1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "qcow2.h" 30 #include "qemu/range.h" 31 #include "qemu/bswap.h" 32 #include "qemu/cutils.h" 33 34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size); 35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs, 36 int64_t offset, int64_t length, uint64_t addend, 37 bool decrease, enum qcow2_discard_type type); 38 39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index); 40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index); 41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index); 42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index); 43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index); 44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index); 45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index); 46 47 static void set_refcount_ro0(void *refcount_array, uint64_t index, 48 uint64_t value); 49 static void set_refcount_ro1(void *refcount_array, uint64_t index, 50 uint64_t value); 51 static void set_refcount_ro2(void *refcount_array, uint64_t index, 52 uint64_t value); 53 static void set_refcount_ro3(void *refcount_array, uint64_t index, 54 uint64_t value); 55 static void set_refcount_ro4(void *refcount_array, uint64_t index, 56 uint64_t value); 57 static void set_refcount_ro5(void *refcount_array, uint64_t index, 58 uint64_t value); 59 static void set_refcount_ro6(void *refcount_array, uint64_t index, 60 uint64_t value); 61 62 63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = { 64 &get_refcount_ro0, 65 &get_refcount_ro1, 66 &get_refcount_ro2, 67 &get_refcount_ro3, 68 &get_refcount_ro4, 69 &get_refcount_ro5, 70 &get_refcount_ro6 71 }; 72 73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = { 74 &set_refcount_ro0, 75 &set_refcount_ro1, 76 &set_refcount_ro2, 77 &set_refcount_ro3, 78 &set_refcount_ro4, 79 &set_refcount_ro5, 80 &set_refcount_ro6 81 }; 82 83 84 /*********************************************************/ 85 /* refcount handling */ 86 87 static void update_max_refcount_table_index(BDRVQcow2State *s) 88 { 89 unsigned i = s->refcount_table_size - 1; 90 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) { 91 i--; 92 } 93 /* Set s->max_refcount_table_index to the index of the last used entry */ 94 s->max_refcount_table_index = i; 95 } 96 97 int qcow2_refcount_init(BlockDriverState *bs) 98 { 99 BDRVQcow2State *s = bs->opaque; 100 unsigned int refcount_table_size2, i; 101 int ret; 102 103 assert(s->refcount_order >= 0 && s->refcount_order <= 6); 104 105 s->get_refcount = get_refcount_funcs[s->refcount_order]; 106 s->set_refcount = set_refcount_funcs[s->refcount_order]; 107 108 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t)); 109 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t); 110 s->refcount_table = g_try_malloc(refcount_table_size2); 111 112 if (s->refcount_table_size > 0) { 113 if (s->refcount_table == NULL) { 114 ret = -ENOMEM; 115 goto fail; 116 } 117 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD); 118 ret = bdrv_pread(bs->file, s->refcount_table_offset, 119 s->refcount_table, refcount_table_size2); 120 if (ret < 0) { 121 goto fail; 122 } 123 for(i = 0; i < s->refcount_table_size; i++) 124 be64_to_cpus(&s->refcount_table[i]); 125 update_max_refcount_table_index(s); 126 } 127 return 0; 128 fail: 129 return ret; 130 } 131 132 void qcow2_refcount_close(BlockDriverState *bs) 133 { 134 BDRVQcow2State *s = bs->opaque; 135 g_free(s->refcount_table); 136 } 137 138 139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index) 140 { 141 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1; 142 } 143 144 static void set_refcount_ro0(void *refcount_array, uint64_t index, 145 uint64_t value) 146 { 147 assert(!(value >> 1)); 148 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8)); 149 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8); 150 } 151 152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index) 153 { 154 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4))) 155 & 0x3; 156 } 157 158 static void set_refcount_ro1(void *refcount_array, uint64_t index, 159 uint64_t value) 160 { 161 assert(!(value >> 2)); 162 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4))); 163 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4)); 164 } 165 166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index) 167 { 168 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2))) 169 & 0xf; 170 } 171 172 static void set_refcount_ro2(void *refcount_array, uint64_t index, 173 uint64_t value) 174 { 175 assert(!(value >> 4)); 176 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2))); 177 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2)); 178 } 179 180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index) 181 { 182 return ((const uint8_t *)refcount_array)[index]; 183 } 184 185 static void set_refcount_ro3(void *refcount_array, uint64_t index, 186 uint64_t value) 187 { 188 assert(!(value >> 8)); 189 ((uint8_t *)refcount_array)[index] = value; 190 } 191 192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index) 193 { 194 return be16_to_cpu(((const uint16_t *)refcount_array)[index]); 195 } 196 197 static void set_refcount_ro4(void *refcount_array, uint64_t index, 198 uint64_t value) 199 { 200 assert(!(value >> 16)); 201 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value); 202 } 203 204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index) 205 { 206 return be32_to_cpu(((const uint32_t *)refcount_array)[index]); 207 } 208 209 static void set_refcount_ro5(void *refcount_array, uint64_t index, 210 uint64_t value) 211 { 212 assert(!(value >> 32)); 213 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value); 214 } 215 216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index) 217 { 218 return be64_to_cpu(((const uint64_t *)refcount_array)[index]); 219 } 220 221 static void set_refcount_ro6(void *refcount_array, uint64_t index, 222 uint64_t value) 223 { 224 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value); 225 } 226 227 228 static int load_refcount_block(BlockDriverState *bs, 229 int64_t refcount_block_offset, 230 void **refcount_block) 231 { 232 BDRVQcow2State *s = bs->opaque; 233 234 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD); 235 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 236 refcount_block); 237 } 238 239 /* 240 * Retrieves the refcount of the cluster given by its index and stores it in 241 * *refcount. Returns 0 on success and -errno on failure. 242 */ 243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index, 244 uint64_t *refcount) 245 { 246 BDRVQcow2State *s = bs->opaque; 247 uint64_t refcount_table_index, block_index; 248 int64_t refcount_block_offset; 249 int ret; 250 void *refcount_block; 251 252 refcount_table_index = cluster_index >> s->refcount_block_bits; 253 if (refcount_table_index >= s->refcount_table_size) { 254 *refcount = 0; 255 return 0; 256 } 257 refcount_block_offset = 258 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 259 if (!refcount_block_offset) { 260 *refcount = 0; 261 return 0; 262 } 263 264 if (offset_into_cluster(s, refcount_block_offset)) { 265 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64 266 " unaligned (reftable index: %#" PRIx64 ")", 267 refcount_block_offset, refcount_table_index); 268 return -EIO; 269 } 270 271 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset, 272 &refcount_block); 273 if (ret < 0) { 274 return ret; 275 } 276 277 block_index = cluster_index & (s->refcount_block_size - 1); 278 *refcount = s->get_refcount(refcount_block, block_index); 279 280 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 281 282 return 0; 283 } 284 285 /* Checks if two offsets are described by the same refcount block */ 286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a, 287 uint64_t offset_b) 288 { 289 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits); 290 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits); 291 292 return (block_a == block_b); 293 } 294 295 /* 296 * Loads a refcount block. If it doesn't exist yet, it is allocated first 297 * (including growing the refcount table if needed). 298 * 299 * Returns 0 on success or -errno in error case 300 */ 301 static int alloc_refcount_block(BlockDriverState *bs, 302 int64_t cluster_index, void **refcount_block) 303 { 304 BDRVQcow2State *s = bs->opaque; 305 unsigned int refcount_table_index; 306 int64_t ret; 307 308 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC); 309 310 /* Find the refcount block for the given cluster */ 311 refcount_table_index = cluster_index >> s->refcount_block_bits; 312 313 if (refcount_table_index < s->refcount_table_size) { 314 315 uint64_t refcount_block_offset = 316 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK; 317 318 /* If it's already there, we're done */ 319 if (refcount_block_offset) { 320 if (offset_into_cluster(s, refcount_block_offset)) { 321 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 322 PRIx64 " unaligned (reftable index: " 323 "%#x)", refcount_block_offset, 324 refcount_table_index); 325 return -EIO; 326 } 327 328 return load_refcount_block(bs, refcount_block_offset, 329 refcount_block); 330 } 331 } 332 333 /* 334 * If we came here, we need to allocate something. Something is at least 335 * a cluster for the new refcount block. It may also include a new refcount 336 * table if the old refcount table is too small. 337 * 338 * Note that allocating clusters here needs some special care: 339 * 340 * - We can't use the normal qcow2_alloc_clusters(), it would try to 341 * increase the refcount and very likely we would end up with an endless 342 * recursion. Instead we must place the refcount blocks in a way that 343 * they can describe them themselves. 344 * 345 * - We need to consider that at this point we are inside update_refcounts 346 * and potentially doing an initial refcount increase. This means that 347 * some clusters have already been allocated by the caller, but their 348 * refcount isn't accurate yet. If we allocate clusters for metadata, we 349 * need to return -EAGAIN to signal the caller that it needs to restart 350 * the search for free clusters. 351 * 352 * - alloc_clusters_noref and qcow2_free_clusters may load a different 353 * refcount block into the cache 354 */ 355 356 *refcount_block = NULL; 357 358 /* We write to the refcount table, so we might depend on L2 tables */ 359 ret = qcow2_cache_flush(bs, s->l2_table_cache); 360 if (ret < 0) { 361 return ret; 362 } 363 364 /* Allocate the refcount block itself and mark it as used */ 365 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size); 366 if (new_block < 0) { 367 return new_block; 368 } 369 370 /* If we're allocating the block at offset 0 then something is wrong */ 371 if (new_block == 0) { 372 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 373 "allocation of refcount block at offset 0"); 374 return -EIO; 375 } 376 377 #ifdef DEBUG_ALLOC2 378 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64 379 " at %" PRIx64 "\n", 380 refcount_table_index, cluster_index << s->cluster_bits, new_block); 381 #endif 382 383 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) { 384 /* Zero the new refcount block before updating it */ 385 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 386 refcount_block); 387 if (ret < 0) { 388 goto fail; 389 } 390 391 memset(*refcount_block, 0, s->cluster_size); 392 393 /* The block describes itself, need to update the cache */ 394 int block_index = (new_block >> s->cluster_bits) & 395 (s->refcount_block_size - 1); 396 s->set_refcount(*refcount_block, block_index, 1); 397 } else { 398 /* Described somewhere else. This can recurse at most twice before we 399 * arrive at a block that describes itself. */ 400 ret = update_refcount(bs, new_block, s->cluster_size, 1, false, 401 QCOW2_DISCARD_NEVER); 402 if (ret < 0) { 403 goto fail; 404 } 405 406 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 407 if (ret < 0) { 408 goto fail; 409 } 410 411 /* Initialize the new refcount block only after updating its refcount, 412 * update_refcount uses the refcount cache itself */ 413 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block, 414 refcount_block); 415 if (ret < 0) { 416 goto fail; 417 } 418 419 memset(*refcount_block, 0, s->cluster_size); 420 } 421 422 /* Now the new refcount block needs to be written to disk */ 423 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE); 424 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block); 425 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 426 if (ret < 0) { 427 goto fail; 428 } 429 430 /* If the refcount table is big enough, just hook the block up there */ 431 if (refcount_table_index < s->refcount_table_size) { 432 uint64_t data64 = cpu_to_be64(new_block); 433 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP); 434 ret = bdrv_pwrite_sync(bs->file, 435 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t), 436 &data64, sizeof(data64)); 437 if (ret < 0) { 438 goto fail; 439 } 440 441 s->refcount_table[refcount_table_index] = new_block; 442 /* If there's a hole in s->refcount_table then it can happen 443 * that refcount_table_index < s->max_refcount_table_index */ 444 s->max_refcount_table_index = 445 MAX(s->max_refcount_table_index, refcount_table_index); 446 447 /* The new refcount block may be where the caller intended to put its 448 * data, so let it restart the search. */ 449 return -EAGAIN; 450 } 451 452 qcow2_cache_put(s->refcount_block_cache, refcount_block); 453 454 /* 455 * If we come here, we need to grow the refcount table. Again, a new 456 * refcount table needs some space and we can't simply allocate to avoid 457 * endless recursion. 