289 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a, 290 uint64_t offset_b) 291 { 292 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits); 293 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits); 294 295 return (block_a == block_b); 296 } 297 298 /* 299 * Loads a refcount block. If it doesn't exist yet, it is allocated first 300 * (including growing the refcount table if needed). 301 * 302 * Returns 0 on success or -errno in error case 303 */ 304 static int alloc_refcount_block(BlockDriverState *bs, 305 int64_t cluster_index, void **refcount_block) 306 { 307 BDRVQcow2State *s = bs->opaque; 308 unsigned int refcount_table_index; 309 int64_t ret; 310 311 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC); 312 313 /* Find the refcount block for the given cluster */ 314 refcount_table_index = cluster_index >> s->refcount_block_bits; 315 316 if (refcount_table_index < s->refcount_table_size) { 317 318 uint64_t refcount_block_offset = 319 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 320 321 /* If it's already there, we're done */ 322 if (refcount_block_offset) { 323 if (offset_into_cluster(s, refcount_block_offset)) { 324 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 325 PRIx64 " unaligned (reftable index: " 326 "%#x)", refcount_block_offset, 327 refcount_table_index); 328 return -EIO; 329 } 330 331 return load_refcount_block(bs, refcount_block_offset, 332 refcount_block); 333 } 334 } 335 336 /* 337 * If we came here, we need to allocate something. Something is at least 338 * a cluster for the new refcount block. It may also include a new refcount 339 * table if the old refcount table is too small. 340 * 341 * Note that allocating clusters here needs some special care: 342 * 343 * - We can't use the normal qcow2_alloc_clusters(), it would try to 344 * increase the refcount and very likely we would end up with an endless 345 * recursion. Instead we must place the refcount blocks in a way that 346 * they can describe them themselves. 347 * 348 * - We need to consider that at this point we are inside update_refcounts 349 * and potentially doing an initial refcount increase. This means that 350 * some clusters have already been allocated by the caller, but their 351 * refcount isn't accurate yet. If we allocate clusters for metadata, we 352 * need to return -EAGAIN to signal the caller that it needs to restart 353 * the search for free clusters. 354 * 355 * - alloc_clusters_noref and qcow2_free_clusters may load a different 356 * refcount block into the cache 357 */ 358 359 *refcount_block = NULL; 360 361 /* We write to the refcount table, so we might depend on L2 tables */ 362 ret = qcow2_cache_flush(bs, s->l2_table_cache); 363 if (ret < 0) { 364 return ret; 365 } 366 367 /* Allocate the refcount block itself and mark it as used */ 368 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX); 369 if (new_block < 0) { 370 return new_block; 371 } 372 373 /* The offset must fit in the offset field of the refcount table entry */ 374 assert((new_block & REFT_OFFSET_MASK) == new_block); 375 376 /* If we're allocating the block at offset 0 then something is wrong */ 377 if (new_block == 0) { 378 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 379 "allocation of refcount block at offset 0"); 380 return -EIO; 381 } 382 383 #ifdef DEBUG_ALLOC2 384 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64 385 " at %" PRIx64 "\n", 386 refcount_table_index, cluster_index << s->cluster_bits, new_block); 387 #endif 388 389 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) { 390 /* Zero the new refcount block before updating it */ 391 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 392 refcount_block); 393 if (ret < 0) { 394 goto fail; 395 } 396 397 memset(*refcount_block, 0, s->cluster_size); 398 399 /* The block describes itself, need to update the cache */ 400 int block_index = (new_block >> s->cluster_bits) & 401 (s->refcount_block_size - 1); 402 s->set_refcount(*refcount_block, block_index, 1); 403 } else { 404 /* Described somewhere else. This can recurse at most twice before we 405 * arrive at a block that describes itself. */ 406 ret = update_refcount(bs, new_block, s->cluster_size, 1, false, 407 QCOW2_DISCARD_NEVER); 408 if (ret < 0) { 409 goto fail; 410 } 411 412 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 413 if (ret < 0) { 414 goto fail; 415 } 416 417 /* Initialize the new refcount block only after updating its refcount, 418 * update_refcount uses the refcount cache itself */ 419 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 420 refcount_block); 421 if (ret < 0) { 422 goto fail; 423 } 424 425 memset(*refcount_block, 0, s->cluster_size); 426 } 427 428 /* Now the new refcount block needs to be written to disk */ 429 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE); 430 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block); 431 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 432 if (ret < 0) { 433 goto fail; 434 } 435 436 /* If the refcount table is big enough, just hook the block up there */ 437 if (refcount_table_index < s->refcount_table_size) { 438 uint64_t data64 = cpu_to_be64(new_block); 439 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP); 440 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset + 441 refcount_table_index * REFTABLE_ENTRY_SIZE, 442 sizeof(data64), &data64, 0); 443 if (ret < 0) { 444 goto fail; 445 } 446 447 s->refcount_table[refcount_table_index] = new_block; 448 /* If there's a hole in s->refcount_table then it can happen 449 * that refcount_table_index < s->max_refcount_table_index */ 450 s->max_refcount_table_index = 451 MAX(s->max_refcount_table_index, refcount_table_index); 452 453 /* The new refcount block may be where the caller intended to put its 454 * data, so let it restart the search. */ 455 return -EAGAIN; 456 } 457 458 qcow2_cache_put(s->refcount_block_cache, refcount_block); 459 460 /* 461 * If we come here, we need to grow the refcount table. Again, a new 462 * refcount table needs some space and we can't simply allocate to avoid 463 * endless recursion. 464 * 465 * Therefore let's grab new refcount blocks at the end of the image, which 466 * will describe themselves and the new refcount table. This way we can 467 * reference them only in the new table and do the switch to the new 468 * refcount table at once without producing an inconsistent state in 469 * between. 470 */ 471 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW); 472 473 /* Calculate the number of refcount blocks needed so far; this will be the 474 * basis for calculating the index of the first cluster used for the 475 * self-describing refcount structures which we are about to create. 476 * 477 * Because we reached this point, there cannot be any refcount entries for 478 * cluster_index or higher indices yet. However, because new_block has been 479 * allocated to describe that cluster (and it will assume this role later 480 * on), we cannot use that index; also, new_block may actually have a higher 481 * cluster index than cluster_index, so it needs to be taken into account 482 * here (and 1 needs to be added to its value because that cluster is used). 483 */ 484 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1, 485 (new_block >> s->cluster_bits) + 1), 486 s->refcount_block_size); 487 488 /* Create the new refcount table and blocks */ 489 uint64_t meta_offset = (blocks_used * s->refcount_block_size) * 490 s->cluster_size; 491 492 ret = qcow2_refcount_area(bs, meta_offset, 0, false, 493 refcount_table_index, new_block); 494 if (ret < 0) { 495 return ret; 496 } 497 498 ret = load_refcount_block(bs, new_block, refcount_block); 499 if (ret < 0) { 500 return ret; 501 } 502 503 /* If we were trying to do the initial refcount update for some cluster 504 * allocation, we might have used the same clusters to store newly 505 * allocated metadata. Make the caller search some new space. */ 506 return -EAGAIN; 507 508 fail: 509 if (*refcount_block != NULL) { 510 qcow2_cache_put(s->refcount_block_cache, refcount_block); 511 } 512 return ret; 513 } 514 515 /* 516 * Starting at @start_offset, this function creates new self-covering refcount 517 * structures: A new refcount table and refcount blocks which cover all of 518 * themselves, and a number of @additional_clusters beyond their end. 519 * @start_offset must be at the end of the image file, that is, there must be 520 * only empty space beyond it. 521 * If @exact_size is false, the refcount table will have 50 % more entries than 522 * necessary so it will not need to grow again soon. 523 * If @new_refblock_offset is not zero, it contains the offset of a refcount 524 * block that should be entered into the new refcount table at index 525 * @new_refblock_index. 526 * 527 * Returns: The offset after the new refcount structures (i.e. where the 528 * @additional_clusters may be placed) on success, -errno on error. 529 */ 530 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset, 531 uint64_t additional_clusters, bool exact_size, 532 int new_refblock_index, 533 uint64_t new_refblock_offset) 534 { 535 BDRVQcow2State *s = bs->opaque; 536 uint64_t total_refblock_count_u64, additional_refblock_count; 537 int total_refblock_count, table_size, area_reftable_index, table_clusters; 538 int i; 539 uint64_t table_offset, block_offset, end_offset; 540 int ret; 541 uint64_t *new_table; 542 543 assert(!(start_offset % s->cluster_size)); 544 545 qcow2_refcount_metadata_size(start_offset / s->cluster_size + 546 additional_clusters, 547 s->cluster_size, s->refcount_order, 548 !exact_size, &total_refblock_count_u64); 549 if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) { 550 return -EFBIG; 551 } 552 total_refblock_count = total_refblock_count_u64; 553 554 /* Index in the refcount table of the first refcount block to cover the area 555 * of refcount structures we are about to create; we know that 556 * @total_refblock_count can cover @start_offset, so this will definitely 557 * fit into an int. */ 558 area_reftable_index = (start_offset / s->cluster_size) / 559 s->refcount_block_size; 560 561 if (exact_size) { 562 table_size = total_refblock_count; 563 } else { 564 table_size = total_refblock_count + 565 DIV_ROUND_UP(total_refblock_count, 2); 566 } 567 /* The qcow2 file can only store the reftable size in number of clusters */ 568 table_size = ROUND_UP(table_size, s->cluster_size / REFTABLE_ENTRY_SIZE); 569 table_clusters = (table_size * REFTABLE_ENTRY_SIZE) / s->cluster_size; 570 571 if (table_size > QCOW_MAX_REFTABLE_SIZE) { 572 return -EFBIG; 573 } 574 575 new_table = g_try_new0(uint64_t, table_size); 576 577 assert(table_size > 0); 578 if (new_table == NULL) { 579 ret = -ENOMEM; 580 goto fail; 581 } 582 583 /* Fill the new refcount table */ 584 if (table_size > s->max_refcount_table_index) { 585 /* We're actually growing the reftable */ 586 memcpy(new_table, s->refcount_table, 587 (s->max_refcount_table_index + 1) * REFTABLE_ENTRY_SIZE); 588 } else { 589 /* Improbable case: We're shrinking the reftable. However, the caller 590 * has assured us that there is only empty space beyond @start_offset, 591 * so we can simply drop all of the refblocks that won't fit into the 592 * new reftable. */ 593 memcpy(new_table, s->refcount_table, table_size * REFTABLE_ENTRY_SIZE); 594 } 595 596 if (new_refblock_offset) { 597 assert(new_refblock_index < total_refblock_count); 598 new_table[new_refblock_index] = new_refblock_offset; 599 } 600 601 /* Count how many new refblocks we have to create */ 602 additional_refblock_count = 0; 603 for (i = area_reftable_index; i < total_refblock_count; i++) { 604 if (!new_table[i]) { 605 additional_refblock_count++; 606 } 607 } 608 609 table_offset = start_offset + additional_refblock_count * s->cluster_size; 610 end_offset = table_offset + table_clusters * s->cluster_size; 611 612 /* Fill the refcount blocks, and create new ones, if necessary */ 613 block_offset = start_offset; 614 for (i = area_reftable_index; i < total_refblock_count; i++) { 615 void *refblock_data; 616 uint64_t first_offset_covered; 617 618 /* Reuse an existing refblock if possible, create a new one otherwise */ 619 if (new_table[i]) { 620 ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i], 621 &refblock_data); 622 if (ret < 0) { 623 goto fail; 624 } 625 } else { 626 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, 627 block_offset, &refblock_data); 628 if (ret < 0) { 629 goto fail; 630 } 631 memset(refblock_data, 0, s->cluster_size); 632 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, 633 refblock_data); 634 635 new_table[i] = block_offset; 636 block_offset += s->cluster_size; 637 } 638 639 /* First host offset covered by this refblock */ 640 first_offset_covered = (uint64_t)i * s->refcount_block_size * 641 s->cluster_size; 642 if (first_offset_covered < end_offset) { 643 int j, end_index; 644 645 /* Set the refcount of all of the new refcount structures to 1 */ 646 647 if (first_offset_covered < start_offset) { 648 assert(i == area_reftable_index); 649 j = (start_offset - first_offset_covered) / s->cluster_size; 650 assert(j < s->refcount_block_size); 651 } else { 652 j = 0; 653 } 654 655 end_index = MIN((end_offset - first_offset_covered) / 656 s->cluster_size, 