1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "qemu/range.h" 31 32 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size); 33 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs, 34 int64_t offset, int64_t length, uint64_t addend, 35 bool decrease, enum qcow2_discard_type type); 36 37 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index); 38 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index); 39 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index); 40 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index); 41 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index); 42 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index); 43 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index); 44 45 static void set_refcount_ro0(void *refcount_array, uint64_t index, 46 uint64_t value); 47 static void set_refcount_ro1(void *refcount_array, uint64_t index, 48 uint64_t value); 49 static void set_refcount_ro2(void *refcount_array, uint64_t index, 50 uint64_t value); 51 static void set_refcount_ro3(void *refcount_array, uint64_t index, 52 uint64_t value); 53 static void set_refcount_ro4(void *refcount_array, uint64_t index, 54 uint64_t value); 55 static void set_refcount_ro5(void *refcount_array, uint64_t index, 56 uint64_t value); 57 static void set_refcount_ro6(void *refcount_array, uint64_t index, 58 uint64_t value); 59 60 61 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = { 62 &get_refcount_ro0, 63 &get_refcount_ro1, 64 &get_refcount_ro2, 65 &get_refcount_ro3, 66 &get_refcount_ro4, 67 &get_refcount_ro5, 68 &get_refcount_ro6 69 }; 70 71 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = { 72 &set_refcount_ro0, 73 &set_refcount_ro1, 74 &set_refcount_ro2, 75 &set_refcount_ro3, 76 &set_refcount_ro4, 77 &set_refcount_ro5, 78 &set_refcount_ro6 79 }; 80 81 82 /*********************************************************/ 83 /* refcount handling */ 84 85 int qcow2_refcount_init(BlockDriverState *bs) 86 { 87 BDRVQcow2State *s = bs->opaque; 88 unsigned int refcount_table_size2, i; 89 int ret; 90 91 assert(s->refcount_order >= 0 && s->refcount_order <= 6); 92 93 s->get_refcount = get_refcount_funcs[s->refcount_order]; 94 s->set_refcount = set_refcount_funcs[s->refcount_order]; 95 96 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t)); 97 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t); 98 s->refcount_table = g_try_malloc(refcount_table_size2); 99 100 if (s->refcount_table_size > 0) { 101 if (s->refcount_table == NULL) { 102 ret = -ENOMEM; 103 goto fail; 104 } 105 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD); 106 ret = bdrv_pread(bs->file->bs, s->refcount_table_offset, 107 s->refcount_table, refcount_table_size2); 108 if (ret < 0) { 109 goto fail; 110 } 111 for(i = 0; i < s->refcount_table_size; i++) 112 be64_to_cpus(&s->refcount_table[i]); 113 } 114 return 0; 115 fail: 116 return ret; 117 } 118 119 void qcow2_refcount_close(BlockDriverState *bs) 120 { 121 BDRVQcow2State *s = bs->opaque; 122 g_free(s->refcount_table); 123 } 124 125 126 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index) 127 { 128 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1; 129 } 130 131 static void set_refcount_ro0(void *refcount_array, uint64_t index, 132 uint64_t value) 133 { 134 assert(!(value >> 1)); 135 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8)); 136 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8); 137 } 138 139 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index) 140 { 141 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4))) 142 & 0x3; 143 } 144 145 static void set_refcount_ro1(void *refcount_array, uint64_t index, 146 uint64_t value) 147 { 148 assert(!(value >> 2)); 149 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4))); 150 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4)); 151 } 152 153 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index) 154 { 155 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2))) 156 & 0xf; 157 } 158 159 static void set_refcount_ro2(void *refcount_array, uint64_t index, 160 uint64_t value) 161 { 162 assert(!(value >> 4)); 163 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2))); 164 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2)); 165 } 166 167 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index) 168 { 169 return ((const uint8_t *)refcount_array)[index]; 170 } 171 172 static void set_refcount_ro3(void *refcount_array, uint64_t index, 173 uint64_t value) 174 { 175 assert(!(value >> 8)); 176 ((uint8_t *)refcount_array)[index] = value; 177 } 178 179 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index) 180 { 181 return be16_to_cpu(((const uint16_t *)refcount_array)[index]); 182 } 183 184 static void set_refcount_ro4(void *refcount_array, uint64_t index, 185 uint64_t value) 186 { 187 assert(!(value >> 16)); 188 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value); 189 } 190 191 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index) 192 { 193 return be32_to_cpu(((const uint32_t *)refcount_array)[index]); 194 } 195 196 static void set_refcount_ro5(void *refcount_array, uint64_t index, 197 uint64_t value) 198 { 199 assert(!(value >> 32)); 200 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value); 201 } 202 203 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index) 204 { 205 return be64_to_cpu(((const uint64_t *)refcount_array)[index]); 206 } 207 208 static void set_refcount_ro6(void *refcount_array, uint64_t index, 209 uint64_t value) 210 { 211 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value); 212 } 213 214 215 static int load_refcount_block(BlockDriverState *bs, 216 int64_t refcount_block_offset, 217 void **refcount_block) 218 { 219 BDRVQcow2State *s = bs->opaque; 220 int ret; 221 222 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD); 223 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 224 refcount_block); 225 226 return ret; 227 } 228 229 /* 230 * Retrieves the refcount of the cluster given by its index and stores it in 231 * *refcount. Returns 0 on success and -errno on failure. 232 */ 233 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index, 234 uint64_t *refcount) 235 { 236 BDRVQcow2State *s = bs->opaque; 237 uint64_t refcount_table_index, block_index; 238 int64_t refcount_block_offset; 239 int ret; 240 void *refcount_block; 241 242 refcount_table_index = cluster_index >> s->refcount_block_bits; 243 if (refcount_table_index >= s->refcount_table_size) { 244 *refcount = 0; 245 return 0; 246 } 247 refcount_block_offset = 248 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 249 if (!refcount_block_offset) { 250 *refcount = 0; 251 return 0; 252 } 253 254 if (offset_into_cluster(s, refcount_block_offset)) { 255 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64 256 " unaligned (reftable index: %#" PRIx64 ")", 257 refcount_block_offset, refcount_table_index); 258 return -EIO; 259 } 260 261 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 262 &refcount_block); 263 if (ret < 0) { 264 return ret; 265 } 266 267 block_index = cluster_index & (s->refcount_block_size - 1); 268 *refcount = s->get_refcount(refcount_block, block_index); 269 270 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block); 271 272 return 0; 273 } 274 275 /* 276 * Rounds the refcount table size up to avoid growing the table for each single 277 * refcount block that is allocated. 278 */ 279 static unsigned int next_refcount_table_size(BDRVQcow2State *s, 280 unsigned int min_size) 281 { 282 unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1; 283 unsigned int refcount_table_clusters = 284 MAX(1, s->refcount_table_size >> (s->cluster_bits - 3)); 285 286 while (min_clusters > refcount_table_clusters) { 287 refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2; 288 } 289 290 return refcount_table_clusters << (s->cluster_bits - 3); 291 } 292 293 294 /* Checks if two offsets are described by the same refcount block */ 295 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a, 296 uint64_t offset_b) 297 { 298 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits); 299 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits); 300 301 return (block_a == block_b); 302 } 303 304 /* 305 * Loads a refcount block. If it doesn't exist yet, it is allocated first 306 * (including growing the refcount table if needed). 307 * 308 * Returns 0 on success or -errno in error case 309 */ 310 static int alloc_refcount_block(BlockDriverState *bs, 311 int64_t cluster_index, void **refcount_block) 312 { 313 BDRVQcow2State *s = bs->opaque; 314 unsigned int refcount_table_index; 315 int ret; 316 317 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC); 318 319 /* Find the refcount block for the given cluster */ 320 refcount_table_index = cluster_index >> s->refcount_block_bits; 321 322 if (refcount_table_index < s->refcount_table_size) { 323 324 uint64_t refcount_block_offset = 325 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 326 327 /* If it's already there, we're done */ 328 if (refcount_block_offset) { 329 if (offset_into_cluster(s, refcount_block_offset)) { 330 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 331 PRIx64 " unaligned (reftable index: " 332 "%#x)", refcount_block_offset, 333 refcount_table_index); 334 return -EIO; 335 } 336 337 return load_refcount_block(bs, refcount_block_offset, 338 refcount_block); 339 } 340 } 341 342 /* 343 * If we came here, we need to allocate something. Something is at least 344 * a cluster for the new refcount block. It may also include a new refcount 345 * table if the old refcount table is too small. 346 * 347 * Note that allocating clusters here needs some special care: 348 * 349 * - We can't use the normal qcow2_alloc_clusters(), it would try to 350 * increase the refcount and very likely we would end up with an endless 351 * recursion. Instead we must place the refcount blocks in a way that 352 * they can describe them themselves. 353 * 354 * - We need to consider that at this point we are inside update_refcounts 355 * and potentially doing an initial refcount increase. This means that 356 * some clusters have already been allocated by the caller, but their 357 * refcount isn't accurate yet. If we allocate clusters for metadata, we 358 * need to return -EAGAIN to signal the caller that it needs to restart 359 * the search for free clusters. 