xref: /openbmc/qemu/block/qcow2-refcount.c (revision 0b1183e3)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 
33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
34 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
35                             int64_t offset, int64_t length, uint64_t addend,
36                             bool decrease, enum qcow2_discard_type type);
37 
38 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
45 
46 static void set_refcount_ro0(void *refcount_array, uint64_t index,
47                              uint64_t value);
48 static void set_refcount_ro1(void *refcount_array, uint64_t index,
49                              uint64_t value);
50 static void set_refcount_ro2(void *refcount_array, uint64_t index,
51                              uint64_t value);
52 static void set_refcount_ro3(void *refcount_array, uint64_t index,
53                              uint64_t value);
54 static void set_refcount_ro4(void *refcount_array, uint64_t index,
55                              uint64_t value);
56 static void set_refcount_ro5(void *refcount_array, uint64_t index,
57                              uint64_t value);
58 static void set_refcount_ro6(void *refcount_array, uint64_t index,
59                              uint64_t value);
60 
61 
62 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
63     &get_refcount_ro0,
64     &get_refcount_ro1,
65     &get_refcount_ro2,
66     &get_refcount_ro3,
67     &get_refcount_ro4,
68     &get_refcount_ro5,
69     &get_refcount_ro6
70 };
71 
72 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
73     &set_refcount_ro0,
74     &set_refcount_ro1,
75     &set_refcount_ro2,
76     &set_refcount_ro3,
77     &set_refcount_ro4,
78     &set_refcount_ro5,
79     &set_refcount_ro6
80 };
81 
82 
83 /*********************************************************/
84 /* refcount handling */
85 
86 static void update_max_refcount_table_index(BDRVQcow2State *s)
87 {
88     unsigned i = s->refcount_table_size - 1;
89     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
90         i--;
91     }
92     /* Set s->max_refcount_table_index to the index of the last used entry */
93     s->max_refcount_table_index = i;
94 }
95 
96 int qcow2_refcount_init(BlockDriverState *bs)
97 {
98     BDRVQcow2State *s = bs->opaque;
99     unsigned int refcount_table_size2, i;
100     int ret;
101 
102     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
103 
104     s->get_refcount = get_refcount_funcs[s->refcount_order];
105     s->set_refcount = set_refcount_funcs[s->refcount_order];
106 
107     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
108     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
109     s->refcount_table = g_try_malloc(refcount_table_size2);
110 
111     if (s->refcount_table_size > 0) {
112         if (s->refcount_table == NULL) {
113             ret = -ENOMEM;
114             goto fail;
115         }
116         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
117         ret = bdrv_pread(bs->file, s->refcount_table_offset,
118                          s->refcount_table, refcount_table_size2);
119         if (ret < 0) {
120             goto fail;
121         }
122         for(i = 0; i < s->refcount_table_size; i++)
123             be64_to_cpus(&s->refcount_table[i]);
124         update_max_refcount_table_index(s);
125     }
126     return 0;
127  fail:
128     return ret;
129 }
130 
131 void qcow2_refcount_close(BlockDriverState *bs)
132 {
133     BDRVQcow2State *s = bs->opaque;
134     g_free(s->refcount_table);
135 }
136 
137 
138 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
139 {
140     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
141 }
142 
143 static void set_refcount_ro0(void *refcount_array, uint64_t index,
144                              uint64_t value)
145 {
146     assert(!(value >> 1));
147     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
148     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
149 }
150 
151 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
152 {
153     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
154            & 0x3;
155 }
156 
157 static void set_refcount_ro1(void *refcount_array, uint64_t index,
158                              uint64_t value)
159 {
160     assert(!(value >> 2));
161     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
162     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
163 }
164 
165 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
166 {
167     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
168            & 0xf;
169 }
170 
171 static void set_refcount_ro2(void *refcount_array, uint64_t index,
172                              uint64_t value)
173 {
174     assert(!(value >> 4));
175     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
176     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
177 }
178 
179 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
180 {
181     return ((const uint8_t *)refcount_array)[index];
182 }
183 
184 static void set_refcount_ro3(void *refcount_array, uint64_t index,
185                              uint64_t value)
186 {
187     assert(!(value >> 8));
188     ((uint8_t *)refcount_array)[index] = value;
189 }
190 
191 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
192 {
193     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
194 }
195 
196 static void set_refcount_ro4(void *refcount_array, uint64_t index,
197                              uint64_t value)
198 {
199     assert(!(value >> 16));
200     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
201 }
202 
203 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
204 {
205     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
206 }
207 
208 static void set_refcount_ro5(void *refcount_array, uint64_t index,
209                              uint64_t value)
210 {
211     assert(!(value >> 32));
212     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
213 }
214 
215 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
216 {
217     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
218 }
219 
220 static void set_refcount_ro6(void *refcount_array, uint64_t index,
221                              uint64_t value)
222 {
223     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
224 }
225 
226 
227 static int load_refcount_block(BlockDriverState *bs,
228                                int64_t refcount_block_offset,
229                                void **refcount_block)
230 {
231     BDRVQcow2State *s = bs->opaque;
232 
233     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
234     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
235                            refcount_block);
236 }
237 
238 /*
239  * Retrieves the refcount of the cluster given by its index and stores it in
240  * *refcount. Returns 0 on success and -errno on failure.
241  */
242 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
243                        uint64_t *refcount)
244 {
245     BDRVQcow2State *s = bs->opaque;
246     uint64_t refcount_table_index, block_index;
247     int64_t refcount_block_offset;
248     int ret;
249     void *refcount_block;
250 
251     refcount_table_index = cluster_index >> s->refcount_block_bits;
252     if (refcount_table_index >= s->refcount_table_size) {
253         *refcount = 0;
254         return 0;
255     }
256     refcount_block_offset =
257         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
258     if (!refcount_block_offset) {
259         *refcount = 0;
260         return 0;
261     }
262 
263     if (offset_into_cluster(s, refcount_block_offset)) {
264         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
265                                 " unaligned (reftable index: %#" PRIx64 ")",
266                                 refcount_block_offset, refcount_table_index);
267         return -EIO;
268     }
269 
270     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
271                           &refcount_block);
272     if (ret < 0) {
273         return ret;
274     }
275 
276     block_index = cluster_index & (s->refcount_block_size - 1);
277     *refcount = s->get_refcount(refcount_block, block_index);
278 
279     qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
280 
281     return 0;
282 }
283 
284 /* Checks if two offsets are described by the same refcount block */
285 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
286     uint64_t offset_b)
287 {
288     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
289     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
290 
291     return (block_a == block_b);
292 }
293 
294 /*
295  * Loads a refcount block. If it doesn't exist yet, it is allocated first
296  * (including growing the refcount table if needed).
297  *
298  * Returns 0 on success or -errno in error case
299  */
300 static int alloc_refcount_block(BlockDriverState *bs,
301                                 int64_t cluster_index, void **refcount_block)
302 {
303     BDRVQcow2State *s = bs->opaque;
304     unsigned int refcount_table_index;
305     int64_t ret;
306 
307     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
308 
309     /* Find the refcount block for the given cluster */
310     refcount_table_index = cluster_index >> s->refcount_block_bits;
311 
312     if (refcount_table_index < s->refcount_table_size) {
313 
314         uint64_t refcount_block_offset =
315             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
316 
317         /* If it's already there, we're done */
318         if (refcount_block_offset) {
319             if (offset_into_cluster(s, refcount_block_offset)) {
320                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
321                                         PRIx64 " unaligned (reftable index: "
322                                         "%#x)", refcount_block_offset,
323                                         refcount_table_index);
324                 return -EIO;
325             }
326 
327              return load_refcount_block(bs, refcount_block_offset,
328                                         refcount_block);
329         }
330     }
331 
332     /*
333      * If we came here, we need to allocate something. Something is at least
334      * a cluster for the new refcount block. It may also include a new refcount
335      * table if the old refcount table is too small.
336      *
337      * Note that allocating clusters here needs some special care:
338      *
339      * - We can't use the normal qcow2_alloc_clusters(), it would try to
340      *   increase the refcount and very likely we would end up with an endless
341      *   recursion. Instead we must place the refcount blocks in a way that
342      *   they can describe them themselves.
343      *
344      * - We need to consider that at this point we are inside update_refcounts
345      *   and potentially doing an initial refcount increase. This means that
346      *   some clusters have already been allocated by the caller, but their
347      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
348      *   need to return -EAGAIN to signal the caller that it needs to restart
349      *   the search for free clusters.