657 s->refcount_block_size); 658 659 for (; j < end_index; j++) { 660 /* The caller guaranteed us this space would be empty */ 661 assert(s->get_refcount(refblock_data, j) == 0); 662 s->set_refcount(refblock_data, j, 1); 663 } 664 665 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, 666 refblock_data); 667 } 668 669 qcow2_cache_put(s->refcount_block_cache, &refblock_data); 670 } 671 672 assert(block_offset == table_offset); 673 674 /* Write refcount blocks to disk */ 675 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS); 676 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 677 if (ret < 0) { 678 goto fail; 679 } 680 681 /* Write refcount table to disk */ 682 for (i = 0; i < total_refblock_count; i++) { 683 cpu_to_be64s(&new_table[i]); 684 } 685 686 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE); 687 ret = bdrv_pwrite_sync(bs->file, table_offset, 688 table_size * REFTABLE_ENTRY_SIZE, new_table, 0); 689 if (ret < 0) { 690 goto fail; 691 } 692 693 for (i = 0; i < total_refblock_count; i++) { 694 be64_to_cpus(&new_table[i]); 695 } 696 697 /* Hook up the new refcount table in the qcow2 header */ 698 struct QEMU_PACKED { 699 uint64_t d64; 700 uint32_t d32; 701 } data; 702 data.d64 = cpu_to_be64(table_offset); 703 data.d32 = cpu_to_be32(table_clusters); 704 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE); 705 ret = bdrv_pwrite_sync(bs->file, 706 offsetof(QCowHeader, refcount_table_offset), 707 sizeof(data), &data, 0); 708 if (ret < 0) { 709 goto fail; 710 } 711 712 /* And switch it in memory */ 713 uint64_t old_table_offset = s->refcount_table_offset; 714 uint64_t old_table_size = s->refcount_table_size; 715 716 g_free(s->refcount_table); 717 s->refcount_table = new_table; 718 s->refcount_table_size = table_size; 719 s->refcount_table_offset = table_offset; 720 update_max_refcount_table_index(s); 721 722 /* Free old table. */ 723 qcow2_free_clusters(bs, old_table_offset, 724 old_table_size * REFTABLE_ENTRY_SIZE, 725 QCOW2_DISCARD_OTHER); 726 727 return end_offset; 728 729 fail: 730 g_free(new_table); 731 return ret; 732 } 733 734 void qcow2_process_discards(BlockDriverState *bs, int ret) 735 { 736 BDRVQcow2State *s = bs->opaque; 737 Qcow2DiscardRegion *d, *next; 738 739 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) { 740 QTAILQ_REMOVE(&s->discards, d, next); 741 742 /* Discard is optional, ignore the return value */ 743 if (ret >= 0) { 744 int r2 = bdrv_pdiscard(bs->file, d->offset, d->bytes); 745 if (r2 < 0) { 746 trace_qcow2_process_discards_failed_region(d->offset, d->bytes, 747 r2); 748 } 749 } 750 751 g_free(d); 752 } 753 } 754 755 static void update_refcount_discard(BlockDriverState *bs, 756 uint64_t offset, uint64_t length) 757 { 758 BDRVQcow2State *s = bs->opaque; 759 Qcow2DiscardRegion *d, *p, *next; 760 761 QTAILQ_FOREACH(d, &s->discards, next) { 762 uint64_t new_start = MIN(offset, d->offset); 763 uint64_t new_end = MAX(offset + length, d->offset + d->bytes); 764 765 if (new_end - new_start <= length + d->bytes) { 766 /* There can't be any overlap, areas ending up here have no 767 * references any more and therefore shouldn't get freed another 768 * time. */ 769 assert(d->bytes + length == new_end - new_start); 770 d->offset = new_start; 771 d->bytes = new_end - new_start; 772 goto found; 773 } 774 } 775 776 d = g_malloc(sizeof(*d)); 777 *d = (Qcow2DiscardRegion) { 778 .bs = bs, 779 .offset = offset, 780 .bytes = length, 781 }; 782 QTAILQ_INSERT_TAIL(&s->discards, d, next); 783 784 found: 785 /* Merge discard requests if they are adjacent now */ 786 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) { 787 if (p == d 788 || p->offset > d->offset + d->bytes 789 || d->offset > p->offset + p->bytes) 790 { 791 continue; 792 } 793 794 /* Still no overlap possible */ 795 assert(p->offset == d->offset + d->bytes 796 || d->offset == p->offset + p->bytes); 797 798 QTAILQ_REMOVE(&s->discards, p, next); 799 d->offset = MIN(d->offset, p->offset); 800 d->bytes += p->bytes; 801 g_free(p); 802 } 803 } 804 805 /* XXX: cache several refcount block clusters ? */ 806 /* @addend is the absolute value of the addend; if @decrease is set, @addend 807 * will be subtracted from the current refcount, otherwise it will be added */ 808 static int update_refcount(BlockDriverState *bs, 809 int64_t offset, 810 int64_t length, 811 uint64_t addend, 812 bool decrease, 813 enum qcow2_discard_type type) 814 { 815 BDRVQcow2State *s = bs->opaque; 816 int64_t start, last, cluster_offset; 817 void *refcount_block = NULL; 818 int64_t old_table_index = -1; 819 int ret; 820 821 #ifdef DEBUG_ALLOC2 822 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64 823 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "", 824 addend); 825 #endif 826 if (length < 0) { 827 return -EINVAL; 828 } else if (length == 0) { 829 return 0; 830 } 831 832 if (decrease) { 833 qcow2_cache_set_dependency(bs, s->refcount_block_cache, 834 s->l2_table_cache); 835 } 836 837 start = start_of_cluster(s, offset); 838 last = start_of_cluster(s, offset + length - 1); 839 for(cluster_offset = start; cluster_offset <= last; 840 cluster_offset += s->cluster_size) 841 { 842 int block_index; 843 uint64_t refcount; 844 int64_t cluster_index = cluster_offset >> s->cluster_bits; 845 int64_t table_index = cluster_index >> s->refcount_block_bits; 846 847 /* Load the refcount block and allocate it if needed */ 848 if (table_index != old_table_index) { 849 if (refcount_block) { 850 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 851 } 852 ret = alloc_refcount_block(bs, cluster_index, &refcount_block); 853 /* If the caller needs to restart the search for free clusters, 854 * try the same ones first to see if they're still free. */ 855 if (ret == -EAGAIN) { 856 if (s->free_cluster_index > (start >> s->cluster_bits)) { 857 s->free_cluster_index = (start >> s->cluster_bits); 858 } 859 } 860 if (ret < 0) { 861 goto fail; 862 } 863 } 864 old_table_index = table_index; 865 866 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block); 867 868 /* we can update the count and save it */ 869 block_index = cluster_index & (s->refcount_block_size - 1); 870 871 refcount = s->get_refcount(refcount_block, block_index); 872 if (decrease ? (refcount - addend > refcount) 873 : (refcount + addend < refcount || 874 refcount + addend > s->refcount_max)) 875 { 876 ret = -EINVAL; 877 goto fail; 878 } 879 if (decrease) { 880 refcount -= addend; 881 } else { 882 refcount += addend; 883 } 884 if (refcount == 0 && cluster_index < s->free_cluster_index) { 885 s->free_cluster_index = cluster_index; 886 } 887 s->set_refcount(refcount_block, block_index, refcount); 888 889 if (refcount == 0) { 890 void *table; 891 892 table = qcow2_cache_is_table_offset(s->refcount_block_cache, 893 offset); 894 if (table != NULL) { 895 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 896 old_table_index = -1; 897 qcow2_cache_discard(s->refcount_block_cache, table); 898 } 899 900 table = qcow2_cache_is_table_offset(s->l2_table_cache, offset); 901 if (table != NULL) { 902 qcow2_cache_discard(s->l2_table_cache, table); 903 } 904 905 if (s->discard_passthrough[type]) { 906 update_refcount_discard(bs, cluster_offset, s->cluster_size); 907 } 908 } 909 } 910 911 ret = 0; 912 fail: 913 if (!s->cache_discards) { 914 qcow2_process_discards(bs, ret); 915 } 916 917 /* Write last changed block to disk */ 918 if (refcount_block) { 919 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 920 } 921 922 /* 923 * Try do undo any updates if an error is returned (This may succeed in 924 * some cases like ENOSPC for allocating a new refcount block) 925 */ 926 if (ret < 0) { 927 int dummy; 928 dummy = update_refcount(bs, offset, cluster_offset - offset, addend, 929 !decrease, QCOW2_DISCARD_NEVER); 930 (void)dummy; 931 } 932 933 return ret; 934 } 935 936 /* 937 * Increases or decreases the refcount of a given cluster. 938 * 939 * @addend is the absolute value of the addend; if @decrease is set, @addend 940 * will be subtracted from the current refcount, otherwise it will be added. 941 * 942 * On success 0 is returned; on failure -errno is returned. 943 */ 944 int qcow2_update_cluster_refcount(BlockDriverState *bs, 945 int64_t cluster_index, 946 uint64_t addend, bool decrease, 947 enum qcow2_discard_type type) 948 { 949 BDRVQcow2State *s = bs->opaque; 950 int ret; 951 952 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend, 953 decrease, type); 954 if (ret < 0) { 955 return ret; 956 } 957 958 return 0; 959 } 960 961 962 963 /*********************************************************/ 964 /* cluster allocation functions */ 965 966 967 968 /* return < 0 if error */ 969 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size, 970 uint64_t max) 971 { 972 BDRVQcow2State *s = bs->opaque; 973 uint64_t i, nb_clusters, refcount; 974 int ret; 975 976 /* We can't allocate clusters if they may still be queued for discard. */ 977 if (s->cache_discards) { 978 qcow2_process_discards(bs, 0); 979 } 980 981 nb_clusters = size_to_clusters(s, size); 982 retry: 983 for(i = 0; i < nb_clusters; i++) { 984 uint64_t next_cluster_index = s->free_cluster_index++; 985 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount); 986 987 if (ret < 0) { 988 return ret; 989 } else if (refcount != 0) { 990 goto retry; 991 } 992 } 993 994 /* Make sure that all offsets in the "allocated" range are representable 995 * in the requested max */ 996 if (s->free_cluster_index > 0 && 997 s->free_cluster_index - 1 > (max >> s->cluster_bits)) 998 { 999 return -EFBIG; 1000 } 1001 1002 #ifdef DEBUG_ALLOC2 1003 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n", 1004 size, 1005 (s->free_cluster_index - nb_clusters) << s->cluster_bits); 1006 #endif 1007 return (s->free_cluster_index - nb_clusters) << s->cluster_bits; 1008 } 1009 1010 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size) 1011 { 1012 int64_t offset; 1013 int ret; 1014 1015 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC); 1016 do { 1017 offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET); 1018 if (offset < 0) { 1019 return offset; 1020 } 1021 1022 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 1023 } while (ret == -EAGAIN); 1024 1025 if (ret < 0) { 1026 return ret; 1027 } 1028 1029 return offset; 1030 } 1031 1032 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset, 1033 int64_t nb_clusters) 1034 { 1035 BDRVQcow2State *s = bs->opaque; 1036 uint64_t cluster_index, refcount; 1037 uint64_t i; 1038 int ret; 1039 1040 assert(nb_clusters >= 0); 1041 if (nb_clusters == 0) { 1042 return 0; 1043 } 1044 1045 do { 1046 /* Check how many clusters there are free */ 1047 cluster_index = offset >> s->cluster_bits; 1048 for(i = 0; i < nb_clusters; i++) { 1049 ret = qcow2_get_refcount(bs, cluster_index++, &refcount); 1050 if (ret < 0) { 1051 return ret; 1052 } else if (refcount != 0) { 1053 break; 1054 } 1055 } 1056 1057 /* And then allocate them */ 1058 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false, 1059 QCOW2_DISCARD_NEVER); 1060 } while (ret == -EAGAIN); 1061 1062 if (ret < 0) { 1063 return ret; 1064 } 1065 1066 return i; 1067 } 1068 1069 /* only used to allocate compressed sectors. We try to allocate 1070 contiguous sectors. size must be <= cluster_size */ 1071 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size) 1072 { 1073 BDRVQcow2State *s = bs->opaque; 1074 int64_t offset; 1075 size_t free_in_cluster; 1076 int ret; 1077 1078 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES); 1079 assert(size > 0 && size <= s->cluster_size); 1080 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset)); 1081 1082 offset = s->free_byte_offset; 1083 1084 if (offset) { 1085 uint64_t refcount; 1086 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount); 1087 if (ret < 0) { 1088 return ret; 1089 } 1090 1091 if (refcount == s->refcount_max) { 1092 offset = 0; 1093 } 1094 } 1095 1096 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset); 1097 do { 1098 if (!offset || free_in_cluster < size) { 1099 int64_t new_cluster; 1100 1101 new_cluster = alloc_clusters_noref(bs, s->cluster_size, 1102 MIN(s->cluster_offset_mask, 1103 QCOW_MAX_CLUSTER_OFFSET)); 1104 if (new_cluster < 0) { 1105 return new_cluster; 1106 } 1107 1108 if (new_cluster == 0) { 1109 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 1110 "allocation of compressed cluster " 1111 "at offset 0"); 1112 return -EIO; 1113 } 1114 1115 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) { 1116 offset = new_cluster; 1117 free_in_cluster = s->cluster_size; 1118 } else { 1119 free_in_cluster += s->cluster_size; 1120 } 1121 } 1122 1123 assert(offset); 1124 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 1125 if (ret < 0) { 1126 offset = 0; 1127 } 1128 } while (ret == -EAGAIN); 1129 if (ret < 0) { 1130 return ret; 1131 } 1132 1133 /* The cluster refcount was incremented; refcount blocks must be flushed 1134 * before the caller's L2 table updates. */ 1135 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache); 1136 1137 s->free_byte_offset = offset + size; 1138 if (!offset_into_cluster(s, s->free_byte_offset)) { 1139 s->free_byte_offset = 0; 1140 } 1141 1142 return offset; 1143 } 1144 1145 void qcow2_free_clusters(BlockDriverState *bs, 1146 int64_t offset, int64_t size, 