458 * 459 * Therefore let's grab new refcount blocks at the end of the image, which 460 * will describe themselves and the new refcount table. This way we can 461 * reference them only in the new table and do the switch to the new 462 * refcount table at once without producing an inconsistent state in 463 * between. 464 */ 465 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW); 466 467 /* Calculate the number of refcount blocks needed so far; this will be the 468 * basis for calculating the index of the first cluster used for the 469 * self-describing refcount structures which we are about to create. 470 * 471 * Because we reached this point, there cannot be any refcount entries for 472 * cluster_index or higher indices yet. However, because new_block has been 473 * allocated to describe that cluster (and it will assume this role later 474 * on), we cannot use that index; also, new_block may actually have a higher 475 * cluster index than cluster_index, so it needs to be taken into account 476 * here (and 1 needs to be added to its value because that cluster is used). 477 */ 478 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1, 479 (new_block >> s->cluster_bits) + 1), 480 s->refcount_block_size); 481 482 /* Create the new refcount table and blocks */ 483 uint64_t meta_offset = (blocks_used * s->refcount_block_size) * 484 s->cluster_size; 485 486 ret = qcow2_refcount_area(bs, meta_offset, 0, false, 487 refcount_table_index, new_block); 488 if (ret < 0) { 489 return ret; 490 } 491 492 ret = load_refcount_block(bs, new_block, refcount_block); 493 if (ret < 0) { 494 return ret; 495 } 496 497 /* If we were trying to do the initial refcount update for some cluster 498 * allocation, we might have used the same clusters to store newly 499 * allocated metadata. Make the caller search some new space. */ 500 return -EAGAIN; 501 502 fail: 503 if (*refcount_block != NULL) { 504 qcow2_cache_put(s->refcount_block_cache, refcount_block); 505 } 506 return ret; 507 } 508 509 /* 510 * Starting at @start_offset, this function creates new self-covering refcount 511 * structures: A new refcount table and refcount blocks which cover all of 512 * themselves, and a number of @additional_clusters beyond their end. 513 * @start_offset must be at the end of the image file, that is, there must be 514 * only empty space beyond it. 515 * If @exact_size is false, the refcount table will have 50 % more entries than 516 * necessary so it will not need to grow again soon. 517 * If @new_refblock_offset is not zero, it contains the offset of a refcount 518 * block that should be entered into the new refcount table at index 519 * @new_refblock_index. 520 * 521 * Returns: The offset after the new refcount structures (i.e. where the 522 * @additional_clusters may be placed) on success, -errno on error. 523 */ 524 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset, 525 uint64_t additional_clusters, bool exact_size, 526 int new_refblock_index, 527 uint64_t new_refblock_offset) 528 { 529 BDRVQcow2State *s = bs->opaque; 530 uint64_t total_refblock_count_u64, additional_refblock_count; 531 int total_refblock_count, table_size, area_reftable_index, table_clusters; 532 int i; 533 uint64_t table_offset, block_offset, end_offset; 534 int ret; 535 uint64_t *new_table; 536 537 assert(!(start_offset % s->cluster_size)); 538 539 qcow2_refcount_metadata_size(start_offset / s->cluster_size + 540 additional_clusters, 541 s->cluster_size, s->refcount_order, 542 !exact_size, &total_refblock_count_u64); 543 if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) { 544 return -EFBIG; 545 } 546 total_refblock_count = total_refblock_count_u64; 547 548 /* Index in the refcount table of the first refcount block to cover the area 549 * of refcount structures we are about to create; we know that 550 * @total_refblock_count can cover @start_offset, so this will definitely 551 * fit into an int. */ 552 area_reftable_index = (start_offset / s->cluster_size) / 553 s->refcount_block_size; 554 555 if (exact_size) { 556 table_size = total_refblock_count; 557 } else { 558 table_size = total_refblock_count + 559 DIV_ROUND_UP(total_refblock_count, 2); 560 } 561 /* The qcow2 file can only store the reftable size in number of clusters */ 562 table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t)); 563 table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size; 564 565 if (table_size > QCOW_MAX_REFTABLE_SIZE) { 566 return -EFBIG; 567 } 568 569 new_table = g_try_new0(uint64_t, table_size); 570 571 assert(table_size > 0); 572 if (new_table == NULL) { 573 ret = -ENOMEM; 574 goto fail; 575 } 576 577 /* Fill the new refcount table */ 578 if (table_size > s->max_refcount_table_index) { 579 /* We're actually growing the reftable */ 580 memcpy(new_table, s->refcount_table, 581 (s->max_refcount_table_index + 1) * sizeof(uint64_t)); 582 } else { 583 /* Improbable case: We're shrinking the reftable. However, the caller 584 * has assured us that there is only empty space beyond @start_offset, 585 * so we can simply drop all of the refblocks that won't fit into the 586 * new reftable. */ 587 memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t)); 588 } 589 590 if (new_refblock_offset) { 591 assert(new_refblock_index < total_refblock_count); 592 new_table[new_refblock_index] = new_refblock_offset; 593 } 594 595 /* Count how many new refblocks we have to create */ 596 additional_refblock_count = 0; 597 for (i = area_reftable_index; i < total_refblock_count; i++) { 598 if (!new_table[i]) { 599 additional_refblock_count++; 600 } 601 } 602 603 table_offset = start_offset + additional_refblock_count * s->cluster_size; 604 end_offset = table_offset + table_clusters * s->cluster_size; 605 606 /* Fill the refcount blocks, and create new ones, if necessary */ 607 block_offset = start_offset; 608 for (i = area_reftable_index; i < total_refblock_count; i++) { 609 void *refblock_data; 610 uint64_t first_offset_covered; 611 612 /* Reuse an existing refblock if possible, create a new one otherwise */ 613 if (new_table[i]) { 614 ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i], 615 &refblock_data); 616 if (ret < 0) { 617 goto fail; 618 } 619 } else { 620 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, 621 block_offset, &refblock_data); 622 if (ret < 0) { 623 goto fail; 624 } 625 memset(refblock_data, 0, s->cluster_size); 626 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, 627 refblock_data); 628 629 new_table[i] = block_offset; 630 block_offset += s->cluster_size; 631 } 632 633 /* First host offset covered by this refblock */ 634 first_offset_covered = (uint64_t)i * s->refcount_block_size * 635 s->cluster_size; 636 if (first_offset_covered < end_offset) { 637 int j, end_index; 638 639 /* Set the refcount of all of the new refcount structures to 1 */ 640 641 if (first_offset_covered < start_offset) { 642 assert(i == area_reftable_index); 643 j = (start_offset - first_offset_covered) / s->cluster_size; 644 assert(j < s->refcount_block_size); 645 } else { 646 j = 0; 647 } 648 649 end_index = MIN((end_offset - first_offset_covered) / 650 s->cluster_size, 651 s->refcount_block_size); 652 653 for (; j < end_index; j++) { 654 /* The caller guaranteed us this space would be empty */ 655 assert(s->get_refcount(refblock_data, j) == 0); 656 s->set_refcount(refblock_data, j, 1); 657 } 658 659 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, 660 refblock_data); 661 } 662 663 qcow2_cache_put(s->refcount_block_cache, &refblock_data); 664 } 665 666 assert(block_offset == table_offset); 667 668 /* Write refcount blocks to disk */ 669 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS); 670 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 671 if (ret < 0) { 672 goto fail; 673 } 674 675 /* Write refcount table to disk */ 676 for (i = 0; i < total_refblock_count; i++) { 677 cpu_to_be64s(&new_table[i]); 678 } 679 680 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE); 681 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table, 682 table_size * sizeof(uint64_t)); 683 if (ret < 0) { 684 goto fail; 685 } 686 687 for (i = 0; i < total_refblock_count; i++) { 688 be64_to_cpus(&new_table[i]); 689 } 690 691 /* Hook up the new refcount table in the qcow2 header */ 692 struct QEMU_PACKED { 693 uint64_t d64; 694 uint32_t d32; 695 } data; 696 data.d64 = cpu_to_be64(table_offset); 697 data.d32 = cpu_to_be32(table_clusters); 698 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE); 699 ret = bdrv_pwrite_sync(bs->file, 700 offsetof(QCowHeader, refcount_table_offset), 701 &data, sizeof(data)); 702 if (ret < 0) { 703 goto fail; 704 } 705 706 /* And switch it in memory */ 707 uint64_t old_table_offset = s->refcount_table_offset; 708 uint64_t old_table_size = s->refcount_table_size; 709 710 g_free(s->refcount_table); 711 s->refcount_table = new_table; 712 s->refcount_table_size = table_size; 713 s->refcount_table_offset = table_offset; 714 update_max_refcount_table_index(s); 715 716 /* Free old table. */ 717 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t), 718 QCOW2_DISCARD_OTHER); 719 720 return end_offset; 721 722 fail: 723 g_free(new_table); 724 return ret; 725 } 726 727 void qcow2_process_discards(BlockDriverState *bs, int ret) 728 { 729 BDRVQcow2State *s = bs->opaque; 730 Qcow2DiscardRegion *d, *next; 731 732 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) { 733 QTAILQ_REMOVE(&s->discards, d, next); 734 735 /* Discard is optional, ignore the return value */ 736 if (ret >= 0) { 737 bdrv_pdiscard(bs->file, d->offset, d->bytes); 738 } 739 740 g_free(d); 741 } 742 } 743 744 static void update_refcount_discard(BlockDriverState *bs, 745 uint64_t offset, uint64_t length) 746 { 747 BDRVQcow2State *s = bs->opaque; 748 Qcow2DiscardRegion *d, *p, *next; 749 750 QTAILQ_FOREACH(d, &s->discards, next) { 751 uint64_t new_start = MIN(offset, d->offset); 752 uint64_t new_end = MAX(offset + length, d->offset + d->bytes); 753 754 if (new_end - new_start <= length + d->bytes) { 755 /* There can't be any overlap, areas ending up here have no 756 * references any more and therefore shouldn't get freed another 757 * time. */ 758 assert(d->bytes + length == new_end - new_start); 759 d->offset = new_start; 760 d->bytes = new_end - new_start; 761 goto found; 762 } 763 } 764 765 d = g_malloc(sizeof(*d)); 766 *d = (Qcow2DiscardRegion) { 767 .bs = bs, 768 .offset = offset, 769 .bytes = length, 770 }; 771 QTAILQ_INSERT_TAIL(&s->discards, d, next); 772 773 found: 774 /* Merge discard requests if they are adjacent now */ 775 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) { 776 if (p == d 777 || p->offset > d->offset + d->bytes 778 || d->offset > p->offset + p->bytes) 779 { 780 continue; 781 } 782 783 /* Still no overlap possible */ 784 assert(p->offset == d->offset + d->bytes 785 || d->offset == p->offset + p->bytes); 786 787 QTAILQ_REMOVE(&s->discards, p, next); 788 d->offset = MIN(d->offset, p->offset); 789 d->bytes += p->bytes; 790 g_free(p); 791 } 792 } 793 794 /* XXX: cache several refcount block clusters ? */ 795 /* @addend is the absolute value of the addend; if @decrease is set, @addend 796 * will be subtracted from the current refcount, otherwise it will be added */ 797 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs, 798 int64_t offset, 799 int64_t length, 800 uint64_t addend, 801 bool decrease, 802 enum qcow2_discard_type type) 803 { 804 BDRVQcow2State *s = bs->opaque; 805 int64_t start, last, cluster_offset; 806 void *refcount_block = NULL; 807 int64_t old_table_index = -1; 808 int ret; 809 810 #ifdef DEBUG_ALLOC2 811 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64 812 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "", 813 addend); 814 #endif 815 if (length < 0) { 816 return -EINVAL; 817 } else if (length == 0) { 818 return 0; 819 } 