350      *
351      * - alloc_clusters_noref and qcow2_free_clusters may load a different
352      *   refcount block into the cache
353      */
354 
355     *refcount_block = NULL;
356 
357     /* We write to the refcount table, so we might depend on L2 tables */
358     ret = qcow2_cache_flush(bs, s->l2_table_cache);
359     if (ret < 0) {
360         return ret;
361     }
362 
363     /* Allocate the refcount block itself and mark it as used */
364     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
365     if (new_block < 0) {
366         return new_block;
367     }
368 
369 #ifdef DEBUG_ALLOC2
370     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
371         " at %" PRIx64 "\n",
372         refcount_table_index, cluster_index << s->cluster_bits, new_block);
373 #endif
374 
375     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
376         /* Zero the new refcount block before updating it */
377         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
378                                     refcount_block);
379         if (ret < 0) {
380             goto fail;
381         }
382 
383         memset(*refcount_block, 0, s->cluster_size);
384 
385         /* The block describes itself, need to update the cache */
386         int block_index = (new_block >> s->cluster_bits) &
387             (s->refcount_block_size - 1);
388         s->set_refcount(*refcount_block, block_index, 1);
389     } else {
390         /* Described somewhere else. This can recurse at most twice before we
391          * arrive at a block that describes itself. */
392         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
393                               QCOW2_DISCARD_NEVER);
394         if (ret < 0) {
395             goto fail;
396         }
397 
398         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
399         if (ret < 0) {
400             goto fail;
401         }
402 
403         /* Initialize the new refcount block only after updating its refcount,
404          * update_refcount uses the refcount cache itself */
405         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
406                                     refcount_block);
407         if (ret < 0) {
408             goto fail;
409         }
410 
411         memset(*refcount_block, 0, s->cluster_size);
412     }
413 
414     /* Now the new refcount block needs to be written to disk */
415     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
416     qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
417     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
418     if (ret < 0) {
419         goto fail;
420     }
421 
422     /* If the refcount table is big enough, just hook the block up there */
423     if (refcount_table_index < s->refcount_table_size) {
424         uint64_t data64 = cpu_to_be64(new_block);
425         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
426         ret = bdrv_pwrite_sync(bs->file,
427             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
428             &data64, sizeof(data64));
429         if (ret < 0) {
430             goto fail;
431         }
432 
433         s->refcount_table[refcount_table_index] = new_block;
434         /* If there's a hole in s->refcount_table then it can happen
435          * that refcount_table_index < s->max_refcount_table_index */
436         s->max_refcount_table_index =
437             MAX(s->max_refcount_table_index, refcount_table_index);
438 
439         /* The new refcount block may be where the caller intended to put its
440          * data, so let it restart the search. */
441         return -EAGAIN;
442     }
443 
444     qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
445 
446     /*
447      * If we come here, we need to grow the refcount table. Again, a new
448      * refcount table needs some space and we can't simply allocate to avoid
449      * endless recursion.
450      *
451      * Therefore let's grab new refcount blocks at the end of the image, which
452      * will describe themselves and the new refcount table. This way we can
453      * reference them only in the new table and do the switch to the new
454      * refcount table at once without producing an inconsistent state in
455      * between.
456      */
457     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
458 
459     /* Calculate the number of refcount blocks needed so far; this will be the
460      * basis for calculating the index of the first cluster used for the
461      * self-describing refcount structures which we are about to create.
462      *
463      * Because we reached this point, there cannot be any refcount entries for
464      * cluster_index or higher indices yet. However, because new_block has been
465      * allocated to describe that cluster (and it will assume this role later
466      * on), we cannot use that index; also, new_block may actually have a higher
467      * cluster index than cluster_index, so it needs to be taken into account
468      * here (and 1 needs to be added to its value because that cluster is used).
469      */
470     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
471                                             (new_block >> s->cluster_bits) + 1),
472                                         s->refcount_block_size);
473 
474     /* Create the new refcount table and blocks */
475     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
476         s->cluster_size;
477 
478     ret = qcow2_refcount_area(bs, meta_offset, 0, false,
479                               refcount_table_index, new_block);
480     if (ret < 0) {
481         return ret;
482     }
483 
484     ret = load_refcount_block(bs, new_block, refcount_block);
485     if (ret < 0) {
486         return ret;
487     }
488 
489     /* If we were trying to do the initial refcount update for some cluster
490      * allocation, we might have used the same clusters to store newly
491      * allocated metadata. Make the caller search some new space. */
492     return -EAGAIN;
493 
494 fail:
495     if (*refcount_block != NULL) {
496         qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
497     }
498     return ret;
499 }
500 
501 /*
502  * Starting at @start_offset, this function creates new self-covering refcount
503  * structures: A new refcount table and refcount blocks which cover all of
504  * themselves, and a number of @additional_clusters beyond their end.
505  * @start_offset must be at the end of the image file, that is, there must be
506  * only empty space beyond it.
507  * If @exact_size is false, the refcount table will have 50 % more entries than
508  * necessary so it will not need to grow again soon.
509  * If @new_refblock_offset is not zero, it contains the offset of a refcount
510  * block that should be entered into the new refcount table at index
511  * @new_refblock_index.
512  *
513  * Returns: The offset after the new refcount structures (i.e. where the
514  *          @additional_clusters may be placed) on success, -errno on error.
515  */
516 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
517                             uint64_t additional_clusters, bool exact_size,
518                             int new_refblock_index,
519                             uint64_t new_refblock_offset)
520 {
521     BDRVQcow2State *s = bs->opaque;
522     uint64_t total_refblock_count_u64, additional_refblock_count;
523     int total_refblock_count, table_size, area_reftable_index, table_clusters;
524     int i;
525     uint64_t table_offset, block_offset, end_offset;
526     int ret;
527     uint64_t *new_table;
528 
529     assert(!(start_offset % s->cluster_size));
530 
531     qcow2_refcount_metadata_size(start_offset / s->cluster_size +
532                                  additional_clusters,
533                                  s->cluster_size, s->refcount_order,
534                                  !exact_size, &total_refblock_count_u64);
535     if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
536         return -EFBIG;
537     }
538     total_refblock_count = total_refblock_count_u64;
539 
540     /* Index in the refcount table of the first refcount block to cover the area
541      * of refcount structures we are about to create; we know that
542      * @total_refblock_count can cover @start_offset, so this will definitely
543      * fit into an int. */
544     area_reftable_index = (start_offset / s->cluster_size) /
545                           s->refcount_block_size;
546 
547     if (exact_size) {
548         table_size = total_refblock_count;
549     } else {
550         table_size = total_refblock_count +
551                      DIV_ROUND_UP(total_refblock_count, 2);
552     }
553     /* The qcow2 file can only store the reftable size in number of clusters */
554     table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
555     table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
556 
557     if (table_size > QCOW_MAX_REFTABLE_SIZE) {
558         return -EFBIG;
559     }
560 
561     new_table = g_try_new0(uint64_t, table_size);
562 
563     assert(table_size > 0);
564     if (new_table == NULL) {
565         ret = -ENOMEM;
566         goto fail;
567     }
568 
569     /* Fill the new refcount table */
570     if (table_size > s->max_refcount_table_index) {
571         /* We're actually growing the reftable */
572         memcpy(new_table, s->refcount_table,
573                (s->max_refcount_table_index + 1) * sizeof(uint64_t));
574     } else {
575         /* Improbable case: We're shrinking the reftable. However, the caller
576          * has assured us that there is only empty space beyond @start_offset,
577          * so we can simply drop all of the refblocks that won't fit into the
578          * new reftable. */
579         memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
580     }
581 
582     if (new_refblock_offset) {
583         assert(new_refblock_index < total_refblock_count);
584         new_table[new_refblock_index] = new_refblock_offset;
585     }
586 
587     /* Count how many new refblocks we have to create */
588     additional_refblock_count = 0;
589     for (i = area_reftable_index; i < total_refblock_count; i++) {
590         if (!new_table[i]) {
591             additional_refblock_count++;
592         }
593     }
594 
595     table_offset = start_offset + additional_refblock_count * s->cluster_size;
596     end_offset = table_offset + table_clusters * s->cluster_size;
597 
598     /* Fill the refcount blocks, and create new ones, if necessary */
599     block_offset = start_offset;
600     for (i = area_reftable_index; i < total_refblock_count; i++) {
601         void *refblock_data;
602         uint64_t first_offset_covered;