360 * 361 * - alloc_clusters_noref and qcow2_free_clusters may load a different 362 * refcount block into the cache 363 */ 364 365 *refcount_block = NULL; 366 367 /* We write to the refcount table, so we might depend on L2 tables */ 368 ret = qcow2_cache_flush(bs, s->l2_table_cache); 369 if (ret < 0) { 370 return ret; 371 } 372 373 /* Allocate the refcount block itself and mark it as used */ 374 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size); 375 if (new_block < 0) { 376 return new_block; 377 } 378 379 #ifdef DEBUG_ALLOC2 380 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64 381 " at %" PRIx64 "\n", 382 refcount_table_index, cluster_index << s->cluster_bits, new_block); 383 #endif 384 385 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) { 386 /* Zero the new refcount block before updating it */ 387 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 388 refcount_block); 389 if (ret < 0) { 390 goto fail_block; 391 } 392 393 memset(*refcount_block, 0, s->cluster_size); 394 395 /* The block describes itself, need to update the cache */ 396 int block_index = (new_block >> s->cluster_bits) & 397 (s->refcount_block_size - 1); 398 s->set_refcount(*refcount_block, block_index, 1); 399 } else { 400 /* Described somewhere else. This can recurse at most twice before we 401 * arrive at a block that describes itself. */ 402 ret = update_refcount(bs, new_block, s->cluster_size, 1, false, 403 QCOW2_DISCARD_NEVER); 404 if (ret < 0) { 405 goto fail_block; 406 } 407 408 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 409 if (ret < 0) { 410 goto fail_block; 411 } 412 413 /* Initialize the new refcount block only after updating its refcount, 414 * update_refcount uses the refcount cache itself */ 415 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 416 refcount_block); 417 if (ret < 0) { 418 goto fail_block; 419 } 420 421 memset(*refcount_block, 0, s->cluster_size); 422 } 423 424 /* Now the new refcount block needs to be written to disk */ 425 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE); 426 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block); 427 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 428 if (ret < 0) { 429 goto fail_block; 430 } 431 432 /* If the refcount table is big enough, just hook the block up there */ 433 if (refcount_table_index < s->refcount_table_size) { 434 uint64_t data64 = cpu_to_be64(new_block); 435 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP); 436 ret = bdrv_pwrite_sync(bs->file->bs, 437 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t), 438 &data64, sizeof(data64)); 439 if (ret < 0) { 440 goto fail_block; 441 } 442 443 s->refcount_table[refcount_table_index] = new_block; 444 445 /* The new refcount block may be where the caller intended to put its 446 * data, so let it restart the search. */ 447 return -EAGAIN; 448 } 449 450 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block); 451 452 /* 453 * If we come here, we need to grow the refcount table. Again, a new 454 * refcount table needs some space and we can't simply allocate to avoid 455 * endless recursion. 456 * 457 * Therefore let's grab new refcount blocks at the end of the image, which 458 * will describe themselves and the new refcount table. This way we can 459 * reference them only in the new table and do the switch to the new 460 * refcount table at once without producing an inconsistent state in 461 * between. 462 */ 463 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW); 464 465 /* Calculate the number of refcount blocks needed so far; this will be the 466 * basis for calculating the index of the first cluster used for the 467 * self-describing refcount structures which we are about to create. 468 * 469 * Because we reached this point, there cannot be any refcount entries for 470 * cluster_index or higher indices yet. However, because new_block has been 471 * allocated to describe that cluster (and it will assume this role later 472 * on), we cannot use that index; also, new_block may actually have a higher 473 * cluster index than cluster_index, so it needs to be taken into account 474 * here (and 1 needs to be added to its value because that cluster is used). 475 */ 476 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1, 477 (new_block >> s->cluster_bits) + 1), 478 s->refcount_block_size); 479 480 if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) { 481 return -EFBIG; 482 } 483 484 /* And now we need at least one block more for the new metadata */ 485 uint64_t table_size = next_refcount_table_size(s, blocks_used + 1); 486 uint64_t last_table_size; 487 uint64_t blocks_clusters; 488 do { 489 uint64_t table_clusters = 490 size_to_clusters(s, table_size * sizeof(uint64_t)); 491 blocks_clusters = 1 + 492 ((table_clusters + s->refcount_block_size - 1) 493 / s->refcount_block_size); 494 uint64_t meta_clusters = table_clusters + blocks_clusters; 495 496 last_table_size = table_size; 497 table_size = next_refcount_table_size(s, blocks_used + 498 ((meta_clusters + s->refcount_block_size - 1) 499 / s->refcount_block_size)); 500 501 } while (last_table_size != table_size); 502 503 #ifdef DEBUG_ALLOC2 504 fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n", 505 s->refcount_table_size, table_size); 506 #endif 507 508 /* Create the new refcount table and blocks */ 509 uint64_t meta_offset = (blocks_used * s->refcount_block_size) * 510 s->cluster_size; 511 uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size; 512 uint64_t *new_table = g_try_new0(uint64_t, table_size); 513 void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size); 514 515 assert(table_size > 0 && blocks_clusters > 0); 516 if (new_table == NULL || new_blocks == NULL) { 517 ret = -ENOMEM; 518 goto fail_table; 519 } 520 521 /* Fill the new refcount table */ 522 memcpy(new_table, s->refcount_table, 523 s->refcount_table_size * sizeof(uint64_t)); 524 new_table[refcount_table_index] = new_block; 525 526 int i; 527 for (i = 0; i < blocks_clusters; i++) { 528 new_table[blocks_used + i] = meta_offset + (i * s->cluster_size); 529 } 530 531 /* Fill the refcount blocks */ 532 uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t)); 533 int block = 0; 534 for (i = 0; i < table_clusters + blocks_clusters; i++) { 535 s->set_refcount(new_blocks, block++, 1); 536 } 537 538 /* Write refcount blocks to disk */ 539 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS); 540 ret = bdrv_pwrite_sync(bs->file->bs, meta_offset, new_blocks, 541 blocks_clusters * s->cluster_size); 542 g_free(new_blocks); 543 new_blocks = NULL; 544 if (ret < 0) { 545 goto fail_table; 546 } 547 548 /* Write refcount table to disk */ 549 for(i = 0; i < table_size; i++) { 550 cpu_to_be64s(&new_table[i]); 551 } 552 553 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE); 554 ret = bdrv_pwrite_sync(bs->file->bs, table_offset, new_table, 555 table_size * sizeof(uint64_t)); 556 if (ret < 0) { 557 goto fail_table; 558 } 559 560 for(i = 0; i < table_size; i++) { 561 be64_to_cpus(&new_table[i]); 562 } 563 564 /* Hook up the new refcount table in the qcow2 header */ 565 struct QEMU_PACKED { 566 uint64_t d64; 567 uint32_t d32; 568 } data; 569 cpu_to_be64w(&data.d64, table_offset); 570 cpu_to_be32w(&data.d32, table_clusters); 571 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE); 572 ret = bdrv_pwrite_sync(bs->file->bs, 573 offsetof(QCowHeader, refcount_table_offset), 574 &data, sizeof(data)); 575 if (ret < 0) { 576 goto fail_table; 577 } 578 579 /* And switch it in memory */ 580 uint64_t old_table_offset = s->refcount_table_offset; 581 uint64_t old_table_size = s->refcount_table_size; 582 583 g_free(s->refcount_table); 584 s->refcount_table = new_table; 585 s->refcount_table_size = table_size; 586 s->refcount_table_offset = table_offset; 587 588 /* Free old table. */ 589 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t), 590 QCOW2_DISCARD_OTHER); 591 592 ret = load_refcount_block(bs, new_block, refcount_block); 593 if (ret < 0) { 594 return ret; 595 } 596 597 /* If we were trying to do the initial refcount update for some cluster 598 * allocation, we might have used the same clusters to store newly 599 * allocated metadata. Make the caller search some new space. */ 600 return -EAGAIN; 601 602 fail_table: 603 g_free(new_blocks); 604 g_free(new_table); 605 fail_block: 606 if (*refcount_block != NULL) { 607 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block); 608 } 609 return ret; 610 } 611 612 void qcow2_process_discards(BlockDriverState *bs, int ret) 613 { 614 BDRVQcow2State *s = bs->opaque; 615 Qcow2DiscardRegion *d, *next; 616 617 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) { 618 QTAILQ_REMOVE(&s->discards, d, next); 619 620 /* Discard is optional, ignore the return value */ 621 if (ret >= 0) { 622 bdrv_discard(bs->file->bs, 623 d->offset >> BDRV_SECTOR_BITS, 624 d->bytes >> BDRV_SECTOR_BITS); 625 } 626 627 g_free(d); 628 } 629 } 630 631 static void update_refcount_discard(BlockDriverState *bs, 632 uint64_t offset, uint64_t length) 633 { 634 BDRVQcow2State *s = bs->opaque; 635 Qcow2DiscardRegion *d, *p, *next; 636 637 QTAILQ_FOREACH(d, &s->discards, next) { 638 uint64_t new_start = MIN(offset, d->offset); 639 uint64_t new_end = MAX(offset + length, d->offset + d->bytes); 640 641 if (new_end - new_start <= length + d->bytes) { 642 /* There can't be any overlap, areas ending up here have no 643 * references any more and therefore shouldn't get freed another 644 * time. */ 645 assert(d->bytes + length == new_end - new_start); 646 d->offset = new_start; 647 d->bytes = new_end - new_start; 648 goto found; 649 } 650 } 651 652 d = g_malloc(sizeof(*d)); 653 *d = (Qcow2DiscardRegion) { 654 .bs = bs, 655 .offset = offset, 656 .bytes = length, 657 }; 658 QTAILQ_INSERT_TAIL(&s->discards, d, next); 659 660 found: 661 /* Merge discard requests if they are adjacent now */ 662 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) { 663 if (p == d 664 || p->offset > d->offset + d->bytes 665 || d->offset > p->offset + p->bytes) 666 { 667 continue; 668 } 669 670 /* Still no overlap possible */ 671 assert(p->offset == d->offset + d->bytes 672 || d->offset == p->offset + p->bytes); 673 674 QTAILQ_REMOVE(&s->discards, p, next); 675 d->offset = MIN(d->offset, p->offset); 676 d->bytes += p->bytes; 677 g_free(p); 678 } 679 } 680 681 /* XXX: cache several refcount block clusters ? */ 682 /* @addend is the absolute value of the addend; if @decrease is set, @addend 683 * will be subtracted from the current refcount, otherwise it will be added */ 684 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs, 685 int64_t offset, 686 int64_t length, 687 uint64_t addend, 688 bool decrease, 689 enum qcow2_discard_type type) 690 { 691 BDRVQcow2State *s = bs->opaque; 692 int64_t start, last, cluster_offset; 693 void *refcount_block = NULL; 694 int64_t old_table_index = -1; 695 int ret; 696 697 #ifdef DEBUG_ALLOC2 698 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64 699 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "", 700 addend); 701 #endif 702 if (length < 0) { 703 return -EINVAL; 704 } else if (length == 0) { 705 return 0; 706 } 707 708 if (decrease) { 709 qcow2_cache_set_dependency(bs, s->refcount_block_cache, 710 s->l2_table_cache); 711 } 712 713 start = start_of_cluster(s, offset); 714 last = start_of_cluster(s, offset + length - 1); 715 for(cluster_offset = start; cluster_offset <= last; 716 cluster_offset += s->cluster_size) 717 { 718 int block_index; 719 uint64_t refcount; 720 int64_t cluster_index = cluster_offset >> s->cluster_bits; 721 int64_t table_index = cluster_index >> s->refcount_block_bits; 722 723 /* Load the refcount block and allocate it if needed */ 724 if (table_index != old_table_index) { 725 if (refcount_block) { 726 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block); 727 } 728 ret = alloc_refcount_block(bs, cluster_index, &refcount_block); 729 if (ret < 0) { 730 goto fail; 731 } 732 } 733 old_table_index = table_index; 734 735 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, 736 refcount_block); 737 738 /* we can update the count and save it */ 739 block_index = cluster_index & (s->refcount_block_size - 1); 740 741 refcount = s->get_refcount(refcount_block, block_index); 742 if (decrease ? (refcount - addend > refcount) 743 : (refcount + addend < refcount || 744 refcount + addend > s->refcount_max)) 745 { 746 ret = -EINVAL; 747 goto fail; 748 } 749 if (decrease) { 750 refcount -= addend; 751 } else { 752 refcount += addend; 753 } 754 if (refcount == 0 && cluster_index < s->free_cluster_index) { 755 s->free_cluster_index = cluster_index; 756 } 757 s->set_refcount(refcount_block, block_index, refcount); 758 759 if (refcount == 0 && s->discard_passthrough[type]) { 760 update_refcount_discard(bs, cluster_offset, s->cluster_size); 761 } 762 } 763 764 ret = 0; 765 fail: 766 if (!s->cache_discards) { 767 qcow2_process_discards(bs, ret); 768 } 769 770 /* Write last changed block to disk */ 771 if (refcount_block) { 772 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block); 773 } 774 775 /* 776 * Try do undo any updates if an error is returned (This may succeed in 777 * some cases like ENOSPC for allocating a new refcount block) 778 */ 779 if (ret < 0) { 780 int dummy; 781 dummy = update_refcount(bs, offset, cluster_offset - offset, addend, 782 !decrease, QCOW2_DISCARD_NEVER); 783 (void)dummy; 784 } 785 786 return ret; 787 } 788 789 /* 790 * Increases or decreases the refcount of a given cluster. 791 * 792 * @addend is the absolute value of the addend; if @decrease is set, @addend 793 * will be subtracted from the current refcount, otherwise it will be added. 794 * 795 * On success 0 is returned; on failure -errno is returned. 796 */ 797 int qcow2_update_cluster_refcount(BlockDriverState *bs, 798 int64_t cluster_index, 799 uint64_t addend, bool decrease, 800 enum qcow2_discard_type type) 801 { 802 BDRVQcow2State *s = bs->opaque; 803 int ret; 804 805 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend, 806 decrease, type); 807 if (ret < 0) { 808 return ret; 809 } 810 811 return 0; 812 } 813 814 815 816 /*********************************************************/ 817 /* cluster allocation functions */ 818 819 820 821 /* return < 0 if error */ 822 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size) 823 { 824 BDRVQcow2State *s = bs->opaque; 825 uint64_t i, nb_clusters, refcount; 826 int ret; 827 828 /* We can't allocate clusters if they may still be queued for discard. */ 829 if (s->cache_discards) { 830 qcow2_process_discards(bs, 0); 831 } 832 833 nb_clusters = size_to_clusters(s, size); 834 retry: 835 for(i = 0; i < nb_clusters; i++) { 836 uint64_t next_cluster_index = s->free_cluster_index++; 837 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount); 838 839 if (ret < 0) { 840 return ret; 841 } else if (refcount != 0) { 842 goto retry; 843 } 844 } 845 846 /* Make sure that all offsets in the "allocated" range are representable 847 * in an int64_t */ 848 if (s->free_cluster_index > 0 && 849 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits)) 850 { 851 return -EFBIG; 852 } 853 854 #ifdef DEBUG_ALLOC2 855 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n", 856 size, 857 (s->free_cluster_index - nb_clusters) << s->cluster_bits); 858 #endif 859 return (s->free_cluster_index - nb_clusters) << s->cluster_bits; 860 } 861 862 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size) 863 { 864 int64_t offset; 865 int ret; 866 867 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC); 868 do { 869 offset = alloc_clusters_noref(bs, size); 870 if (offset < 0) { 871 return offset; 872 } 873 874 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 875 } while (ret == -EAGAIN); 876 877 if (ret < 0) { 878 return ret; 879 } 880 881 return offset; 882 } 883 884 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset, 885 int64_t nb_clusters) 886 { 887 BDRVQcow2State *s = bs->opaque; 888 uint64_t cluster_index, refcount; 889 uint64_t i; 890 int ret; 891 892 assert(nb_clusters >= 0); 893 if (nb_clusters == 0) { 894 return 0; 895 } 896 897 do { 898 /* Check how many clusters there are free */ 899 cluster_index = offset >> s->cluster_bits; 900 for(i = 0; i < nb_clusters; i++) { 901 ret = qcow2_get_refcount(bs, cluster_index++, &refcount); 902 if (ret < 0) { 903 return ret; 904 } else if (refcount != 0) { 905 break; 906 } 907 } 908 909 /* And then allocate them */ 910 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false, 911 QCOW2_DISCARD_NEVER); 912 } while (ret == -EAGAIN); 913 914 if (ret < 0) { 915 return ret; 916 } 917 918 return i; 919 } 920 921 /* only used to allocate compressed sectors. We try to allocate 922 contiguous sectors. size must be <= cluster_size */ 923 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size) 924 { 925 BDRVQcow2State *s = bs->opaque; 926 int64_t offset; 927 size_t free_in_cluster; 928 int ret; 929 930 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES); 931 assert(size > 0 && size <= s->cluster_size); 932 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset)); 933 934 offset = s->free_byte_offset; 935 936 if (offset) { 937 uint64_t refcount; 938 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount); 939 if (ret < 0) { 940 return ret; 941 } 942 943 if (refcount == s->refcount_max) { 944 offset = 0; 945 } 946 } 947 948 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset); 949 do { 950 if (!offset || free_in_cluster < size) { 951 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size); 952 if (new_cluster < 0) { 953 return new_cluster; 954 } 955 956 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) { 957 offset = new_cluster; 958 free_in_cluster = s->cluster_size; 959 } else { 960 free_in_cluster += s->cluster_size; 961 } 962 } 963 964 assert(offset); 965 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 966 if (ret < 0) { 967 offset = 0; 968 } 969 } while (ret == -EAGAIN); 970 if (ret < 0) { 971 return ret; 972 } 973 974 /* The cluster refcount was incremented; refcount blocks must be flushed 975 * before the caller's L2 table updates. */ 976 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache); 977 978 s->free_byte_offset = offset + size; 979 if (!offset_into_cluster(s, s->free_byte_offset)) { 980 s->free_byte_offset = 0; 981 } 982 983 return offset; 984 } 985 986 void qcow2_free_clusters(BlockDriverState *bs, 987 int64_t offset, int64_t size, 988 enum qcow2_discard_type type) 989 { 990 int ret; 991 992 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE); 993 ret = update_refcount(bs, offset, size, 1, true, type); 994 if (ret < 0) { 995 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret)); 996 /* TODO Remember the clusters to free them later and avoid leaking */ 997 } 998 } 999 1000 /* 1001 * Free a cluster using its L2 entry (handles clusters of all types, e.g. 1002 * normal cluster, compressed cluster, etc.) 1003 */ 1004 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry, 1005 int nb_clusters, enum qcow2_discard_type type) 1006 { 1007 BDRVQcow2State *s = bs->opaque; 1008 1009 switch (qcow2_get_cluster_type(l2_entry)) { 1010 case QCOW2_CLUSTER_COMPRESSED: 1011 { 1012 int nb_csectors; 1013 nb_csectors = ((l2_entry >> s->csize_shift) & 1014 s->csize_mask) + 1; 1015 qcow2_free_clusters(bs, 1016 (l2_entry & s->cluster_offset_mask) & ~511, 1017 nb_csectors * 512, type); 1018 } 1019 break; 1020 case QCOW2_CLUSTER_NORMAL: 1021 case QCOW2_CLUSTER_ZERO: 1022 if (l2_entry & L2E_OFFSET_MASK) { 1023 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) { 1024 qcow2_signal_corruption(bs, false, -1, -1, 1025 "Cannot free unaligned cluster %#llx", 1026 l2_entry & L2E_OFFSET_MASK); 1027 } else { 1028 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK, 1029 nb_clusters << s->cluster_bits, type); 1030 } 1031 } 1032 break; 1033 case QCOW2_CLUSTER_UNALLOCATED: 1034 break; 1035 default: 1036 abort(); 1037 } 1038 } 1039 1040 1041 1042 /*********************************************************/ 1043 /* snapshots and image creation */ 1044 1045 1046 1047 /* update the refcounts of snapshots and the copied flag */ 1048 int qcow2_update_snapshot_refcount(BlockDriverState *bs, 1049 int64_t l1_table_offset, int l1_size, int addend) 1050 { 1051 BDRVQcow2State *s = bs->opaque; 1052 uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount; 1053 bool l1_allocated = false; 1054 int64_t old_offset, old_l2_offset; 1055 int i, j, l1_modified = 0, nb_csectors; 1056 int ret; 1057 1058 assert(addend >= -1 && addend <= 1); 1059 1060 l2_table = NULL; 1061 l1_table = NULL; 1062 l1_size2 = l1_size * sizeof(uint64_t); 1063 1064 s->cache_discards = true; 1065 1066 /* WARNING: qcow2_snapshot_goto relies on this function not using the 1067 * l1_table_offset when it is the current s->l1_table_offset! Be careful 1068 * when changing this! */ 1069 if (l1_table_offset != s->l1_table_offset) { 1070 l1_table = g_try_malloc0(align_offset(l1_size2, 512)); 1071 if (l1_size2 && l1_table == NULL) { 1072 ret = -ENOMEM; 1073 goto fail; 1074 } 1075 l1_allocated = true; 1076 1077 ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2); 1078 if (ret < 0) { 1079 goto fail; 1080 } 1081 1082 for(i = 0;i < l1_size; i++) 1083 be64_to_cpus(&l1_table[i]); 1084 } else { 1085 assert(l1_size == s->l1_size); 1086 l1_table = s->l1_table; 1087 l1_allocated = false; 1088 } 1089 1090 for(i = 0; i < l1_size; i++) { 1091 l2_offset = l1_table[i]; 1092 if (l2_offset) { 1093 old_l2_offset = l2_offset; 1094 l2_offset &= L1E_OFFSET_MASK; 1095 1096 if (offset_into_cluster(s, l2_offset)) { 1097 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1098 PRIx64 " unaligned (L1 index: %#x)", 1099 l2_offset, i); 1100 ret = -EIO; 1101 goto fail; 1102 } 1103 1104 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1105 (void**) &l2_table); 1106 if (ret < 0) { 1107 goto fail; 1108 } 1109 1110 for(j = 0; j < s->l2_size; j++) { 1111 uint64_t cluster_index; 1112 1113 offset = be64_to_cpu(l2_table[j]); 1114 old_offset = offset; 1115 offset &= ~QCOW_OFLAG_COPIED; 1116 1117 switch (qcow2_get_cluster_type(offset)) { 1118 case QCOW2_CLUSTER_COMPRESSED: 1119 nb_csectors = ((offset >> s->csize_shift) & 1120 s->csize_mask) + 1; 1121 if (addend != 0) { 1122 ret = update_refcount(bs, 1123 (offset & s->cluster_offset_mask) & ~511, 1124 nb_csectors * 512, abs(addend), addend < 0, 1125 QCOW2_DISCARD_SNAPSHOT); 1126 if (ret < 0) { 1127 goto fail; 1128 } 1129 } 1130 /* compressed clusters are never modified */ 1131 