1147 enum qcow2_discard_type type) 1148 { 1149 int ret; 1150 1151 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE); 1152 ret = update_refcount(bs, offset, size, 1, true, type); 1153 if (ret < 0) { 1154 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret)); 1155 /* TODO Remember the clusters to free them later and avoid leaking */ 1156 } 1157 } 1158 1159 /* 1160 * Free a cluster using its L2 entry (handles clusters of all types, e.g. 1161 * normal cluster, compressed cluster, etc.) 1162 */ 1163 void qcow2_free_any_cluster(BlockDriverState *bs, uint64_t l2_entry, 1164 enum qcow2_discard_type type) 1165 { 1166 BDRVQcow2State *s = bs->opaque; 1167 QCow2ClusterType ctype = qcow2_get_cluster_type(bs, l2_entry); 1168 1169 if (has_data_file(bs)) { 1170 if (s->discard_passthrough[type] && 1171 (ctype == QCOW2_CLUSTER_NORMAL || 1172 ctype == QCOW2_CLUSTER_ZERO_ALLOC)) 1173 { 1174 bdrv_pdiscard(s->data_file, l2_entry & L2E_OFFSET_MASK, 1175 s->cluster_size); 1176 } 1177 return; 1178 } 1179 1180 switch (ctype) { 1181 case QCOW2_CLUSTER_COMPRESSED: 1182 { 1183 uint64_t coffset; 1184 int csize; 1185 1186 qcow2_parse_compressed_l2_entry(bs, l2_entry, &coffset, &csize); 1187 qcow2_free_clusters(bs, coffset, csize, type); 1188 } 1189 break; 1190 case QCOW2_CLUSTER_NORMAL: 1191 case QCOW2_CLUSTER_ZERO_ALLOC: 1192 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) { 1193 qcow2_signal_corruption(bs, false, -1, -1, 1194 "Cannot free unaligned cluster %#llx", 1195 l2_entry & L2E_OFFSET_MASK); 1196 } else { 1197 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK, 1198 s->cluster_size, type); 1199 } 1200 break; 1201 case QCOW2_CLUSTER_ZERO_PLAIN: 1202 case QCOW2_CLUSTER_UNALLOCATED: 1203 break; 1204 default: 1205 abort(); 1206 } 1207 } 1208 1209 int coroutine_fn qcow2_write_caches(BlockDriverState *bs) 1210 { 1211 BDRVQcow2State *s = bs->opaque; 1212 int ret; 1213 1214 ret = qcow2_cache_write(bs, s->l2_table_cache); 1215 if (ret < 0) { 1216 return ret; 1217 } 1218 1219 if (qcow2_need_accurate_refcounts(s)) { 1220 ret = qcow2_cache_write(bs, s->refcount_block_cache); 1221 if (ret < 0) { 1222 return ret; 1223 } 1224 } 1225 1226 return 0; 1227 } 1228 1229 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs) 1230 { 1231 int ret = qcow2_write_caches(bs); 1232 if (ret < 0) { 1233 return ret; 1234 } 1235 1236 return bdrv_flush(bs->file->bs); 1237 } 1238 1239 /*********************************************************/ 1240 /* snapshots and image creation */ 1241 1242 1243 1244 /* update the refcounts of snapshots and the copied flag */ 1245 int qcow2_update_snapshot_refcount(BlockDriverState *bs, 1246 int64_t l1_table_offset, int l1_size, int addend) 1247 { 1248 BDRVQcow2State *s = bs->opaque; 1249 uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount; 1250 bool l1_allocated = false; 1251 int64_t old_entry, old_l2_offset; 1252 unsigned slice, slice_size2, n_slices; 1253 int i, j, l1_modified = 0; 1254 int ret; 1255 1256 assert(addend >= -1 && addend <= 1); 1257 1258 l2_slice = NULL; 1259 l1_table = NULL; 1260 l1_size2 = l1_size * L1E_SIZE; 1261 slice_size2 = s->l2_slice_size * l2_entry_size(s); 1262 n_slices = s->cluster_size / slice_size2; 1263 1264 s->cache_discards = true; 1265 1266 /* WARNING: qcow2_snapshot_goto relies on this function not using the 1267 * l1_table_offset when it is the current s->l1_table_offset! Be careful 1268 * when changing this! */ 1269 if (l1_table_offset != s->l1_table_offset) { 1270 l1_table = g_try_malloc0(l1_size2); 1271 if (l1_size2 && l1_table == NULL) { 1272 ret = -ENOMEM; 1273 goto fail; 1274 } 1275 l1_allocated = true; 1276 1277 ret = bdrv_pread(bs->file, l1_table_offset, l1_size2, l1_table, 0); 1278 if (ret < 0) { 1279 goto fail; 1280 } 1281 1282 for (i = 0; i < l1_size; i++) { 1283 be64_to_cpus(&l1_table[i]); 1284 } 1285 } else { 1286 assert(l1_size == s->l1_size); 1287 l1_table = s->l1_table; 1288 l1_allocated = false; 1289 } 1290 1291 for (i = 0; i < l1_size; i++) { 1292 l2_offset = l1_table[i]; 1293 if (l2_offset) { 1294 old_l2_offset = l2_offset; 1295 l2_offset &= L1E_OFFSET_MASK; 1296 1297 if (offset_into_cluster(s, l2_offset)) { 1298 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1299 PRIx64 " unaligned (L1 index: %#x)", 1300 l2_offset, i); 1301 ret = -EIO; 1302 goto fail; 1303 } 1304 1305 for (slice = 0; slice < n_slices; slice++) { 1306 ret = qcow2_cache_get(bs, s->l2_table_cache, 1307 l2_offset + slice * slice_size2, 1308 (void **) &l2_slice); 1309 if (ret < 0) { 1310 goto fail; 1311 } 1312 1313 for (j = 0; j < s->l2_slice_size; j++) { 1314 uint64_t cluster_index; 1315 uint64_t offset; 1316 1317 entry = get_l2_entry(s, l2_slice, j); 1318 old_entry = entry; 1319 entry &= ~QCOW_OFLAG_COPIED; 1320 offset = entry & L2E_OFFSET_MASK; 1321 1322 switch (qcow2_get_cluster_type(bs, entry)) { 1323 case QCOW2_CLUSTER_COMPRESSED: 1324 if (addend != 0) { 1325 uint64_t coffset; 1326 int csize; 1327 1328 qcow2_parse_compressed_l2_entry(bs, entry, 1329 &coffset, &csize); 1330 ret = update_refcount( 1331 bs, coffset, csize, 1332 abs(addend), addend < 0, 1333 QCOW2_DISCARD_SNAPSHOT); 1334 if (ret < 0) { 1335 goto fail; 1336 } 1337 } 1338 /* compressed clusters are never modified */ 1339 refcount = 2; 1340 break; 1341 1342 case QCOW2_CLUSTER_NORMAL: 1343 case QCOW2_CLUSTER_ZERO_ALLOC: 1344 if (offset_into_cluster(s, offset)) { 1345 /* Here l2_index means table (not slice) index */ 1346 int l2_index = slice * s->l2_slice_size + j; 1347 qcow2_signal_corruption( 1348 bs, true, -1, -1, "Cluster " 1349 "allocation offset %#" PRIx64 1350 " unaligned (L2 offset: %#" 1351 PRIx64 ", L2 index: %#x)", 1352 offset, l2_offset, l2_index); 1353 ret = -EIO; 1354 goto fail; 1355 } 1356 1357 cluster_index = offset >> s->cluster_bits; 1358 assert(cluster_index); 1359 if (addend != 0) { 1360 ret = qcow2_update_cluster_refcount( 1361 bs, cluster_index, abs(addend), addend < 0, 1362 QCOW2_DISCARD_SNAPSHOT); 1363 if (ret < 0) { 1364 goto fail; 1365 } 1366 } 1367 1368 ret = qcow2_get_refcount(bs, cluster_index, &refcount); 1369 if (ret < 0) { 1370 goto fail; 1371 } 1372 break; 1373 1374 case QCOW2_CLUSTER_ZERO_PLAIN: 1375 case QCOW2_CLUSTER_UNALLOCATED: 1376 refcount = 0; 1377 break; 1378 1379 default: 1380 abort(); 1381 } 1382 1383 if (refcount == 1) { 1384 entry |= QCOW_OFLAG_COPIED; 1385 } 1386 if (entry != old_entry) { 1387 if (addend > 0) { 1388 qcow2_cache_set_dependency(bs, s->l2_table_cache, 1389 s->refcount_block_cache); 1390 } 1391 set_l2_entry(s, l2_slice, j, entry); 1392 qcow2_cache_entry_mark_dirty(s->l2_table_cache, 1393 l2_slice); 1394 } 1395 } 1396 1397 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1398 } 1399 1400 if (addend != 0) { 1401 ret = qcow2_update_cluster_refcount(bs, l2_offset >> 1402 s->cluster_bits, 1403 abs(addend), addend < 0, 1404 QCOW2_DISCARD_SNAPSHOT); 1405 if (ret < 0) { 1406 goto fail; 1407 } 1408 } 1409 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1410 &refcount); 1411 if (ret < 0) { 1412 goto fail; 1413 } else if (refcount == 1) { 1414 l2_offset |= QCOW_OFLAG_COPIED; 1415 } 1416 if (l2_offset != old_l2_offset) { 1417 l1_table[i] = l2_offset; 1418 l1_modified = 1; 1419 } 1420 } 1421 } 1422 1423 ret = bdrv_flush(bs); 1424 fail: 1425 if (l2_slice) { 1426 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1427 } 1428 1429 s->cache_discards = false; 1430 qcow2_process_discards(bs, ret); 1431 1432 /* Update L1 only if it isn't deleted anyway (addend = -1) */ 1433 if (ret == 0 && addend >= 0 && l1_modified) { 1434 for (i = 0; i < l1_size; i++) { 1435 cpu_to_be64s(&l1_table[i]); 1436 } 1437 1438 ret = bdrv_pwrite_sync(bs->file, l1_table_offset, l1_size2, l1_table, 1439 0); 1440 1441 for (i = 0; i < l1_size; i++) { 1442 be64_to_cpus(&l1_table[i]); 1443 } 1444 } 1445 if (l1_allocated) 1446 g_free(l1_table); 1447 return ret; 1448 } 1449 1450 1451 1452 1453 /*********************************************************/ 1454 /* refcount checking functions */ 1455 1456 1457 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries) 1458 { 1459 /* This assertion holds because there is no way we can address more than 1460 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because 1461 * offsets have to be representable in bytes); due to every cluster 1462 * corresponding to one refcount entry, we are well below that limit */ 1463 assert(entries < (UINT64_C(1) << (64 - 9))); 1464 1465 /* Thanks to the assertion this will not overflow, because 1466 * s->refcount_order < 7. 1467 * (note: x << s->refcount_order == x * s->refcount_bits) */ 1468 return DIV_ROUND_UP(entries << s->refcount_order, 8); 1469 } 1470 1471 /** 1472 * Reallocates *array so that it can hold new_size entries. *size must contain 1473 * the current number of entries in *array. If the reallocation fails, *array 1474 * and *size will not be modified and -errno will be returned. If the 1475 * reallocation is successful, *array will be set to the new buffer, *size 1476 * will be set to new_size and 0 will be returned. The size of the reallocated 1477 * refcount array buffer will be aligned to a cluster boundary, and the newly 1478 * allocated area will be zeroed. 1479 */ 1480 static int realloc_refcount_array(BDRVQcow2State *s, void **array, 1481 int64_t *size, int64_t new_size) 1482 { 1483 int64_t old_byte_size, new_byte_size; 1484 void *new_ptr; 1485 1486 /* Round to clusters so the array can be directly written to disk */ 1487 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size)) 1488 * s->cluster_size; 1489 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size)) 1490 * s->cluster_size; 1491 1492 if (new_byte_size == old_byte_size) { 1493 *size = new_size; 1494 return 0; 1495 } 1496 1497 assert(new_byte_size > 0); 1498 1499 if (new_byte_size > SIZE_MAX) { 1500 return -ENOMEM; 1501 } 1502 1503 new_ptr = g_try_realloc(*array, new_byte_size); 1504 if (!new_ptr) { 1505 return -ENOMEM; 1506 } 1507 1508 if (new_byte_size > old_byte_size) { 1509 memset((char *)new_ptr + old_byte_size, 0, 1510 new_byte_size - old_byte_size); 1511 } 1512 1513 *array = new_ptr; 1514 *size = new_size; 1515 1516 return 0; 1517 } 1518 1519 /* 1520 * Increases the refcount for a range of clusters in a given refcount table. 1521 * This is used to construct a temporary refcount table out of L1 and L2 tables 1522 * which can be compared to the refcount table saved in the image. 1523 * 1524 * Modifies the number of errors in res. 1525 */ 1526 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res, 1527 void **refcount_table, 1528 int64_t *refcount_table_size, 1529 int64_t offset, int64_t size) 1530 { 1531 BDRVQcow2State *s = bs->opaque; 1532 uint64_t start, last, cluster_offset, k, refcount; 1533 int64_t file_len; 1534 int ret; 1535 1536 if (size <= 0) { 1537 return 0; 1538 } 1539 1540 file_len = bdrv_getlength(bs->file->bs); 1541 if (file_len < 0) { 1542 return file_len; 1543 } 1544 1545 /* 1546 * Last cluster of qcow2 image may be semi-allocated, so it may be OK to 1547 * reference some space after file end but it should be less than one 1548 * cluster. 1549 */ 1550 if (offset + size - file_len >= s->cluster_size) { 1551 fprintf(stderr, "ERROR: counting reference for region exceeding the " 1552 "end of the file by one cluster or more: offset 0x%" PRIx64 1553 " size 0x%" PRIx64 "\n", offset, size); 1554 res->corruptions++; 1555 return 0; 1556 } 1557 1558 start = start_of_cluster(s, offset); 1559 last = start_of_cluster(s, offset + size - 1); 1560 for(cluster_offset = start; cluster_offset <= last; 1561 cluster_offset += s->cluster_size) { 1562 k = cluster_offset >> s->cluster_bits; 1563 if (k >= *refcount_table_size) { 1564 ret = realloc_refcount_array(s, refcount_table, 1565 refcount_table_size, k + 1); 1566 if (ret < 0) { 1567 res->check_errors++; 1568 return ret; 1569 } 1570 } 1571 1572 refcount = s->get_refcount(*refcount_table, k); 1573 if (refcount == s->refcount_max) { 1574 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64 1575 "\n", cluster_offset); 1576 fprintf(stderr, "Use qemu-img amend to increase the refcount entry " 1577 "width or qemu-img convert to create a clean copy if the " 1578 "image cannot be opened for writing\n"); 1579 res->corruptions++; 1580 continue; 1581 } 1582 s->set_refcount(*refcount_table, k, refcount + 1); 1583 } 1584 1585 return 0; 1586 } 1587 1588 /* Flags for check_refcounts_l1() and check_refcounts_l2() */ 1589 enum { 1590 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */ 1591 }; 1592 1593 /* 1594 * Fix L2 entry by making it QCOW2_CLUSTER_ZERO_PLAIN (or making all its present 1595 * subclusters QCOW2_SUBCLUSTER_ZERO_PLAIN). 1596 * 1597 * This function decrements res->corruptions on success, so the caller is 1598 * responsible to increment res->corruptions prior to the call. 1599 * 1600 * On failure in-memory @l2_table may be modified. 