820 821 if (decrease) { 822 qcow2_cache_set_dependency(bs, s->refcount_block_cache, 823 s->l2_table_cache); 824 } 825 826 start = start_of_cluster(s, offset); 827 last = start_of_cluster(s, offset + length - 1); 828 for(cluster_offset = start; cluster_offset <= last; 829 cluster_offset += s->cluster_size) 830 { 831 int block_index; 832 uint64_t refcount; 833 int64_t cluster_index = cluster_offset >> s->cluster_bits; 834 int64_t table_index = cluster_index >> s->refcount_block_bits; 835 836 /* Load the refcount block and allocate it if needed */ 837 if (table_index != old_table_index) { 838 if (refcount_block) { 839 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 840 } 841 ret = alloc_refcount_block(bs, cluster_index, &refcount_block); 842 /* If the caller needs to restart the search for free clusters, 843 * try the same ones first to see if they're still free. */ 844 if (ret == -EAGAIN) { 845 if (s->free_cluster_index > (start >> s->cluster_bits)) { 846 s->free_cluster_index = (start >> s->cluster_bits); 847 } 848 } 849 if (ret < 0) { 850 goto fail; 851 } 852 } 853 old_table_index = table_index; 854 855 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block); 856 857 /* we can update the count and save it */ 858 block_index = cluster_index & (s->refcount_block_size - 1); 859 860 refcount = s->get_refcount(refcount_block, block_index); 861 if (decrease ? (refcount - addend > refcount) 862 : (refcount + addend < refcount || 863 refcount + addend > s->refcount_max)) 864 { 865 ret = -EINVAL; 866 goto fail; 867 } 868 if (decrease) { 869 refcount -= addend; 870 } else { 871 refcount += addend; 872 } 873 if (refcount == 0 && cluster_index < s->free_cluster_index) { 874 s->free_cluster_index = cluster_index; 875 } 876 s->set_refcount(refcount_block, block_index, refcount); 877 878 if (refcount == 0) { 879 void *table; 880 881 table = qcow2_cache_is_table_offset(s->refcount_block_cache, 882 offset); 883 if (table != NULL) { 884 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 885 qcow2_cache_discard(s->refcount_block_cache, table); 886 } 887 888 table = qcow2_cache_is_table_offset(s->l2_table_cache, offset); 889 if (table != NULL) { 890 qcow2_cache_discard(s->l2_table_cache, table); 891 } 892 893 if (s->discard_passthrough[type]) { 894 update_refcount_discard(bs, cluster_offset, s->cluster_size); 895 } 896 } 897 } 898 899 ret = 0; 900 fail: 901 if (!s->cache_discards) { 902 qcow2_process_discards(bs, ret); 903 } 904 905 /* Write last changed block to disk */ 906 if (refcount_block) { 907 qcow2_cache_put(s->refcount_block_cache, &refcount_block); 908 } 909 910 /* 911 * Try do undo any updates if an error is returned (This may succeed in 912 * some cases like ENOSPC for allocating a new refcount block) 913 */ 914 if (ret < 0) { 915 int dummy; 916 dummy = update_refcount(bs, offset, cluster_offset - offset, addend, 917 !decrease, QCOW2_DISCARD_NEVER); 918 (void)dummy; 919 } 920 921 return ret; 922 } 923 924 /* 925 * Increases or decreases the refcount of a given cluster. 926 * 927 * @addend is the absolute value of the addend; if @decrease is set, @addend 928 * will be subtracted from the current refcount, otherwise it will be added. 929 * 930 * On success 0 is returned; on failure -errno is returned. 931 */ 932 int qcow2_update_cluster_refcount(BlockDriverState *bs, 933 int64_t cluster_index, 934 uint64_t addend, bool decrease, 935 enum qcow2_discard_type type) 936 { 937 BDRVQcow2State *s = bs->opaque; 938 int ret; 939 940 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend, 941 decrease, type); 942 if (ret < 0) { 943 return ret; 944 } 945 946 return 0; 947 } 948 949 950 951 /*********************************************************/ 952 /* cluster allocation functions */ 953 954 955 956 /* return < 0 if error */ 957 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size) 958 { 959 BDRVQcow2State *s = bs->opaque; 960 uint64_t i, nb_clusters, refcount; 961 int ret; 962 963 /* We can't allocate clusters if they may still be queued for discard. */ 964 if (s->cache_discards) { 965 qcow2_process_discards(bs, 0); 966 } 967 968 nb_clusters = size_to_clusters(s, size); 969 retry: 970 for(i = 0; i < nb_clusters; i++) { 971 uint64_t next_cluster_index = s->free_cluster_index++; 972 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount); 973 974 if (ret < 0) { 975 return ret; 976 } else if (refcount != 0) { 977 goto retry; 978 } 979 } 980 981 /* Make sure that all offsets in the "allocated" range are representable 982 * in an int64_t */ 983 if (s->free_cluster_index > 0 && 984 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits)) 985 { 986 return -EFBIG; 987 } 988 989 #ifdef DEBUG_ALLOC2 990 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n", 991 size, 992 (s->free_cluster_index - nb_clusters) << s->cluster_bits); 993 #endif 994 return (s->free_cluster_index - nb_clusters) << s->cluster_bits; 995 } 996 997 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size) 998 { 999 int64_t offset; 1000 int ret; 1001 1002 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC); 1003 do { 1004 offset = alloc_clusters_noref(bs, size); 1005 if (offset < 0) { 1006 return offset; 1007 } 1008 1009 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 1010 } while (ret == -EAGAIN); 1011 1012 if (ret < 0) { 1013 return ret; 1014 } 1015 1016 return offset; 1017 } 1018 1019 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset, 1020 int64_t nb_clusters) 1021 { 1022 BDRVQcow2State *s = bs->opaque; 1023 uint64_t cluster_index, refcount; 1024 uint64_t i; 1025 int ret; 1026 1027 assert(nb_clusters >= 0); 1028 if (nb_clusters == 0) { 1029 return 0; 1030 } 1031 1032 do { 1033 /* Check how many clusters there are free */ 1034 cluster_index = offset >> s->cluster_bits; 1035 for(i = 0; i < nb_clusters; i++) { 1036 ret = qcow2_get_refcount(bs, cluster_index++, &refcount); 1037 if (ret < 0) { 1038 return ret; 1039 } else if (refcount != 0) { 1040 break; 1041 } 1042 } 1043 1044 /* And then allocate them */ 1045 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false, 1046 QCOW2_DISCARD_NEVER); 1047 } while (ret == -EAGAIN); 1048 1049 if (ret < 0) { 1050 return ret; 1051 } 1052 1053 return i; 1054 } 1055 1056 /* only used to allocate compressed sectors. We try to allocate 1057 contiguous sectors. size must be <= cluster_size */ 1058 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size) 1059 { 1060 BDRVQcow2State *s = bs->opaque; 1061 int64_t offset; 1062 size_t free_in_cluster; 1063 int ret; 1064 1065 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES); 1066 assert(size > 0 && size <= s->cluster_size); 1067 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset)); 1068 1069 offset = s->free_byte_offset; 1070 1071 if (offset) { 1072 uint64_t refcount; 1073 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount); 1074 if (ret < 0) { 1075 return ret; 1076 } 1077 1078 if (refcount == s->refcount_max) { 1079 offset = 0; 1080 } 1081 } 1082 1083 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset); 1084 do { 1085 if (!offset || free_in_cluster < size) { 1086 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size); 1087 if (new_cluster < 0) { 1088 return new_cluster; 1089 } 1090 1091 if (new_cluster == 0) { 1092 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 1093 "allocation of compressed cluster " 1094 "at offset 0"); 1095 return -EIO; 1096 } 1097 1098 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) { 1099 offset = new_cluster; 1100 free_in_cluster = s->cluster_size; 1101 } else { 1102 free_in_cluster += s->cluster_size; 1103 } 1104 } 1105 1106 assert(offset); 1107 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER); 1108 if (ret < 0) { 1109 offset = 0; 1110 } 1111 } while (ret == -EAGAIN); 1112 if (ret < 0) { 1113 return ret; 1114 } 1115 1116 /* The cluster refcount was incremented; refcount blocks must be flushed 1117 * before the caller's L2 table updates. */ 1118 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache); 1119 1120 s->free_byte_offset = offset + size; 1121 if (!offset_into_cluster(s, s->free_byte_offset)) { 1122 s->free_byte_offset = 0; 1123 } 1124 1125 return offset; 1126 } 1127 1128 void qcow2_free_clusters(BlockDriverState *bs, 1129 int64_t offset, int64_t size, 1130 enum qcow2_discard_type type) 1131 { 1132 int ret; 1133 1134 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE); 1135 ret = update_refcount(bs, offset, size, 1, true, type); 1136 if (ret < 0) { 1137 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret)); 1138 /* TODO Remember the clusters to free them later and avoid leaking */ 1139 } 1140 } 1141 1142 /* 1143 * Free a cluster using its L2 entry (handles clusters of all types, e.g. 1144 * normal cluster, compressed cluster, etc.) 1145 */ 1146 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry, 1147 int nb_clusters, enum qcow2_discard_type type) 1148 { 1149 BDRVQcow2State *s = bs->opaque; 1150 1151 switch (qcow2_get_cluster_type(l2_entry)) { 1152 case QCOW2_CLUSTER_COMPRESSED: 1153 { 1154 int nb_csectors; 1155 nb_csectors = ((l2_entry >> s->csize_shift) & 1156 s->csize_mask) + 1; 1157 qcow2_free_clusters(bs, 1158 (l2_entry & s->cluster_offset_mask) & ~511, 1159 nb_csectors * 512, type); 1160 } 1161 break; 1162 case QCOW2_CLUSTER_NORMAL: 1163 case QCOW2_CLUSTER_ZERO_ALLOC: 1164 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) { 1165 qcow2_signal_corruption(bs, false, -1, -1, 1166 "Cannot free unaligned cluster %#llx", 1167 l2_entry & L2E_OFFSET_MASK); 1168 } else { 1169 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK, 1170 nb_clusters << s->cluster_bits, type); 1171 } 1172 break; 1173 case QCOW2_CLUSTER_ZERO_PLAIN: 1174 case QCOW2_CLUSTER_UNALLOCATED: 1175 break; 1176 default: 1177 abort(); 1178 } 1179 } 1180 1181 int coroutine_fn qcow2_write_caches(BlockDriverState *bs) 1182 { 1183 BDRVQcow2State *s = bs->opaque; 1184 int ret; 1185 1186 ret = qcow2_cache_write(bs, s->l2_table_cache); 1187 if (ret < 0) { 1188 return ret; 1189 } 1190 1191 if (qcow2_need_accurate_refcounts(s)) { 1192 ret = qcow2_cache_write(bs, s->refcount_block_cache); 1193 if (ret < 0) { 1194 return ret; 1195 } 1196 } 1197 1198 return 0; 1199 } 1200 1201 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs) 1202 { 1203 int ret = qcow2_write_caches(bs); 1204 if (ret < 0) { 1205 return ret; 1206 } 1207 1208 return bdrv_flush(bs->file->bs); 1209 } 1210 1211 /*********************************************************/ 1212 /* snapshots and image creation */ 1213 1214 1215 1216 /* update the refcounts of snapshots and the copied flag */ 1217 int qcow2_update_snapshot_refcount(BlockDriverState *bs, 1218 int64_t l1_table_offset, int l1_size, int addend) 1219 { 1220 BDRVQcow2State *s = bs->opaque; 1221 uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount; 1222 bool l1_allocated = false; 1223 int64_t old_entry, old_l2_offset; 1224 unsigned slice, slice_size2, n_slices; 1225 int i, j, l1_modified = 0, nb_csectors; 1226 int ret; 1227 1228 assert(addend >= -1 && addend <= 1); 1229 1230 l2_slice = NULL; 1231 l1_table = NULL; 1232 l1_size2 = l1_size * sizeof(uint64_t); 1233 slice_size2 = s->l2_slice_size * sizeof(uint64_t); 1234 n_slices = s->cluster_size / slice_size2; 1235 1236 s->cache_discards = true; 1237 1238 /* WARNING: qcow2_snapshot_goto relies on this function not using the 1239 * l1_table_offset when it is the current s->l1_table_offset! Be careful 1240 * when changing this! */ 1241 if (l1_table_offset != s->l1_table_offset) { 1242 l1_table = g_try_malloc0(ROUND_UP(l1_size2, 512)); 1243 if (l1_size2 && l1_table == NULL) { 1244 ret = -ENOMEM; 1245 goto fail; 1246 } 1247 l1_allocated = true; 1248 1249 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2); 1250 if (ret < 0) { 1251 goto fail; 1252 } 1253 1254 for (i = 0; i < l1_size; i++) { 1255 be64_to_cpus(&l1_table[i]); 1256 } 1257 } else { 1258 assert(l1_size == s->l1_size); 1259 l1_table = s->l1_table; 1260 l1_allocated = false; 1261 } 1262 1263 for (i = 0; i < l1_size; i++) { 1264 l2_offset = l1_table[i]; 1265 if (l2_offset) { 1266 old_l2_offset = l2_offset; 1267 l2_offset &= L1E_OFFSET_MASK; 1268 1269 if (offset_into_cluster(s, l2_offset)) { 1270 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1271 PRIx64 " unaligned (L1 index: %#x)", 1272 l2_offset, i); 1273 ret = -EIO; 1274 goto fail; 1275 } 1276 1277 for (slice = 0; slice < n_slices; slice++) { 1278 ret = qcow2_cache_get(bs, s->l2_table_cache, 1279 l2_offset + slice * slice_size2, 1280 (void **) &l2_slice); 1281 if (ret < 0) { 1282 goto fail; 1283 } 1284 1285 for (j = 0; j < s->l2_slice_size; j++) { 1286 uint64_t cluster_index; 1287 uint64_t offset; 1288 1289 entry = be64_to_cpu(l2_slice[j]); 1290 old_entry = entry; 1291 entry &= ~QCOW_OFLAG_COPIED; 