refcount = 2; 1132 break; 1133 1134 case QCOW2_CLUSTER_NORMAL: 1135 case QCOW2_CLUSTER_ZERO: 1136 if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) { 1137 qcow2_signal_corruption(bs, true, -1, -1, "Data " 1138 "cluster offset %#llx " 1139 "unaligned (L2 offset: %#" 1140 PRIx64 ", L2 index: %#x)", 1141 offset & L2E_OFFSET_MASK, 1142 l2_offset, j); 1143 ret = -EIO; 1144 goto fail; 1145 } 1146 1147 cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits; 1148 if (!cluster_index) { 1149 /* unallocated */ 1150 refcount = 0; 1151 break; 1152 } 1153 if (addend != 0) { 1154 ret = qcow2_update_cluster_refcount(bs, 1155 cluster_index, abs(addend), addend < 0, 1156 QCOW2_DISCARD_SNAPSHOT); 1157 if (ret < 0) { 1158 goto fail; 1159 } 1160 } 1161 1162 ret = qcow2_get_refcount(bs, cluster_index, &refcount); 1163 if (ret < 0) { 1164 goto fail; 1165 } 1166 break; 1167 1168 case QCOW2_CLUSTER_UNALLOCATED: 1169 refcount = 0; 1170 break; 1171 1172 default: 1173 abort(); 1174 } 1175 1176 if (refcount == 1) { 1177 offset |= QCOW_OFLAG_COPIED; 1178 } 1179 if (offset != old_offset) { 1180 if (addend > 0) { 1181 qcow2_cache_set_dependency(bs, s->l2_table_cache, 1182 s->refcount_block_cache); 1183 } 1184 l2_table[j] = cpu_to_be64(offset); 1185 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, 1186 l2_table); 1187 } 1188 } 1189 1190 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1191 1192 if (addend != 0) { 1193 ret = qcow2_update_cluster_refcount(bs, l2_offset >> 1194 s->cluster_bits, 1195 abs(addend), addend < 0, 1196 QCOW2_DISCARD_SNAPSHOT); 1197 if (ret < 0) { 1198 goto fail; 1199 } 1200 } 1201 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1202 &refcount); 1203 if (ret < 0) { 1204 goto fail; 1205 } else if (refcount == 1) { 1206 l2_offset |= QCOW_OFLAG_COPIED; 1207 } 1208 if (l2_offset != old_l2_offset) { 1209 l1_table[i] = l2_offset; 1210 l1_modified = 1; 1211 } 1212 } 1213 } 1214 1215 ret = bdrv_flush(bs); 1216 fail: 1217 if (l2_table) { 1218 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1219 } 1220 1221 s->cache_discards = false; 1222 qcow2_process_discards(bs, ret); 1223 1224 /* Update L1 only if it isn't deleted anyway (addend = -1) */ 1225 if (ret == 0 && addend >= 0 && l1_modified) { 1226 for (i = 0; i < l1_size; i++) { 1227 cpu_to_be64s(&l1_table[i]); 1228 } 1229 1230 ret = bdrv_pwrite_sync(bs->file->bs, l1_table_offset, 1231 l1_table, l1_size2); 1232 1233 for (i = 0; i < l1_size; i++) { 1234 be64_to_cpus(&l1_table[i]); 1235 } 1236 } 1237 if (l1_allocated) 1238 g_free(l1_table); 1239 return ret; 1240 } 1241 1242 1243 1244 1245 /*********************************************************/ 1246 /* refcount checking functions */ 1247 1248 1249 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries) 1250 { 1251 /* This assertion holds because there is no way we can address more than 1252 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because 1253 * offsets have to be representable in bytes); due to every cluster 1254 * corresponding to one refcount entry, we are well below that limit */ 1255 assert(entries < (UINT64_C(1) << (64 - 9))); 1256 1257 /* Thanks to the assertion this will not overflow, because 1258 * s->refcount_order < 7. 1259 * (note: x << s->refcount_order == x * s->refcount_bits) */ 1260 return DIV_ROUND_UP(entries << s->refcount_order, 8); 1261 } 1262 1263 /** 1264 * Reallocates *array so that it can hold new_size entries. *size must contain 1265 * the current number of entries in *array. If the reallocation fails, *array 1266 * and *size will not be modified and -errno will be returned. If the 1267 * reallocation is successful, *array will be set to the new buffer, *size 1268 * will be set to new_size and 0 will be returned. The size of the reallocated 1269 * refcount array buffer will be aligned to a cluster boundary, and the newly 1270 * allocated area will be zeroed. 1271 */ 1272 static int realloc_refcount_array(BDRVQcow2State *s, void **array, 1273 int64_t *size, int64_t new_size) 1274 { 1275 int64_t old_byte_size, new_byte_size; 1276 void *new_ptr; 1277 1278 /* Round to clusters so the array can be directly written to disk */ 1279 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size)) 1280 * s->cluster_size; 1281 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size)) 1282 * s->cluster_size; 1283 1284 if (new_byte_size == old_byte_size) { 1285 *size = new_size; 1286 return 0; 1287 } 1288 1289 assert(new_byte_size > 0); 1290 1291 if (new_byte_size > SIZE_MAX) { 1292 return -ENOMEM; 1293 } 1294 1295 new_ptr = g_try_realloc(*array, new_byte_size); 1296 if (!new_ptr) { 1297 return -ENOMEM; 1298 } 1299 1300 if (new_byte_size > old_byte_size) { 1301 memset((char *)new_ptr + old_byte_size, 0, 1302 new_byte_size - old_byte_size); 1303 } 1304 1305 *array = new_ptr; 1306 *size = new_size; 1307 1308 return 0; 1309 } 1310 1311 /* 1312 * Increases the refcount for a range of clusters in a given refcount table. 1313 * This is used to construct a temporary refcount table out of L1 and L2 tables 1314 * which can be compared to the refcount table saved in the image. 1315 * 1316 * Modifies the number of errors in res. 1317 */ 1318 static int inc_refcounts(BlockDriverState *bs, 1319 BdrvCheckResult *res, 1320 void **refcount_table, 1321 int64_t *refcount_table_size, 1322 int64_t offset, int64_t size) 1323 { 1324 BDRVQcow2State *s = bs->opaque; 1325 uint64_t start, last, cluster_offset, k, refcount; 1326 int ret; 1327 1328 if (size <= 0) { 1329 return 0; 1330 } 1331 1332 start = start_of_cluster(s, offset); 1333 last = start_of_cluster(s, offset + size - 1); 1334 for(cluster_offset = start; cluster_offset <= last; 1335 cluster_offset += s->cluster_size) { 1336 k = cluster_offset >> s->cluster_bits; 1337 if (k >= *refcount_table_size) { 1338 ret = realloc_refcount_array(s, refcount_table, 1339 refcount_table_size, k + 1); 1340 if (ret < 0) { 1341 res->check_errors++; 1342 return ret; 1343 } 1344 } 1345 1346 refcount = s->get_refcount(*refcount_table, k); 1347 if (refcount == s->refcount_max) { 1348 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64 1349 "\n", cluster_offset); 1350 fprintf(stderr, "Use qemu-img amend to increase the refcount entry " 1351 "width or qemu-img convert to create a clean copy if the " 1352 "image cannot be opened for writing\n"); 1353 res->corruptions++; 1354 continue; 1355 } 1356 s->set_refcount(*refcount_table, k, refcount + 1); 1357 } 1358 1359 return 0; 1360 } 1361 1362 /* Flags for check_refcounts_l1() and check_refcounts_l2() */ 1363 enum { 1364 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */ 1365 }; 1366 1367 /* 1368 * Increases the refcount in the given refcount table for the all clusters 1369 * referenced in the L2 table. While doing so, performs some checks on L2 1370 * entries. 1371 * 1372 * Returns the number of errors found by the checks or -errno if an internal 1373 * error occurred. 1374 */ 1375 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res, 1376 void **refcount_table, 1377 int64_t *refcount_table_size, int64_t l2_offset, 1378 int flags) 1379 { 1380 BDRVQcow2State *s = bs->opaque; 1381 uint64_t *l2_table, l2_entry; 1382 uint64_t next_contiguous_offset = 0; 1383 int i, l2_size, nb_csectors, ret; 1384 1385 /* Read L2 table from disk */ 1386 l2_size = s->l2_size * sizeof(uint64_t); 1387 l2_table = g_malloc(l2_size); 1388 1389 ret = bdrv_pread(bs->file->bs, l2_offset, l2_table, l2_size); 1390 if (ret < 0) { 1391 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n"); 1392 res->check_errors++; 1393 goto fail; 1394 } 1395 1396 /* Do the actual checks */ 1397 for(i = 0; i < s->l2_size; i++) { 1398 l2_entry = be64_to_cpu(l2_table[i]); 1399 1400 switch (qcow2_get_cluster_type(l2_entry)) { 1401 case QCOW2_CLUSTER_COMPRESSED: 1402 /* Compressed clusters don't have QCOW_OFLAG_COPIED */ 1403 if (l2_entry & QCOW_OFLAG_COPIED) { 1404 fprintf(stderr, "ERROR: cluster %" PRId64 ": " 1405 "copied flag must never be set for compressed " 1406 "clusters\n", l2_entry >> s->cluster_bits); 1407 l2_entry &= ~QCOW_OFLAG_COPIED; 1408 res->corruptions++; 1409 } 1410 1411 /* Mark cluster as used */ 1412 nb_csectors = ((l2_entry >> s->csize_shift) & 1413 s->csize_mask) + 1; 1414 l2_entry &= s->cluster_offset_mask; 1415 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size, 1416 l2_entry & ~511, nb_csectors * 512); 1417 if (ret < 0) { 1418 goto fail; 1419 } 1420 1421 if (flags & CHECK_FRAG_INFO) { 1422 res->bfi.allocated_clusters++; 1423 res->bfi.compressed_clusters++; 1424 1425 /* Compressed clusters are fragmented by nature. Since they 1426 * take up sub-sector space but we only have sector granularity 1427 * I/O we need to re-read the same sectors even for adjacent 1428 * compressed clusters. 1429 */ 1430 res->bfi.fragmented_clusters++; 1431 } 1432 break; 1433 1434 case QCOW2_CLUSTER_ZERO: 1435 if ((l2_entry & L2E_OFFSET_MASK) == 0) { 1436 break; 1437 } 1438 /* fall through */ 1439 1440 case QCOW2_CLUSTER_NORMAL: 1441 { 1442 uint64_t offset = l2_entry & L2E_OFFSET_MASK; 1443 1444 if (flags & CHECK_FRAG_INFO) { 1445 res->bfi.allocated_clusters++; 1446 if (next_contiguous_offset && 1447 offset != next_contiguous_offset) { 1448 res->bfi.fragmented_clusters++; 1449 } 1450 next_contiguous_offset = offset + s->cluster_size; 1451 } 1452 1453 /* Mark cluster as used */ 1454 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size, 1455 offset, s->cluster_size); 1456 if (ret < 0) { 1457 goto fail; 1458 } 1459 1460 /* Correct offsets are cluster aligned */ 1461 if (offset_into_cluster(s, offset)) { 1462 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not " 1463 "properly aligned; L2 entry corrupted.\n", offset); 1464 res->corruptions++; 1465 } 1466 break; 1467 } 1468 1469 case QCOW2_CLUSTER_UNALLOCATED: 1470 break; 1471 1472 default: 1473 abort(); 1474 } 1475 } 1476 1477 g_free(l2_table); 1478 return 0; 1479 1480 fail: 1481 g_free(l2_table); 1482 return ret; 1483 } 1484 1485 /* 1486 * Increases the refcount for the L1 table, its L2 tables and all referenced 1487 * clusters in the given refcount table. While doing so, performs some checks 1488 * on L1 and L2 entries. 1489 * 1490 * Returns the number of errors found by the checks or -errno if an internal 1491 * error occurred. 