1601 */ 1602 static int fix_l2_entry_by_zero(BlockDriverState *bs, BdrvCheckResult *res, 1603 uint64_t l2_offset, 1604 uint64_t *l2_table, int l2_index, bool active, 1605 bool *metadata_overlap) 1606 { 1607 BDRVQcow2State *s = bs->opaque; 1608 int ret; 1609 int idx = l2_index * (l2_entry_size(s) / sizeof(uint64_t)); 1610 uint64_t l2e_offset = l2_offset + (uint64_t)l2_index * l2_entry_size(s); 1611 int ign = active ? QCOW2_OL_ACTIVE_L2 : QCOW2_OL_INACTIVE_L2; 1612 1613 if (has_subclusters(s)) { 1614 uint64_t l2_bitmap = get_l2_bitmap(s, l2_table, l2_index); 1615 1616 /* Allocated subclusters become zero */ 1617 l2_bitmap |= l2_bitmap << 32; 1618 l2_bitmap &= QCOW_L2_BITMAP_ALL_ZEROES; 1619 1620 set_l2_bitmap(s, l2_table, l2_index, l2_bitmap); 1621 set_l2_entry(s, l2_table, l2_index, 0); 1622 } else { 1623 set_l2_entry(s, l2_table, l2_index, QCOW_OFLAG_ZERO); 1624 } 1625 1626 ret = qcow2_pre_write_overlap_check(bs, ign, l2e_offset, l2_entry_size(s), 1627 false); 1628 if (metadata_overlap) { 1629 *metadata_overlap = ret < 0; 1630 } 1631 if (ret < 0) { 1632 fprintf(stderr, "ERROR: Overlap check failed\n"); 1633 goto fail; 1634 } 1635 1636 ret = bdrv_pwrite_sync(bs->file, l2e_offset, l2_entry_size(s), 1637 &l2_table[idx], 0); 1638 if (ret < 0) { 1639 fprintf(stderr, "ERROR: Failed to overwrite L2 " 1640 "table entry: %s\n", strerror(-ret)); 1641 goto fail; 1642 } 1643 1644 res->corruptions--; 1645 res->corruptions_fixed++; 1646 return 0; 1647 1648 fail: 1649 res->check_errors++; 1650 return ret; 1651 } 1652 1653 /* 1654 * Increases the refcount in the given refcount table for the all clusters 1655 * referenced in the L2 table. While doing so, performs some checks on L2 1656 * entries. 1657 * 1658 * Returns the number of errors found by the checks or -errno if an internal 1659 * error occurred. 1660 */ 1661 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res, 1662 void **refcount_table, 1663 int64_t *refcount_table_size, int64_t l2_offset, 1664 int flags, BdrvCheckMode fix, bool active) 1665 { 1666 BDRVQcow2State *s = bs->opaque; 1667 uint64_t l2_entry, l2_bitmap; 1668 uint64_t next_contiguous_offset = 0; 1669 int i, ret; 1670 size_t l2_size_bytes = s->l2_size * l2_entry_size(s); 1671 g_autofree uint64_t *l2_table = g_malloc(l2_size_bytes); 1672 bool metadata_overlap; 1673 1674 /* Read L2 table from disk */ 1675 ret = bdrv_pread(bs->file, l2_offset, l2_size_bytes, l2_table, 0); 1676 if (ret < 0) { 1677 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n"); 1678 res->check_errors++; 1679 return ret; 1680 } 1681 1682 /* Do the actual checks */ 1683 for (i = 0; i < s->l2_size; i++) { 1684 uint64_t coffset; 1685 int csize; 1686 QCow2ClusterType type; 1687 1688 l2_entry = get_l2_entry(s, l2_table, i); 1689 l2_bitmap = get_l2_bitmap(s, l2_table, i); 1690 type = qcow2_get_cluster_type(bs, l2_entry); 1691 1692 if (type != QCOW2_CLUSTER_COMPRESSED) { 1693 /* Check reserved bits of Standard Cluster Descriptor */ 1694 if (l2_entry & L2E_STD_RESERVED_MASK) { 1695 fprintf(stderr, "ERROR found l2 entry with reserved bits set: " 1696 "%" PRIx64 "\n", l2_entry); 1697 res->corruptions++; 1698 } 1699 } 1700 1701 switch (type) { 1702 case QCOW2_CLUSTER_COMPRESSED: 1703 /* Compressed clusters don't have QCOW_OFLAG_COPIED */ 1704 if (l2_entry & QCOW_OFLAG_COPIED) { 1705 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": " 1706 "copied flag must never be set for compressed " 1707 "clusters\n", l2_entry & s->cluster_offset_mask); 1708 l2_entry &= ~QCOW_OFLAG_COPIED; 1709 res->corruptions++; 1710 } 1711 1712 if (has_data_file(bs)) { 1713 fprintf(stderr, "ERROR compressed cluster %d with data file, " 1714 "entry=0x%" PRIx64 "\n", i, l2_entry); 1715 res->corruptions++; 1716 break; 1717 } 1718 1719 if (l2_bitmap) { 1720 fprintf(stderr, "ERROR compressed cluster %d with non-zero " 1721 "subcluster allocation bitmap, entry=0x%" PRIx64 "\n", 1722 i, l2_entry); 1723 res->corruptions++; 1724 break; 1725 } 1726 1727 /* Mark cluster as used */ 1728 qcow2_parse_compressed_l2_entry(bs, l2_entry, &coffset, &csize); 1729 ret = qcow2_inc_refcounts_imrt( 1730 bs, res, refcount_table, refcount_table_size, coffset, csize); 1731 if (ret < 0) { 1732 return ret; 1733 } 1734 1735 if (flags & CHECK_FRAG_INFO) { 1736 res->bfi.allocated_clusters++; 1737 res->bfi.compressed_clusters++; 1738 1739 /* 1740 * Compressed clusters are fragmented by nature. Since they 1741 * take up sub-sector space but we only have sector granularity 1742 * I/O we need to re-read the same sectors even for adjacent 1743 * compressed clusters. 1744 */ 1745 res->bfi.fragmented_clusters++; 1746 } 1747 break; 1748 1749 case QCOW2_CLUSTER_ZERO_ALLOC: 1750 case QCOW2_CLUSTER_NORMAL: 1751 { 1752 uint64_t offset = l2_entry & L2E_OFFSET_MASK; 1753 1754 if ((l2_bitmap >> 32) & l2_bitmap) { 1755 res->corruptions++; 1756 fprintf(stderr, "ERROR offset=%" PRIx64 ": Allocated " 1757 "cluster has corrupted subcluster allocation bitmap\n", 1758 offset); 1759 } 1760 1761 /* Correct offsets are cluster aligned */ 1762 if (offset_into_cluster(s, offset)) { 1763 bool contains_data; 1764 res->corruptions++; 1765 1766 if (has_subclusters(s)) { 1767 contains_data = (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC); 1768 } else { 1769 contains_data = !(l2_entry & QCOW_OFLAG_ZERO); 1770 } 1771 1772 if (!contains_data) { 1773 fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated " 1774 "cluster is not properly aligned; L2 entry " 1775 "corrupted.\n", 1776 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", 1777 offset); 1778 if (fix & BDRV_FIX_ERRORS) { 1779 ret = fix_l2_entry_by_zero(bs, res, l2_offset, 1780 l2_table, i, active, 1781 &metadata_overlap); 1782 if (metadata_overlap) { 1783 /* 1784 * Something is seriously wrong, so abort checking 1785 * this L2 table. 1786 */ 1787 return ret; 1788 } 1789 1790 if (ret == 0) { 1791 /* 1792 * Skip marking the cluster as used 1793 * (it is unused now). 1794 */ 1795 continue; 1796 } 1797 1798 /* 1799 * Failed to fix. 1800 * Do not abort, continue checking the rest of this 1801 * L2 table's entries. 1802 */ 1803 } 1804 } else { 1805 fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is " 1806 "not properly aligned; L2 entry corrupted.\n", offset); 1807 } 1808 } 1809 1810 if (flags & CHECK_FRAG_INFO) { 1811 res->bfi.allocated_clusters++; 1812 if (next_contiguous_offset && 1813 offset != next_contiguous_offset) { 1814 res->bfi.fragmented_clusters++; 1815 } 1816 next_contiguous_offset = offset + s->cluster_size; 1817 } 1818 1819 /* Mark cluster as used */ 1820 if (!has_data_file(bs)) { 1821 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, 1822 refcount_table_size, 1823 offset, s->cluster_size); 1824 if (ret < 0) { 1825 return ret; 1826 } 1827 } 1828 break; 1829 } 1830 1831 case QCOW2_CLUSTER_ZERO_PLAIN: 1832 /* Impossible when image has subclusters */ 1833 assert(!l2_bitmap); 1834 break; 1835 1836 case QCOW2_CLUSTER_UNALLOCATED: 1837 if (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC) { 1838 res->corruptions++; 1839 fprintf(stderr, "ERROR: Unallocated " 1840 "cluster has non-zero subcluster allocation map\n"); 1841 } 1842 break; 1843 1844 default: 1845 abort(); 1846 } 1847 } 1848 1849 return 0; 1850 } 1851 1852 /* 1853 * Increases the refcount for the L1 table, its L2 tables and all referenced 1854 * clusters in the given refcount table. While doing so, performs some checks 1855 * on L1 and L2 entries. 1856 * 1857 * Returns the number of errors found by the checks or -errno if an internal 1858 * error occurred. 1859 */ 1860 static int check_refcounts_l1(BlockDriverState *bs, 1861 BdrvCheckResult *res, 1862 void **refcount_table, 1863 int64_t *refcount_table_size, 1864 int64_t l1_table_offset, int l1_size, 1865 int flags, BdrvCheckMode fix, bool active) 1866 { 1867 BDRVQcow2State *s = bs->opaque; 1868 size_t l1_size_bytes = l1_size * L1E_SIZE; 1869 g_autofree uint64_t *l1_table = NULL; 1870 uint64_t l2_offset; 1871 int i, ret; 1872 1873 if (!l1_size) { 1874 return 0; 1875 } 1876 1877 /* Mark L1 table as used */ 1878 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size, 1879 l1_table_offset, l1_size_bytes); 1880 if (ret < 0) { 1881 return ret; 1882 } 1883 1884 l1_table = g_try_malloc(l1_size_bytes); 1885 if (l1_table == NULL) { 1886 res->check_errors++; 1887 return -ENOMEM; 1888 } 1889 1890 /* Read L1 table entries from disk */ 1891 ret = bdrv_pread(bs->file, l1_table_offset, l1_size_bytes, l1_table, 0); 1892 if (ret < 0) { 1893 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n"); 1894 res->check_errors++; 1895 return ret; 1896 } 1897 1898 for (i = 0; i < l1_size; i++) { 1899 be64_to_cpus(&l1_table[i]); 1900 } 1901 1902 /* Do the actual checks */ 1903 for (i = 0; i < l1_size; i++) { 1904 if (!l1_table[i]) { 1905 continue; 1906 } 1907 1908 if (l1_table[i] & L1E_RESERVED_MASK) { 1909 fprintf(stderr, "ERROR found L1 entry with reserved bits set: " 1910 "%" PRIx64 "\n", l1_table[i]); 1911 res->corruptions++; 1912 } 1913 1914 l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1915 1916 /* Mark L2 table as used */ 1917 ret = qcow2_inc_refcounts_imrt(bs, res, 1918 refcount_table, refcount_table_size, 1919 l2_offset, s->cluster_size); 1920 if (ret < 0) { 1921 return ret; 1922 } 1923 1924 /* L2 tables are cluster aligned */ 1925 if (offset_into_cluster(s, l2_offset)) { 1926 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not " 1927 "cluster aligned; L1 entry corrupted\n", l2_offset); 1928 res->corruptions++; 1929 } 1930 1931 /* Process and check L2 entries */ 1932 ret = check_refcounts_l2(bs, res, refcount_table, 1933 refcount_table_size, l2_offset, flags, 1934 fix, active); 1935 if (ret < 0) { 1936 return ret; 1937 } 1938 } 1939 1940 return 0; 1941 } 1942 1943 /* 1944 * Checks the OFLAG_COPIED flag for all L1 and L2 entries. 1945 * 1946 * This function does not print an error message nor does it increment 1947 * check_errors if qcow2_get_refcount fails (this is because such an error will 1948 * have been already detected and sufficiently signaled by the calling function 1949 * (qcow2_check_refcounts) by the time this function is called). 1950 */ 1951 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res, 1952 BdrvCheckMode fix) 1953 { 1954 BDRVQcow2State *s = bs->opaque; 1955 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size); 1956 int ret; 1957 uint64_t refcount; 1958 int i, j; 1959 bool repair; 1960 1961 if (fix & BDRV_FIX_ERRORS) { 1962 /* Always repair */ 1963 repair = true; 1964 } else if (fix & BDRV_FIX_LEAKS) { 1965 /* Repair only if that seems safe: This function is always 1966 * called after the refcounts have been fixed, so the refcount 1967 * is accurate if that repair was successful */ 1968 repair = !res->check_errors && !res->corruptions && !res->leaks; 1969 } else { 1970 repair = false; 1971 } 1972 1973 for (i = 0; i < s->l1_size; i++) { 1974 uint64_t l1_entry = s->l1_table[i]; 1975 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK; 1976 int l2_dirty = 0; 1977 1978 if (!l2_offset) { 1979 continue; 1980 } 1981 1982 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1983 &refcount); 1984 if (ret < 0) { 1985 /* don't print message nor increment check_errors */ 1986 continue; 1987 } 1988 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) { 1989 res->corruptions++; 1990 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d " 1991 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 1992 repair ? "Repairing" : "ERROR", i, l1_entry, refcount); 1993 if (repair) { 1994 s->l1_table[i] = refcount == 1 1995 ? l1_entry | QCOW_OFLAG_COPIED 1996 : l1_entry & ~QCOW_OFLAG_COPIED; 1997 ret = qcow2_write_l1_entry(bs, i); 1998 if (ret < 0) { 1999 res->check_errors++; 2000 goto fail; 2001 } 2002 res->corruptions--; 2003 res->corruptions_fixed++; 2004 } 2005 } 2006 2007 ret = bdrv_pread(bs->file, l2_offset, s->l2_size * l2_entry_size(s), 2008 l2_table, 0); 2009 if (ret < 0) { 2010 fprintf(stderr, "ERROR: Could not read L2 table: %s\n", 2011 strerror(-ret)); 2012 res->check_errors++; 2013 goto fail; 2014 } 2015 2016 for (j = 0; j < s->l2_size; j++) { 2017 uint64_t l2_entry = get_l2_entry(s, l2_table, j); 2018 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK; 2019 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry); 2020 2021 if (cluster_type == QCOW2_CLUSTER_NORMAL || 2022 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) { 2023 if (has_data_file(bs)) { 2024 refcount = 1; 2025 } else { 2026 ret = qcow2_get_refcount(bs, 2027 data_offset >> s->cluster_bits, 2028 &refcount); 2029 if (ret < 0) { 2030 /* don't print message nor increment check_errors */ 2031 continue; 2032 } 2033 } 2034 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) { 2035 res->corruptions++; 2036 fprintf(stderr, "%s OFLAG_COPIED data cluster: " 2037 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 2038 repair ? "Repairing" : "ERROR", l2_entry, refcount); 2039 if (repair) { 2040 set_l2_entry(s, l2_table, j, 2041 refcount == 1 ? 2042 l2_entry | QCOW_OFLAG_COPIED : 2043 l2_entry & ~QCOW_OFLAG_COPIED); 2044 l2_dirty++; 2045 } 2046 } 2047 } 2048 } 2049 2050 if (l2_dirty > 0) { 2051 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2, 2052 l2_offset, s->cluster_size, 2053 false); 2054 if (ret < 0) { 2055 fprintf(stderr, "ERROR: Could not write L2 table; metadata " 2056 "overlap check failed: %s\n", strerror(-ret)); 2057 res->check_errors++; 2058 goto fail; 2059 } 2060 2061 ret = bdrv_pwrite(bs->file, l2_offset, s->cluster_size, l2_table, 2062 0); 2063 if (ret < 0) { 2064 fprintf(stderr, "ERROR: Could not write L2 table: %s\n", 2065 strerror(-ret)); 2066 res->check_errors++; 2067 goto fail; 2068 } 2069 res->corruptions -= l2_dirty; 2070 res->corruptions_fixed += l2_dirty; 2071 } 2072 } 2073 2074 ret = 0; 2075 2076 fail: 2077 qemu_vfree(l2_table); 2078 return ret; 2079 } 2080 2081 /* 2082 * Checks consistency of refblocks and accounts for each refblock in 2083 * *refcount_table. 