603 
604         /* Reuse an existing refblock if possible, create a new one otherwise */
605         if (new_table[i]) {
606             ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
607                                   &refblock_data);
608             if (ret < 0) {
609                 goto fail;
610             }
611         } else {
612             ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
613                                         block_offset, &refblock_data);
614             if (ret < 0) {
615                 goto fail;
616             }
617             memset(refblock_data, 0, s->cluster_size);
618             qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
619                                          refblock_data);
620 
621             new_table[i] = block_offset;
622             block_offset += s->cluster_size;
623         }
624 
625         /* First host offset covered by this refblock */
626         first_offset_covered = (uint64_t)i * s->refcount_block_size *
627                                s->cluster_size;
628         if (first_offset_covered < end_offset) {
629             int j, end_index;
630 
631             /* Set the refcount of all of the new refcount structures to 1 */
632 
633             if (first_offset_covered < start_offset) {
634                 assert(i == area_reftable_index);
635                 j = (start_offset - first_offset_covered) / s->cluster_size;
636                 assert(j < s->refcount_block_size);
637             } else {
638                 j = 0;
639             }
640 
641             end_index = MIN((end_offset - first_offset_covered) /
642                             s->cluster_size,
643                             s->refcount_block_size);
644 
645             for (; j < end_index; j++) {
646                 /* The caller guaranteed us this space would be empty */
647                 assert(s->get_refcount(refblock_data, j) == 0);
648                 s->set_refcount(refblock_data, j, 1);
649             }
650 
651             qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
652                                          refblock_data);
653         }
654 
655         qcow2_cache_put(bs, s->refcount_block_cache, &refblock_data);
656     }
657 
658     assert(block_offset == table_offset);
659 
660     /* Write refcount blocks to disk */
661     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
662     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
663     if (ret < 0) {
664         goto fail;
665     }
666 
667     /* Write refcount table to disk */
668     for (i = 0; i < total_refblock_count; i++) {
669         cpu_to_be64s(&new_table[i]);
670     }
671 
672     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
673     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
674         table_size * sizeof(uint64_t));
675     if (ret < 0) {
676         goto fail;
677     }
678 
679     for (i = 0; i < total_refblock_count; i++) {
680         be64_to_cpus(&new_table[i]);
681     }
682 
683     /* Hook up the new refcount table in the qcow2 header */
684     struct QEMU_PACKED {
685         uint64_t d64;
686         uint32_t d32;
687     } data;
688     data.d64 = cpu_to_be64(table_offset);
689     data.d32 = cpu_to_be32(table_clusters);
690     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
691     ret = bdrv_pwrite_sync(bs->file,
692                            offsetof(QCowHeader, refcount_table_offset),
693                            &data, sizeof(data));
694     if (ret < 0) {
695         goto fail;
696     }
697 
698     /* And switch it in memory */
699     uint64_t old_table_offset = s->refcount_table_offset;
700     uint64_t old_table_size = s->refcount_table_size;
701 
702     g_free(s->refcount_table);
703     s->refcount_table = new_table;
704     s->refcount_table_size = table_size;
705     s->refcount_table_offset = table_offset;
706     update_max_refcount_table_index(s);
707 
708     /* Free old table. */
709     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
710                         QCOW2_DISCARD_OTHER);
711 
712     return end_offset;
713 
714 fail:
715     g_free(new_table);
716     return ret;
717 }
718 
719 void qcow2_process_discards(BlockDriverState *bs, int ret)
720 {
721     BDRVQcow2State *s = bs->opaque;
722     Qcow2DiscardRegion *d, *next;
723 
724     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
725         QTAILQ_REMOVE(&s->discards, d, next);
726 
727         /* Discard is optional, ignore the return value */
728         if (ret >= 0) {
729             bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
730         }
731 
732         g_free(d);
733     }
734 }
735 
736 static void update_refcount_discard(BlockDriverState *bs,
737                                     uint64_t offset, uint64_t length)
738 {
739     BDRVQcow2State *s = bs->opaque;
740     Qcow2DiscardRegion *d, *p, *next;
741 
742     QTAILQ_FOREACH(d, &s->discards, next) {
743         uint64_t new_start = MIN(offset, d->offset);
744         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
745 
746         if (new_end - new_start <= length + d->bytes) {
747             /* There can't be any overlap, areas ending up here have no
748              * references any more and therefore shouldn't get freed another
749              * time. */
750             assert(d->bytes + length == new_end - new_start);
751             d->offset = new_start;
752             d->bytes = new_end - new_start;
753             goto found;
754         }
755     }
756 
757     d = g_malloc(sizeof(*d));
758     *d = (Qcow2DiscardRegion) {
759         .bs     = bs,
760         .offset = offset,
761         .bytes  = length,
762     };
763     QTAILQ_INSERT_TAIL(&s->discards, d, next);
764 
765 found:
766     /* Merge discard requests if they are adjacent now */
767     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
768         if (p == d
769             || p->offset > d->offset + d->bytes
770             || d->offset > p->offset + p->bytes)
771         {
772             continue;
773         }
774 
775         /* Still no overlap possible */
776         assert(p->offset == d->offset + d->bytes
777             || d->offset == p->offset + p->bytes);
778 
779         QTAILQ_REMOVE(&s->discards, p, next);
780         d->offset = MIN(d->offset, p->offset);
781         d->bytes += p->bytes;
782         g_free(p);
783     }
784 }
785 
786 /* XXX: cache several refcount block clusters ? */
787 /* @addend is the absolute value of the addend; if @decrease is set, @addend
788  * will be subtracted from the current refcount, otherwise it will be added */
789 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
790                                                    int64_t offset,
791                                                    int64_t length,
792                                                    uint64_t addend,
793                                                    bool decrease,
794                                                    enum qcow2_discard_type type)
795 {
796     BDRVQcow2State *s = bs->opaque;
797     int64_t start, last, cluster_offset;
798     void *refcount_block = NULL;
799     int64_t old_table_index = -1;
800     int ret;
801 
802 #ifdef DEBUG_ALLOC2
803     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
804             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
805             addend);
806 #endif
807     if (length < 0) {
808         return -EINVAL;
809     } else if (length == 0) {
810         return 0;
811     }
812 
813     if (decrease) {
814         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
815             s->l2_table_cache);
816     }
817 
818     start = start_of_cluster(s, offset);
819     last = start_of_cluster(s, offset + length - 1);
820     for(cluster_offset = start; cluster_offset <= last;
821         cluster_offset += s->cluster_size)
822     {
823         int block_index;
824         uint64_t refcount;
825         int64_t cluster_index = cluster_offset >> s->cluster_bits;
826         int64_t table_index = cluster_index >> s->refcount_block_bits;
827 
828         /* Load the refcount block and allocate it if needed */
829         if (table_index != old_table_index) {
830             if (refcount_block) {
831                 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
832             }
833             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
834             if (ret < 0) {
835                 goto fail;
836             }
837         }
838         old_table_index = table_index;
839 
840         qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
841                                      refcount_block);
842 
843         /* we can update the count and save it */
844         block_index = cluster_index & (s->refcount_block_size - 1);
845 
846         refcount = s->get_refcount(refcount_block, block_index);
847         if (decrease ? (refcount - addend > refcount)
848                      : (refcount + addend < refcount ||
849                         refcount + addend > s->refcount_max))
850         {
851             ret = -EINVAL;
852             goto fail;
853         }
854         if (decrease) {
855             refcount -= addend;
856         } else {
857             refcount += addend;
858         }
859         if (refcount == 0 && cluster_index < s->free_cluster_index) {
860             s->free_cluster_index = cluster_index;
861         }
862         s->set_refcount(refcount_block, block_index, refcount);
863 
864         if (refcount == 0 && s->discard_passthrough[type]) {
865             update_refcount_discard(bs, cluster_offset, s->cluster_size);
866         }
867     }
868 
869     ret = 0;
870 fail:
871     if (!s->cache_discards) {
872         qcow2_process_discards(bs, ret);
873     }
874 
875     /* Write last changed block to disk */
876     if (refcount_block) {
877         qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
878     }
879 
880     /*
881      * Try do undo any updates if an error is returned (This may succeed in
882      * some cases like ENOSPC for allocating a new refcount block)
883      */
884     if (ret < 0) {
885         int dummy;
886         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
887                                 !decrease, QCOW2_DISCARD_NEVER);
888         (void)dummy;
889     }
890 
891     return ret;
892 }
893 
894 /*
895  * Increases or decreases the refcount of a given cluster.
896  *
897  * @addend is the absolute value of the addend; if @decrease is set, @addend
898  * will be subtracted from the current refcount, otherwise it will be added.
899  *
900  * On success 0 is returned; on failure -errno is returned.