1492 */ 1493 static int check_refcounts_l1(BlockDriverState *bs, 1494 BdrvCheckResult *res, 1495 void **refcount_table, 1496 int64_t *refcount_table_size, 1497 int64_t l1_table_offset, int l1_size, 1498 int flags) 1499 { 1500 BDRVQcow2State *s = bs->opaque; 1501 uint64_t *l1_table = NULL, l2_offset, l1_size2; 1502 int i, ret; 1503 1504 l1_size2 = l1_size * sizeof(uint64_t); 1505 1506 /* Mark L1 table as used */ 1507 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size, 1508 l1_table_offset, l1_size2); 1509 if (ret < 0) { 1510 goto fail; 1511 } 1512 1513 /* Read L1 table entries from disk */ 1514 if (l1_size2 > 0) { 1515 l1_table = g_try_malloc(l1_size2); 1516 if (l1_table == NULL) { 1517 ret = -ENOMEM; 1518 res->check_errors++; 1519 goto fail; 1520 } 1521 ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2); 1522 if (ret < 0) { 1523 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n"); 1524 res->check_errors++; 1525 goto fail; 1526 } 1527 for(i = 0;i < l1_size; i++) 1528 be64_to_cpus(&l1_table[i]); 1529 } 1530 1531 /* Do the actual checks */ 1532 for(i = 0; i < l1_size; i++) { 1533 l2_offset = l1_table[i]; 1534 if (l2_offset) { 1535 /* Mark L2 table as used */ 1536 l2_offset &= L1E_OFFSET_MASK; 1537 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size, 1538 l2_offset, s->cluster_size); 1539 if (ret < 0) { 1540 goto fail; 1541 } 1542 1543 /* L2 tables are cluster aligned */ 1544 if (offset_into_cluster(s, l2_offset)) { 1545 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not " 1546 "cluster aligned; L1 entry corrupted\n", l2_offset); 1547 res->corruptions++; 1548 } 1549 1550 /* Process and check L2 entries */ 1551 ret = check_refcounts_l2(bs, res, refcount_table, 1552 refcount_table_size, l2_offset, flags); 1553 if (ret < 0) { 1554 goto fail; 1555 } 1556 } 1557 } 1558 g_free(l1_table); 1559 return 0; 1560 1561 fail: 1562 g_free(l1_table); 1563 return ret; 1564 } 1565 1566 /* 1567 * Checks the OFLAG_COPIED flag for all L1 and L2 entries. 1568 * 1569 * This function does not print an error message nor does it increment 1570 * check_errors if qcow2_get_refcount fails (this is because such an error will 1571 * have been already detected and sufficiently signaled by the calling function 1572 * (qcow2_check_refcounts) by the time this function is called). 1573 */ 1574 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res, 1575 BdrvCheckMode fix) 1576 { 1577 BDRVQcow2State *s = bs->opaque; 1578 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size); 1579 int ret; 1580 uint64_t refcount; 1581 int i, j; 1582 1583 for (i = 0; i < s->l1_size; i++) { 1584 uint64_t l1_entry = s->l1_table[i]; 1585 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK; 1586 bool l2_dirty = false; 1587 1588 if (!l2_offset) { 1589 continue; 1590 } 1591 1592 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1593 &refcount); 1594 if (ret < 0) { 1595 /* don't print message nor increment check_errors */ 1596 continue; 1597 } 1598 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) { 1599 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d " 1600 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 1601 fix & BDRV_FIX_ERRORS ? "Repairing" : 1602 "ERROR", 1603 i, l1_entry, refcount); 1604 if (fix & BDRV_FIX_ERRORS) { 1605 s->l1_table[i] = refcount == 1 1606 ? l1_entry | QCOW_OFLAG_COPIED 1607 : l1_entry & ~QCOW_OFLAG_COPIED; 1608 ret = qcow2_write_l1_entry(bs, i); 1609 if (ret < 0) { 1610 res->check_errors++; 1611 goto fail; 1612 } 1613 res->corruptions_fixed++; 1614 } else { 1615 res->corruptions++; 1616 } 1617 } 1618 1619 ret = bdrv_pread(bs->file->bs, l2_offset, l2_table, 1620 s->l2_size * sizeof(uint64_t)); 1621 if (ret < 0) { 1622 fprintf(stderr, "ERROR: Could not read L2 table: %s\n", 1623 strerror(-ret)); 1624 res->check_errors++; 1625 goto fail; 1626 } 1627 1628 for (j = 0; j < s->l2_size; j++) { 1629 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1630 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK; 1631 int cluster_type = qcow2_get_cluster_type(l2_entry); 1632 1633 if ((cluster_type == QCOW2_CLUSTER_NORMAL) || 1634 ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) { 1635 ret = qcow2_get_refcount(bs, 1636 data_offset >> s->cluster_bits, 1637 &refcount); 1638 if (ret < 0) { 1639 /* don't print message nor increment check_errors */ 1640 continue; 1641 } 1642 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) { 1643 fprintf(stderr, "%s OFLAG_COPIED data cluster: " 1644 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 1645 fix & BDRV_FIX_ERRORS ? "Repairing" : 1646 "ERROR", 1647 l2_entry, refcount); 1648 if (fix & BDRV_FIX_ERRORS) { 1649 l2_table[j] = cpu_to_be64(refcount == 1 1650 ? l2_entry | QCOW_OFLAG_COPIED 1651 : l2_entry & ~QCOW_OFLAG_COPIED); 1652 l2_dirty = true; 1653 res->corruptions_fixed++; 1654 } else { 1655 res->corruptions++; 1656 } 1657 } 1658 } 1659 } 1660 1661 if (l2_dirty) { 1662 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2, 1663 l2_offset, s->cluster_size); 1664 if (ret < 0) { 1665 fprintf(stderr, "ERROR: Could not write L2 table; metadata " 1666 "overlap check failed: %s\n", strerror(-ret)); 1667 res->check_errors++; 1668 goto fail; 1669 } 1670 1671 ret = bdrv_pwrite(bs->file->bs, l2_offset, l2_table, 1672 s->cluster_size); 1673 if (ret < 0) { 1674 fprintf(stderr, "ERROR: Could not write L2 table: %s\n", 1675 strerror(-ret)); 1676 res->check_errors++; 1677 goto fail; 1678 } 1679 } 1680 } 1681 1682 ret = 0; 1683 1684 fail: 1685 qemu_vfree(l2_table); 1686 return ret; 1687 } 1688 1689 /* 1690 * Checks consistency of refblocks and accounts for each refblock in 1691 * *refcount_table. 1692 */ 1693 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res, 1694 BdrvCheckMode fix, bool *rebuild, 1695 void **refcount_table, int64_t *nb_clusters) 1696 { 1697 BDRVQcow2State *s = bs->opaque; 1698 int64_t i, size; 1699 int ret; 1700 1701 for(i = 0; i < s->refcount_table_size; i++) { 1702 uint64_t offset, cluster; 1703 offset = s->refcount_table[i]; 1704 cluster = offset >> s->cluster_bits; 1705 1706 /* Refcount blocks are cluster aligned */ 1707 if (offset_into_cluster(s, offset)) { 1708 fprintf(stderr, "ERROR refcount block %" PRId64 " is not " 1709 "cluster aligned; refcount table entry corrupted\n", i); 1710 res->corruptions++; 1711 *rebuild = true; 1712 continue; 1713 } 1714 1715 if (cluster >= *nb_clusters) { 1716 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n", 1717 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i); 1718 1719 if (fix & BDRV_FIX_ERRORS) { 1720 int64_t new_nb_clusters; 1721 1722 if (offset > INT64_MAX - s->cluster_size) { 1723 ret = -EINVAL; 1724 goto resize_fail; 1725 } 1726 1727 ret = bdrv_truncate(bs->file->bs, offset + s->cluster_size); 1728 if (ret < 0) { 1729 goto resize_fail; 1730 } 1731 size = bdrv_getlength(bs->file->bs); 1732 if (size < 0) { 1733 ret = size; 1734 goto resize_fail; 1735 } 1736 1737 new_nb_clusters = size_to_clusters(s, size); 1738 assert(new_nb_clusters >= *nb_clusters); 1739 1740 ret = realloc_refcount_array(s, refcount_table, 1741 nb_clusters, new_nb_clusters); 1742 if (ret < 0) { 1743 res->check_errors++; 1744 return ret; 1745 } 1746 1747 if (cluster >= *nb_clusters) { 1748 ret = -EINVAL; 1749 goto resize_fail; 1750 } 1751 1752 res->corruptions_fixed++; 1753 ret = inc_refcounts(bs, res, refcount_table, nb_clusters, 1754 offset, s->cluster_size); 1755 if (ret < 0) { 1756 return ret; 1757 } 1758 /* No need to check whether the refcount is now greater than 1: 1759 * This area was just allocated and zeroed, so it can only be 1760 * exactly 1 after inc_refcounts() */ 1761 continue; 1762 1763 resize_fail: 1764 res->corruptions++; 1765 *rebuild = true; 1766 fprintf(stderr, "ERROR could not resize image: %s\n", 1767 strerror(-ret)); 1768 } else { 1769 res->corruptions++; 1770 } 1771 continue; 1772 } 1773 1774 if (offset != 0) { 1775 ret = inc_refcounts(bs, res, refcount_table, nb_clusters, 1776 offset, s->cluster_size); 1777 if (ret < 0) { 1778 return ret; 1779 } 1780 if (s->get_refcount(*refcount_table, cluster) != 1) { 1781 fprintf(stderr, "ERROR refcount block %" PRId64 1782 " refcount=%" PRIu64 "\n", i, 1783 s->get_refcount(*refcount_table, cluster)); 1784 res->corruptions++; 1785 *rebuild = true; 1786 } 1787 } 1788 } 1789 1790 return 0; 1791 } 1792 1793 /* 1794 * Calculates an in-memory refcount table. 1795 */ 1796 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 1797 BdrvCheckMode fix, bool *rebuild, 1798 void **refcount_table, int64_t *nb_clusters) 1799 { 1800 BDRVQcow2State *s = bs->opaque; 1801 int64_t i; 1802 QCowSnapshot *sn; 1803 int ret; 1804 1805 if (!*refcount_table) { 1806 int64_t old_size = 0; 1807 ret = realloc_refcount_array(s, refcount_table, 1808 &old_size, *nb_clusters); 1809 if (ret < 0) { 1810 res->check_errors++; 1811 return ret; 1812 } 1813 } 1814 1815 /* header */ 1816 ret = inc_refcounts(bs, res, refcount_table, nb_clusters, 1817 0, s->cluster_size); 1818 if (ret < 0) { 1819 return ret; 1820 } 1821 1822 /* current L1 table */ 1823 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 1824 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO); 1825 if (ret < 0) { 1826 return ret; 1827 } 1828 1829 /* snapshots */ 1830 for (i = 0; i < s->nb_snapshots; i++) { 1831 sn = s->snapshots + i; 1832 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 1833 sn->l1_table_offset, sn->l1_size, 0); 1834 if (ret < 0) { 1835 return ret; 1836 } 1837 } 1838 ret = inc_refcounts(bs, res, refcount_table, nb_clusters, 1839 s->snapshots_offset, s->snapshots_size); 1840 if (ret < 0) { 1841 return ret; 1842 } 1843 1844 /* refcount data */ 1845 ret = inc_refcounts(bs, res, refcount_table, nb_clusters, 1846 s->refcount_table_offset, 1847 s->refcount_table_size * sizeof(uint64_t)); 1848 if (ret < 0) { 1849 return ret; 1850 } 1851 1852 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters); 1853 } 1854 1855 /* 1856 * Compares the actual reference count for each cluster in the image against the 1857 * refcount as reported by the refcount structures on-disk. 1858 */ 1859 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 1860 BdrvCheckMode fix, bool *rebuild, 1861 int64_t *highest_cluster, 1862 void *refcount_table, int64_t nb_clusters) 1863 { 1864 BDRVQcow2State *s = bs->opaque; 1865 int64_t i; 1866 uint64_t refcount1, refcount2; 1867 int ret; 1868 1869 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) { 1870 ret = qcow2_get_refcount(bs, i, &refcount1); 1871 if (ret < 0) { 1872 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 1873 i, strerror(-ret)); 1874 res->check_errors++; 1875 continue; 1876 } 1877 1878 refcount2 = s->get_refcount(refcount_table, i); 1879 1880 if (refcount1 > 0 || refcount2 > 0) { 1881 *highest_cluster = i; 1882 } 1883 1884 if (refcount1 != refcount2) { 1885 /* Check if we're allowed to fix the mismatch */ 1886 int *num_fixed = NULL; 1887 if (refcount1 == 0) { 1888 *rebuild = true; 1889 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) { 1890 num_fixed = &res->leaks_fixed; 1891 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) { 1892 num_fixed = &res->corruptions_fixed; 1893 } 1894 1895 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64 1896 " reference=%" PRIu64 "\n", 1897 num_fixed != NULL ? "Repairing" : 1898 refcount1 < refcount2 ? "ERROR" : 1899 "Leaked", 1900 i, refcount1, refcount2); 1901 1902 if (num_fixed) { 1903 ret = update_refcount(bs, i << s->cluster_bits, 1, 1904 refcount_diff(refcount1, refcount2), 1905 refcount1 > refcount2, 1906 QCOW2_DISCARD_ALWAYS); 1907 if (ret >= 0) { 1908 (*num_fixed)++; 1909 continue; 1910 } 1911 } 1912 1913 /* And if we couldn't, print an error */ 1914 if (refcount1 < refcount2) { 1915 res->corruptions++; 1916 } else { 1917 res->leaks++; 1918 } 1919 } 1920 } 1921 } 1922 1923 /* 1924 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to 1925 * the on-disk refcount structures. 