2084 */ 2085 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res, 2086 BdrvCheckMode fix, bool *rebuild, 2087 void **refcount_table, int64_t *nb_clusters) 2088 { 2089 BDRVQcow2State *s = bs->opaque; 2090 int64_t i, size; 2091 int ret; 2092 2093 for(i = 0; i < s->refcount_table_size; i++) { 2094 uint64_t offset, cluster; 2095 offset = s->refcount_table[i] & REFT_OFFSET_MASK; 2096 cluster = offset >> s->cluster_bits; 2097 2098 if (s->refcount_table[i] & REFT_RESERVED_MASK) { 2099 fprintf(stderr, "ERROR refcount table entry %" PRId64 " has " 2100 "reserved bits set\n", i); 2101 res->corruptions++; 2102 *rebuild = true; 2103 continue; 2104 } 2105 2106 /* Refcount blocks are cluster aligned */ 2107 if (offset_into_cluster(s, offset)) { 2108 fprintf(stderr, "ERROR refcount block %" PRId64 " is not " 2109 "cluster aligned; refcount table entry corrupted\n", i); 2110 res->corruptions++; 2111 *rebuild = true; 2112 continue; 2113 } 2114 2115 if (cluster >= *nb_clusters) { 2116 res->corruptions++; 2117 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n", 2118 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i); 2119 2120 if (fix & BDRV_FIX_ERRORS) { 2121 int64_t new_nb_clusters; 2122 Error *local_err = NULL; 2123 2124 if (offset > INT64_MAX - s->cluster_size) { 2125 ret = -EINVAL; 2126 goto resize_fail; 2127 } 2128 2129 ret = bdrv_truncate(bs->file, offset + s->cluster_size, false, 2130 PREALLOC_MODE_OFF, 0, &local_err); 2131 if (ret < 0) { 2132 error_report_err(local_err); 2133 goto resize_fail; 2134 } 2135 size = bdrv_getlength(bs->file->bs); 2136 if (size < 0) { 2137 ret = size; 2138 goto resize_fail; 2139 } 2140 2141 new_nb_clusters = size_to_clusters(s, size); 2142 assert(new_nb_clusters >= *nb_clusters); 2143 2144 ret = realloc_refcount_array(s, refcount_table, 2145 nb_clusters, new_nb_clusters); 2146 if (ret < 0) { 2147 res->check_errors++; 2148 return ret; 2149 } 2150 2151 if (cluster >= *nb_clusters) { 2152 ret = -EINVAL; 2153 goto resize_fail; 2154 } 2155 2156 res->corruptions--; 2157 res->corruptions_fixed++; 2158 ret = qcow2_inc_refcounts_imrt(bs, res, 2159 refcount_table, nb_clusters, 2160 offset, s->cluster_size); 2161 if (ret < 0) { 2162 return ret; 2163 } 2164 /* No need to check whether the refcount is now greater than 1: 2165 * This area was just allocated and zeroed, so it can only be 2166 * exactly 1 after qcow2_inc_refcounts_imrt() */ 2167 continue; 2168 2169 resize_fail: 2170 *rebuild = true; 2171 fprintf(stderr, "ERROR could not resize image: %s\n", 2172 strerror(-ret)); 2173 } 2174 continue; 2175 } 2176 2177 if (offset != 0) { 2178 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2179 offset, s->cluster_size); 2180 if (ret < 0) { 2181 return ret; 2182 } 2183 if (s->get_refcount(*refcount_table, cluster) != 1) { 2184 fprintf(stderr, "ERROR refcount block %" PRId64 2185 " refcount=%" PRIu64 "\n", i, 2186 s->get_refcount(*refcount_table, cluster)); 2187 res->corruptions++; 2188 *rebuild = true; 2189 } 2190 } 2191 } 2192 2193 return 0; 2194 } 2195 2196 /* 2197 * Calculates an in-memory refcount table. 2198 */ 2199 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2200 BdrvCheckMode fix, bool *rebuild, 2201 void **refcount_table, int64_t *nb_clusters) 2202 { 2203 BDRVQcow2State *s = bs->opaque; 2204 int64_t i; 2205 QCowSnapshot *sn; 2206 int ret; 2207 2208 if (!*refcount_table) { 2209 int64_t old_size = 0; 2210 ret = realloc_refcount_array(s, refcount_table, 2211 &old_size, *nb_clusters); 2212 if (ret < 0) { 2213 res->check_errors++; 2214 return ret; 2215 } 2216 } 2217 2218 /* header */ 2219 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2220 0, s->cluster_size); 2221 if (ret < 0) { 2222 return ret; 2223 } 2224 2225 /* current L1 table */ 2226 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 2227 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO, 2228 fix, true); 2229 if (ret < 0) { 2230 return ret; 2231 } 2232 2233 /* snapshots */ 2234 if (has_data_file(bs) && s->nb_snapshots) { 2235 fprintf(stderr, "ERROR %d snapshots in image with data file\n", 2236 s->nb_snapshots); 2237 res->corruptions++; 2238 } 2239 2240 for (i = 0; i < s->nb_snapshots; i++) { 2241 sn = s->snapshots + i; 2242 if (offset_into_cluster(s, sn->l1_table_offset)) { 2243 fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": " 2244 "L1 table is not cluster aligned; snapshot table entry " 2245 "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset); 2246 res->corruptions++; 2247 continue; 2248 } 2249 if (sn->l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) { 2250 fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": " 2251 "L1 table is too large; snapshot table entry corrupted\n", 2252 sn->id_str, sn->name, sn->l1_size); 2253 res->corruptions++; 2254 continue; 2255 } 2256 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 2257 sn->l1_table_offset, sn->l1_size, 0, fix, 2258 false); 2259 if (ret < 0) { 2260 return ret; 2261 } 2262 } 2263 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2264 s->snapshots_offset, s->snapshots_size); 2265 if (ret < 0) { 2266 return ret; 2267 } 2268 2269 /* refcount data */ 2270 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2271 s->refcount_table_offset, 2272 s->refcount_table_size * 2273 REFTABLE_ENTRY_SIZE); 2274 if (ret < 0) { 2275 return ret; 2276 } 2277 2278 /* encryption */ 2279 if (s->crypto_header.length) { 2280 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2281 s->crypto_header.offset, 2282 s->crypto_header.length); 2283 if (ret < 0) { 2284 return ret; 2285 } 2286 } 2287 2288 /* bitmaps */ 2289 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters); 2290 if (ret < 0) { 2291 return ret; 2292 } 2293 2294 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters); 2295 } 2296 2297 /* 2298 * Compares the actual reference count for each cluster in the image against the 2299 * refcount as reported by the refcount structures on-disk. 2300 */ 2301 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2302 BdrvCheckMode fix, bool *rebuild, 2303 int64_t *highest_cluster, 2304 void *refcount_table, int64_t nb_clusters) 2305 { 2306 BDRVQcow2State *s = bs->opaque; 2307 int64_t i; 2308 uint64_t refcount1, refcount2; 2309 int ret; 2310 2311 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) { 2312 ret = qcow2_get_refcount(bs, i, &refcount1); 2313 if (ret < 0) { 2314 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 2315 i, strerror(-ret)); 2316 res->check_errors++; 2317 continue; 2318 } 2319 2320 refcount2 = s->get_refcount(refcount_table, i); 2321 2322 if (refcount1 > 0 || refcount2 > 0) { 2323 *highest_cluster = i; 2324 } 2325 2326 if (refcount1 != refcount2) { 2327 /* Check if we're allowed to fix the mismatch */ 2328 int *num_fixed = NULL; 2329 if (refcount1 == 0) { 2330 *rebuild = true; 2331 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) { 2332 num_fixed = &res->leaks_fixed; 2333 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) { 2334 num_fixed = &res->corruptions_fixed; 2335 } 2336 2337 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64 2338 " reference=%" PRIu64 "\n", 2339 num_fixed != NULL ? "Repairing" : 2340 refcount1 < refcount2 ? "ERROR" : 2341 "Leaked", 2342 i, refcount1, refcount2); 2343 2344 if (num_fixed) { 2345 ret = update_refcount(bs, i << s->cluster_bits, 1, 2346 refcount_diff(refcount1, refcount2), 2347 refcount1 > refcount2, 2348 QCOW2_DISCARD_ALWAYS); 2349 if (ret >= 0) { 2350 (*num_fixed)++; 2351 continue; 2352 } 2353 } 2354 2355 /* And if we couldn't, print an error */ 2356 if (refcount1 < refcount2) { 2357 res->corruptions++; 2358 } else { 2359 res->leaks++; 2360 } 2361 } 2362 } 2363 } 2364 2365 /* 2366 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to 2367 * the on-disk refcount structures. 2368 * 2369 * On input, *first_free_cluster tells where to start looking, and need not 2370 * actually be a free cluster; the returned offset will not be before that 2371 * cluster. On output, *first_free_cluster points to the first gap found, even 2372 * if that gap was too small to be used as the returned offset. 2373 * 2374 * Note that *first_free_cluster is a cluster index whereas the return value is 2375 * an offset. 2376 */ 2377 static int64_t alloc_clusters_imrt(BlockDriverState *bs, 2378 int cluster_count, 2379 void **refcount_table, 2380 int64_t *imrt_nb_clusters, 2381 int64_t *first_free_cluster) 2382 { 2383 BDRVQcow2State *s = bs->opaque; 2384 int64_t cluster = *first_free_cluster, i; 2385 bool first_gap = true; 2386 int contiguous_free_clusters; 2387 int ret; 2388 2389 /* Starting at *first_free_cluster, find a range of at least cluster_count 2390 * continuously free clusters */ 2391 for (contiguous_free_clusters = 0; 2392 cluster < *imrt_nb_clusters && 2393 contiguous_free_clusters < cluster_count; 2394 cluster++) 2395 { 2396 if (!s->get_refcount(*refcount_table, cluster)) { 2397 contiguous_free_clusters++; 2398 if (first_gap) { 2399 /* If this is the first free cluster found, update 2400 * *first_free_cluster accordingly */ 2401 *first_free_cluster = cluster; 2402 first_gap = false; 2403 } 2404 } else if (contiguous_free_clusters) { 2405 contiguous_free_clusters = 0; 2406 } 2407 } 2408 2409 /* If contiguous_free_clusters is greater than zero, it contains the number 2410 * of continuously free clusters until the current cluster; the first free 2411 * cluster in the current "gap" is therefore 2412 * cluster - contiguous_free_clusters */ 2413 2414 /* If no such range could be found, grow the in-memory refcount table 2415 * accordingly to append free clusters at the end of the image */ 2416 if (contiguous_free_clusters < cluster_count) { 2417 /* contiguous_free_clusters clusters are already empty at the image end; 2418 * we need cluster_count clusters; therefore, we have to allocate 2419 * cluster_count - contiguous_free_clusters new clusters at the end of 2420 * the image (which is the current value of cluster; note that cluster 2421 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond 2422 * the image end) */ 2423 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters, 2424 cluster + cluster_count 2425 - contiguous_free_clusters); 2426 if (ret < 0) { 2427 return ret; 2428 } 2429 } 2430 2431 /* Go back to the first free cluster */ 2432 cluster -= contiguous_free_clusters; 2433 for (i = 0; i < cluster_count; i++) { 2434 s->set_refcount(*refcount_table, cluster + i, 1); 2435 } 2436 2437 return cluster << s->cluster_bits; 2438 } 2439 2440 /* 2441 * Helper function for rebuild_refcount_structure(). 2442 * 2443 * Scan the range of clusters [first_cluster, end_cluster) for allocated 2444 * clusters and write all corresponding refblocks to disk. The refblock 2445 * and allocation data is taken from the in-memory refcount table 2446 * *refcount_table[] (of size *nb_clusters), which is basically one big 2447 * (unlimited size) refblock for the whole image. 2448 * 2449 * For these refblocks, clusters are allocated using said in-memory 2450 * refcount table. Care is taken that these allocations are reflected 2451 * in the refblocks written to disk. 2452 * 2453 * The refblocks' offsets are written into a reftable, which is 2454 * *on_disk_reftable_ptr[] (of size *on_disk_reftable_entries_ptr). If 2455 * that reftable is of insufficient size, it will be resized to fit. 2456 * This reftable is not written to disk. 2457 * 2458 * (If *on_disk_reftable_ptr is not NULL, the entries within are assumed 2459 * to point to existing valid refblocks that do not need to be allocated 2460 * again.) 2461 * 2462 * Return whether the on-disk reftable array was resized (true/false), 2463 * or -errno on error. 2464 */ 2465 static int rebuild_refcounts_write_refblocks( 2466 BlockDriverState *bs, void **refcount_table, int64_t *nb_clusters, 2467 int64_t first_cluster, int64_t end_cluster, 2468 uint64_t **on_disk_reftable_ptr, uint32_t *on_disk_reftable_entries_ptr, 2469 Error **errp 2470 ) 2471 { 2472 BDRVQcow2State *s = bs->opaque; 2473 int64_t cluster; 2474 int64_t refblock_offset, refblock_start, refblock_index; 2475 int64_t first_free_cluster = 0; 2476 uint64_t *on_disk_reftable = *on_disk_reftable_ptr; 2477 uint32_t on_disk_reftable_entries = *on_disk_reftable_entries_ptr; 2478 void *on_disk_refblock; 2479 bool reftable_grown = false; 2480 int ret; 2481 2482 for (cluster = first_cluster; cluster < end_cluster; cluster++) { 2483 /* Check all clusters to find refblocks that contain non-zero entries */ 2484 if (!s->get_refcount(*refcount_table, cluster)) { 2485 continue; 2486 } 2487 2488 /* 2489 * This cluster is allocated, so we need to create a refblock 2490 * for it. The data we will write to disk is just the 2491 * respective slice from *refcount_table, so it will contain 2492 * accurate refcounts for all clusters belonging to this 2493 * refblock. After we have written it, we will therefore skip 2494 * all remaining clusters in this refblock. 