901  */
902 int qcow2_update_cluster_refcount(BlockDriverState *bs,
903                                   int64_t cluster_index,
904                                   uint64_t addend, bool decrease,
905                                   enum qcow2_discard_type type)
906 {
907     BDRVQcow2State *s = bs->opaque;
908     int ret;
909 
910     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
911                           decrease, type);
912     if (ret < 0) {
913         return ret;
914     }
915 
916     return 0;
917 }
918 
919 
920 
921 /*********************************************************/
922 /* cluster allocation functions */
923 
924 
925 
926 /* return < 0 if error */
927 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
928 {
929     BDRVQcow2State *s = bs->opaque;
930     uint64_t i, nb_clusters, refcount;
931     int ret;
932 
933     /* We can't allocate clusters if they may still be queued for discard. */
934     if (s->cache_discards) {
935         qcow2_process_discards(bs, 0);
936     }
937 
938     nb_clusters = size_to_clusters(s, size);
939 retry:
940     for(i = 0; i < nb_clusters; i++) {
941         uint64_t next_cluster_index = s->free_cluster_index++;
942         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
943 
944         if (ret < 0) {
945             return ret;
946         } else if (refcount != 0) {
947             goto retry;
948         }
949     }
950 
951     /* Make sure that all offsets in the "allocated" range are representable
952      * in an int64_t */
953     if (s->free_cluster_index > 0 &&
954         s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
955     {
956         return -EFBIG;
957     }
958 
959 #ifdef DEBUG_ALLOC2
960     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
961             size,
962             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
963 #endif
964     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
965 }
966 
967 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
968 {
969     int64_t offset;
970     int ret;
971 
972     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
973     do {
974         offset = alloc_clusters_noref(bs, size);
975         if (offset < 0) {
976             return offset;
977         }
978 
979         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
980     } while (ret == -EAGAIN);
981 
982     if (ret < 0) {
983         return ret;
984     }
985 
986     return offset;
987 }
988 
989 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
990                                 int64_t nb_clusters)
991 {
992     BDRVQcow2State *s = bs->opaque;
993     uint64_t cluster_index, refcount;
994     uint64_t i;
995     int ret;
996 
997     assert(nb_clusters >= 0);
998     if (nb_clusters == 0) {
999         return 0;
1000     }
1001 
1002     do {
1003         /* Check how many clusters there are free */
1004         cluster_index = offset >> s->cluster_bits;
1005         for(i = 0; i < nb_clusters; i++) {
1006             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1007             if (ret < 0) {
1008                 return ret;
1009             } else if (refcount != 0) {
1010                 break;
1011             }
1012         }
1013 
1014         /* And then allocate them */
1015         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1016                               QCOW2_DISCARD_NEVER);
1017     } while (ret == -EAGAIN);
1018 
1019     if (ret < 0) {
1020         return ret;
1021     }
1022 
1023     return i;
1024 }
1025 
1026 /* only used to allocate compressed sectors. We try to allocate
1027    contiguous sectors. size must be <= cluster_size */
1028 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1029 {
1030     BDRVQcow2State *s = bs->opaque;
1031     int64_t offset;
1032     size_t free_in_cluster;
1033     int ret;
1034 
1035     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1036     assert(size > 0 && size <= s->cluster_size);
1037     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1038 
1039     offset = s->free_byte_offset;
1040 
1041     if (offset) {
1042         uint64_t refcount;
1043         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1044         if (ret < 0) {
1045             return ret;
1046         }
1047 
1048         if (refcount == s->refcount_max) {
1049             offset = 0;
1050         }
1051     }
1052 
1053     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1054     do {
1055         if (!offset || free_in_cluster < size) {
1056             int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
1057             if (new_cluster < 0) {
1058                 return new_cluster;
1059             }
1060 
1061             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1062                 offset = new_cluster;
1063                 free_in_cluster = s->cluster_size;
1064             } else {
1065                 free_in_cluster += s->cluster_size;
1066             }
1067         }
1068 
1069         assert(offset);
1070         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1071         if (ret < 0) {
1072             offset = 0;
1073         }
1074     } while (ret == -EAGAIN);
1075     if (ret < 0) {
1076         return ret;
1077     }
1078 
1079     /* The cluster refcount was incremented; refcount blocks must be flushed
1080      * before the caller's L2 table updates. */
1081     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1082 
1083     s->free_byte_offset = offset + size;
1084     if (!offset_into_cluster(s, s->free_byte_offset)) {
1085         s->free_byte_offset = 0;
1086     }
1087 
1088     return offset;
1089 }
1090 
1091 void qcow2_free_clusters(BlockDriverState *bs,
1092                           int64_t offset, int64_t size,
1093                           enum qcow2_discard_type type)
1094 {
1095     int ret;
1096 
1097     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1098     ret = update_refcount(bs, offset, size, 1, true, type);
1099     if (ret < 0) {
1100         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1101         /* TODO Remember the clusters to free them later and avoid leaking */
1102     }
1103 }
1104 
1105 /*
1106  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1107  * normal cluster, compressed cluster, etc.)
1108  */
1109 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1110                              int nb_clusters, enum qcow2_discard_type type)
1111 {
1112     BDRVQcow2State *s = bs->opaque;
1113 
1114     switch (qcow2_get_cluster_type(l2_entry)) {
1115     case QCOW2_CLUSTER_COMPRESSED:
1116         {
1117             int nb_csectors;
1118             nb_csectors = ((l2_entry >> s->csize_shift) &
1119                            s->csize_mask) + 1;
1120             qcow2_free_clusters(bs,
1121                 (l2_entry & s->cluster_offset_mask) & ~511,
1122                 nb_csectors * 512, type);
1123         }
1124         break;
1125     case QCOW2_CLUSTER_NORMAL:
1126     case QCOW2_CLUSTER_ZERO_ALLOC:
1127         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1128             qcow2_signal_corruption(bs, false, -1, -1,
1129                                     "Cannot free unaligned cluster %#llx",
1130                                     l2_entry & L2E_OFFSET_MASK);
1131         } else {
1132             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1133                                 nb_clusters << s->cluster_bits, type);
1134         }
1135         break;
1136     case QCOW2_CLUSTER_ZERO_PLAIN:
1137     case QCOW2_CLUSTER_UNALLOCATED:
1138         break;
1139     default:
1140         abort();
1141     }
1142 }
1143 
1144 
1145 
1146 /*********************************************************/
1147 /* snapshots and image creation */
1148 
1149 
1150 
1151 /* update the refcounts of snapshots and the copied flag */
1152 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1153     int64_t l1_table_offset, int l1_size, int addend)
1154 {
1155     BDRVQcow2State *s = bs->opaque;
1156     uint64_t *l1_table, *l2_table, l2_offset, entry, l1_size2, refcount;
1157     bool l1_allocated = false;
1158     int64_t old_entry, old_l2_offset;
1159     int i, j, l1_modified = 0, nb_csectors;
1160     int ret;
1161 
1162     assert(addend >= -1 && addend <= 1);
1163 
1164     l2_table = NULL;
1165     l1_table = NULL;
1166     l1_size2 = l1_size * sizeof(uint64_t);
1167 
1168     s->cache_discards = true;
1169 
1170     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1171      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1172      * when changing this! */
1173     if (l1_table_offset != s->l1_table_offset) {
1174         l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1175         if (l1_size2 && l1_table == NULL) {
1176             ret = -ENOMEM;
1177             goto fail;
1178         }
1179         l1_allocated = true;
1180 
1181         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1182         if (ret < 0) {
1183             goto fail;
1184         }
1185 
1186         for (i = 0; i < l1_size; i++) {
1187             be64_to_cpus(&l1_table[i]);
1188         }
1189     } else {
1190         assert(l1_size == s->l1_size);
1191         l1_table = s->l1_table;
1192         l1_allocated = false;
1193     }
1194 
1195     for (i = 0; i < l1_size; i++) {
1196         l2_offset = l1_table[i];
1197         if (l2_offset) {
1198             old_l2_offset = l2_offset;
1199             l2_offset &= L1E_OFFSET_MASK;
1200 
1201             if (offset_into_cluster(s, l2_offset)) {
1202                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1203                                         PRIx64 " unaligned (L1 index: %#x)",
1204                                         l2_offset, i);
1205                 ret = -EIO;
1206                 goto fail;
1207             }
1208 
1209             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1210                 (void**) &l2_table);
1211             if (ret < 0) {
1212                 goto fail;
1213             }
1214 
1215             for (j = 0; j < s->l2_size; j++) {
1216                 uint64_t cluster_index;