1926 * 1927 * On input, *first_free_cluster tells where to start looking, and need not 1928 * actually be a free cluster; the returned offset will not be before that 1929 * cluster. On output, *first_free_cluster points to the first gap found, even 1930 * if that gap was too small to be used as the returned offset. 1931 * 1932 * Note that *first_free_cluster is a cluster index whereas the return value is 1933 * an offset. 1934 */ 1935 static int64_t alloc_clusters_imrt(BlockDriverState *bs, 1936 int cluster_count, 1937 void **refcount_table, 1938 int64_t *imrt_nb_clusters, 1939 int64_t *first_free_cluster) 1940 { 1941 BDRVQcow2State *s = bs->opaque; 1942 int64_t cluster = *first_free_cluster, i; 1943 bool first_gap = true; 1944 int contiguous_free_clusters; 1945 int ret; 1946 1947 /* Starting at *first_free_cluster, find a range of at least cluster_count 1948 * continuously free clusters */ 1949 for (contiguous_free_clusters = 0; 1950 cluster < *imrt_nb_clusters && 1951 contiguous_free_clusters < cluster_count; 1952 cluster++) 1953 { 1954 if (!s->get_refcount(*refcount_table, cluster)) { 1955 contiguous_free_clusters++; 1956 if (first_gap) { 1957 /* If this is the first free cluster found, update 1958 * *first_free_cluster accordingly */ 1959 *first_free_cluster = cluster; 1960 first_gap = false; 1961 } 1962 } else if (contiguous_free_clusters) { 1963 contiguous_free_clusters = 0; 1964 } 1965 } 1966 1967 /* If contiguous_free_clusters is greater than zero, it contains the number 1968 * of continuously free clusters until the current cluster; the first free 1969 * cluster in the current "gap" is therefore 1970 * cluster - contiguous_free_clusters */ 1971 1972 /* If no such range could be found, grow the in-memory refcount table 1973 * accordingly to append free clusters at the end of the image */ 1974 if (contiguous_free_clusters < cluster_count) { 1975 /* contiguous_free_clusters clusters are already empty at the image end; 1976 * we need cluster_count clusters; therefore, we have to allocate 1977 * cluster_count - contiguous_free_clusters new clusters at the end of 1978 * the image (which is the current value of cluster; note that cluster 1979 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond 1980 * the image end) */ 1981 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters, 1982 cluster + cluster_count 1983 - contiguous_free_clusters); 1984 if (ret < 0) { 1985 return ret; 1986 } 1987 } 1988 1989 /* Go back to the first free cluster */ 1990 cluster -= contiguous_free_clusters; 1991 for (i = 0; i < cluster_count; i++) { 1992 s->set_refcount(*refcount_table, cluster + i, 1); 1993 } 1994 1995 return cluster << s->cluster_bits; 1996 } 1997 1998 /* 1999 * Creates a new refcount structure based solely on the in-memory information 2000 * given through *refcount_table. All necessary allocations will be reflected 2001 * in that array. 2002 * 2003 * On success, the old refcount structure is leaked (it will be covered by the 2004 * new refcount structure). 2005 */ 2006 static int rebuild_refcount_structure(BlockDriverState *bs, 2007 BdrvCheckResult *res, 2008 void **refcount_table, 2009 int64_t *nb_clusters) 2010 { 2011 BDRVQcow2State *s = bs->opaque; 2012 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0; 2013 int64_t refblock_offset, refblock_start, refblock_index; 2014 uint32_t reftable_size = 0; 2015 uint64_t *on_disk_reftable = NULL; 2016 void *on_disk_refblock; 2017 int ret = 0; 2018 struct { 2019 uint64_t reftable_offset; 2020 uint32_t reftable_clusters; 2021 } QEMU_PACKED reftable_offset_and_clusters; 2022 2023 qcow2_cache_empty(bs, s->refcount_block_cache); 2024 2025 write_refblocks: 2026 for (; cluster < *nb_clusters; cluster++) { 2027 if (!s->get_refcount(*refcount_table, cluster)) { 2028 continue; 2029 } 2030 2031 refblock_index = cluster >> s->refcount_block_bits; 2032 refblock_start = refblock_index << s->refcount_block_bits; 2033 2034 /* Don't allocate a cluster in a refblock already written to disk */ 2035 if (first_free_cluster < refblock_start) { 2036 first_free_cluster = refblock_start; 2037 } 2038 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table, 2039 nb_clusters, &first_free_cluster); 2040 if (refblock_offset < 0) { 2041 fprintf(stderr, "ERROR allocating refblock: %s\n", 2042 strerror(-refblock_offset)); 2043 res->check_errors++; 2044 ret = refblock_offset; 2045 goto fail; 2046 } 2047 2048 if (reftable_size <= refblock_index) { 2049 uint32_t old_reftable_size = reftable_size; 2050 uint64_t *new_on_disk_reftable; 2051 2052 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t), 2053 s->cluster_size) / sizeof(uint64_t); 2054 new_on_disk_reftable = g_try_realloc(on_disk_reftable, 2055 reftable_size * 2056 sizeof(uint64_t)); 2057 if (!new_on_disk_reftable) { 2058 res->check_errors++; 2059 ret = -ENOMEM; 2060 goto fail; 2061 } 2062 on_disk_reftable = new_on_disk_reftable; 2063 2064 memset(on_disk_reftable + old_reftable_size, 0, 2065 (reftable_size - old_reftable_size) * sizeof(uint64_t)); 2066 2067 /* The offset we have for the reftable is now no longer valid; 2068 * this will leak that range, but we can easily fix that by running 2069 * a leak-fixing check after this rebuild operation */ 2070 reftable_offset = -1; 2071 } 2072 on_disk_reftable[refblock_index] = refblock_offset; 2073 2074 /* If this is apparently the last refblock (for now), try to squeeze the 2075 * reftable in */ 2076 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits && 2077 reftable_offset < 0) 2078 { 2079 uint64_t reftable_clusters = size_to_clusters(s, reftable_size * 2080 sizeof(uint64_t)); 2081 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2082 refcount_table, nb_clusters, 2083 &first_free_cluster); 2084 if (reftable_offset < 0) { 2085 fprintf(stderr, "ERROR allocating reftable: %s\n", 2086 strerror(-reftable_offset)); 2087 res->check_errors++; 2088 ret = reftable_offset; 2089 goto fail; 2090 } 2091 } 2092 2093 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset, 2094 s->cluster_size); 2095 if (ret < 0) { 2096 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret)); 2097 goto fail; 2098 } 2099 2100 /* The size of *refcount_table is always cluster-aligned, therefore the 2101 * write operation will not overflow */ 2102 on_disk_refblock = (void *)((char *) *refcount_table + 2103 refblock_index * s->cluster_size); 2104 2105 ret = bdrv_write(bs->file->bs, refblock_offset / BDRV_SECTOR_SIZE, 2106 on_disk_refblock, s->cluster_sectors); 2107 if (ret < 0) { 2108 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret)); 2109 goto fail; 2110 } 2111 2112 /* Go to the end of this refblock */ 2113 cluster = refblock_start + s->refcount_block_size - 1; 2114 } 2115 2116 if (reftable_offset < 0) { 2117 uint64_t post_refblock_start, reftable_clusters; 2118 2119 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size); 2120 reftable_clusters = size_to_clusters(s, 2121 reftable_size * sizeof(uint64_t)); 2122 /* Not pretty but simple */ 2123 if (first_free_cluster < post_refblock_start) { 2124 first_free_cluster = post_refblock_start; 2125 } 2126 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2127 refcount_table, nb_clusters, 2128 &first_free_cluster); 2129 if (reftable_offset < 0) { 2130 fprintf(stderr, "ERROR allocating reftable: %s\n", 2131 strerror(-reftable_offset)); 2132 res->check_errors++; 2133 ret = reftable_offset; 2134 goto fail; 2135 } 2136 2137 goto write_refblocks; 2138 } 2139 2140 assert(on_disk_reftable); 2141 2142 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) { 2143 cpu_to_be64s(&on_disk_reftable[refblock_index]); 2144 } 2145 2146 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset, 2147 reftable_size * sizeof(uint64_t)); 2148 if (ret < 0) { 2149 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret)); 2150 goto fail; 2151 } 2152 2153 assert(reftable_size < INT_MAX / sizeof(uint64_t)); 2154 ret = bdrv_pwrite(bs->file->bs, reftable_offset, on_disk_reftable, 2155 reftable_size * sizeof(uint64_t)); 2156 if (ret < 0) { 2157 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret)); 2158 goto fail; 2159 } 2160 2161 /* Enter new reftable into the image header */ 2162 cpu_to_be64w(&reftable_offset_and_clusters.reftable_offset, 2163 reftable_offset); 2164 cpu_to_be32w(&reftable_offset_and_clusters.reftable_clusters, 2165 size_to_clusters(s, reftable_size * sizeof(uint64_t))); 2166 ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, 2167 refcount_table_offset), 2168 &reftable_offset_and_clusters, 2169 sizeof(reftable_offset_and_clusters)); 2170 if (ret < 0) { 2171 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret)); 2172 goto fail; 2173 } 2174 2175 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) { 2176 be64_to_cpus(&on_disk_reftable[refblock_index]); 2177 } 2178 s->refcount_table = on_disk_reftable; 2179 s->refcount_table_offset = reftable_offset; 2180 s->refcount_table_size = reftable_size; 2181 2182 return 0; 2183 2184 fail: 2185 g_free(on_disk_reftable); 2186 return ret; 2187 } 2188 2189 /* 2190 * Checks an image for refcount consistency. 2191 * 2192 * Returns 0 if no errors are found, the number of errors in case the image is 2193 * detected as corrupted, and -errno when an internal error occurred. 