2495 */ 2496 2497 refblock_index = cluster >> s->refcount_block_bits; 2498 refblock_start = refblock_index << s->refcount_block_bits; 2499 2500 if (on_disk_reftable_entries > refblock_index && 2501 on_disk_reftable[refblock_index]) 2502 { 2503 /* 2504 * We can get here after a `goto write_refblocks`: We have a 2505 * reftable from a previous run, and the refblock is already 2506 * allocated. No need to allocate it again. 2507 */ 2508 refblock_offset = on_disk_reftable[refblock_index]; 2509 } else { 2510 int64_t refblock_cluster_index; 2511 2512 /* Don't allocate a cluster in a refblock already written to disk */ 2513 if (first_free_cluster < refblock_start) { 2514 first_free_cluster = refblock_start; 2515 } 2516 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table, 2517 nb_clusters, 2518 &first_free_cluster); 2519 if (refblock_offset < 0) { 2520 error_setg_errno(errp, -refblock_offset, 2521 "ERROR allocating refblock"); 2522 return refblock_offset; 2523 } 2524 2525 refblock_cluster_index = refblock_offset / s->cluster_size; 2526 if (refblock_cluster_index >= end_cluster) { 2527 /* 2528 * We must write the refblock that holds this refblock's 2529 * refcount 2530 */ 2531 end_cluster = refblock_cluster_index + 1; 2532 } 2533 2534 if (on_disk_reftable_entries <= refblock_index) { 2535 on_disk_reftable_entries = 2536 ROUND_UP((refblock_index + 1) * REFTABLE_ENTRY_SIZE, 2537 s->cluster_size) / REFTABLE_ENTRY_SIZE; 2538 on_disk_reftable = 2539 g_try_realloc(on_disk_reftable, 2540 on_disk_reftable_entries * 2541 REFTABLE_ENTRY_SIZE); 2542 if (!on_disk_reftable) { 2543 error_setg(errp, "ERROR allocating reftable memory"); 2544 return -ENOMEM; 2545 } 2546 2547 memset(on_disk_reftable + *on_disk_reftable_entries_ptr, 0, 2548 (on_disk_reftable_entries - 2549 *on_disk_reftable_entries_ptr) * 2550 REFTABLE_ENTRY_SIZE); 2551 2552 *on_disk_reftable_ptr = on_disk_reftable; 2553 *on_disk_reftable_entries_ptr = on_disk_reftable_entries; 2554 2555 reftable_grown = true; 2556 } else { 2557 assert(on_disk_reftable); 2558 } 2559 on_disk_reftable[refblock_index] = refblock_offset; 2560 } 2561 2562 /* Refblock is allocated, write it to disk */ 2563 2564 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset, 2565 s->cluster_size, false); 2566 if (ret < 0) { 2567 error_setg_errno(errp, -ret, "ERROR writing refblock"); 2568 return ret; 2569 } 2570 2571 /* 2572 * The refblock is simply a slice of *refcount_table. 2573 * Note that the size of *refcount_table is always aligned to 2574 * whole clusters, so the write operation will not result in 2575 * out-of-bounds accesses. 2576 */ 2577 on_disk_refblock = (void *)((char *) *refcount_table + 2578 refblock_index * s->cluster_size); 2579 2580 ret = bdrv_pwrite(bs->file, refblock_offset, s->cluster_size, 2581 on_disk_refblock, 0); 2582 if (ret < 0) { 2583 error_setg_errno(errp, -ret, "ERROR writing refblock"); 2584 return ret; 2585 } 2586 2587 /* This refblock is done, skip to its end */ 2588 cluster = refblock_start + s->refcount_block_size - 1; 2589 } 2590 2591 return reftable_grown; 2592 } 2593 2594 /* 2595 * Creates a new refcount structure based solely on the in-memory information 2596 * given through *refcount_table (this in-memory information is basically just 2597 * the concatenation of all refblocks). All necessary allocations will be 2598 * reflected in that array. 2599 * 2600 * On success, the old refcount structure is leaked (it will be covered by the 2601 * new refcount structure). 2602 */ 2603 static int rebuild_refcount_structure(BlockDriverState *bs, 2604 BdrvCheckResult *res, 2605 void **refcount_table, 2606 int64_t *nb_clusters, 2607 Error **errp) 2608 { 2609 BDRVQcow2State *s = bs->opaque; 2610 int64_t reftable_offset = -1; 2611 int64_t reftable_length = 0; 2612 int64_t reftable_clusters; 2613 int64_t refblock_index; 2614 uint32_t on_disk_reftable_entries = 0; 2615 uint64_t *on_disk_reftable = NULL; 2616 int ret = 0; 2617 int reftable_size_changed = 0; 2618 struct { 2619 uint64_t reftable_offset; 2620 uint32_t reftable_clusters; 2621 } QEMU_PACKED reftable_offset_and_clusters; 2622 2623 qcow2_cache_empty(bs, s->refcount_block_cache); 2624 2625 /* 2626 * For each refblock containing entries, we try to allocate a 2627 * cluster (in the in-memory refcount table) and write its offset 2628 * into on_disk_reftable[]. We then write the whole refblock to 2629 * disk (as a slice of the in-memory refcount table). 2630 * This is done by rebuild_refcounts_write_refblocks(). 2631 * 2632 * Once we have scanned all clusters, we try to find space for the 2633 * reftable. This will dirty the in-memory refcount table (i.e. 2634 * make it differ from the refblocks we have already written), so we 2635 * need to run rebuild_refcounts_write_refblocks() again for the 2636 * range of clusters where the reftable has been allocated. 2637 * 2638 * This second run might make the reftable grow again, in which case 2639 * we will need to allocate another space for it, which is why we 2640 * repeat all this until the reftable stops growing. 2641 * 2642 * (This loop will terminate, because with every cluster the 2643 * reftable grows, it can accomodate a multitude of more refcounts, 2644 * so that at some point this must be able to cover the reftable 2645 * and all refblocks describing it.) 2646 * 2647 * We then convert the reftable to big-endian and write it to disk. 2648 * 2649 * Note that we never free any reftable allocations. Doing so would 2650 * needlessly complicate the algorithm: The eventual second check 2651 * run we do will clean up all leaks we have caused. 2652 */ 2653 2654 reftable_size_changed = 2655 rebuild_refcounts_write_refblocks(bs, refcount_table, nb_clusters, 2656 0, *nb_clusters, 2657 &on_disk_reftable, 2658 &on_disk_reftable_entries, errp); 2659 if (reftable_size_changed < 0) { 2660 res->check_errors++; 2661 ret = reftable_size_changed; 2662 goto fail; 2663 } 2664 2665 /* 2666 * There was no reftable before, so rebuild_refcounts_write_refblocks() 2667 * must have increased its size (from 0 to something). 2668 */ 2669 assert(reftable_size_changed); 2670 2671 do { 2672 int64_t reftable_start_cluster, reftable_end_cluster; 2673 int64_t first_free_cluster = 0; 2674 2675 reftable_length = on_disk_reftable_entries * REFTABLE_ENTRY_SIZE; 2676 reftable_clusters = size_to_clusters(s, reftable_length); 2677 2678 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2679 refcount_table, nb_clusters, 2680 &first_free_cluster); 2681 if (reftable_offset < 0) { 2682 error_setg_errno(errp, -reftable_offset, 2683 "ERROR allocating reftable"); 2684 res->check_errors++; 2685 ret = reftable_offset; 2686 goto fail; 2687 } 2688 2689 /* 2690 * We need to update the affected refblocks, so re-run the 2691 * write_refblocks loop for the reftable's range of clusters. 2692 */ 2693 assert(offset_into_cluster(s, reftable_offset) == 0); 2694 reftable_start_cluster = reftable_offset / s->cluster_size; 2695 reftable_end_cluster = reftable_start_cluster + reftable_clusters; 2696 reftable_size_changed = 2697 rebuild_refcounts_write_refblocks(bs, refcount_table, nb_clusters, 2698 reftable_start_cluster, 2699 reftable_end_cluster, 2700 &on_disk_reftable, 2701 &on_disk_reftable_entries, errp); 2702 if (reftable_size_changed < 0) { 2703 res->check_errors++; 2704 ret = reftable_size_changed; 2705 goto fail; 2706 } 2707 2708 /* 2709 * If the reftable size has changed, we will need to find a new 2710 * allocation, repeating the loop. 2711 */ 2712 } while (reftable_size_changed); 2713 2714 /* The above loop must have run at least once */ 2715 assert(reftable_offset >= 0); 2716 2717 /* 2718 * All allocations are done, all refblocks are written, convert the 2719 * reftable to big-endian and write it to disk. 2720 */ 2721 2722 for (refblock_index = 0; refblock_index < on_disk_reftable_entries; 2723 refblock_index++) 2724 { 2725 cpu_to_be64s(&on_disk_reftable[refblock_index]); 2726 } 2727 2728 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset, reftable_length, 2729 false); 2730 if (ret < 0) { 2731 error_setg_errno(errp, -ret, "ERROR writing reftable"); 2732 goto fail; 2733 } 2734 2735 assert(reftable_length < INT_MAX); 2736 ret = bdrv_pwrite(bs->file, reftable_offset, reftable_length, 2737 on_disk_reftable, 0); 2738 if (ret < 0) { 2739 error_setg_errno(errp, -ret, "ERROR writing reftable"); 2740 goto fail; 2741 } 2742 2743 /* Enter new reftable into the image header */ 2744 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset); 2745 reftable_offset_and_clusters.reftable_clusters = 2746 cpu_to_be32(reftable_clusters); 2747 ret = bdrv_pwrite_sync(bs->file, 2748 offsetof(QCowHeader, refcount_table_offset), 2749 sizeof(reftable_offset_and_clusters), 2750 &reftable_offset_and_clusters, 0); 2751 if (ret < 0) { 2752 error_setg_errno(errp, -ret, "ERROR setting reftable"); 2753 goto fail; 2754 } 2755 2756 for (refblock_index = 0; refblock_index < on_disk_reftable_entries; 2757 refblock_index++) 2758 { 2759 be64_to_cpus(&on_disk_reftable[refblock_index]); 2760 } 2761 s->refcount_table = on_disk_reftable; 2762 s->refcount_table_offset = reftable_offset; 2763 s->refcount_table_size = on_disk_reftable_entries; 2764 update_max_refcount_table_index(s); 2765 2766 return 0; 2767 2768 fail: 2769 g_free(on_disk_reftable); 2770 return ret; 2771 } 2772 2773 /* 2774 * Checks an image for refcount consistency. 2775 * 2776 * Returns 0 if no errors are found, the number of errors in case the image is 2777 * detected as corrupted, and -errno when an internal error occurred. 2778 */ 2779 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2780 BdrvCheckMode fix) 2781 { 2782 BDRVQcow2State *s = bs->opaque; 2783 BdrvCheckResult pre_compare_res; 2784 int64_t size, highest_cluster, nb_clusters; 2785 void *refcount_table = NULL; 2786 bool rebuild = false; 2787 int ret; 2788 2789 size = bdrv_getlength(bs->file->bs); 2790 if (size < 0) { 2791 res->check_errors++; 2792 return size; 2793 } 2794 2795 nb_clusters = size_to_clusters(s, size); 2796 if (nb_clusters > INT_MAX) { 2797 res->check_errors++; 2798 return -EFBIG; 2799 } 2800 2801 res->bfi.total_clusters = 2802 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE); 2803 2804 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table, 2805 &nb_clusters); 2806 if (ret < 0) { 2807 goto fail; 2808 } 2809 2810 /* In case we don't need to rebuild the refcount structure (but want to fix 2811 * something), this function is immediately called again, in which case the 2812 * result should be ignored */ 2813 pre_compare_res = *res; 2814 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table, 2815 nb_clusters); 2816 2817 if (rebuild && (fix & BDRV_FIX_ERRORS)) { 2818 BdrvCheckResult old_res = *res; 2819 int fresh_leaks = 0; 2820 Error *local_err = NULL; 2821 2822 fprintf(stderr, "Rebuilding refcount structure\n"); 2823 ret = rebuild_refcount_structure(bs, res, &refcount_table, 2824 &nb_clusters, &local_err); 2825 if (ret < 0) { 2826 error_report_err(local_err); 2827 goto fail; 2828 } 2829 2830 res->corruptions = 0; 2831 res->leaks = 0; 2832 2833 /* Because the old reftable has been exchanged for a new one the 2834 * references have to be recalculated */ 2835 rebuild = false; 2836 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters)); 2837 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table, 2838 &nb_clusters); 2839 if (ret < 0) { 2840 goto fail; 2841 } 2842 2843 if (fix & BDRV_FIX_LEAKS) { 2844 /* The old refcount structures are now leaked, fix it; the result 2845 * can be ignored, aside from leaks which were introduced by 2846 * rebuild_refcount_structure() that could not be fixed */ 2847 BdrvCheckResult saved_res = *res; 2848 *res = (BdrvCheckResult){ 0 }; 2849 2850 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild, 2851 &highest_cluster, refcount_table, nb_clusters); 2852 if (rebuild) { 2853 fprintf(stderr, "ERROR rebuilt refcount structure is still " 2854 "broken\n"); 2855 } 2856 2857 /* Any leaks accounted for here were introduced by 2858 * rebuild_refcount_structure() because that function has created a 2859 * new refcount structure from scratch */ 2860 fresh_leaks = res->leaks; 2861 *res = saved_res; 2862 } 2863 2864 if (res->corruptions < old_res.corruptions) { 2865 res->corruptions_fixed += old_res.corruptions - res->corruptions; 2866 } 2867 if (res->leaks < old_res.leaks) { 2868 res->leaks_fixed += old_res.leaks - res->leaks; 2869 } 2870 res->leaks += fresh_leaks; 2871 } else if (fix) { 2872 if (rebuild) { 2873 fprintf(stderr, "ERROR need to rebuild refcount structures\n"); 2874 res->check_errors++; 2875 ret = -EIO; 2876 goto fail; 2877 } 2878 2879 if (res->leaks || res->corruptions) { 2880 *res = pre_compare_res; 2881 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster, 2882 refcount_table, nb_clusters); 2883 } 2884 } 2885 2886 /* check OFLAG_COPIED */ 2887 ret = check_oflag_copied(bs, res, fix); 2888 if (ret < 0) { 2889 goto fail; 2890 } 2891 2892 res->image_end_offset = (highest_cluster + 1) * s->cluster_size; 2893 ret = 0; 2894 2895 fail: 2896 g_free(refcount_table); 2897 2898 return ret; 2899 } 2900 2901 #define overlaps_with(ofs, sz) \ 2902 ranges_overlap(offset, size, ofs, sz) 2903 2904 /* 2905 * Checks if the given offset into the image file is actually free to use by 2906 * looking for overlaps with important metadata sections (L1/L2 tables etc.), 2907 * i.e. a sanity check without relying on the refcount tables. 