1292 offset = entry & L2E_OFFSET_MASK; 1293 1294 switch (qcow2_get_cluster_type(entry)) { 1295 case QCOW2_CLUSTER_COMPRESSED: 1296 nb_csectors = ((entry >> s->csize_shift) & 1297 s->csize_mask) + 1; 1298 if (addend != 0) { 1299 ret = update_refcount( 1300 bs, (entry & s->cluster_offset_mask) & ~511, 1301 nb_csectors * 512, abs(addend), addend < 0, 1302 QCOW2_DISCARD_SNAPSHOT); 1303 if (ret < 0) { 1304 goto fail; 1305 } 1306 } 1307 /* compressed clusters are never modified */ 1308 refcount = 2; 1309 break; 1310 1311 case QCOW2_CLUSTER_NORMAL: 1312 case QCOW2_CLUSTER_ZERO_ALLOC: 1313 if (offset_into_cluster(s, offset)) { 1314 /* Here l2_index means table (not slice) index */ 1315 int l2_index = slice * s->l2_slice_size + j; 1316 qcow2_signal_corruption( 1317 bs, true, -1, -1, "Cluster " 1318 "allocation offset %#" PRIx64 1319 " unaligned (L2 offset: %#" 1320 PRIx64 ", L2 index: %#x)", 1321 offset, l2_offset, l2_index); 1322 ret = -EIO; 1323 goto fail; 1324 } 1325 1326 cluster_index = offset >> s->cluster_bits; 1327 assert(cluster_index); 1328 if (addend != 0) { 1329 ret = qcow2_update_cluster_refcount( 1330 bs, cluster_index, abs(addend), addend < 0, 1331 QCOW2_DISCARD_SNAPSHOT); 1332 if (ret < 0) { 1333 goto fail; 1334 } 1335 } 1336 1337 ret = qcow2_get_refcount(bs, cluster_index, &refcount); 1338 if (ret < 0) { 1339 goto fail; 1340 } 1341 break; 1342 1343 case QCOW2_CLUSTER_ZERO_PLAIN: 1344 case QCOW2_CLUSTER_UNALLOCATED: 1345 refcount = 0; 1346 break; 1347 1348 default: 1349 abort(); 1350 } 1351 1352 if (refcount == 1) { 1353 entry |= QCOW_OFLAG_COPIED; 1354 } 1355 if (entry != old_entry) { 1356 if (addend > 0) { 1357 qcow2_cache_set_dependency(bs, s->l2_table_cache, 1358 s->refcount_block_cache); 1359 } 1360 l2_slice[j] = cpu_to_be64(entry); 1361 qcow2_cache_entry_mark_dirty(s->l2_table_cache, 1362 l2_slice); 1363 } 1364 } 1365 1366 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1367 } 1368 1369 if (addend != 0) { 1370 ret = qcow2_update_cluster_refcount(bs, l2_offset >> 1371 s->cluster_bits, 1372 abs(addend), addend < 0, 1373 QCOW2_DISCARD_SNAPSHOT); 1374 if (ret < 0) { 1375 goto fail; 1376 } 1377 } 1378 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1379 &refcount); 1380 if (ret < 0) { 1381 goto fail; 1382 } else if (refcount == 1) { 1383 l2_offset |= QCOW_OFLAG_COPIED; 1384 } 1385 if (l2_offset != old_l2_offset) { 1386 l1_table[i] = l2_offset; 1387 l1_modified = 1; 1388 } 1389 } 1390 } 1391 1392 ret = bdrv_flush(bs); 1393 fail: 1394 if (l2_slice) { 1395 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1396 } 1397 1398 s->cache_discards = false; 1399 qcow2_process_discards(bs, ret); 1400 1401 /* Update L1 only if it isn't deleted anyway (addend = -1) */ 1402 if (ret == 0 && addend >= 0 && l1_modified) { 1403 for (i = 0; i < l1_size; i++) { 1404 cpu_to_be64s(&l1_table[i]); 1405 } 1406 1407 ret = bdrv_pwrite_sync(bs->file, l1_table_offset, 1408 l1_table, l1_size2); 1409 1410 for (i = 0; i < l1_size; i++) { 1411 be64_to_cpus(&l1_table[i]); 1412 } 1413 } 1414 if (l1_allocated) 1415 g_free(l1_table); 1416 return ret; 1417 } 1418 1419 1420 1421 1422 /*********************************************************/ 1423 /* refcount checking functions */ 1424 1425 1426 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries) 1427 { 1428 /* This assertion holds because there is no way we can address more than 1429 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because 1430 * offsets have to be representable in bytes); due to every cluster 1431 * corresponding to one refcount entry, we are well below that limit */ 1432 assert(entries < (UINT64_C(1) << (64 - 9))); 1433 1434 /* Thanks to the assertion this will not overflow, because 1435 * s->refcount_order < 7. 1436 * (note: x << s->refcount_order == x * s->refcount_bits) */ 1437 return DIV_ROUND_UP(entries << s->refcount_order, 8); 1438 } 1439 1440 /** 1441 * Reallocates *array so that it can hold new_size entries. *size must contain 1442 * the current number of entries in *array. If the reallocation fails, *array 1443 * and *size will not be modified and -errno will be returned. If the 1444 * reallocation is successful, *array will be set to the new buffer, *size 1445 * will be set to new_size and 0 will be returned. The size of the reallocated 1446 * refcount array buffer will be aligned to a cluster boundary, and the newly 1447 * allocated area will be zeroed. 1448 */ 1449 static int realloc_refcount_array(BDRVQcow2State *s, void **array, 1450 int64_t *size, int64_t new_size) 1451 { 1452 int64_t old_byte_size, new_byte_size; 1453 void *new_ptr; 1454 1455 /* Round to clusters so the array can be directly written to disk */ 1456 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size)) 1457 * s->cluster_size; 1458 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size)) 1459 * s->cluster_size; 1460 1461 if (new_byte_size == old_byte_size) { 1462 *size = new_size; 1463 return 0; 1464 } 1465 1466 assert(new_byte_size > 0); 1467 1468 if (new_byte_size > SIZE_MAX) { 1469 return -ENOMEM; 1470 } 1471 1472 new_ptr = g_try_realloc(*array, new_byte_size); 1473 if (!new_ptr) { 1474 return -ENOMEM; 1475 } 1476 1477 if (new_byte_size > old_byte_size) { 1478 memset((char *)new_ptr + old_byte_size, 0, 1479 new_byte_size - old_byte_size); 1480 } 1481 1482 *array = new_ptr; 1483 *size = new_size; 1484 1485 return 0; 1486 } 1487 1488 /* 1489 * Increases the refcount for a range of clusters in a given refcount table. 1490 * This is used to construct a temporary refcount table out of L1 and L2 tables 1491 * which can be compared to the refcount table saved in the image. 1492 * 1493 * Modifies the number of errors in res. 1494 */ 1495 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res, 1496 void **refcount_table, 1497 int64_t *refcount_table_size, 1498 int64_t offset, int64_t size) 1499 { 1500 BDRVQcow2State *s = bs->opaque; 1501 uint64_t start, last, cluster_offset, k, refcount; 1502 int ret; 1503 1504 if (size <= 0) { 1505 return 0; 1506 } 1507 1508 start = start_of_cluster(s, offset); 1509 last = start_of_cluster(s, offset + size - 1); 1510 for(cluster_offset = start; cluster_offset <= last; 1511 cluster_offset += s->cluster_size) { 1512 k = cluster_offset >> s->cluster_bits; 1513 if (k >= *refcount_table_size) { 1514 ret = realloc_refcount_array(s, refcount_table, 1515 refcount_table_size, k + 1); 1516 if (ret < 0) { 1517 res->check_errors++; 1518 return ret; 1519 } 1520 } 1521 1522 refcount = s->get_refcount(*refcount_table, k); 1523 if (refcount == s->refcount_max) { 1524 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64 1525 "\n", cluster_offset); 1526 fprintf(stderr, "Use qemu-img amend to increase the refcount entry " 1527 "width or qemu-img convert to create a clean copy if the " 1528 "image cannot be opened for writing\n"); 1529 res->corruptions++; 1530 continue; 1531 } 1532 s->set_refcount(*refcount_table, k, refcount + 1); 1533 } 1534 1535 return 0; 1536 } 1537 1538 /* Flags for check_refcounts_l1() and check_refcounts_l2() */ 1539 enum { 1540 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */ 1541 }; 1542 1543 /* 1544 * Increases the refcount in the given refcount table for the all clusters 1545 * referenced in the L2 table. While doing so, performs some checks on L2 1546 * entries. 1547 * 1548 * Returns the number of errors found by the checks or -errno if an internal 1549 * error occurred. 1550 */ 1551 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res, 1552 void **refcount_table, 1553 int64_t *refcount_table_size, int64_t l2_offset, 1554 int flags, BdrvCheckMode fix) 1555 { 1556 BDRVQcow2State *s = bs->opaque; 1557 uint64_t *l2_table, l2_entry; 1558 uint64_t next_contiguous_offset = 0; 1559 int i, l2_size, nb_csectors, ret; 1560 1561 /* Read L2 table from disk */ 1562 l2_size = s->l2_size * sizeof(uint64_t); 1563 l2_table = g_malloc(l2_size); 1564 1565 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size); 1566 if (ret < 0) { 1567 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n"); 1568 res->check_errors++; 1569 goto fail; 1570 } 1571 1572 /* Do the actual checks */ 1573 for(i = 0; i < s->l2_size; i++) { 1574 l2_entry = be64_to_cpu(l2_table[i]); 1575 1576 switch (qcow2_get_cluster_type(l2_entry)) { 1577 case QCOW2_CLUSTER_COMPRESSED: 1578 /* Compressed clusters don't have QCOW_OFLAG_COPIED */ 1579 if (l2_entry & QCOW_OFLAG_COPIED) { 1580 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": " 1581 "copied flag must never be set for compressed " 1582 "clusters\n", l2_entry & s->cluster_offset_mask); 1583 l2_entry &= ~QCOW_OFLAG_COPIED; 1584 res->corruptions++; 1585 } 1586 1587 /* Mark cluster as used */ 1588 nb_csectors = ((l2_entry >> s->csize_shift) & 1589 s->csize_mask) + 1; 1590 l2_entry &= s->cluster_offset_mask; 1591 ret = qcow2_inc_refcounts_imrt(bs, res, 1592 refcount_table, refcount_table_size, 1593 l2_entry & ~511, nb_csectors * 512); 1594 if (ret < 0) { 1595 goto fail; 1596 } 1597 1598 if (flags & CHECK_FRAG_INFO) { 1599 res->bfi.allocated_clusters++; 1600 res->bfi.compressed_clusters++; 1601 1602 /* Compressed clusters are fragmented by nature. Since they 1603 * take up sub-sector space but we only have sector granularity 1604 * I/O we need to re-read the same sectors even for adjacent 1605 * compressed clusters. 1606 */ 1607 res->bfi.fragmented_clusters++; 1608 } 1609 break; 1610 1611 case QCOW2_CLUSTER_ZERO_ALLOC: 1612 case QCOW2_CLUSTER_NORMAL: 1613 { 1614 uint64_t offset = l2_entry & L2E_OFFSET_MASK; 1615 1616 if (flags & CHECK_FRAG_INFO) { 1617 res->bfi.allocated_clusters++; 1618 if (next_contiguous_offset && 1619 offset != next_contiguous_offset) { 1620 res->bfi.fragmented_clusters++; 1621 } 1622 next_contiguous_offset = offset + s->cluster_size; 1623 } 1624 1625 /* Correct offsets are cluster aligned */ 1626 if (offset_into_cluster(s, offset)) { 1627 if (qcow2_get_cluster_type(l2_entry) == 1628 QCOW2_CLUSTER_ZERO_ALLOC) 1629 { 1630 fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated zero " 1631 "cluster is not properly aligned; L2 entry " 1632 "corrupted.\n", 1633 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", 1634 offset); 1635 if (fix & BDRV_FIX_ERRORS) { 1636 uint64_t l2e_offset = 1637 l2_offset + (uint64_t)i * sizeof(uint64_t); 1638 1639 l2_entry = QCOW_OFLAG_ZERO; 1640 l2_table[i] = cpu_to_be64(l2_entry); 1641 ret = qcow2_pre_write_overlap_check(bs, 1642 QCOW2_OL_ACTIVE_L2 | QCOW2_OL_INACTIVE_L2, 1643 l2e_offset, sizeof(uint64_t)); 1644 if (ret < 0) { 1645 fprintf(stderr, "ERROR: Overlap check failed\n"); 1646 res->check_errors++; 1647 /* Something is seriously wrong, so abort checking 1648 * this L2 table */ 1649 goto fail; 1650 } 1651 1652 ret = bdrv_pwrite_sync(bs->file, l2e_offset, 1653 &l2_table[i], sizeof(uint64_t)); 1654 if (ret < 0) { 1655 fprintf(stderr, "ERROR: Failed to overwrite L2 " 1656 "table entry: %s\n", strerror(-ret)); 1657 res->check_errors++; 1658 /* Do not abort, continue checking the rest of this 1659 * L2 table's entries */ 1660 } else { 1661 res->corruptions_fixed++; 1662 /* Skip marking the cluster as used 1663 * (it is unused now) */ 1664 continue; 1665 } 1666 } else { 1667 res->corruptions++; 1668 } 1669 } else { 1670 fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is " 1671 "not properly aligned; L2 entry corrupted.\n", offset); 1672 res->corruptions++; 1673 } 1674 } 1675 1676 /* Mark cluster as used */ 1677 ret = qcow2_inc_refcounts_imrt(bs, res, 1678 refcount_table, refcount_table_size, 1679 offset, s->cluster_size); 1680 if (ret < 0) { 1681 goto fail; 1682 } 1683 break; 1684 } 1685 1686 case QCOW2_CLUSTER_ZERO_PLAIN: 1687 case QCOW2_CLUSTER_UNALLOCATED: 1688 break; 1689 1690 default: 1691 abort(); 1692 } 1693 } 1694 1695 g_free(l2_table); 1696 return 0; 1697 1698 fail: 1699 g_free(l2_table); 1700 return ret; 1701 } 1702 1703 /* 1704 * Increases the refcount for the L1 table, its L2 tables and all referenced 1705 * clusters in the given refcount table. While doing so, performs some checks 1706 * on L1 and L2 entries. 1707 * 1708 * Returns the number of errors found by the checks or -errno if an internal 1709 * error occurred. 