1217                 uint64_t offset;
1218 
1219                 entry = be64_to_cpu(l2_table[j]);
1220                 old_entry = entry;
1221                 entry &= ~QCOW_OFLAG_COPIED;
1222                 offset = entry & L2E_OFFSET_MASK;
1223 
1224                 switch (qcow2_get_cluster_type(entry)) {
1225                 case QCOW2_CLUSTER_COMPRESSED:
1226                     nb_csectors = ((entry >> s->csize_shift) &
1227                                    s->csize_mask) + 1;
1228                     if (addend != 0) {
1229                         ret = update_refcount(bs,
1230                                 (entry & s->cluster_offset_mask) & ~511,
1231                                 nb_csectors * 512, abs(addend), addend < 0,
1232                                 QCOW2_DISCARD_SNAPSHOT);
1233                         if (ret < 0) {
1234                             goto fail;
1235                         }
1236                     }
1237                     /* compressed clusters are never modified */
1238                     refcount = 2;
1239                     break;
1240 
1241                 case QCOW2_CLUSTER_NORMAL:
1242                 case QCOW2_CLUSTER_ZERO_ALLOC:
1243                     if (offset_into_cluster(s, offset)) {
1244                         qcow2_signal_corruption(bs, true, -1, -1, "Cluster "
1245                                                 "allocation offset %#" PRIx64
1246                                                 " unaligned (L2 offset: %#"
1247                                                 PRIx64 ", L2 index: %#x)",
1248                                                 offset, l2_offset, j);
1249                         ret = -EIO;
1250                         goto fail;
1251                     }
1252 
1253                     cluster_index = offset >> s->cluster_bits;
1254                     assert(cluster_index);
1255                     if (addend != 0) {
1256                         ret = qcow2_update_cluster_refcount(bs,
1257                                     cluster_index, abs(addend), addend < 0,
1258                                     QCOW2_DISCARD_SNAPSHOT);
1259                         if (ret < 0) {
1260                             goto fail;
1261                         }
1262                     }
1263 
1264                     ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1265                     if (ret < 0) {
1266                         goto fail;
1267                     }
1268                     break;
1269 
1270                 case QCOW2_CLUSTER_ZERO_PLAIN:
1271                 case QCOW2_CLUSTER_UNALLOCATED:
1272                     refcount = 0;
1273                     break;
1274 
1275                 default:
1276                     abort();
1277                 }
1278 
1279                 if (refcount == 1) {
1280                     entry |= QCOW_OFLAG_COPIED;
1281                 }
1282                 if (entry != old_entry) {
1283                     if (addend > 0) {
1284                         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1285                             s->refcount_block_cache);
1286                     }
1287                     l2_table[j] = cpu_to_be64(entry);
1288                     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1289                                                  l2_table);
1290                 }
1291             }
1292 
1293             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1294 
1295             if (addend != 0) {
1296                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1297                                                         s->cluster_bits,
1298                                                     abs(addend), addend < 0,
1299                                                     QCOW2_DISCARD_SNAPSHOT);
1300                 if (ret < 0) {
1301                     goto fail;
1302                 }
1303             }
1304             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1305                                      &refcount);
1306             if (ret < 0) {
1307                 goto fail;
1308             } else if (refcount == 1) {
1309                 l2_offset |= QCOW_OFLAG_COPIED;
1310             }
1311             if (l2_offset != old_l2_offset) {
1312                 l1_table[i] = l2_offset;
1313                 l1_modified = 1;
1314             }
1315         }
1316     }
1317 
1318     ret = bdrv_flush(bs);
1319 fail:
1320     if (l2_table) {
1321         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1322     }
1323 
1324     s->cache_discards = false;
1325     qcow2_process_discards(bs, ret);
1326 
1327     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1328     if (ret == 0 && addend >= 0 && l1_modified) {
1329         for (i = 0; i < l1_size; i++) {
1330             cpu_to_be64s(&l1_table[i]);
1331         }
1332 
1333         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1334                                l1_table, l1_size2);
1335 
1336         for (i = 0; i < l1_size; i++) {
1337             be64_to_cpus(&l1_table[i]);
1338         }
1339     }
1340     if (l1_allocated)
1341         g_free(l1_table);
1342     return ret;
1343 }
1344 
1345 
1346 
1347 
1348 /*********************************************************/
1349 /* refcount checking functions */
1350 
1351 
1352 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1353 {
1354     /* This assertion holds because there is no way we can address more than
1355      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1356      * offsets have to be representable in bytes); due to every cluster
1357      * corresponding to one refcount entry, we are well below that limit */
1358     assert(entries < (UINT64_C(1) << (64 - 9)));
1359 
1360     /* Thanks to the assertion this will not overflow, because
1361      * s->refcount_order < 7.
1362      * (note: x << s->refcount_order == x * s->refcount_bits) */
1363     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1364 }
1365 
1366 /**
1367  * Reallocates *array so that it can hold new_size entries. *size must contain
1368  * the current number of entries in *array. If the reallocation fails, *array
1369  * and *size will not be modified and -errno will be returned. If the
1370  * reallocation is successful, *array will be set to the new buffer, *size
1371  * will be set to new_size and 0 will be returned. The size of the reallocated
1372  * refcount array buffer will be aligned to a cluster boundary, and the newly
1373  * allocated area will be zeroed.
1374  */
1375 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1376                                   int64_t *size, int64_t new_size)
1377 {
1378     int64_t old_byte_size, new_byte_size;
1379     void *new_ptr;
1380 
1381     /* Round to clusters so the array can be directly written to disk */
1382     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1383                     * s->cluster_size;
1384     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1385                     * s->cluster_size;
1386 
1387     if (new_byte_size == old_byte_size) {
1388         *size = new_size;
1389         return 0;
1390     }
1391 
1392     assert(new_byte_size > 0);
1393 
1394     if (new_byte_size > SIZE_MAX) {
1395         return -ENOMEM;
1396     }
1397 
1398     new_ptr = g_try_realloc(*array, new_byte_size);
1399     if (!new_ptr) {
1400         return -ENOMEM;
1401     }
1402 
1403     if (new_byte_size > old_byte_size) {
1404         memset((char *)new_ptr + old_byte_size, 0,
1405                new_byte_size - old_byte_size);
1406     }
1407 
1408     *array = new_ptr;
1409     *size  = new_size;
1410 
1411     return 0;
1412 }
1413 
1414 /*
1415  * Increases the refcount for a range of clusters in a given refcount table.
1416  * This is used to construct a temporary refcount table out of L1 and L2 tables
1417  * which can be compared to the refcount table saved in the image.
1418  *
1419  * Modifies the number of errors in res.
1420  */
1421 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1422                              void **refcount_table,
1423                              int64_t *refcount_table_size,
1424                              int64_t offset, int64_t size)
1425 {
1426     BDRVQcow2State *s = bs->opaque;
1427     uint64_t start, last, cluster_offset, k, refcount;
1428     int ret;
1429 
1430     if (size <= 0) {
1431         return 0;
1432     }
1433 
1434     start = start_of_cluster(s, offset);
1435     last = start_of_cluster(s, offset + size - 1);
1436     for(cluster_offset = start; cluster_offset <= last;
1437         cluster_offset += s->cluster_size) {
1438         k = cluster_offset >> s->cluster_bits;
1439         if (k >= *refcount_table_size) {
1440             ret = realloc_refcount_array(s, refcount_table,
1441                                          refcount_table_size, k + 1);
1442             if (ret < 0) {
1443                 res->check_errors++;
1444                 return ret;
1445             }
1446         }
1447 
1448         refcount = s->get_refcount(*refcount_table, k);
1449         if (refcount == s->refcount_max) {
1450             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1451                     "\n", cluster_offset);
1452             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1453                     "width or qemu-img convert to create a clean copy if the "
1454                     "image cannot be opened for writing\n");
1455             res->corruptions++;
1456             continue;
1457         }
1458         s->set_refcount(*refcount_table, k, refcount + 1);
1459     }
1460 
1461     return 0;
1462 }
1463 
1464 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1465 enum {
1466     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1467 };
1468 
1469 /*
1470  * Increases the refcount in the given refcount table for the all clusters
1471  * referenced in the L2 table. While doing so, performs some checks on L2
1472  * entries.
1473  *
1474  * Returns the number of errors found by the checks or -errno if an internal
1475  * error occurred.