2194 */ 2195 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2196 BdrvCheckMode fix) 2197 { 2198 BDRVQcow2State *s = bs->opaque; 2199 BdrvCheckResult pre_compare_res; 2200 int64_t size, highest_cluster, nb_clusters; 2201 void *refcount_table = NULL; 2202 bool rebuild = false; 2203 int ret; 2204 2205 size = bdrv_getlength(bs->file->bs); 2206 if (size < 0) { 2207 res->check_errors++; 2208 return size; 2209 } 2210 2211 nb_clusters = size_to_clusters(s, size); 2212 if (nb_clusters > INT_MAX) { 2213 res->check_errors++; 2214 return -EFBIG; 2215 } 2216 2217 res->bfi.total_clusters = 2218 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE); 2219 2220 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table, 2221 &nb_clusters); 2222 if (ret < 0) { 2223 goto fail; 2224 } 2225 2226 /* In case we don't need to rebuild the refcount structure (but want to fix 2227 * something), this function is immediately called again, in which case the 2228 * result should be ignored */ 2229 pre_compare_res = *res; 2230 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table, 2231 nb_clusters); 2232 2233 if (rebuild && (fix & BDRV_FIX_ERRORS)) { 2234 BdrvCheckResult old_res = *res; 2235 int fresh_leaks = 0; 2236 2237 fprintf(stderr, "Rebuilding refcount structure\n"); 2238 ret = rebuild_refcount_structure(bs, res, &refcount_table, 2239 &nb_clusters); 2240 if (ret < 0) { 2241 goto fail; 2242 } 2243 2244 res->corruptions = 0; 2245 res->leaks = 0; 2246 2247 /* Because the old reftable has been exchanged for a new one the 2248 * references have to be recalculated */ 2249 rebuild = false; 2250 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters)); 2251 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table, 2252 &nb_clusters); 2253 if (ret < 0) { 2254 goto fail; 2255 } 2256 2257 if (fix & BDRV_FIX_LEAKS) { 2258 /* The old refcount structures are now leaked, fix it; the result 2259 * can be ignored, aside from leaks which were introduced by 2260 * rebuild_refcount_structure() that could not be fixed */ 2261 BdrvCheckResult saved_res = *res; 2262 *res = (BdrvCheckResult){ 0 }; 2263 2264 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild, 2265 &highest_cluster, refcount_table, nb_clusters); 2266 if (rebuild) { 2267 fprintf(stderr, "ERROR rebuilt refcount structure is still " 2268 "broken\n"); 2269 } 2270 2271 /* Any leaks accounted for here were introduced by 2272 * rebuild_refcount_structure() because that function has created a 2273 * new refcount structure from scratch */ 2274 fresh_leaks = res->leaks; 2275 *res = saved_res; 2276 } 2277 2278 if (res->corruptions < old_res.corruptions) { 2279 res->corruptions_fixed += old_res.corruptions - res->corruptions; 2280 } 2281 if (res->leaks < old_res.leaks) { 2282 res->leaks_fixed += old_res.leaks - res->leaks; 2283 } 2284 res->leaks += fresh_leaks; 2285 } else if (fix) { 2286 if (rebuild) { 2287 fprintf(stderr, "ERROR need to rebuild refcount structures\n"); 2288 res->check_errors++; 2289 ret = -EIO; 2290 goto fail; 2291 } 2292 2293 if (res->leaks || res->corruptions) { 2294 *res = pre_compare_res; 2295 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster, 2296 refcount_table, nb_clusters); 2297 } 2298 } 2299 2300 /* check OFLAG_COPIED */ 2301 ret = check_oflag_copied(bs, res, fix); 2302 if (ret < 0) { 2303 goto fail; 2304 } 2305 2306 res->image_end_offset = (highest_cluster + 1) * s->cluster_size; 2307 ret = 0; 2308 2309 fail: 2310 g_free(refcount_table); 2311 2312 return ret; 2313 } 2314 2315 #define overlaps_with(ofs, sz) \ 2316 ranges_overlap(offset, size, ofs, sz) 2317 2318 /* 2319 * Checks if the given offset into the image file is actually free to use by 2320 * looking for overlaps with important metadata sections (L1/L2 tables etc.), 2321 * i.e. a sanity check without relying on the refcount tables. 2322 * 2323 * The ign parameter specifies what checks not to perform (being a bitmask of 2324 * QCow2MetadataOverlap values), i.e., what sections to ignore. 2325 * 2326 * Returns: 2327 * - 0 if writing to this offset will not affect the mentioned metadata 2328 * - a positive QCow2MetadataOverlap value indicating one overlapping section 2329 * - a negative value (-errno) indicating an error while performing a check, 2330 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2 2331 */ 2332 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset, 2333 int64_t size) 2334 { 2335 BDRVQcow2State *s = bs->opaque; 2336 int chk = s->overlap_check & ~ign; 2337 int i, j; 2338 2339 if (!size) { 2340 return 0; 2341 } 2342 2343 if (chk & QCOW2_OL_MAIN_HEADER) { 2344 if (offset < s->cluster_size) { 2345 return QCOW2_OL_MAIN_HEADER; 2346 } 2347 } 2348 2349 /* align range to test to cluster boundaries */ 2350 size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size); 2351 offset = start_of_cluster(s, offset); 2352 2353 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) { 2354 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) { 2355 return QCOW2_OL_ACTIVE_L1; 2356 } 2357 } 2358 2359 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) { 2360 if (overlaps_with(s->refcount_table_offset, 2361 s->refcount_table_size * sizeof(uint64_t))) { 2362 return QCOW2_OL_REFCOUNT_TABLE; 2363 } 2364 } 2365 2366 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) { 2367 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) { 2368 return QCOW2_OL_SNAPSHOT_TABLE; 2369 } 2370 } 2371 2372 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) { 2373 for (i = 0; i < s->nb_snapshots; i++) { 2374 if (s->snapshots[i].l1_size && 2375 overlaps_with(s->snapshots[i].l1_table_offset, 2376 s->snapshots[i].l1_size * sizeof(uint64_t))) { 2377 return QCOW2_OL_INACTIVE_L1; 2378 } 2379 } 2380 } 2381 2382 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) { 2383 for (i = 0; i < s->l1_size; i++) { 2384 if ((s->l1_table[i] & L1E_OFFSET_MASK) && 2385 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK, 2386 s->cluster_size)) { 2387 return QCOW2_OL_ACTIVE_L2; 2388 } 2389 } 2390 } 2391 2392 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) { 2393 for (i = 0; i < s->refcount_table_size; i++) { 2394 if ((s->refcount_table[i] & REFT_OFFSET_MASK) && 2395 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK, 2396 s->cluster_size)) { 2397 return QCOW2_OL_REFCOUNT_BLOCK; 2398 } 2399 } 2400 } 2401 2402 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) { 2403 for (i = 0; i < s->nb_snapshots; i++) { 2404 uint64_t l1_ofs = s->snapshots[i].l1_table_offset; 2405 uint32_t l1_sz = s->snapshots[i].l1_size; 2406 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t); 2407 uint64_t *l1 = g_try_malloc(l1_sz2); 2408 int ret; 2409 2410 if (l1_sz2 && l1 == NULL) { 2411 return -ENOMEM; 2412 } 2413 2414 ret = bdrv_pread(bs->file->bs, l1_ofs, l1, l1_sz2); 2415 if (ret < 0) { 2416 g_free(l1); 2417 return ret; 2418 } 2419 2420 for (j = 0; j < l1_sz; j++) { 2421 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK; 2422 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) { 2423 g_free(l1); 2424 return QCOW2_OL_INACTIVE_L2; 2425 } 2426 } 2427 2428 g_free(l1); 2429 } 2430 } 2431 2432 return 0; 2433 } 2434 2435 static const char *metadata_ol_names[] = { 2436 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header", 2437 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table", 2438 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table", 2439 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table", 2440 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block", 2441 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table", 2442 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table", 2443 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table", 2444 }; 2445 2446 /* 2447 * First performs a check for metadata overlaps (through 2448 * qcow2_check_metadata_overlap); if that fails with a negative value (error 2449 * while performing a check), that value is returned. If an impending overlap 2450 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt 2451 * and -EIO returned. 2452 * 2453 * Returns 0 if there were neither overlaps nor errors while checking for 2454 * overlaps; or a negative value (-errno) on error. 2455 */ 2456 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset, 2457 int64_t size) 2458 { 2459 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size); 2460 2461 if (ret < 0) { 2462 return ret; 2463 } else if (ret > 0) { 2464 int metadata_ol_bitnr = ctz32(ret); 2465 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR); 2466 2467 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid " 2468 "write on metadata (overlaps with %s)", 2469 metadata_ol_names[metadata_ol_bitnr]); 2470 return -EIO; 2471 } 2472 2473 return 0; 2474 } 2475 2476 /* A pointer to a function of this type is given to walk_over_reftable(). That 2477 * function will create refblocks and pass them to a RefblockFinishOp once they 2478 * are completed (@refblock). @refblock_empty is set if the refblock is 2479 * completely empty. 2480 * 2481 * Along with the refblock, a corresponding reftable entry is passed, in the 2482 * reftable @reftable (which may be reallocated) at @reftable_index. 2483 * 2484 * @allocated should be set to true if a new cluster has been allocated. 2485 */ 2486 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable, 2487 uint64_t reftable_index, uint64_t *reftable_size, 2488 void *refblock, bool refblock_empty, 2489 bool *allocated, Error **errp); 2490 2491 /** 2492 * This "operation" for walk_over_reftable() allocates the refblock on disk (if 2493 * it is not empty) and inserts its offset into the new reftable. The size of 2494 * this new reftable is increased as required. 2495 */ 2496 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable, 2497 uint64_t reftable_index, uint64_t *reftable_size, 2498 void *refblock, bool refblock_empty, bool *allocated, 2499 Error **errp) 2500 { 2501 BDRVQcow2State *s = bs->opaque; 2502 int64_t offset; 2503 2504 if (!refblock_empty && reftable_index >= *reftable_size) { 2505 uint64_t *new_reftable; 2506 uint64_t new_reftable_size; 2507 2508 new_reftable_size = ROUND_UP(reftable_index + 1, 2509 s->cluster_size / sizeof(uint64_t)); 2510 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) { 2511 error_setg(errp, 2512 "This operation would make the refcount table grow " 2513 "beyond the maximum size supported by QEMU, aborting"); 2514 return -ENOTSUP; 2515 } 2516 2517 new_reftable = g_try_realloc(*reftable, new_reftable_size * 2518 sizeof(uint64_t)); 2519 if (!new_reftable) { 2520 error_setg(errp, "Failed to increase reftable buffer size"); 2521 return -ENOMEM; 2522 } 2523 2524 memset(new_reftable + *reftable_size, 0, 2525 (new_reftable_size - *reftable_size) * sizeof(uint64_t)); 2526 2527 *reftable = new_reftable; 2528 *reftable_size = new_reftable_size; 2529 } 2530 2531 if (!refblock_empty && !(*reftable)[reftable_index]) { 2532 offset = qcow2_alloc_clusters(bs, s->cluster_size); 2533 if (offset < 0) { 2534 error_setg_errno(errp, -offset, "Failed to allocate refblock"); 2535 return offset; 2536 } 2537 (*reftable)[reftable_index] = offset; 2538 *allocated = true; 2539 } 2540 2541 return 0; 2542 } 2543 2544 /** 2545 * This "operation" for walk_over_reftable() writes the refblock to disk at the 2546 * offset specified by the new reftable's entry. It does not modify the new 2547 * reftable or change any refcounts. 2548 */ 2549 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable, 2550 uint64_t reftable_index, uint64_t *reftable_size, 2551 void *refblock, bool refblock_empty, bool *allocated, 2552 Error **errp) 2553 { 2554 BDRVQcow2State *s = bs->opaque; 2555 int64_t offset; 2556 int ret; 2557 2558 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) { 2559 offset = (*reftable)[reftable_index]; 2560 2561 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 2562 if (ret < 0) { 2563 error_setg_errno(errp, -ret, "Overlap check failed"); 2564 return ret; 2565 } 2566 2567 ret = bdrv_pwrite(bs->file->bs, offset, refblock, s->cluster_size); 2568 if (ret < 0) { 2569 error_setg_errno(errp, -ret, "Failed to write refblock"); 2570 return ret; 2571 } 2572 } else { 2573 assert(refblock_empty); 2574 } 2575 2576 return 0; 2577 } 2578 2579 /** 2580 * This function walks over the existing reftable and every referenced refblock; 2581 * if @new_set_refcount is non-NULL, it is called for every refcount entry to 2582 * create an equal new entry in the passed @new_refblock. Once that 2583 * @new_refblock is completely filled, @operation will be called. 