1710 */ 1711 static int check_refcounts_l1(BlockDriverState *bs, 1712 BdrvCheckResult *res, 1713 void **refcount_table, 1714 int64_t *refcount_table_size, 1715 int64_t l1_table_offset, int l1_size, 1716 int flags, BdrvCheckMode fix) 1717 { 1718 BDRVQcow2State *s = bs->opaque; 1719 uint64_t *l1_table = NULL, l2_offset, l1_size2; 1720 int i, ret; 1721 1722 l1_size2 = l1_size * sizeof(uint64_t); 1723 1724 /* Mark L1 table as used */ 1725 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size, 1726 l1_table_offset, l1_size2); 1727 if (ret < 0) { 1728 goto fail; 1729 } 1730 1731 /* Read L1 table entries from disk */ 1732 if (l1_size2 > 0) { 1733 l1_table = g_try_malloc(l1_size2); 1734 if (l1_table == NULL) { 1735 ret = -ENOMEM; 1736 res->check_errors++; 1737 goto fail; 1738 } 1739 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2); 1740 if (ret < 0) { 1741 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n"); 1742 res->check_errors++; 1743 goto fail; 1744 } 1745 for(i = 0;i < l1_size; i++) 1746 be64_to_cpus(&l1_table[i]); 1747 } 1748 1749 /* Do the actual checks */ 1750 for(i = 0; i < l1_size; i++) { 1751 l2_offset = l1_table[i]; 1752 if (l2_offset) { 1753 /* Mark L2 table as used */ 1754 l2_offset &= L1E_OFFSET_MASK; 1755 ret = qcow2_inc_refcounts_imrt(bs, res, 1756 refcount_table, refcount_table_size, 1757 l2_offset, s->cluster_size); 1758 if (ret < 0) { 1759 goto fail; 1760 } 1761 1762 /* L2 tables are cluster aligned */ 1763 if (offset_into_cluster(s, l2_offset)) { 1764 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not " 1765 "cluster aligned; L1 entry corrupted\n", l2_offset); 1766 res->corruptions++; 1767 } 1768 1769 /* Process and check L2 entries */ 1770 ret = check_refcounts_l2(bs, res, refcount_table, 1771 refcount_table_size, l2_offset, flags, 1772 fix); 1773 if (ret < 0) { 1774 goto fail; 1775 } 1776 } 1777 } 1778 g_free(l1_table); 1779 return 0; 1780 1781 fail: 1782 g_free(l1_table); 1783 return ret; 1784 } 1785 1786 /* 1787 * Checks the OFLAG_COPIED flag for all L1 and L2 entries. 1788 * 1789 * This function does not print an error message nor does it increment 1790 * check_errors if qcow2_get_refcount fails (this is because such an error will 1791 * have been already detected and sufficiently signaled by the calling function 1792 * (qcow2_check_refcounts) by the time this function is called). 1793 */ 1794 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res, 1795 BdrvCheckMode fix) 1796 { 1797 BDRVQcow2State *s = bs->opaque; 1798 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size); 1799 int ret; 1800 uint64_t refcount; 1801 int i, j; 1802 bool repair; 1803 1804 if (fix & BDRV_FIX_ERRORS) { 1805 /* Always repair */ 1806 repair = true; 1807 } else if (fix & BDRV_FIX_LEAKS) { 1808 /* Repair only if that seems safe: This function is always 1809 * called after the refcounts have been fixed, so the refcount 1810 * is accurate if that repair was successful */ 1811 repair = !res->check_errors && !res->corruptions && !res->leaks; 1812 } else { 1813 repair = false; 1814 } 1815 1816 for (i = 0; i < s->l1_size; i++) { 1817 uint64_t l1_entry = s->l1_table[i]; 1818 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK; 1819 bool l2_dirty = false; 1820 1821 if (!l2_offset) { 1822 continue; 1823 } 1824 1825 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1826 &refcount); 1827 if (ret < 0) { 1828 /* don't print message nor increment check_errors */ 1829 continue; 1830 } 1831 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) { 1832 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d " 1833 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 1834 repair ? "Repairing" : "ERROR", i, l1_entry, refcount); 1835 if (repair) { 1836 s->l1_table[i] = refcount == 1 1837 ? l1_entry | QCOW_OFLAG_COPIED 1838 : l1_entry & ~QCOW_OFLAG_COPIED; 1839 ret = qcow2_write_l1_entry(bs, i); 1840 if (ret < 0) { 1841 res->check_errors++; 1842 goto fail; 1843 } 1844 res->corruptions_fixed++; 1845 } else { 1846 res->corruptions++; 1847 } 1848 } 1849 1850 ret = bdrv_pread(bs->file, l2_offset, l2_table, 1851 s->l2_size * sizeof(uint64_t)); 1852 if (ret < 0) { 1853 fprintf(stderr, "ERROR: Could not read L2 table: %s\n", 1854 strerror(-ret)); 1855 res->check_errors++; 1856 goto fail; 1857 } 1858 1859 for (j = 0; j < s->l2_size; j++) { 1860 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1861 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK; 1862 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry); 1863 1864 if (cluster_type == QCOW2_CLUSTER_NORMAL || 1865 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) { 1866 ret = qcow2_get_refcount(bs, 1867 data_offset >> s->cluster_bits, 1868 &refcount); 1869 if (ret < 0) { 1870 /* don't print message nor increment check_errors */ 1871 continue; 1872 } 1873 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) { 1874 fprintf(stderr, "%s OFLAG_COPIED data cluster: " 1875 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n", 1876 repair ? "Repairing" : "ERROR", l2_entry, refcount); 1877 if (repair) { 1878 l2_table[j] = cpu_to_be64(refcount == 1 1879 ? l2_entry | QCOW_OFLAG_COPIED 1880 : l2_entry & ~QCOW_OFLAG_COPIED); 1881 l2_dirty = true; 1882 res->corruptions_fixed++; 1883 } else { 1884 res->corruptions++; 1885 } 1886 } 1887 } 1888 } 1889 1890 if (l2_dirty) { 1891 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2, 1892 l2_offset, s->cluster_size); 1893 if (ret < 0) { 1894 fprintf(stderr, "ERROR: Could not write L2 table; metadata " 1895 "overlap check failed: %s\n", strerror(-ret)); 1896 res->check_errors++; 1897 goto fail; 1898 } 1899 1900 ret = bdrv_pwrite(bs->file, l2_offset, l2_table, 1901 s->cluster_size); 1902 if (ret < 0) { 1903 fprintf(stderr, "ERROR: Could not write L2 table: %s\n", 1904 strerror(-ret)); 1905 res->check_errors++; 1906 goto fail; 1907 } 1908 } 1909 } 1910 1911 ret = 0; 1912 1913 fail: 1914 qemu_vfree(l2_table); 1915 return ret; 1916 } 1917 1918 /* 1919 * Checks consistency of refblocks and accounts for each refblock in 1920 * *refcount_table. 1921 */ 1922 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res, 1923 BdrvCheckMode fix, bool *rebuild, 1924 void **refcount_table, int64_t *nb_clusters) 1925 { 1926 BDRVQcow2State *s = bs->opaque; 1927 int64_t i, size; 1928 int ret; 1929 1930 for(i = 0; i < s->refcount_table_size; i++) { 1931 uint64_t offset, cluster; 1932 offset = s->refcount_table[i]; 1933 cluster = offset >> s->cluster_bits; 1934 1935 /* Refcount blocks are cluster aligned */ 1936 if (offset_into_cluster(s, offset)) { 1937 fprintf(stderr, "ERROR refcount block %" PRId64 " is not " 1938 "cluster aligned; refcount table entry corrupted\n", i); 1939 res->corruptions++; 1940 *rebuild = true; 1941 continue; 1942 } 1943 1944 if (cluster >= *nb_clusters) { 1945 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n", 1946 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i); 1947 1948 if (fix & BDRV_FIX_ERRORS) { 1949 int64_t new_nb_clusters; 1950 Error *local_err = NULL; 1951 1952 if (offset > INT64_MAX - s->cluster_size) { 1953 ret = -EINVAL; 1954 goto resize_fail; 1955 } 1956 1957 ret = bdrv_truncate(bs->file, offset + s->cluster_size, 1958 PREALLOC_MODE_OFF, &local_err); 1959 if (ret < 0) { 1960 error_report_err(local_err); 1961 goto resize_fail; 1962 } 1963 size = bdrv_getlength(bs->file->bs); 1964 if (size < 0) { 1965 ret = size; 1966 goto resize_fail; 1967 } 1968 1969 new_nb_clusters = size_to_clusters(s, size); 1970 assert(new_nb_clusters >= *nb_clusters); 1971 1972 ret = realloc_refcount_array(s, refcount_table, 1973 nb_clusters, new_nb_clusters); 1974 if (ret < 0) { 1975 res->check_errors++; 1976 return ret; 1977 } 1978 1979 if (cluster >= *nb_clusters) { 1980 ret = -EINVAL; 1981 goto resize_fail; 1982 } 1983 1984 res->corruptions_fixed++; 1985 ret = qcow2_inc_refcounts_imrt(bs, res, 1986 refcount_table, nb_clusters, 1987 offset, s->cluster_size); 1988 if (ret < 0) { 1989 return ret; 1990 } 1991 /* No need to check whether the refcount is now greater than 1: 1992 * This area was just allocated and zeroed, so it can only be 1993 * exactly 1 after qcow2_inc_refcounts_imrt() */ 1994 continue; 1995 1996 resize_fail: 1997 res->corruptions++; 1998 *rebuild = true; 1999 fprintf(stderr, "ERROR could not resize image: %s\n", 2000 strerror(-ret)); 2001 } else { 2002 res->corruptions++; 2003 } 2004 continue; 2005 } 2006 2007 if (offset != 0) { 2008 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2009 offset, s->cluster_size); 2010 if (ret < 0) { 2011 return ret; 2012 } 2013 if (s->get_refcount(*refcount_table, cluster) != 1) { 2014 fprintf(stderr, "ERROR refcount block %" PRId64 2015 " refcount=%" PRIu64 "\n", i, 2016 s->get_refcount(*refcount_table, cluster)); 2017 res->corruptions++; 2018 *rebuild = true; 2019 } 2020 } 2021 } 2022 2023 return 0; 2024 } 2025 2026 /* 2027 * Calculates an in-memory refcount table. 2028 */ 2029 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2030 BdrvCheckMode fix, bool *rebuild, 2031 void **refcount_table, int64_t *nb_clusters) 2032 { 2033 BDRVQcow2State *s = bs->opaque; 2034 int64_t i; 2035 QCowSnapshot *sn; 2036 int ret; 2037 2038 if (!*refcount_table) { 2039 int64_t old_size = 0; 2040 ret = realloc_refcount_array(s, refcount_table, 2041 &old_size, *nb_clusters); 2042 if (ret < 0) { 2043 res->check_errors++; 2044 return ret; 2045 } 2046 } 2047 2048 /* header */ 2049 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2050 0, s->cluster_size); 2051 if (ret < 0) { 2052 return ret; 2053 } 2054 2055 /* current L1 table */ 2056 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 2057 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO, 2058 fix); 2059 if (ret < 0) { 2060 return ret; 2061 } 2062 2063 /* snapshots */ 2064 for (i = 0; i < s->nb_snapshots; i++) { 2065 sn = s->snapshots + i; 2066 if (offset_into_cluster(s, sn->l1_table_offset)) { 2067 fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": " 2068 "L1 table is not cluster aligned; snapshot table entry " 2069 "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset); 2070 res->corruptions++; 2071 continue; 2072 } 2073 if (sn->l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) { 2074 fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": " 2075 "L1 table is too large; snapshot table entry corrupted\n", 2076 sn->id_str, sn->name, sn->l1_size); 2077 res->corruptions++; 2078 continue; 2079 } 2080 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, 2081 sn->l1_table_offset, sn->l1_size, 0, fix); 2082 if (ret < 0) { 2083 return ret; 2084 } 2085 } 2086 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2087 s->snapshots_offset, s->snapshots_size); 2088 if (ret < 0) { 2089 return ret; 2090 } 2091 2092 /* refcount data */ 2093 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2094 s->refcount_table_offset, 2095 s->refcount_table_size * sizeof(uint64_t)); 2096 if (ret < 0) { 2097 return ret; 2098 } 2099 2100 /* encryption */ 2101 if (s->crypto_header.length) { 2102 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters, 2103 s->crypto_header.offset, 2104 s->crypto_header.length); 2105 if (ret < 0) { 2106 return ret; 2107 } 2108 } 2109 2110 /* bitmaps */ 2111 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters); 2112 if (ret < 0) { 2113 return ret; 2114 } 2115 2116 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters); 2117 } 2118 2119 /* 2120 * Compares the actual reference count for each cluster in the image against the 2121 * refcount as reported by the refcount structures on-disk. 2122 */ 2123 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2124 BdrvCheckMode fix, bool *rebuild, 2125 int64_t *highest_cluster, 2126 void *refcount_table, int64_t nb_clusters) 2127 { 2128 BDRVQcow2State *s = bs->opaque; 2129 int64_t i; 2130 uint64_t refcount1, refcount2; 2131 int ret; 2132 2133 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) { 2134 ret = qcow2_get_refcount(bs, i, &refcount1); 2135 if (ret < 0) { 2136 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 2137 i, strerror(-ret)); 2138 res->check_errors++; 2139 continue; 2140 } 2141 2142 refcount2 = s->get_refcount(refcount_table, i); 2143 2144 if (refcount1 > 0 || refcount2 > 0) { 2145 *highest_cluster = i; 2146 } 2147 2148 if (refcount1 != refcount2) { 2149 /* Check if we're allowed to fix the mismatch */ 2150 int *num_fixed = NULL; 2151 if (refcount1 == 0) { 2152 *rebuild = true; 2153 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) { 2154 num_fixed = &res->leaks_fixed; 2155 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) { 2156 num_fixed = &res->corruptions_fixed; 2157 } 2158 2159 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64 2160 " reference=%" PRIu64 "\n", 2161 num_fixed != NULL ? "Repairing" : 2162 refcount1 < refcount2 ? "ERROR" : 2163 "Leaked", 2164 i, refcount1, refcount2); 2165 2166 if (num_fixed) { 2167 ret = update_refcount(bs, i << s->cluster_bits, 1, 2168 refcount_diff(refcount1, refcount2), 2169 refcount1 > refcount2, 2170 QCOW2_DISCARD_ALWAYS); 2171 if (ret >= 0) { 2172 (*num_fixed)++; 2173 continue; 2174 } 2175 } 2176 2177 /* And if we couldn't, print an error */ 2178 if (refcount1 < refcount2) { 2179 res->corruptions++; 2180 } else { 2181 res->leaks++; 2182 } 2183 } 2184 } 2185 } 2186 2187 /* 2188 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to 2189 * the on-disk refcount structures. 