1476  */
1477 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1478                               void **refcount_table,
1479                               int64_t *refcount_table_size, int64_t l2_offset,
1480                               int flags)
1481 {
1482     BDRVQcow2State *s = bs->opaque;
1483     uint64_t *l2_table, l2_entry;
1484     uint64_t next_contiguous_offset = 0;
1485     int i, l2_size, nb_csectors, ret;
1486 
1487     /* Read L2 table from disk */
1488     l2_size = s->l2_size * sizeof(uint64_t);
1489     l2_table = g_malloc(l2_size);
1490 
1491     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1492     if (ret < 0) {
1493         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1494         res->check_errors++;
1495         goto fail;
1496     }
1497 
1498     /* Do the actual checks */
1499     for(i = 0; i < s->l2_size; i++) {
1500         l2_entry = be64_to_cpu(l2_table[i]);
1501 
1502         switch (qcow2_get_cluster_type(l2_entry)) {
1503         case QCOW2_CLUSTER_COMPRESSED:
1504             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1505             if (l2_entry & QCOW_OFLAG_COPIED) {
1506                 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1507                     "copied flag must never be set for compressed "
1508                     "clusters\n", l2_entry >> s->cluster_bits);
1509                 l2_entry &= ~QCOW_OFLAG_COPIED;
1510                 res->corruptions++;
1511             }
1512 
1513             /* Mark cluster as used */
1514             nb_csectors = ((l2_entry >> s->csize_shift) &
1515                            s->csize_mask) + 1;
1516             l2_entry &= s->cluster_offset_mask;
1517             ret = qcow2_inc_refcounts_imrt(bs, res,
1518                                            refcount_table, refcount_table_size,
1519                                            l2_entry & ~511, nb_csectors * 512);
1520             if (ret < 0) {
1521                 goto fail;
1522             }
1523 
1524             if (flags & CHECK_FRAG_INFO) {
1525                 res->bfi.allocated_clusters++;
1526                 res->bfi.compressed_clusters++;
1527 
1528                 /* Compressed clusters are fragmented by nature.  Since they
1529                  * take up sub-sector space but we only have sector granularity
1530                  * I/O we need to re-read the same sectors even for adjacent
1531                  * compressed clusters.
1532                  */
1533                 res->bfi.fragmented_clusters++;
1534             }
1535             break;
1536 
1537         case QCOW2_CLUSTER_ZERO_ALLOC:
1538         case QCOW2_CLUSTER_NORMAL:
1539         {
1540             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1541 
1542             if (flags & CHECK_FRAG_INFO) {
1543                 res->bfi.allocated_clusters++;
1544                 if (next_contiguous_offset &&
1545                     offset != next_contiguous_offset) {
1546                     res->bfi.fragmented_clusters++;
1547                 }
1548                 next_contiguous_offset = offset + s->cluster_size;
1549             }
1550 
1551             /* Mark cluster as used */
1552             ret = qcow2_inc_refcounts_imrt(bs, res,
1553                                            refcount_table, refcount_table_size,
1554                                            offset, s->cluster_size);
1555             if (ret < 0) {
1556                 goto fail;
1557             }
1558 
1559             /* Correct offsets are cluster aligned */
1560             if (offset_into_cluster(s, offset)) {
1561                 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1562                     "properly aligned; L2 entry corrupted.\n", offset);
1563                 res->corruptions++;
1564             }
1565             break;
1566         }
1567 
1568         case QCOW2_CLUSTER_ZERO_PLAIN:
1569         case QCOW2_CLUSTER_UNALLOCATED:
1570             break;
1571 
1572         default:
1573             abort();
1574         }
1575     }
1576 
1577     g_free(l2_table);
1578     return 0;
1579 
1580 fail:
1581     g_free(l2_table);
1582     return ret;
1583 }
1584 
1585 /*
1586  * Increases the refcount for the L1 table, its L2 tables and all referenced
1587  * clusters in the given refcount table. While doing so, performs some checks
1588  * on L1 and L2 entries.
1589  *
1590  * Returns the number of errors found by the checks or -errno if an internal
1591  * error occurred.
1592  */
1593 static int check_refcounts_l1(BlockDriverState *bs,
1594                               BdrvCheckResult *res,
1595                               void **refcount_table,
1596                               int64_t *refcount_table_size,
1597                               int64_t l1_table_offset, int l1_size,
1598                               int flags)
1599 {
1600     BDRVQcow2State *s = bs->opaque;
1601     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1602     int i, ret;
1603 
1604     l1_size2 = l1_size * sizeof(uint64_t);
1605 
1606     /* Mark L1 table as used */
1607     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1608                                    l1_table_offset, l1_size2);
1609     if (ret < 0) {
1610         goto fail;
1611     }
1612 
1613     /* Read L1 table entries from disk */
1614     if (l1_size2 > 0) {
1615         l1_table = g_try_malloc(l1_size2);
1616         if (l1_table == NULL) {
1617             ret = -ENOMEM;
1618             res->check_errors++;
1619             goto fail;
1620         }
1621         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1622         if (ret < 0) {
1623             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1624             res->check_errors++;
1625             goto fail;
1626         }
1627         for(i = 0;i < l1_size; i++)
1628             be64_to_cpus(&l1_table[i]);
1629     }
1630 
1631     /* Do the actual checks */
1632     for(i = 0; i < l1_size; i++) {
1633         l2_offset = l1_table[i];
1634         if (l2_offset) {
1635             /* Mark L2 table as used */
1636             l2_offset &= L1E_OFFSET_MASK;
1637             ret = qcow2_inc_refcounts_imrt(bs, res,
1638                                            refcount_table, refcount_table_size,
1639                                            l2_offset, s->cluster_size);
1640             if (ret < 0) {
1641                 goto fail;
1642             }
1643 
1644             /* L2 tables are cluster aligned */
1645             if (offset_into_cluster(s, l2_offset)) {
1646                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1647                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1648                 res->corruptions++;
1649             }
1650 
1651             /* Process and check L2 entries */
1652             ret = check_refcounts_l2(bs, res, refcount_table,
1653                                      refcount_table_size, l2_offset, flags);
1654             if (ret < 0) {
1655                 goto fail;
1656             }
1657         }
1658     }
1659     g_free(l1_table);
1660     return 0;
1661 
1662 fail:
1663     g_free(l1_table);
1664     return ret;
1665 }
1666 
1667 /*
1668  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1669  *
1670  * This function does not print an error message nor does it increment
1671  * check_errors if qcow2_get_refcount fails (this is because such an error will
1672  * have been already detected and sufficiently signaled by the calling function
1673  * (qcow2_check_refcounts) by the time this function is called).
1674  */
1675 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1676                               BdrvCheckMode fix)
1677 {
1678     BDRVQcow2State *s = bs->opaque;
1679     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1680     int ret;
1681     uint64_t refcount;
1682     int i, j;
1683 
1684     for (i = 0; i < s->l1_size; i++) {
1685         uint64_t l1_entry = s->l1_table[i];
1686         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1687         bool l2_dirty = false;
1688 
1689         if (!l2_offset) {
1690             continue;
1691         }
1692 
1693         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1694                                  &refcount);
1695         if (ret < 0) {
1696             /* don't print message nor increment check_errors */
1697             continue;
1698         }
1699         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1700             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1701                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1702                     fix & BDRV_FIX_ERRORS ? "Repairing" :
1703                                             "ERROR",
1704                     i, l1_entry, refcount);
1705             if (fix & BDRV_FIX_ERRORS) {
1706                 s->l1_table[i] = refcount == 1
1707                                ? l1_entry |  QCOW_OFLAG_COPIED
1708                                : l1_entry & ~QCOW_OFLAG_COPIED;
1709                 ret = qcow2_write_l1_entry(bs, i);
1710                 if (ret < 0) {
1711                     res->check_errors++;
1712                     goto fail;
1713                 }
1714                 res->corruptions_fixed++;
1715             } else {
1716                 res->corruptions++;
1717             }
1718         }
1719 
1720         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1721                          s->l2_size * sizeof(uint64_t));
1722         if (ret < 0) {
1723             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1724                     strerror(-ret));
1725             res->check_errors++;
1726             goto fail;
1727         }
1728 
1729         for (j = 0; j < s->l2_size; j++) {
1730             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1731             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1732             QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1733 
1734             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1735                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1736                 ret = qcow2_get_refcount(bs,
1737                                          data_offset >> s->cluster_bits,
1738                                          &refcount);
1739                 if (ret < 0) {
1740                     /* don't print message nor increment check_errors */
1741                     continue;
1742                 }
1743                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1744                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1745                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1746                             fix & BDRV_FIX_ERRORS ? "Repairing" :
1747                                                     "ERROR",
1748                             l2_entry, refcount);
1749                     if (fix & BDRV_FIX_ERRORS) {
1750                         l2_table[j] = cpu_to_be64(refcount == 1
1751                                     ? l2_entry |  QCOW_OFLAG_COPIED
1752                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1753                         l2_dirty = true;
1754                         res->corruptions_fixed++;
1755                     } else {
1756                         res->corruptions++;
1757                     }
1758                 }
1759             }
1760         }
1761 
1762         if (l2_dirty) {
1763             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1764                                                 l2_offset, s->cluster_size);
1765             if (ret < 0) {
1766                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1767                         "overlap check failed: %s\n", strerror(-ret));
1768                 res->check_errors++;
1769                 goto fail;
1770             }
1771 
1772             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1773                               s->cluster_size);
1774             if (ret < 0) {
1775                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1776                         strerror(-ret));
1777                 res->check_errors++;
1778                 goto fail;
1779             }
1780         }
1781     }
1782 
1783     ret = 0;
1784 
1785 fail:
1786     qemu_vfree(l2_table);
1787     return ret;
1788 }
1789 
1790 /*
1791  * Checks consistency of refblocks and accounts for each refblock in
1792  * *refcount_table.