2908 * 2909 * The ign parameter specifies what checks not to perform (being a bitmask of 2910 * QCow2MetadataOverlap values), i.e., what sections to ignore. 2911 * 2912 * Returns: 2913 * - 0 if writing to this offset will not affect the mentioned metadata 2914 * - a positive QCow2MetadataOverlap value indicating one overlapping section 2915 * - a negative value (-errno) indicating an error while performing a check, 2916 * e.g. when bdrv_pread failed on QCOW2_OL_INACTIVE_L2 2917 */ 2918 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset, 2919 int64_t size) 2920 { 2921 BDRVQcow2State *s = bs->opaque; 2922 int chk = s->overlap_check & ~ign; 2923 int i, j; 2924 2925 if (!size) { 2926 return 0; 2927 } 2928 2929 if (chk & QCOW2_OL_MAIN_HEADER) { 2930 if (offset < s->cluster_size) { 2931 return QCOW2_OL_MAIN_HEADER; 2932 } 2933 } 2934 2935 /* align range to test to cluster boundaries */ 2936 size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size); 2937 offset = start_of_cluster(s, offset); 2938 2939 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) { 2940 if (overlaps_with(s->l1_table_offset, s->l1_size * L1E_SIZE)) { 2941 return QCOW2_OL_ACTIVE_L1; 2942 } 2943 } 2944 2945 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) { 2946 if (overlaps_with(s->refcount_table_offset, 2947 s->refcount_table_size * REFTABLE_ENTRY_SIZE)) { 2948 return QCOW2_OL_REFCOUNT_TABLE; 2949 } 2950 } 2951 2952 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) { 2953 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) { 2954 return QCOW2_OL_SNAPSHOT_TABLE; 2955 } 2956 } 2957 2958 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) { 2959 for (i = 0; i < s->nb_snapshots; i++) { 2960 if (s->snapshots[i].l1_size && 2961 overlaps_with(s->snapshots[i].l1_table_offset, 2962 s->snapshots[i].l1_size * L1E_SIZE)) { 2963 return QCOW2_OL_INACTIVE_L1; 2964 } 2965 } 2966 } 2967 2968 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) { 2969 for (i = 0; i < s->l1_size; i++) { 2970 if ((s->l1_table[i] & L1E_OFFSET_MASK) && 2971 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK, 2972 s->cluster_size)) { 2973 return QCOW2_OL_ACTIVE_L2; 2974 } 2975 } 2976 } 2977 2978 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) { 2979 unsigned last_entry = s->max_refcount_table_index; 2980 assert(last_entry < s->refcount_table_size); 2981 assert(last_entry + 1 == s->refcount_table_size || 2982 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0); 2983 for (i = 0; i <= last_entry; i++) { 2984 if ((s->refcount_table[i] & REFT_OFFSET_MASK) && 2985 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK, 2986 s->cluster_size)) { 2987 return QCOW2_OL_REFCOUNT_BLOCK; 2988 } 2989 } 2990 } 2991 2992 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) { 2993 for (i = 0; i < s->nb_snapshots; i++) { 2994 uint64_t l1_ofs = s->snapshots[i].l1_table_offset; 2995 uint32_t l1_sz = s->snapshots[i].l1_size; 2996 uint64_t l1_sz2 = l1_sz * L1E_SIZE; 2997 uint64_t *l1; 2998 int ret; 2999 3000 ret = qcow2_validate_table(bs, l1_ofs, l1_sz, L1E_SIZE, 3001 QCOW_MAX_L1_SIZE, "", NULL); 3002 if (ret < 0) { 3003 return ret; 3004 } 3005 3006 l1 = g_try_malloc(l1_sz2); 3007 3008 if (l1_sz2 && l1 == NULL) { 3009 return -ENOMEM; 3010 } 3011 3012 ret = bdrv_pread(bs->file, l1_ofs, l1_sz2, l1, 0); 3013 if (ret < 0) { 3014 g_free(l1); 3015 return ret; 3016 } 3017 3018 for (j = 0; j < l1_sz; j++) { 3019 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK; 3020 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) { 3021 g_free(l1); 3022 return QCOW2_OL_INACTIVE_L2; 3023 } 3024 } 3025 3026 g_free(l1); 3027 } 3028 } 3029 3030 if ((chk & QCOW2_OL_BITMAP_DIRECTORY) && 3031 (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS)) 3032 { 3033 if (overlaps_with(s->bitmap_directory_offset, 3034 s->bitmap_directory_size)) 3035 { 3036 return QCOW2_OL_BITMAP_DIRECTORY; 3037 } 3038 } 3039 3040 return 0; 3041 } 3042 3043 static const char *metadata_ol_names[] = { 3044 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header", 3045 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table", 3046 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table", 3047 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table", 3048 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block", 3049 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table", 3050 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table", 3051 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table", 3052 [QCOW2_OL_BITMAP_DIRECTORY_BITNR] = "bitmap directory", 3053 }; 3054 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names)); 3055 3056 /* 3057 * First performs a check for metadata overlaps (through 3058 * qcow2_check_metadata_overlap); if that fails with a negative value (error 3059 * while performing a check), that value is returned. If an impending overlap 3060 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt 3061 * and -EIO returned. 3062 * 3063 * Returns 0 if there were neither overlaps nor errors while checking for 3064 * overlaps; or a negative value (-errno) on error. 3065 */ 3066 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset, 3067 int64_t size, bool data_file) 3068 { 3069 int ret; 3070 3071 if (data_file && has_data_file(bs)) { 3072 return 0; 3073 } 3074 3075 ret = qcow2_check_metadata_overlap(bs, ign, offset, size); 3076 if (ret < 0) { 3077 return ret; 3078 } else if (ret > 0) { 3079 int metadata_ol_bitnr = ctz32(ret); 3080 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR); 3081 3082 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid " 3083 "write on metadata (overlaps with %s)", 3084 metadata_ol_names[metadata_ol_bitnr]); 3085 return -EIO; 3086 } 3087 3088 return 0; 3089 } 3090 3091 /* A pointer to a function of this type is given to walk_over_reftable(). That 3092 * function will create refblocks and pass them to a RefblockFinishOp once they 3093 * are completed (@refblock). @refblock_empty is set if the refblock is 3094 * completely empty. 3095 * 3096 * Along with the refblock, a corresponding reftable entry is passed, in the 3097 * reftable @reftable (which may be reallocated) at @reftable_index. 3098 * 3099 * @allocated should be set to true if a new cluster has been allocated. 3100 */ 3101 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable, 3102 uint64_t reftable_index, uint64_t *reftable_size, 3103 void *refblock, bool refblock_empty, 3104 bool *allocated, Error **errp); 3105 3106 /** 3107 * This "operation" for walk_over_reftable() allocates the refblock on disk (if 3108 * it is not empty) and inserts its offset into the new reftable. The size of 3109 * this new reftable is increased as required. 3110 */ 3111 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable, 3112 uint64_t reftable_index, uint64_t *reftable_size, 3113 void *refblock, bool refblock_empty, bool *allocated, 3114 Error **errp) 3115 { 3116 BDRVQcow2State *s = bs->opaque; 3117 int64_t offset; 3118 3119 if (!refblock_empty && reftable_index >= *reftable_size) { 3120 uint64_t *new_reftable; 3121 uint64_t new_reftable_size; 3122 3123 new_reftable_size = ROUND_UP(reftable_index + 1, 3124 s->cluster_size / REFTABLE_ENTRY_SIZE); 3125 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / REFTABLE_ENTRY_SIZE) { 3126 error_setg(errp, 3127 "This operation would make the refcount table grow " 3128 "beyond the maximum size supported by QEMU, aborting"); 3129 return -ENOTSUP; 3130 } 3131 3132 new_reftable = g_try_realloc(*reftable, new_reftable_size * 3133 REFTABLE_ENTRY_SIZE); 3134 if (!new_reftable) { 3135 error_setg(errp, "Failed to increase reftable buffer size"); 3136 return -ENOMEM; 3137 } 3138 3139 memset(new_reftable + *reftable_size, 0, 3140 (new_reftable_size - *reftable_size) * REFTABLE_ENTRY_SIZE); 3141 3142 *reftable = new_reftable; 3143 *reftable_size = new_reftable_size; 3144 } 3145 3146 if (!refblock_empty && !(*reftable)[reftable_index]) { 3147 offset = qcow2_alloc_clusters(bs, s->cluster_size); 3148 if (offset < 0) { 3149 error_setg_errno(errp, -offset, "Failed to allocate refblock"); 3150 return offset; 3151 } 3152 (*reftable)[reftable_index] = offset; 3153 *allocated = true; 3154 } 3155 3156 return 0; 3157 } 3158 3159 /** 3160 * This "operation" for walk_over_reftable() writes the refblock to disk at the 3161 * offset specified by the new reftable's entry. It does not modify the new 3162 * reftable or change any refcounts. 3163 */ 3164 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable, 3165 uint64_t reftable_index, uint64_t *reftable_size, 3166 void *refblock, bool refblock_empty, bool *allocated, 3167 Error **errp) 3168 { 3169 BDRVQcow2State *s = bs->opaque; 3170 int64_t offset; 3171 int ret; 3172 3173 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) { 3174 offset = (*reftable)[reftable_index]; 3175 3176 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size, 3177 false); 3178 if (ret < 0) { 3179 error_setg_errno(errp, -ret, "Overlap check failed"); 3180 return ret; 3181 } 3182 3183 ret = bdrv_pwrite(bs->file, offset, s->cluster_size, refblock, 0); 3184 if (ret < 0) { 3185 error_setg_errno(errp, -ret, "Failed to write refblock"); 3186 return ret; 3187 } 3188 } else { 3189 assert(refblock_empty); 3190 } 3191 3192 return 0; 3193 } 3194 3195 /** 3196 * This function walks over the existing reftable and every referenced refblock; 3197 * if @new_set_refcount is non-NULL, it is called for every refcount entry to 3198 * create an equal new entry in the passed @new_refblock. Once that 3199 * @new_refblock is completely filled, @operation will be called. 3200 * 3201 * @status_cb and @cb_opaque are used for the amend operation's status callback. 3202 * @index is the index of the walk_over_reftable() calls and @total is the total 3203 * number of walk_over_reftable() calls per amend operation. Both are used for 3204 * calculating the parameters for the status callback. 3205 * 3206 * @allocated is set to true if a new cluster has been allocated. 3207 */ 3208 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable, 3209 uint64_t *new_reftable_index, 3210 uint64_t *new_reftable_size, 3211 void *new_refblock, int new_refblock_size, 3212 int new_refcount_bits, 3213 RefblockFinishOp *operation, bool *allocated, 3214 Qcow2SetRefcountFunc *new_set_refcount, 3215 BlockDriverAmendStatusCB *status_cb, 3216 void *cb_opaque, int index, int total, 3217 Error **errp) 3218 { 3219 BDRVQcow2State *s = bs->opaque; 3220 uint64_t reftable_index; 3221 bool new_refblock_empty = true; 3222 int refblock_index; 3223 int new_refblock_index = 0; 3224 int ret; 3225 3226 for (reftable_index = 0; reftable_index < s->refcount_table_size; 3227 reftable_index++) 3228 { 3229 uint64_t refblock_offset = s->refcount_table[reftable_index] 3230 & REFT_OFFSET_MASK; 3231 3232 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index, 3233 (uint64_t)total * s->refcount_table_size, cb_opaque); 3234 3235 if (refblock_offset) { 3236 void *refblock; 3237 3238 if (offset_into_cluster(s, refblock_offset)) { 3239 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 3240 PRIx64 " unaligned (reftable index: %#" 3241 PRIx64 ")", refblock_offset, 3242 reftable_index); 3243 error_setg(errp, 3244 "Image is corrupt (unaligned refblock offset)"); 3245 return -EIO; 3246 } 3247 3248 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset, 3249 &refblock); 3250 if (ret < 0) { 3251 error_setg_errno(errp, -ret, "Failed to retrieve refblock"); 3252 return ret; 3253 } 3254 3255 for (refblock_index = 0; refblock_index < s->refcount_block_size; 3256 refblock_index++) 3257 { 3258 uint64_t refcount; 3259 3260 if (new_refblock_index >= new_refblock_size) { 3261 /* new_refblock is now complete */ 3262 ret = operation(bs, new_reftable, *new_reftable_index, 3263 new_reftable_size, new_refblock, 3264 new_refblock_empty, allocated, errp); 3265 if (ret < 0) { 3266 qcow2_cache_put(s->refcount_block_cache, &refblock); 3267 return ret; 3268 } 3269 3270 (*new_reftable_index)++; 3271 new_refblock_index = 0; 3272 new_refblock_empty = true; 3273 } 3274 3275 refcount = s->get_refcount(refblock, refblock_index); 3276 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) { 3277 uint64_t offset; 3278 3279 qcow2_cache_put(s->refcount_block_cache, &refblock); 3280 3281 offset = ((reftable_index << s->refcount_block_bits) 3282 + refblock_index) << s->cluster_bits; 3283 3284 error_setg(errp, "Cannot decrease refcount entry width to " 3285 "%i bits: Cluster at offset %#" PRIx64 " has a " 3286 "refcount of %" PRIu64, new_refcount_bits, 3287 offset, refcount); 3288 return -EINVAL; 3289 } 3290 3291 if (new_set_refcount) { 3292 new_set_refcount(new_refblock, new_refblock_index++, 3293 refcount); 3294 } else { 3295 new_refblock_index++; 3296 } 3297 new_refblock_empty = new_refblock_empty && refcount == 0; 3298 } 3299 3300 qcow2_cache_put(s->refcount_block_cache, &refblock); 3301 } else { 3302 /* No refblock means every refcount is 0 */ 3303 for (refblock_index = 0; refblock_index < s->refcount_block_size; 3304 refblock_index++) 3305 { 3306 if (new_refblock_index >= new_refblock_size) { 3307 /* new_refblock is now complete */ 3308 ret = operation(bs, new_reftable, *new_reftable_index, 