2190 * 2191 * On input, *first_free_cluster tells where to start looking, and need not 2192 * actually be a free cluster; the returned offset will not be before that 2193 * cluster. On output, *first_free_cluster points to the first gap found, even 2194 * if that gap was too small to be used as the returned offset. 2195 * 2196 * Note that *first_free_cluster is a cluster index whereas the return value is 2197 * an offset. 2198 */ 2199 static int64_t alloc_clusters_imrt(BlockDriverState *bs, 2200 int cluster_count, 2201 void **refcount_table, 2202 int64_t *imrt_nb_clusters, 2203 int64_t *first_free_cluster) 2204 { 2205 BDRVQcow2State *s = bs->opaque; 2206 int64_t cluster = *first_free_cluster, i; 2207 bool first_gap = true; 2208 int contiguous_free_clusters; 2209 int ret; 2210 2211 /* Starting at *first_free_cluster, find a range of at least cluster_count 2212 * continuously free clusters */ 2213 for (contiguous_free_clusters = 0; 2214 cluster < *imrt_nb_clusters && 2215 contiguous_free_clusters < cluster_count; 2216 cluster++) 2217 { 2218 if (!s->get_refcount(*refcount_table, cluster)) { 2219 contiguous_free_clusters++; 2220 if (first_gap) { 2221 /* If this is the first free cluster found, update 2222 * *first_free_cluster accordingly */ 2223 *first_free_cluster = cluster; 2224 first_gap = false; 2225 } 2226 } else if (contiguous_free_clusters) { 2227 contiguous_free_clusters = 0; 2228 } 2229 } 2230 2231 /* If contiguous_free_clusters is greater than zero, it contains the number 2232 * of continuously free clusters until the current cluster; the first free 2233 * cluster in the current "gap" is therefore 2234 * cluster - contiguous_free_clusters */ 2235 2236 /* If no such range could be found, grow the in-memory refcount table 2237 * accordingly to append free clusters at the end of the image */ 2238 if (contiguous_free_clusters < cluster_count) { 2239 /* contiguous_free_clusters clusters are already empty at the image end; 2240 * we need cluster_count clusters; therefore, we have to allocate 2241 * cluster_count - contiguous_free_clusters new clusters at the end of 2242 * the image (which is the current value of cluster; note that cluster 2243 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond 2244 * the image end) */ 2245 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters, 2246 cluster + cluster_count 2247 - contiguous_free_clusters); 2248 if (ret < 0) { 2249 return ret; 2250 } 2251 } 2252 2253 /* Go back to the first free cluster */ 2254 cluster -= contiguous_free_clusters; 2255 for (i = 0; i < cluster_count; i++) { 2256 s->set_refcount(*refcount_table, cluster + i, 1); 2257 } 2258 2259 return cluster << s->cluster_bits; 2260 } 2261 2262 /* 2263 * Creates a new refcount structure based solely on the in-memory information 2264 * given through *refcount_table. All necessary allocations will be reflected 2265 * in that array. 2266 * 2267 * On success, the old refcount structure is leaked (it will be covered by the 2268 * new refcount structure). 2269 */ 2270 static int rebuild_refcount_structure(BlockDriverState *bs, 2271 BdrvCheckResult *res, 2272 void **refcount_table, 2273 int64_t *nb_clusters) 2274 { 2275 BDRVQcow2State *s = bs->opaque; 2276 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0; 2277 int64_t refblock_offset, refblock_start, refblock_index; 2278 uint32_t reftable_size = 0; 2279 uint64_t *on_disk_reftable = NULL; 2280 void *on_disk_refblock; 2281 int ret = 0; 2282 struct { 2283 uint64_t reftable_offset; 2284 uint32_t reftable_clusters; 2285 } QEMU_PACKED reftable_offset_and_clusters; 2286 2287 qcow2_cache_empty(bs, s->refcount_block_cache); 2288 2289 write_refblocks: 2290 for (; cluster < *nb_clusters; cluster++) { 2291 if (!s->get_refcount(*refcount_table, cluster)) { 2292 continue; 2293 } 2294 2295 refblock_index = cluster >> s->refcount_block_bits; 2296 refblock_start = refblock_index << s->refcount_block_bits; 2297 2298 /* Don't allocate a cluster in a refblock already written to disk */ 2299 if (first_free_cluster < refblock_start) { 2300 first_free_cluster = refblock_start; 2301 } 2302 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table, 2303 nb_clusters, &first_free_cluster); 2304 if (refblock_offset < 0) { 2305 fprintf(stderr, "ERROR allocating refblock: %s\n", 2306 strerror(-refblock_offset)); 2307 res->check_errors++; 2308 ret = refblock_offset; 2309 goto fail; 2310 } 2311 2312 if (reftable_size <= refblock_index) { 2313 uint32_t old_reftable_size = reftable_size; 2314 uint64_t *new_on_disk_reftable; 2315 2316 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t), 2317 s->cluster_size) / sizeof(uint64_t); 2318 new_on_disk_reftable = g_try_realloc(on_disk_reftable, 2319 reftable_size * 2320 sizeof(uint64_t)); 2321 if (!new_on_disk_reftable) { 2322 res->check_errors++; 2323 ret = -ENOMEM; 2324 goto fail; 2325 } 2326 on_disk_reftable = new_on_disk_reftable; 2327 2328 memset(on_disk_reftable + old_reftable_size, 0, 2329 (reftable_size - old_reftable_size) * sizeof(uint64_t)); 2330 2331 /* The offset we have for the reftable is now no longer valid; 2332 * this will leak that range, but we can easily fix that by running 2333 * a leak-fixing check after this rebuild operation */ 2334 reftable_offset = -1; 2335 } else { 2336 assert(on_disk_reftable); 2337 } 2338 on_disk_reftable[refblock_index] = refblock_offset; 2339 2340 /* If this is apparently the last refblock (for now), try to squeeze the 2341 * reftable in */ 2342 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits && 2343 reftable_offset < 0) 2344 { 2345 uint64_t reftable_clusters = size_to_clusters(s, reftable_size * 2346 sizeof(uint64_t)); 2347 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2348 refcount_table, nb_clusters, 2349 &first_free_cluster); 2350 if (reftable_offset < 0) { 2351 fprintf(stderr, "ERROR allocating reftable: %s\n", 2352 strerror(-reftable_offset)); 2353 res->check_errors++; 2354 ret = reftable_offset; 2355 goto fail; 2356 } 2357 } 2358 2359 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset, 2360 s->cluster_size); 2361 if (ret < 0) { 2362 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret)); 2363 goto fail; 2364 } 2365 2366 /* The size of *refcount_table is always cluster-aligned, therefore the 2367 * write operation will not overflow */ 2368 on_disk_refblock = (void *)((char *) *refcount_table + 2369 refblock_index * s->cluster_size); 2370 2371 ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE, 2372 on_disk_refblock, s->cluster_sectors); 2373 if (ret < 0) { 2374 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret)); 2375 goto fail; 2376 } 2377 2378 /* Go to the end of this refblock */ 2379 cluster = refblock_start + s->refcount_block_size - 1; 2380 } 2381 2382 if (reftable_offset < 0) { 2383 uint64_t post_refblock_start, reftable_clusters; 2384 2385 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size); 2386 reftable_clusters = size_to_clusters(s, 2387 reftable_size * sizeof(uint64_t)); 2388 /* Not pretty but simple */ 2389 if (first_free_cluster < post_refblock_start) { 2390 first_free_cluster = post_refblock_start; 2391 } 2392 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters, 2393 refcount_table, nb_clusters, 2394 &first_free_cluster); 2395 if (reftable_offset < 0) { 2396 fprintf(stderr, "ERROR allocating reftable: %s\n", 2397 strerror(-reftable_offset)); 2398 res->check_errors++; 2399 ret = reftable_offset; 2400 goto fail; 2401 } 2402 2403 goto write_refblocks; 2404 } 2405 2406 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) { 2407 cpu_to_be64s(&on_disk_reftable[refblock_index]); 2408 } 2409 2410 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset, 2411 reftable_size * sizeof(uint64_t)); 2412 if (ret < 0) { 2413 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret)); 2414 goto fail; 2415 } 2416 2417 assert(reftable_size < INT_MAX / sizeof(uint64_t)); 2418 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable, 2419 reftable_size * sizeof(uint64_t)); 2420 if (ret < 0) { 2421 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret)); 2422 goto fail; 2423 } 2424 2425 /* Enter new reftable into the image header */ 2426 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset); 2427 reftable_offset_and_clusters.reftable_clusters = 2428 cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t))); 2429 ret = bdrv_pwrite_sync(bs->file, 2430 offsetof(QCowHeader, refcount_table_offset), 2431 &reftable_offset_and_clusters, 2432 sizeof(reftable_offset_and_clusters)); 2433 if (ret < 0) { 2434 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret)); 2435 goto fail; 2436 } 2437 2438 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) { 2439 be64_to_cpus(&on_disk_reftable[refblock_index]); 2440 } 2441 s->refcount_table = on_disk_reftable; 2442 s->refcount_table_offset = reftable_offset; 2443 s->refcount_table_size = reftable_size; 2444 update_max_refcount_table_index(s); 2445 2446 return 0; 2447 2448 fail: 2449 g_free(on_disk_reftable); 2450 return ret; 2451 } 2452 2453 /* 2454 * Checks an image for refcount consistency. 2455 * 2456 * Returns 0 if no errors are found, the number of errors in case the image is 2457 * detected as corrupted, and -errno when an internal error occurred. 2458 */ 2459 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res, 2460 BdrvCheckMode fix) 2461 { 2462 BDRVQcow2State *s = bs->opaque; 2463 BdrvCheckResult pre_compare_res; 2464 int64_t size, highest_cluster, nb_clusters; 2465 void *refcount_table = NULL; 2466 bool rebuild = false; 2467 int ret; 2468 2469 size = bdrv_getlength(bs->file->bs); 2470 if (size < 0) { 2471 res->check_errors++; 2472 return size; 2473 } 2474 2475 nb_clusters = size_to_clusters(s, size); 2476 if (nb_clusters > INT_MAX) { 2477 res->check_errors++; 2478 return -EFBIG; 2479 } 2480 2481 res->bfi.total_clusters = 2482 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE); 2483 2484 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table, 2485 &nb_clusters); 2486 if (ret < 0) { 2487 goto fail; 2488 } 2489 2490 /* In case we don't need to rebuild the refcount structure (but want to fix 2491 * something), this function is immediately called again, in which case the 2492 * result should be ignored */ 2493 pre_compare_res = *res; 2494 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table, 2495 nb_clusters); 2496 2497 if (rebuild && (fix & BDRV_FIX_ERRORS)) { 2498 BdrvCheckResult old_res = *res; 2499 int fresh_leaks = 0; 2500 2501 fprintf(stderr, "Rebuilding refcount structure\n"); 2502 ret = rebuild_refcount_structure(bs, res, &refcount_table, 2503 &nb_clusters); 2504 if (ret < 0) { 2505 goto fail; 2506 } 2507 2508 res->corruptions = 0; 2509 res->leaks = 0; 2510 2511 /* Because the old reftable has been exchanged for a new one the 2512 * references have to be recalculated */ 2513 rebuild = false; 2514 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters)); 2515 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table, 2516 &nb_clusters); 2517 if (ret < 0) { 2518 goto fail; 2519 } 2520 2521 if (fix & BDRV_FIX_LEAKS) { 2522 /* The old refcount structures are now leaked, fix it; the result 2523 * can be ignored, aside from leaks which were introduced by 2524 * rebuild_refcount_structure() that could not be fixed */ 2525 BdrvCheckResult saved_res = *res; 2526 *res = (BdrvCheckResult){ 0 }; 2527 2528 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild, 2529 &highest_cluster, refcount_table, nb_clusters); 2530 if (rebuild) { 2531 fprintf(stderr, "ERROR rebuilt refcount structure is still " 2532 "broken\n"); 2533 } 2534 2535 /* Any leaks accounted for here were introduced by 2536 * rebuild_refcount_structure() because that function has created a 2537 * new refcount structure from scratch */ 2538 fresh_leaks = res->leaks; 2539 *res = saved_res; 2540 } 2541 2542 if (res->corruptions < old_res.corruptions) { 2543 res->corruptions_fixed += old_res.corruptions - res->corruptions; 2544 } 2545 if (res->leaks < old_res.leaks) { 2546 res->leaks_fixed += old_res.leaks - res->leaks; 2547 } 2548 res->leaks += fresh_leaks; 2549 } else if (fix) { 2550 if (rebuild) { 2551 fprintf(stderr, "ERROR need to rebuild refcount structures\n"); 2552 res->check_errors++; 2553 ret = -EIO; 2554 goto fail; 2555 } 2556 2557 if (res->leaks || res->corruptions) { 2558 *res = pre_compare_res; 2559 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster, 2560 refcount_table, nb_clusters); 2561 } 2562 } 2563 2564 /* check OFLAG_COPIED */ 2565 ret = check_oflag_copied(bs, res, fix); 2566 if (ret < 0) { 2567 goto fail; 2568 } 2569 2570 res->image_end_offset = (highest_cluster + 1) * s->cluster_size; 2571 ret = 0; 2572 2573 fail: 2574 g_free(refcount_table); 2575 2576 return ret; 2577 } 2578 2579 #define overlaps_with(ofs, sz) \ 2580 ranges_overlap(offset, size, ofs, sz) 2581 2582 /* 2583 * Checks if the given offset into the image file is actually free to use by 2584 * looking for overlaps with important metadata sections (L1/L2 tables etc.), 2585 * i.e. a sanity check without relying on the refcount tables. 