1793  */
1794 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1795                            BdrvCheckMode fix, bool *rebuild,
1796                            void **refcount_table, int64_t *nb_clusters)
1797 {
1798     BDRVQcow2State *s = bs->opaque;
1799     int64_t i, size;
1800     int ret;
1801 
1802     for(i = 0; i < s->refcount_table_size; i++) {
1803         uint64_t offset, cluster;
1804         offset = s->refcount_table[i];
1805         cluster = offset >> s->cluster_bits;
1806 
1807         /* Refcount blocks are cluster aligned */
1808         if (offset_into_cluster(s, offset)) {
1809             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1810                 "cluster aligned; refcount table entry corrupted\n", i);
1811             res->corruptions++;
1812             *rebuild = true;
1813             continue;
1814         }
1815 
1816         if (cluster >= *nb_clusters) {
1817             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1818                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1819 
1820             if (fix & BDRV_FIX_ERRORS) {
1821                 int64_t new_nb_clusters;
1822                 Error *local_err = NULL;
1823 
1824                 if (offset > INT64_MAX - s->cluster_size) {
1825                     ret = -EINVAL;
1826                     goto resize_fail;
1827                 }
1828 
1829                 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1830                                     PREALLOC_MODE_OFF, &local_err);
1831                 if (ret < 0) {
1832                     error_report_err(local_err);
1833                     goto resize_fail;
1834                 }
1835                 size = bdrv_getlength(bs->file->bs);
1836                 if (size < 0) {
1837                     ret = size;
1838                     goto resize_fail;
1839                 }
1840 
1841                 new_nb_clusters = size_to_clusters(s, size);
1842                 assert(new_nb_clusters >= *nb_clusters);
1843 
1844                 ret = realloc_refcount_array(s, refcount_table,
1845                                              nb_clusters, new_nb_clusters);
1846                 if (ret < 0) {
1847                     res->check_errors++;
1848                     return ret;
1849                 }
1850 
1851                 if (cluster >= *nb_clusters) {
1852                     ret = -EINVAL;
1853                     goto resize_fail;
1854                 }
1855 
1856                 res->corruptions_fixed++;
1857                 ret = qcow2_inc_refcounts_imrt(bs, res,
1858                                                refcount_table, nb_clusters,
1859                                                offset, s->cluster_size);
1860                 if (ret < 0) {
1861                     return ret;
1862                 }
1863                 /* No need to check whether the refcount is now greater than 1:
1864                  * This area was just allocated and zeroed, so it can only be
1865                  * exactly 1 after qcow2_inc_refcounts_imrt() */
1866                 continue;
1867 
1868 resize_fail:
1869                 res->corruptions++;
1870                 *rebuild = true;
1871                 fprintf(stderr, "ERROR could not resize image: %s\n",
1872                         strerror(-ret));
1873             } else {
1874                 res->corruptions++;
1875             }
1876             continue;
1877         }
1878 
1879         if (offset != 0) {
1880             ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1881                                            offset, s->cluster_size);
1882             if (ret < 0) {
1883                 return ret;
1884             }
1885             if (s->get_refcount(*refcount_table, cluster) != 1) {
1886                 fprintf(stderr, "ERROR refcount block %" PRId64
1887                         " refcount=%" PRIu64 "\n", i,
1888                         s->get_refcount(*refcount_table, cluster));
1889                 res->corruptions++;
1890                 *rebuild = true;
1891             }
1892         }
1893     }
1894 
1895     return 0;
1896 }
1897 
1898 /*
1899  * Calculates an in-memory refcount table.
1900  */
1901 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1902                                BdrvCheckMode fix, bool *rebuild,
1903                                void **refcount_table, int64_t *nb_clusters)
1904 {
1905     BDRVQcow2State *s = bs->opaque;
1906     int64_t i;
1907     QCowSnapshot *sn;
1908     int ret;
1909 
1910     if (!*refcount_table) {
1911         int64_t old_size = 0;
1912         ret = realloc_refcount_array(s, refcount_table,
1913                                      &old_size, *nb_clusters);
1914         if (ret < 0) {
1915             res->check_errors++;
1916             return ret;
1917         }
1918     }
1919 
1920     /* header */
1921     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1922                                    0, s->cluster_size);
1923     if (ret < 0) {
1924         return ret;
1925     }
1926 
1927     /* current L1 table */
1928     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1929                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1930     if (ret < 0) {
1931         return ret;
1932     }
1933 
1934     /* snapshots */
1935     for (i = 0; i < s->nb_snapshots; i++) {
1936         sn = s->snapshots + i;
1937         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1938                                  sn->l1_table_offset, sn->l1_size, 0);
1939         if (ret < 0) {
1940             return ret;
1941         }
1942     }
1943     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1944                                    s->snapshots_offset, s->snapshots_size);
1945     if (ret < 0) {
1946         return ret;
1947     }
1948 
1949     /* refcount data */
1950     ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1951                                    s->refcount_table_offset,
1952                                    s->refcount_table_size * sizeof(uint64_t));
1953     if (ret < 0) {
1954         return ret;
1955     }
1956 
1957     /* encryption */
1958     if (s->crypto_header.length) {
1959         ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1960                                        s->crypto_header.offset,
1961                                        s->crypto_header.length);
1962         if (ret < 0) {
1963             return ret;
1964         }
1965     }
1966 
1967     /* bitmaps */
1968     ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
1969     if (ret < 0) {
1970         return ret;
1971     }
1972 
1973     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1974 }
1975 
1976 /*
1977  * Compares the actual reference count for each cluster in the image against the
1978  * refcount as reported by the refcount structures on-disk.
1979  */
1980 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1981                               BdrvCheckMode fix, bool *rebuild,
1982                               int64_t *highest_cluster,
1983                               void *refcount_table, int64_t nb_clusters)
1984 {
1985     BDRVQcow2State *s = bs->opaque;
1986     int64_t i;
1987     uint64_t refcount1, refcount2;
1988     int ret;
1989 
1990     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1991         ret = qcow2_get_refcount(bs, i, &refcount1);
1992         if (ret < 0) {
1993             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1994                     i, strerror(-ret));
1995             res->check_errors++;
1996             continue;
1997         }
1998 
1999         refcount2 = s->get_refcount(refcount_table, i);
2000 
2001         if (refcount1 > 0 || refcount2 > 0) {
2002             *highest_cluster = i;
2003         }
2004 
2005         if (refcount1 != refcount2) {
2006             /* Check if we're allowed to fix the mismatch */
2007             int *num_fixed = NULL;
2008             if (refcount1 == 0) {
2009                 *rebuild = true;
2010             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2011                 num_fixed = &res->leaks_fixed;
2012             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2013                 num_fixed = &res->corruptions_fixed;
2014             }
2015 
2016             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2017                     " reference=%" PRIu64 "\n",
2018                    num_fixed != NULL     ? "Repairing" :
2019                    refcount1 < refcount2 ? "ERROR" :
2020                                            "Leaked",
2021                    i, refcount1, refcount2);
2022 
2023             if (num_fixed) {
2024                 ret = update_refcount(bs, i << s->cluster_bits, 1,
2025                                       refcount_diff(refcount1, refcount2),
2026                                       refcount1 > refcount2,
2027                                       QCOW2_DISCARD_ALWAYS);
2028                 if (ret >= 0) {
2029                     (*num_fixed)++;
2030                     continue;
2031                 }
2032             }
2033 
2034             /* And if we couldn't, print an error */
2035             if (refcount1 < refcount2) {
2036                 res->corruptions++;
2037             } else {
2038                 res->leaks++;
2039             }
2040         }
2041     }
2042 }
2043 
2044 /*
2045  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2046  * the on-disk refcount structures.