2584 * 2585 * @status_cb and @cb_opaque are used for the amend operation's status callback. 2586 * @index is the index of the walk_over_reftable() calls and @total is the total 2587 * number of walk_over_reftable() calls per amend operation. Both are used for 2588 * calculating the parameters for the status callback. 2589 * 2590 * @allocated is set to true if a new cluster has been allocated. 2591 */ 2592 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable, 2593 uint64_t *new_reftable_index, 2594 uint64_t *new_reftable_size, 2595 void *new_refblock, int new_refblock_size, 2596 int new_refcount_bits, 2597 RefblockFinishOp *operation, bool *allocated, 2598 Qcow2SetRefcountFunc *new_set_refcount, 2599 BlockDriverAmendStatusCB *status_cb, 2600 void *cb_opaque, int index, int total, 2601 Error **errp) 2602 { 2603 BDRVQcow2State *s = bs->opaque; 2604 uint64_t reftable_index; 2605 bool new_refblock_empty = true; 2606 int refblock_index; 2607 int new_refblock_index = 0; 2608 int ret; 2609 2610 for (reftable_index = 0; reftable_index < s->refcount_table_size; 2611 reftable_index++) 2612 { 2613 uint64_t refblock_offset = s->refcount_table[reftable_index] 2614 & REFT_OFFSET_MASK; 2615 2616 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index, 2617 (uint64_t)total * s->refcount_table_size, cb_opaque); 2618 2619 if (refblock_offset) { 2620 void *refblock; 2621 2622 if (offset_into_cluster(s, refblock_offset)) { 2623 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 2624 PRIx64 " unaligned (reftable index: %#" 2625 PRIx64 ")", refblock_offset, 2626 reftable_index); 2627 error_setg(errp, 2628 "Image is corrupt (unaligned refblock offset)"); 2629 return -EIO; 2630 } 2631 2632 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset, 2633 &refblock); 2634 if (ret < 0) { 2635 error_setg_errno(errp, -ret, "Failed to retrieve refblock"); 2636 return ret; 2637 } 2638 2639 for (refblock_index = 0; refblock_index < s->refcount_block_size; 2640 refblock_index++) 2641 { 2642 uint64_t refcount; 2643 2644 if (new_refblock_index >= new_refblock_size) { 2645 /* new_refblock is now complete */ 2646 ret = operation(bs, new_reftable, *new_reftable_index, 2647 new_reftable_size, new_refblock, 2648 new_refblock_empty, allocated, errp); 2649 if (ret < 0) { 2650 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 2651 return ret; 2652 } 2653 2654 (*new_reftable_index)++; 2655 new_refblock_index = 0; 2656 new_refblock_empty = true; 2657 } 2658 2659 refcount = s->get_refcount(refblock, refblock_index); 2660 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) { 2661 uint64_t offset; 2662 2663 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 2664 2665 offset = ((reftable_index << s->refcount_block_bits) 2666 + refblock_index) << s->cluster_bits; 2667 2668 error_setg(errp, "Cannot decrease refcount entry width to " 2669 "%i bits: Cluster at offset %#" PRIx64 " has a " 2670 "refcount of %" PRIu64, new_refcount_bits, 2671 offset, refcount); 2672 return -EINVAL; 2673 } 2674 2675 if (new_set_refcount) { 2676 new_set_refcount(new_refblock, new_refblock_index++, 2677 refcount); 2678 } else { 2679 new_refblock_index++; 2680 } 2681 new_refblock_empty = new_refblock_empty && refcount == 0; 2682 } 2683 2684 qcow2_cache_put(bs, s->refcount_block_cache, &refblock); 2685 } else { 2686 /* No refblock means every refcount is 0 */ 2687 for (refblock_index = 0; refblock_index < s->refcount_block_size; 2688 refblock_index++) 2689 { 2690 if (new_refblock_index >= new_refblock_size) { 2691 /* new_refblock is now complete */ 2692 ret = operation(bs, new_reftable, *new_reftable_index, 2693 new_reftable_size, new_refblock, 2694 new_refblock_empty, allocated, errp); 2695 if (ret < 0) { 2696 return ret; 2697 } 2698 2699 (*new_reftable_index)++; 2700 new_refblock_index = 0; 2701 new_refblock_empty = true; 2702 } 2703 2704 if (new_set_refcount) { 2705 new_set_refcount(new_refblock, new_refblock_index++, 0); 2706 } else { 2707 new_refblock_index++; 2708 } 2709 } 2710 } 2711 } 2712 2713 if (new_refblock_index > 0) { 2714 /* Complete the potentially existing partially filled final refblock */ 2715 if (new_set_refcount) { 2716 for (; new_refblock_index < new_refblock_size; 2717 new_refblock_index++) 2718 { 2719 new_set_refcount(new_refblock, new_refblock_index, 0); 2720 } 2721 } 2722 2723 ret = operation(bs, new_reftable, *new_reftable_index, 2724 new_reftable_size, new_refblock, new_refblock_empty, 2725 allocated, errp); 2726 if (ret < 0) { 2727 return ret; 2728 } 2729 2730 (*new_reftable_index)++; 2731 } 2732 2733 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size, 2734 (uint64_t)total * s->refcount_table_size, cb_opaque); 2735 2736 return 0; 2737 } 2738 2739 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order, 2740 BlockDriverAmendStatusCB *status_cb, 2741 void *cb_opaque, Error **errp) 2742 { 2743 BDRVQcow2State *s = bs->opaque; 2744 Qcow2GetRefcountFunc *new_get_refcount; 2745 Qcow2SetRefcountFunc *new_set_refcount; 2746 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size); 2747 uint64_t *new_reftable = NULL, new_reftable_size = 0; 2748 uint64_t *old_reftable, old_reftable_size, old_reftable_offset; 2749 uint64_t new_reftable_index = 0; 2750 uint64_t i; 2751 int64_t new_reftable_offset = 0, allocated_reftable_size = 0; 2752 int new_refblock_size, new_refcount_bits = 1 << refcount_order; 2753 int old_refcount_order; 2754 int walk_index = 0; 2755 int ret; 2756 bool new_allocation; 2757 2758 assert(s->qcow_version >= 3); 2759 assert(refcount_order >= 0 && refcount_order <= 6); 2760 2761 /* see qcow2_open() */ 2762 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3)); 2763 2764 new_get_refcount = get_refcount_funcs[refcount_order]; 2765 new_set_refcount = set_refcount_funcs[refcount_order]; 2766 2767 2768 do { 2769 int total_walks; 2770 2771 new_allocation = false; 2772 2773 /* At least we have to do this walk and the one which writes the 2774 * refblocks; also, at least we have to do this loop here at least 2775 * twice (normally), first to do the allocations, and second to 2776 * determine that everything is correctly allocated, this then makes 2777 * three walks in total */ 2778 total_walks = MAX(walk_index + 2, 3); 2779 2780 /* First, allocate the structures so they are present in the refcount 2781 * structures */ 2782 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 2783 &new_reftable_size, NULL, new_refblock_size, 2784 new_refcount_bits, &alloc_refblock, 2785 &new_allocation, NULL, status_cb, cb_opaque, 2786 walk_index++, total_walks, errp); 2787 if (ret < 0) { 2788 goto done; 2789 } 2790 2791 new_reftable_index = 0; 2792 2793 if (new_allocation) { 2794 if (new_reftable_offset) { 2795 qcow2_free_clusters(bs, new_reftable_offset, 2796 allocated_reftable_size * sizeof(uint64_t), 2797 QCOW2_DISCARD_NEVER); 2798 } 2799 2800 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size * 2801 sizeof(uint64_t)); 2802 if (new_reftable_offset < 0) { 2803 error_setg_errno(errp, -new_reftable_offset, 2804 "Failed to allocate the new reftable"); 2805 ret = new_reftable_offset; 2806 goto done; 2807 } 2808 allocated_reftable_size = new_reftable_size; 2809 } 2810 } while (new_allocation); 2811 2812 /* Second, write the new refblocks */ 2813 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 2814 &new_reftable_size, new_refblock, 2815 new_refblock_size, new_refcount_bits, 2816 &flush_refblock, &new_allocation, new_set_refcount, 2817 status_cb, cb_opaque, walk_index, walk_index + 1, 2818 errp); 2819 if (ret < 0) { 2820 goto done; 2821 } 2822 assert(!new_allocation); 2823 2824 2825 /* Write the new reftable */ 2826 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset, 2827 new_reftable_size * sizeof(uint64_t)); 2828 if (ret < 0) { 2829 error_setg_errno(errp, -ret, "Overlap check failed"); 2830 goto done; 2831 } 2832 2833 for (i = 0; i < new_reftable_size; i++) { 2834 cpu_to_be64s(&new_reftable[i]); 2835 } 2836 2837 ret = bdrv_pwrite(bs->file->bs, new_reftable_offset, new_reftable, 2838 new_reftable_size * sizeof(uint64_t)); 2839 2840 for (i = 0; i < new_reftable_size; i++) { 2841 be64_to_cpus(&new_reftable[i]); 2842 } 2843 2844 if (ret < 0) { 2845 error_setg_errno(errp, -ret, "Failed to write the new reftable"); 2846 goto done; 2847 } 2848 2849 2850 /* Empty the refcount cache */ 2851 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 2852 if (ret < 0) { 2853 error_setg_errno(errp, -ret, "Failed to flush the refblock cache"); 2854 goto done; 2855 } 2856 2857 /* Update the image header to point to the new reftable; this only updates 2858 * the fields which are relevant to qcow2_update_header(); other fields 2859 * such as s->refcount_table or s->refcount_bits stay stale for now 2860 * (because we have to restore everything if qcow2_update_header() fails) */ 2861 old_refcount_order = s->refcount_order; 2862 old_reftable_size = s->refcount_table_size; 2863 old_reftable_offset = s->refcount_table_offset; 2864 2865 s->refcount_order = refcount_order; 2866 s->refcount_table_size = new_reftable_size; 2867 s->refcount_table_offset = new_reftable_offset; 2868 2869 ret = qcow2_update_header(bs); 2870 if (ret < 0) { 2871 s->refcount_order = old_refcount_order; 2872 s->refcount_table_size = old_reftable_size; 2873 s->refcount_table_offset = old_reftable_offset; 2874 error_setg_errno(errp, -ret, "Failed to update the qcow2 header"); 2875 goto done; 2876 } 2877 2878 /* Now update the rest of the in-memory information */ 2879 old_reftable = s->refcount_table; 2880 s->refcount_table = new_reftable; 2881 2882 s->refcount_bits = 1 << refcount_order; 2883 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1); 2884 s->refcount_max += s->refcount_max - 1; 2885 2886 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3); 2887 s->refcount_block_size = 1 << s->refcount_block_bits; 2888 2889 s->get_refcount = new_get_refcount; 2890 s->set_refcount = new_set_refcount; 2891 2892 /* For cleaning up all old refblocks and the old reftable below the "done" 2893 * label */ 2894 new_reftable = old_reftable; 2895 new_reftable_size = old_reftable_size; 2896 new_reftable_offset = old_reftable_offset; 2897 2898 done: 2899 if (new_reftable) { 2900 /* On success, new_reftable actually points to the old reftable (and 2901 * new_reftable_size is the old reftable's size); but that is just 2902 * fine */ 2903 for (i = 0; i < new_reftable_size; i++) { 2904 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK; 2905 if (offset) { 2906 qcow2_free_clusters(bs, offset, s->cluster_size, 2907 QCOW2_DISCARD_OTHER); 2908 } 2909 } 2910 g_free(new_reftable); 2911 2912 if (new_reftable_offset > 0) { 2913 qcow2_free_clusters(bs, new_reftable_offset, 2914 new_reftable_size * sizeof(uint64_t), 2915 QCOW2_DISCARD_OTHER); 2916 } 2917 } 2918 2919 qemu_vfree(new_refblock); 2920 return ret; 2921 } 2922