3309 new_reftable_size, new_refblock, 3310 new_refblock_empty, allocated, errp); 3311 if (ret < 0) { 3312 return ret; 3313 } 3314 3315 (*new_reftable_index)++; 3316 new_refblock_index = 0; 3317 new_refblock_empty = true; 3318 } 3319 3320 if (new_set_refcount) { 3321 new_set_refcount(new_refblock, new_refblock_index++, 0); 3322 } else { 3323 new_refblock_index++; 3324 } 3325 } 3326 } 3327 } 3328 3329 if (new_refblock_index > 0) { 3330 /* Complete the potentially existing partially filled final refblock */ 3331 if (new_set_refcount) { 3332 for (; new_refblock_index < new_refblock_size; 3333 new_refblock_index++) 3334 { 3335 new_set_refcount(new_refblock, new_refblock_index, 0); 3336 } 3337 } 3338 3339 ret = operation(bs, new_reftable, *new_reftable_index, 3340 new_reftable_size, new_refblock, new_refblock_empty, 3341 allocated, errp); 3342 if (ret < 0) { 3343 return ret; 3344 } 3345 3346 (*new_reftable_index)++; 3347 } 3348 3349 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size, 3350 (uint64_t)total * s->refcount_table_size, cb_opaque); 3351 3352 return 0; 3353 } 3354 3355 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order, 3356 BlockDriverAmendStatusCB *status_cb, 3357 void *cb_opaque, Error **errp) 3358 { 3359 BDRVQcow2State *s = bs->opaque; 3360 Qcow2GetRefcountFunc *new_get_refcount; 3361 Qcow2SetRefcountFunc *new_set_refcount; 3362 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size); 3363 uint64_t *new_reftable = NULL, new_reftable_size = 0; 3364 uint64_t *old_reftable, old_reftable_size, old_reftable_offset; 3365 uint64_t new_reftable_index = 0; 3366 uint64_t i; 3367 int64_t new_reftable_offset = 0, allocated_reftable_size = 0; 3368 int new_refblock_size, new_refcount_bits = 1 << refcount_order; 3369 int old_refcount_order; 3370 int walk_index = 0; 3371 int ret; 3372 bool new_allocation; 3373 3374 assert(s->qcow_version >= 3); 3375 assert(refcount_order >= 0 && refcount_order <= 6); 3376 3377 /* see qcow2_open() */ 3378 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3)); 3379 3380 new_get_refcount = get_refcount_funcs[refcount_order]; 3381 new_set_refcount = set_refcount_funcs[refcount_order]; 3382 3383 3384 do { 3385 int total_walks; 3386 3387 new_allocation = false; 3388 3389 /* At least we have to do this walk and the one which writes the 3390 * refblocks; also, at least we have to do this loop here at least 3391 * twice (normally), first to do the allocations, and second to 3392 * determine that everything is correctly allocated, this then makes 3393 * three walks in total */ 3394 total_walks = MAX(walk_index + 2, 3); 3395 3396 /* First, allocate the structures so they are present in the refcount 3397 * structures */ 3398 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 3399 &new_reftable_size, NULL, new_refblock_size, 3400 new_refcount_bits, &alloc_refblock, 3401 &new_allocation, NULL, status_cb, cb_opaque, 3402 walk_index++, total_walks, errp); 3403 if (ret < 0) { 3404 goto done; 3405 } 3406 3407 new_reftable_index = 0; 3408 3409 if (new_allocation) { 3410 if (new_reftable_offset) { 3411 qcow2_free_clusters( 3412 bs, new_reftable_offset, 3413 allocated_reftable_size * REFTABLE_ENTRY_SIZE, 3414 QCOW2_DISCARD_NEVER); 3415 } 3416 3417 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size * 3418 REFTABLE_ENTRY_SIZE); 3419 if (new_reftable_offset < 0) { 3420 error_setg_errno(errp, -new_reftable_offset, 3421 "Failed to allocate the new reftable"); 3422 ret = new_reftable_offset; 3423 goto done; 3424 } 3425 allocated_reftable_size = new_reftable_size; 3426 } 3427 } while (new_allocation); 3428 3429 /* Second, write the new refblocks */ 3430 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 3431 &new_reftable_size, new_refblock, 3432 new_refblock_size, new_refcount_bits, 3433 &flush_refblock, &new_allocation, new_set_refcount, 3434 status_cb, cb_opaque, walk_index, walk_index + 1, 3435 errp); 3436 if (ret < 0) { 3437 goto done; 3438 } 3439 assert(!new_allocation); 3440 3441 3442 /* Write the new reftable */ 3443 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset, 3444 new_reftable_size * REFTABLE_ENTRY_SIZE, 3445 false); 3446 if (ret < 0) { 3447 error_setg_errno(errp, -ret, "Overlap check failed"); 3448 goto done; 3449 } 3450 3451 for (i = 0; i < new_reftable_size; i++) { 3452 cpu_to_be64s(&new_reftable[i]); 3453 } 3454 3455 ret = bdrv_pwrite(bs->file, new_reftable_offset, 3456 new_reftable_size * REFTABLE_ENTRY_SIZE, new_reftable, 3457 0); 3458 3459 for (i = 0; i < new_reftable_size; i++) { 3460 be64_to_cpus(&new_reftable[i]); 3461 } 3462 3463 if (ret < 0) { 3464 error_setg_errno(errp, -ret, "Failed to write the new reftable"); 3465 goto done; 3466 } 3467 3468 3469 /* Empty the refcount cache */ 3470 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 3471 if (ret < 0) { 3472 error_setg_errno(errp, -ret, "Failed to flush the refblock cache"); 3473 goto done; 3474 } 3475 3476 /* Update the image header to point to the new reftable; this only updates 3477 * the fields which are relevant to qcow2_update_header(); other fields 3478 * such as s->refcount_table or s->refcount_bits stay stale for now 3479 * (because we have to restore everything if qcow2_update_header() fails) */ 3480 old_refcount_order = s->refcount_order; 3481 old_reftable_size = s->refcount_table_size; 3482 old_reftable_offset = s->refcount_table_offset; 3483 3484 s->refcount_order = refcount_order; 3485 s->refcount_table_size = new_reftable_size; 3486 s->refcount_table_offset = new_reftable_offset; 3487 3488 ret = qcow2_update_header(bs); 3489 if (ret < 0) { 3490 s->refcount_order = old_refcount_order; 3491 s->refcount_table_size = old_reftable_size; 3492 s->refcount_table_offset = old_reftable_offset; 3493 error_setg_errno(errp, -ret, "Failed to update the qcow2 header"); 3494 goto done; 3495 } 3496 3497 /* Now update the rest of the in-memory information */ 3498 old_reftable = s->refcount_table; 3499 s->refcount_table = new_reftable; 3500 update_max_refcount_table_index(s); 3501 3502 s->refcount_bits = 1 << refcount_order; 3503 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1); 3504 s->refcount_max += s->refcount_max - 1; 3505 3506 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3); 3507 s->refcount_block_size = 1 << s->refcount_block_bits; 3508 3509 s->get_refcount = new_get_refcount; 3510 s->set_refcount = new_set_refcount; 3511 3512 /* For cleaning up all old refblocks and the old reftable below the "done" 3513 * label */ 3514 new_reftable = old_reftable; 3515 new_reftable_size = old_reftable_size; 3516 new_reftable_offset = old_reftable_offset; 3517 3518 done: 3519 if (new_reftable) { 3520 /* On success, new_reftable actually points to the old reftable (and 3521 * new_reftable_size is the old reftable's size); but that is just 3522 * fine */ 3523 for (i = 0; i < new_reftable_size; i++) { 3524 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK; 3525 if (offset) { 3526 qcow2_free_clusters(bs, offset, s->cluster_size, 3527 QCOW2_DISCARD_OTHER); 3528 } 3529 } 3530 g_free(new_reftable); 3531 3532 if (new_reftable_offset > 0) { 3533 qcow2_free_clusters(bs, new_reftable_offset, 3534 new_reftable_size * REFTABLE_ENTRY_SIZE, 3535 QCOW2_DISCARD_OTHER); 3536 } 3537 } 3538 3539 qemu_vfree(new_refblock); 3540 return ret; 3541 } 3542 3543 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset) 3544 { 3545 BDRVQcow2State *s = bs->opaque; 3546 uint32_t index = offset_to_reftable_index(s, offset); 3547 int64_t covering_refblock_offset = 0; 3548 3549 if (index < s->refcount_table_size) { 3550 covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK; 3551 } 3552 if (!covering_refblock_offset) { 3553 qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is " 3554 "not covered by the refcount structures", 3555 offset); 3556 return -EIO; 3557 } 3558 3559 return covering_refblock_offset; 3560 } 3561 3562 static int qcow2_discard_refcount_block(BlockDriverState *bs, 3563 uint64_t discard_block_offs) 3564 { 3565 BDRVQcow2State *s = bs->opaque; 3566 int64_t refblock_offs; 3567 uint64_t cluster_index = discard_block_offs >> s->cluster_bits; 3568 uint32_t block_index = cluster_index & (s->refcount_block_size - 1); 3569 void *refblock; 3570 int ret; 3571 3572 refblock_offs = get_refblock_offset(bs, discard_block_offs); 3573 if (refblock_offs < 0) { 3574 return refblock_offs; 3575 } 3576 3577 assert(discard_block_offs != 0); 3578 3579 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs, 3580 &refblock); 3581 if (ret < 0) { 3582 return ret; 3583 } 3584 3585 if (s->get_refcount(refblock, block_index) != 1) { 3586 qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:" 3587 " refblock offset %#" PRIx64 3588 ", reftable index %u" 3589 ", block offset %#" PRIx64 3590 ", refcount %#" PRIx64, 3591 refblock_offs, 3592 offset_to_reftable_index(s, discard_block_offs), 3593 discard_block_offs, 3594 s->get_refcount(refblock, block_index)); 3595 qcow2_cache_put(s->refcount_block_cache, &refblock); 3596 return -EINVAL; 3597 } 3598 s->set_refcount(refblock, block_index, 0); 3599 3600 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock); 3601 3602 qcow2_cache_put(s->refcount_block_cache, &refblock); 3603 3604 if (cluster_index < s->free_cluster_index) { 3605 s->free_cluster_index = cluster_index; 3606 } 3607 3608 refblock = qcow2_cache_is_table_offset(s->refcount_block_cache, 3609 discard_block_offs); 3610 if (refblock) { 3611 /* discard refblock from the cache if refblock is cached */ 3612 qcow2_cache_discard(s->refcount_block_cache, refblock); 3613 } 3614 update_refcount_discard(bs, discard_block_offs, s->cluster_size); 3615 3616 return 0; 3617 } 3618 3619 int qcow2_shrink_reftable(BlockDriverState *bs) 3620 { 3621 BDRVQcow2State *s = bs->opaque; 3622 uint64_t *reftable_tmp = 3623 g_malloc(s->refcount_table_size * REFTABLE_ENTRY_SIZE); 3624 int i, ret; 3625 3626 for (i = 0; i < s->refcount_table_size; i++) { 3627 int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK; 3628 void *refblock; 3629 bool unused_block; 3630 3631 if (refblock_offs == 0) { 3632 reftable_tmp[i] = 0; 3633 continue; 3634 } 3635 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs, 3636 &refblock); 3637 if (ret < 0) { 3638 goto out; 3639 } 3640 3641 /* the refblock has own reference */ 3642 if (i == offset_to_reftable_index(s, refblock_offs)) { 3643 uint64_t block_index = (refblock_offs >> s->cluster_bits) & 3644 (s->refcount_block_size - 1); 3645 uint64_t refcount = s->get_refcount(refblock, block_index); 3646 3647 s->set_refcount(refblock, block_index, 0); 3648 3649 unused_block = buffer_is_zero(refblock, s->cluster_size); 3650 3651 s->set_refcount(refblock, block_index, refcount); 3652 } else { 3653 unused_block = buffer_is_zero(refblock, s->cluster_size); 3654 } 3655 qcow2_cache_put(s->refcount_block_cache, &refblock); 3656 3657 reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]); 3658 } 3659 3660 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, 3661 s->refcount_table_size * REFTABLE_ENTRY_SIZE, 3662 reftable_tmp, 0); 3663 /* 3664 * If the write in the reftable failed the image may contain a partially 3665 * overwritten reftable. In this case it would be better to clear the 3666 * reftable in memory to avoid possible image corruption. 3667 */ 3668 for (i = 0; i < s->refcount_table_size; i++) { 3669 if (s->refcount_table[i] && !reftable_tmp[i]) { 3670 if (ret == 0) { 3671 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] & 3672 REFT_OFFSET_MASK); 3673 } 3674 s->refcount_table[i] = 0; 3675 } 3676 } 3677 3678 if (!s->cache_discards) { 3679 qcow2_process_discards(bs, ret); 3680 } 3681 3682 out: 3683 g_free(reftable_tmp); 3684 return ret; 3685 } 3686 3687 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size) 3688 { 3689 BDRVQcow2State *s = bs->opaque; 3690 int64_t i; 3691 3692 for (i = size_to_clusters(s, size) - 1; i >= 0; i--) { 3693 uint64_t refcount; 3694 int ret = qcow2_get_refcount(bs, i, &refcount); 3695 if (ret < 0) { 3696 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 3697 i, strerror(-ret)); 3698 return ret; 3699 } 3700 if (refcount > 0) { 3701 return i; 3702 } 3703 } 3704 qcow2_signal_corruption(bs, true, -1, -1, 3705 "There are no references in the refcount table."); 3706 return -EIO; 3707 } 3708 3709 int qcow2_detect_metadata_preallocation(BlockDriverState *bs) 3710 { 3711 BDRVQcow2State *s = bs->opaque; 3712 int64_t i, end_cluster, cluster_count = 0, threshold; 3713 int64_t file_length, real_allocation, real_clusters; 3714 3715 qemu_co_mutex_assert_locked(&s->lock); 3716 3717 file_length = bdrv_getlength(bs->file->bs); 3718 if (file_length < 0) { 3719 return file_length; 3720 } 3721 3722 real_allocation = bdrv_get_allocated_file_size(bs->file->bs); 3723 if (real_allocation < 0) { 3724 return real_allocation; 3725 } 3726 3727 real_clusters = real_allocation / s->cluster_size; 3728 threshold = MAX(real_clusters * 10 / 9, real_clusters + 2); 3729 3730 end_cluster = size_to_clusters(s, file_length); 3731 for (i = 0; i < end_cluster && cluster_count < threshold; i++) { 3732 uint64_t refcount; 3733 int ret = qcow2_get_refcount(bs, i, &refcount); 3734 if (ret < 0) { 3735 return ret; 3736 } 3737 cluster_count += !!refcount; 3738 } 3739 3740 return cluster_count >= threshold; 3741 } 3742