2586 * 2587 * The ign parameter specifies what checks not to perform (being a bitmask of 2588 * QCow2MetadataOverlap values), i.e., what sections to ignore. 2589 * 2590 * Returns: 2591 * - 0 if writing to this offset will not affect the mentioned metadata 2592 * - a positive QCow2MetadataOverlap value indicating one overlapping section 2593 * - a negative value (-errno) indicating an error while performing a check, 2594 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2 2595 */ 2596 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset, 2597 int64_t size) 2598 { 2599 BDRVQcow2State *s = bs->opaque; 2600 int chk = s->overlap_check & ~ign; 2601 int i, j; 2602 2603 if (!size) { 2604 return 0; 2605 } 2606 2607 if (chk & QCOW2_OL_MAIN_HEADER) { 2608 if (offset < s->cluster_size) { 2609 return QCOW2_OL_MAIN_HEADER; 2610 } 2611 } 2612 2613 /* align range to test to cluster boundaries */ 2614 size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size); 2615 offset = start_of_cluster(s, offset); 2616 2617 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) { 2618 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) { 2619 return QCOW2_OL_ACTIVE_L1; 2620 } 2621 } 2622 2623 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) { 2624 if (overlaps_with(s->refcount_table_offset, 2625 s->refcount_table_size * sizeof(uint64_t))) { 2626 return QCOW2_OL_REFCOUNT_TABLE; 2627 } 2628 } 2629 2630 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) { 2631 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) { 2632 return QCOW2_OL_SNAPSHOT_TABLE; 2633 } 2634 } 2635 2636 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) { 2637 for (i = 0; i < s->nb_snapshots; i++) { 2638 if (s->snapshots[i].l1_size && 2639 overlaps_with(s->snapshots[i].l1_table_offset, 2640 s->snapshots[i].l1_size * sizeof(uint64_t))) { 2641 return QCOW2_OL_INACTIVE_L1; 2642 } 2643 } 2644 } 2645 2646 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) { 2647 for (i = 0; i < s->l1_size; i++) { 2648 if ((s->l1_table[i] & L1E_OFFSET_MASK) && 2649 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK, 2650 s->cluster_size)) { 2651 return QCOW2_OL_ACTIVE_L2; 2652 } 2653 } 2654 } 2655 2656 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) { 2657 unsigned last_entry = s->max_refcount_table_index; 2658 assert(last_entry < s->refcount_table_size); 2659 assert(last_entry + 1 == s->refcount_table_size || 2660 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0); 2661 for (i = 0; i <= last_entry; i++) { 2662 if ((s->refcount_table[i] & REFT_OFFSET_MASK) && 2663 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK, 2664 s->cluster_size)) { 2665 return QCOW2_OL_REFCOUNT_BLOCK; 2666 } 2667 } 2668 } 2669 2670 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) { 2671 for (i = 0; i < s->nb_snapshots; i++) { 2672 uint64_t l1_ofs = s->snapshots[i].l1_table_offset; 2673 uint32_t l1_sz = s->snapshots[i].l1_size; 2674 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t); 2675 uint64_t *l1; 2676 int ret; 2677 2678 ret = qcow2_validate_table(bs, l1_ofs, l1_sz, sizeof(uint64_t), 2679 QCOW_MAX_L1_SIZE, "", NULL); 2680 if (ret < 0) { 2681 return ret; 2682 } 2683 2684 l1 = g_try_malloc(l1_sz2); 2685 2686 if (l1_sz2 && l1 == NULL) { 2687 return -ENOMEM; 2688 } 2689 2690 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2); 2691 if (ret < 0) { 2692 g_free(l1); 2693 return ret; 2694 } 2695 2696 for (j = 0; j < l1_sz; j++) { 2697 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK; 2698 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) { 2699 g_free(l1); 2700 return QCOW2_OL_INACTIVE_L2; 2701 } 2702 } 2703 2704 g_free(l1); 2705 } 2706 } 2707 2708 if ((chk & QCOW2_OL_BITMAP_DIRECTORY) && 2709 (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS)) 2710 { 2711 if (overlaps_with(s->bitmap_directory_offset, 2712 s->bitmap_directory_size)) 2713 { 2714 return QCOW2_OL_BITMAP_DIRECTORY; 2715 } 2716 } 2717 2718 return 0; 2719 } 2720 2721 static const char *metadata_ol_names[] = { 2722 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header", 2723 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table", 2724 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table", 2725 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table", 2726 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block", 2727 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table", 2728 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table", 2729 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table", 2730 }; 2731 2732 /* 2733 * First performs a check for metadata overlaps (through 2734 * qcow2_check_metadata_overlap); if that fails with a negative value (error 2735 * while performing a check), that value is returned. If an impending overlap 2736 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt 2737 * and -EIO returned. 2738 * 2739 * Returns 0 if there were neither overlaps nor errors while checking for 2740 * overlaps; or a negative value (-errno) on error. 2741 */ 2742 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset, 2743 int64_t size) 2744 { 2745 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size); 2746 2747 if (ret < 0) { 2748 return ret; 2749 } else if (ret > 0) { 2750 int metadata_ol_bitnr = ctz32(ret); 2751 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR); 2752 2753 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid " 2754 "write on metadata (overlaps with %s)", 2755 metadata_ol_names[metadata_ol_bitnr]); 2756 return -EIO; 2757 } 2758 2759 return 0; 2760 } 2761 2762 /* A pointer to a function of this type is given to walk_over_reftable(). That 2763 * function will create refblocks and pass them to a RefblockFinishOp once they 2764 * are completed (@refblock). @refblock_empty is set if the refblock is 2765 * completely empty. 2766 * 2767 * Along with the refblock, a corresponding reftable entry is passed, in the 2768 * reftable @reftable (which may be reallocated) at @reftable_index. 2769 * 2770 * @allocated should be set to true if a new cluster has been allocated. 2771 */ 2772 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable, 2773 uint64_t reftable_index, uint64_t *reftable_size, 2774 void *refblock, bool refblock_empty, 2775 bool *allocated, Error **errp); 2776 2777 /** 2778 * This "operation" for walk_over_reftable() allocates the refblock on disk (if 2779 * it is not empty) and inserts its offset into the new reftable. The size of 2780 * this new reftable is increased as required. 2781 */ 2782 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable, 2783 uint64_t reftable_index, uint64_t *reftable_size, 2784 void *refblock, bool refblock_empty, bool *allocated, 2785 Error **errp) 2786 { 2787 BDRVQcow2State *s = bs->opaque; 2788 int64_t offset; 2789 2790 if (!refblock_empty && reftable_index >= *reftable_size) { 2791 uint64_t *new_reftable; 2792 uint64_t new_reftable_size; 2793 2794 new_reftable_size = ROUND_UP(reftable_index + 1, 2795 s->cluster_size / sizeof(uint64_t)); 2796 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) { 2797 error_setg(errp, 2798 "This operation would make the refcount table grow " 2799 "beyond the maximum size supported by QEMU, aborting"); 2800 return -ENOTSUP; 2801 } 2802 2803 new_reftable = g_try_realloc(*reftable, new_reftable_size * 2804 sizeof(uint64_t)); 2805 if (!new_reftable) { 2806 error_setg(errp, "Failed to increase reftable buffer size"); 2807 return -ENOMEM; 2808 } 2809 2810 memset(new_reftable + *reftable_size, 0, 2811 (new_reftable_size - *reftable_size) * sizeof(uint64_t)); 2812 2813 *reftable = new_reftable; 2814 *reftable_size = new_reftable_size; 2815 } 2816 2817 if (!refblock_empty && !(*reftable)[reftable_index]) { 2818 offset = qcow2_alloc_clusters(bs, s->cluster_size); 2819 if (offset < 0) { 2820 error_setg_errno(errp, -offset, "Failed to allocate refblock"); 2821 return offset; 2822 } 2823 (*reftable)[reftable_index] = offset; 2824 *allocated = true; 2825 } 2826 2827 return 0; 2828 } 2829 2830 /** 2831 * This "operation" for walk_over_reftable() writes the refblock to disk at the 2832 * offset specified by the new reftable's entry. It does not modify the new 2833 * reftable or change any refcounts. 2834 */ 2835 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable, 2836 uint64_t reftable_index, uint64_t *reftable_size, 2837 void *refblock, bool refblock_empty, bool *allocated, 2838 Error **errp) 2839 { 2840 BDRVQcow2State *s = bs->opaque; 2841 int64_t offset; 2842 int ret; 2843 2844 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) { 2845 offset = (*reftable)[reftable_index]; 2846 2847 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 2848 if (ret < 0) { 2849 error_setg_errno(errp, -ret, "Overlap check failed"); 2850 return ret; 2851 } 2852 2853 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size); 2854 if (ret < 0) { 2855 error_setg_errno(errp, -ret, "Failed to write refblock"); 2856 return ret; 2857 } 2858 } else { 2859 assert(refblock_empty); 2860 } 2861 2862 return 0; 2863 } 2864 2865 /** 2866 * This function walks over the existing reftable and every referenced refblock; 2867 * if @new_set_refcount is non-NULL, it is called for every refcount entry to 2868 * create an equal new entry in the passed @new_refblock. Once that 2869 * @new_refblock is completely filled, @operation will be called. 2870 * 2871 * @status_cb and @cb_opaque are used for the amend operation's status callback. 2872 * @index is the index of the walk_over_reftable() calls and @total is the total 2873 * number of walk_over_reftable() calls per amend operation. Both are used for 2874 * calculating the parameters for the status callback. 2875 * 2876 * @allocated is set to true if a new cluster has been allocated. 2877 */ 2878 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable, 2879 uint64_t *new_reftable_index, 2880 uint64_t *new_reftable_size, 2881 void *new_refblock, int new_refblock_size, 2882 int new_refcount_bits, 2883 RefblockFinishOp *operation, bool *allocated, 2884 Qcow2SetRefcountFunc *new_set_refcount, 2885 BlockDriverAmendStatusCB *status_cb, 2886 void *cb_opaque, int index, int total, 2887 Error **errp) 2888 { 2889 BDRVQcow2State *s = bs->opaque; 2890 uint64_t reftable_index; 2891 bool new_refblock_empty = true; 2892 int refblock_index; 2893 int new_refblock_index = 0; 2894 int ret; 2895 2896 for (reftable_index = 0; reftable_index < s->refcount_table_size; 2897 reftable_index++) 2898 { 2899 uint64_t refblock_offset = s->refcount_table[reftable_index] 2900 & REFT_OFFSET_MASK; 2901 2902 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index, 2903 (uint64_t)total * s->refcount_table_size, cb_opaque); 2904 2905 if (refblock_offset) { 2906 void *refblock; 2907 2908 if (offset_into_cluster(s, refblock_offset)) { 2909 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" 2910 PRIx64 " unaligned (reftable index: %#" 2911 PRIx64 ")", refblock_offset, 2912 reftable_index); 2913 error_setg(errp, 2914 "Image is corrupt (unaligned refblock offset)"); 2915 return -EIO; 2916 } 2917 2918 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset, 2919 &refblock); 2920 if (ret < 0) { 2921 error_setg_errno(errp, -ret, "Failed to retrieve refblock"); 2922 return ret; 2923 } 2924 2925 for (refblock_index = 0; refblock_index < s->refcount_block_size; 2926 refblock_index++) 2927 { 2928 uint64_t refcount; 2929 2930 if (new_refblock_index >= new_refblock_size) { 2931 /* new_refblock is now complete */ 2932 ret = operation(bs, new_reftable, *new_reftable_index, 2933 new_reftable_size, new_refblock, 2934 new_refblock_empty, allocated, errp); 2935 if (ret < 0) { 2936 qcow2_cache_put(s->refcount_block_cache, &refblock); 2937 return ret; 2938 } 2939 2940 (*new_reftable_index)++; 2941 new_refblock_index = 0; 2942 new_refblock_empty = true; 2943 } 2944 2945 refcount = s->get_refcount(refblock, refblock_index); 2946 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) { 2947 uint64_t offset; 2948 2949 qcow2_cache_put(s->refcount_block_cache, &refblock); 2950 2951 offset = ((reftable_index << s->refcount_block_bits) 2952 + refblock_index) << s->cluster_bits; 2953 2954 error_setg(errp, "Cannot decrease refcount entry width to " 2955 "%i bits: Cluster at offset %#" PRIx64 " has a " 2956 "refcount of %" PRIu64, new_refcount_bits, 2957 offset, refcount); 2958 return -EINVAL; 2959 } 2960 2961 if (new_set_refcount) { 2962 new_set_refcount(new_refblock, new_refblock_index++, 2963 refcount); 2964 } else { 2965 new_refblock_index++; 2966 } 2967 new_refblock_empty = new_refblock_empty && refcount == 0; 2968 } 2969 2970 qcow2_cache_put(s->refcount_block_cache, &refblock); 2971 } else { 2972 /* No refblock means every refcount is 0 */ 2973 for (refblock_index = 0; refblock_index < s->refcount_block_size; 2974 refblock_index++) 2975 { 2976 if (new_refblock_index >= new_refblock_size) { 2977 /* new_refblock is now complete */ 2978 ret = operation(bs, new_reftable, *new_reftable_index, 2979 new_reftable_size, new_refblock, 2980 new_refblock_empty, allocated, errp); 2981 if (ret < 0) { 2982 return ret; 2983 } 2984 2985 (*new_reftable_index)++; 2986 new_refblock_index = 0; 2987 new_refblock_empty = true; 2988 } 2989 2990 if (new_set_refcount) { 2991 new_set_refcount(new_refblock, new_refblock_index++, 0); 2992 } else { 2993 new_refblock_index++; 2994 } 2995 } 2996 } 2997 } 2998 2999 if (new_refblock_index > 0) { 3000 /* Complete the potentially existing partially filled final refblock */ 3001 if (new_set_refcount) { 3002 for (; new_refblock_index < new_refblock_size; 3003 new_refblock_index++) 3004 { 3005 new_set_refcount(new_refblock, new_refblock_index, 0); 3006 } 3007 } 3008 3009 ret = operation(bs, new_reftable, *new_reftable_index, 3010 new_reftable_size, new_refblock, new_refblock_empty, 3011 allocated, errp); 3012 if (ret < 0) { 3013 return ret; 3014 } 3015 3016 (*new_reftable_index)++; 3017 } 3018 3019 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size, 3020 (uint64_t)total * s->refcount_table_size, cb_opaque); 3021 3022 return 0; 3023 } 3024 3025 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order, 3026 BlockDriverAmendStatusCB *status_cb, 3027 void *cb_opaque, Error **errp) 3028 { 3029 BDRVQcow2State *s = bs->opaque; 3030 Qcow2GetRefcountFunc *new_get_refcount; 3031 Qcow2SetRefcountFunc *new_set_refcount; 3032 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size); 3033 uint64_t *new_reftable = NULL, new_reftable_size = 0; 3034 uint64_t *old_reftable, old_reftable_size, old_reftable_offset; 3035 uint64_t new_reftable_index = 0; 3036 uint64_t i; 3037 int64_t new_reftable_offset = 0, allocated_reftable_size = 0; 3038 int new_refblock_size, new_refcount_bits = 1 << refcount_order; 3039 int old_refcount_order; 3040 int walk_index = 0; 3041 int ret; 3042 bool new_allocation; 3043 3044 assert(s->qcow_version >= 3); 3045 assert(refcount_order >= 0 && refcount_order <= 6); 3046 3047 /* see qcow2_open() */ 3048 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3)); 3049 3050 new_get_refcount = get_refcount_funcs[refcount_order]; 3051 new_set_refcount = set_refcount_funcs[refcount_order]; 3052 3053 3054 do { 3055 int total_walks; 3056 3057 new_allocation = false; 3058 3059 /* At least we have to do this walk and the one which writes the 3060 * refblocks; also, at least we have to do this loop here at least 3061 * twice (normally), first to do the allocations, and second to 3062 * determine that everything is correctly allocated, this then makes 3063 * three walks in total */ 3064 total_walks = MAX(walk_index + 2, 3); 3065 3066 /* First, allocate the structures so they are present in the refcount 3067 * structures */ 3068 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 3069 &new_reftable_size, NULL, new_refblock_size, 3070 new_refcount_bits, &alloc_refblock, 3071 &new_allocation, NULL, status_cb, cb_opaque, 3072 walk_index++, total_walks, errp); 3073 if (ret < 0) { 3074 goto done; 3075 } 3076 3077 new_reftable_index = 0; 3078 3079 if (new_allocation) { 3080 if (new_reftable_offset) { 3081 qcow2_free_clusters(bs, new_reftable_offset, 3082 allocated_reftable_size * sizeof(uint64_t), 3083 QCOW2_DISCARD_NEVER); 3084 } 3085 3086 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size * 3087 sizeof(uint64_t)); 3088 if (new_reftable_offset < 0) { 3089 error_setg_errno(errp, -new_reftable_offset, 3090 "Failed to allocate the new reftable"); 3091 ret = new_reftable_offset; 3092 goto done; 3093 } 3094 allocated_reftable_size = new_reftable_size; 3095 } 3096 } while (new_allocation); 3097 3098 /* Second, write the new refblocks */ 3099 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index, 3100 &new_reftable_size, new_refblock, 3101 new_refblock_size, new_refcount_bits, 3102 &flush_refblock, &new_allocation, new_set_refcount, 3103 status_cb, cb_opaque, walk_index, walk_index + 1, 3104 errp); 3105 if (ret < 0) { 3106 goto done; 3107 } 3108 assert(!new_allocation); 3109 3110 3111 /* Write the new reftable */ 3112 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset, 3113 new_reftable_size * sizeof(uint64_t)); 3114 if (ret < 0) { 3115 error_setg_errno(errp, -ret, "Overlap check failed"); 3116 goto done; 3117 } 3118 3119 for (i = 0; i < new_reftable_size; i++) { 3120 cpu_to_be64s(&new_reftable[i]); 3121 } 3122 3123 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable, 3124 new_reftable_size * sizeof(uint64_t)); 3125 3126 for (i = 0; i < new_reftable_size; i++) { 3127 be64_to_cpus(&new_reftable[i]); 3128 } 3129 3130 if (ret < 0) { 3131 error_setg_errno(errp, -ret, "Failed to write the new reftable"); 3132 goto done; 3133 } 3134 3135 3136 /* Empty the refcount cache */ 3137 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 3138 if (ret < 0) { 3139 error_setg_errno(errp, -ret, "Failed to flush the refblock cache"); 3140 goto done; 3141 } 3142 3143 /* Update the image header to point to the new reftable; this only updates 3144 * the fields which are relevant to qcow2_update_header(); other fields 3145 * such as s->refcount_table or s->refcount_bits stay stale for now 3146 * (because we have to restore everything if qcow2_update_header() fails) */ 3147 old_refcount_order = s->refcount_order; 3148 old_reftable_size = s->refcount_table_size; 3149 old_reftable_offset = s->refcount_table_offset; 3150 3151 s->refcount_order = refcount_order; 3152 s->refcount_table_size = new_reftable_size; 3153 s->refcount_table_offset = new_reftable_offset; 3154 3155 ret = qcow2_update_header(bs); 3156 if (ret < 0) { 3157 s->refcount_order = old_refcount_order; 3158 s->refcount_table_size = old_reftable_size; 3159 s->refcount_table_offset = old_reftable_offset; 3160 error_setg_errno(errp, -ret, "Failed to update the qcow2 header"); 3161 goto done; 3162 } 3163 3164 /* Now update the rest of the in-memory information */ 3165 old_reftable = s->refcount_table; 3166 s->refcount_table = new_reftable; 3167 update_max_refcount_table_index(s); 3168 3169 s->refcount_bits = 1 << refcount_order; 3170 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1); 3171 s->refcount_max += s->refcount_max - 1; 3172 3173 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3); 3174 s->refcount_block_size = 1 << s->refcount_block_bits; 3175 3176 s->get_refcount = new_get_refcount; 3177 s->set_refcount = new_set_refcount; 3178 3179 /* For cleaning up all old refblocks and the old reftable below the "done" 3180 * label */ 3181 new_reftable = old_reftable; 3182 new_reftable_size = old_reftable_size; 3183 new_reftable_offset = old_reftable_offset; 3184 3185 done: 3186 if (new_reftable) { 3187 /* On success, new_reftable actually points to the old reftable (and 3188 * new_reftable_size is the old reftable's size); but that is just 3189 * fine */ 3190 for (i = 0; i < new_reftable_size; i++) { 3191 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK; 3192 if (offset) { 3193 qcow2_free_clusters(bs, offset, s->cluster_size, 3194 QCOW2_DISCARD_OTHER); 3195 } 3196 } 3197 g_free(new_reftable); 3198 3199 if (new_reftable_offset > 0) { 3200 qcow2_free_clusters(bs, new_reftable_offset, 3201 new_reftable_size * sizeof(uint64_t), 3202 QCOW2_DISCARD_OTHER); 3203 } 3204 } 3205 3206 qemu_vfree(new_refblock); 3207 return ret; 3208 } 3209 3210 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset) 3211 { 3212 BDRVQcow2State *s = bs->opaque; 3213 uint32_t index = offset_to_reftable_index(s, offset); 3214 int64_t covering_refblock_offset = 0; 3215 3216 if (index < s->refcount_table_size) { 3217 covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK; 3218 } 3219 if (!covering_refblock_offset) { 3220 qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is " 3221 "not covered by the refcount structures", 3222 offset); 3223 return -EIO; 3224 } 3225 3226 return covering_refblock_offset; 3227 } 3228 3229 static int qcow2_discard_refcount_block(BlockDriverState *bs, 3230 uint64_t discard_block_offs) 3231 { 3232 BDRVQcow2State *s = bs->opaque; 3233 int64_t refblock_offs; 3234 uint64_t cluster_index = discard_block_offs >> s->cluster_bits; 3235 uint32_t block_index = cluster_index & (s->refcount_block_size - 1); 3236 void *refblock; 3237 int ret; 3238 3239 refblock_offs = get_refblock_offset(bs, discard_block_offs); 3240 if (refblock_offs < 0) { 3241 return refblock_offs; 3242 } 3243 3244 assert(discard_block_offs != 0); 3245 3246 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs, 3247 &refblock); 3248 if (ret < 0) { 3249 return ret; 3250 } 3251 3252 if (s->get_refcount(refblock, block_index) != 1) { 3253 qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:" 3254 " refblock offset %#" PRIx64 3255 ", reftable index %u" 3256 ", block offset %#" PRIx64 3257 ", refcount %#" PRIx64, 3258 refblock_offs, 3259 offset_to_reftable_index(s, discard_block_offs), 3260 discard_block_offs, 3261 s->get_refcount(refblock, block_index)); 3262 qcow2_cache_put(s->refcount_block_cache, &refblock); 3263 return -EINVAL; 3264 } 3265 s->set_refcount(refblock, block_index, 0); 3266 3267 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock); 3268 3269 qcow2_cache_put(s->refcount_block_cache, &refblock); 3270 3271 if (cluster_index < s->free_cluster_index) { 3272 s->free_cluster_index = cluster_index; 3273 } 3274 3275 refblock = qcow2_cache_is_table_offset(s->refcount_block_cache, 3276 discard_block_offs); 3277 if (refblock) { 3278 /* discard refblock from the cache if refblock is cached */ 3279 qcow2_cache_discard(s->refcount_block_cache, refblock); 3280 } 3281 update_refcount_discard(bs, discard_block_offs, s->cluster_size); 3282 3283 return 0; 3284 } 3285 3286 int qcow2_shrink_reftable(BlockDriverState *bs) 3287 { 3288 BDRVQcow2State *s = bs->opaque; 3289 uint64_t *reftable_tmp = 3290 g_malloc(s->refcount_table_size * sizeof(uint64_t)); 3291 int i, ret; 3292 3293 for (i = 0; i < s->refcount_table_size; i++) { 3294 int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK; 3295 void *refblock; 3296 bool unused_block; 3297 3298 if (refblock_offs == 0) { 3299 reftable_tmp[i] = 0; 3300 continue; 3301 } 3302 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs, 3303 &refblock); 3304 if (ret < 0) { 3305 goto out; 3306 } 3307 3308 /* the refblock has own reference */ 3309 if (i == offset_to_reftable_index(s, refblock_offs)) { 3310 uint64_t block_index = (refblock_offs >> s->cluster_bits) & 3311 (s->refcount_block_size - 1); 3312 uint64_t refcount = s->get_refcount(refblock, block_index); 3313 3314 s->set_refcount(refblock, block_index, 0); 3315 3316 unused_block = buffer_is_zero(refblock, s->cluster_size); 3317 3318 s->set_refcount(refblock, block_index, refcount); 3319 } else { 3320 unused_block = buffer_is_zero(refblock, s->cluster_size); 3321 } 3322 qcow2_cache_put(s->refcount_block_cache, &refblock); 3323 3324 reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]); 3325 } 3326 3327 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp, 3328 s->refcount_table_size * sizeof(uint64_t)); 3329 /* 3330 * If the write in the reftable failed the image may contain a partially 3331 * overwritten reftable. In this case it would be better to clear the 3332 * reftable in memory to avoid possible image corruption. 3333 */ 3334 for (i = 0; i < s->refcount_table_size; i++) { 3335 if (s->refcount_table[i] && !reftable_tmp[i]) { 3336 if (ret == 0) { 3337 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] & 3338 REFT_OFFSET_MASK); 3339 } 3340 s->refcount_table[i] = 0; 3341 } 3342 } 3343 3344 if (!s->cache_discards) { 3345 qcow2_process_discards(bs, ret); 3346 } 3347 3348 out: 3349 g_free(reftable_tmp); 3350 return ret; 3351 } 3352 3353 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size) 3354 { 3355 BDRVQcow2State *s = bs->opaque; 3356 int64_t i; 3357 3358 for (i = size_to_clusters(s, size) - 1; i >= 0; i--) { 3359 uint64_t refcount; 3360 int ret = qcow2_get_refcount(bs, i, &refcount); 3361 if (ret < 0) { 3362 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", 3363 i, strerror(-ret)); 3364 return ret; 3365 } 3366 if (refcount > 0) { 3367 return i; 3368 } 3369 } 3370 qcow2_signal_corruption(bs, true, -1, -1, 3371 "There are no references in the refcount table."); 3372 return -EIO; 3373 } 3374