2047  *
2048  * On input, *first_free_cluster tells where to start looking, and need not
2049  * actually be a free cluster; the returned offset will not be before that
2050  * cluster.  On output, *first_free_cluster points to the first gap found, even
2051  * if that gap was too small to be used as the returned offset.
2052  *
2053  * Note that *first_free_cluster is a cluster index whereas the return value is
2054  * an offset.
2055  */
2056 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2057                                    int cluster_count,
2058                                    void **refcount_table,
2059                                    int64_t *imrt_nb_clusters,
2060                                    int64_t *first_free_cluster)
2061 {
2062     BDRVQcow2State *s = bs->opaque;
2063     int64_t cluster = *first_free_cluster, i;
2064     bool first_gap = true;
2065     int contiguous_free_clusters;
2066     int ret;
2067 
2068     /* Starting at *first_free_cluster, find a range of at least cluster_count
2069      * continuously free clusters */
2070     for (contiguous_free_clusters = 0;
2071          cluster < *imrt_nb_clusters &&
2072          contiguous_free_clusters < cluster_count;
2073          cluster++)
2074     {
2075         if (!s->get_refcount(*refcount_table, cluster)) {
2076             contiguous_free_clusters++;
2077             if (first_gap) {
2078                 /* If this is the first free cluster found, update
2079                  * *first_free_cluster accordingly */
2080                 *first_free_cluster = cluster;
2081                 first_gap = false;
2082             }
2083         } else if (contiguous_free_clusters) {
2084             contiguous_free_clusters = 0;
2085         }
2086     }
2087 
2088     /* If contiguous_free_clusters is greater than zero, it contains the number
2089      * of continuously free clusters until the current cluster; the first free
2090      * cluster in the current "gap" is therefore
2091      * cluster - contiguous_free_clusters */
2092 
2093     /* If no such range could be found, grow the in-memory refcount table
2094      * accordingly to append free clusters at the end of the image */
2095     if (contiguous_free_clusters < cluster_count) {
2096         /* contiguous_free_clusters clusters are already empty at the image end;
2097          * we need cluster_count clusters; therefore, we have to allocate
2098          * cluster_count - contiguous_free_clusters new clusters at the end of
2099          * the image (which is the current value of cluster; note that cluster
2100          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2101          * the image end) */
2102         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2103                                      cluster + cluster_count
2104                                      - contiguous_free_clusters);
2105         if (ret < 0) {
2106             return ret;
2107         }
2108     }
2109 
2110     /* Go back to the first free cluster */
2111     cluster -= contiguous_free_clusters;
2112     for (i = 0; i < cluster_count; i++) {
2113         s->set_refcount(*refcount_table, cluster + i, 1);
2114     }
2115 
2116     return cluster << s->cluster_bits;
2117 }
2118 
2119 /*
2120  * Creates a new refcount structure based solely on the in-memory information
2121  * given through *refcount_table. All necessary allocations will be reflected
2122  * in that array.
2123  *
2124  * On success, the old refcount structure is leaked (it will be covered by the
2125  * new refcount structure).
2126  */
2127 static int rebuild_refcount_structure(BlockDriverState *bs,
2128                                       BdrvCheckResult *res,
2129                                       void **refcount_table,
2130                                       int64_t *nb_clusters)
2131 {
2132     BDRVQcow2State *s = bs->opaque;
2133     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2134     int64_t refblock_offset, refblock_start, refblock_index;
2135     uint32_t reftable_size = 0;
2136     uint64_t *on_disk_reftable = NULL;
2137     void *on_disk_refblock;
2138     int ret = 0;
2139     struct {
2140         uint64_t reftable_offset;
2141         uint32_t reftable_clusters;
2142     } QEMU_PACKED reftable_offset_and_clusters;
2143 
2144     qcow2_cache_empty(bs, s->refcount_block_cache);
2145 
2146 write_refblocks:
2147     for (; cluster < *nb_clusters; cluster++) {
2148         if (!s->get_refcount(*refcount_table, cluster)) {
2149             continue;
2150         }
2151 
2152         refblock_index = cluster >> s->refcount_block_bits;
2153         refblock_start = refblock_index << s->refcount_block_bits;
2154 
2155         /* Don't allocate a cluster in a refblock already written to disk */
2156         if (first_free_cluster < refblock_start) {
2157             first_free_cluster = refblock_start;
2158         }
2159         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2160                                               nb_clusters, &first_free_cluster);
2161         if (refblock_offset < 0) {
2162             fprintf(stderr, "ERROR allocating refblock: %s\n",
2163                     strerror(-refblock_offset));
2164             res->check_errors++;
2165             ret = refblock_offset;
2166             goto fail;
2167         }
2168 
2169         if (reftable_size <= refblock_index) {
2170             uint32_t old_reftable_size = reftable_size;
2171             uint64_t *new_on_disk_reftable;
2172 
2173             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2174                                      s->cluster_size) / sizeof(uint64_t);
2175             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2176                                                  reftable_size *
2177                                                  sizeof(uint64_t));
2178             if (!new_on_disk_reftable) {
2179                 res->check_errors++;
2180                 ret = -ENOMEM;
2181                 goto fail;
2182             }
2183             on_disk_reftable = new_on_disk_reftable;
2184 
2185             memset(on_disk_reftable + old_reftable_size, 0,
2186                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2187 
2188             /* The offset we have for the reftable is now no longer valid;
2189              * this will leak that range, but we can easily fix that by running
2190              * a leak-fixing check after this rebuild operation */
2191             reftable_offset = -1;
2192         }
2193         on_disk_reftable[refblock_index] = refblock_offset;
2194 
2195         /* If this is apparently the last refblock (for now), try to squeeze the
2196          * reftable in */
2197         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2198             reftable_offset < 0)
2199         {
2200             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2201                                                           sizeof(uint64_t));
2202             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2203                                                   refcount_table, nb_clusters,
2204                                                   &first_free_cluster);
2205             if (reftable_offset < 0) {
2206                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2207                         strerror(-reftable_offset));
2208                 res->check_errors++;
2209                 ret = reftable_offset;
2210                 goto fail;
2211             }
2212         }
2213 
2214         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2215                                             s->cluster_size);
2216         if (ret < 0) {
2217             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2218             goto fail;
2219         }
2220 
2221         /* The size of *refcount_table is always cluster-aligned, therefore the
2222          * write operation will not overflow */
2223         on_disk_refblock = (void *)((char *) *refcount_table +
2224                                     refblock_index * s->cluster_size);
2225 
2226         ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2227                          on_disk_refblock, s->cluster_sectors);
2228         if (ret < 0) {
2229             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2230             goto fail;
2231         }
2232 
2233         /* Go to the end of this refblock */
2234         cluster = refblock_start + s->refcount_block_size - 1;
2235     }
2236 
2237     if (reftable_offset < 0) {
2238         uint64_t post_refblock_start, reftable_clusters;
2239 
2240         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2241         reftable_clusters = size_to_clusters(s,
2242                                              reftable_size * sizeof(uint64_t));
2243         /* Not pretty but simple */
2244         if (first_free_cluster < post_refblock_start) {
2245             first_free_cluster = post_refblock_start;
2246         }
2247         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2248                                               refcount_table, nb_clusters,
2249                                               &first_free_cluster);
2250         if (reftable_offset < 0) {
2251             fprintf(stderr, "ERROR allocating reftable: %s\n",
2252                     strerror(-reftable_offset));
2253             res->check_errors++;
2254             ret = reftable_offset;
2255             goto fail;
2256         }
2257 
2258         goto write_refblocks;
2259     }
2260 
2261     assert(on_disk_reftable);
2262 
2263     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2264         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2265     }
2266 
2267     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2268                                         reftable_size * sizeof(uint64_t));
2269     if (ret < 0) {
2270         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2271         goto fail;
2272     }
2273 
2274     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2275     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2276                       reftable_size * sizeof(uint64_t));
2277     if (ret < 0) {
2278         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2279         goto fail;
2280     }
2281 
2282     /* Enter new reftable into the image header */
2283     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2284     reftable_offset_and_clusters.reftable_clusters =
2285         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2286     ret = bdrv_pwrite_sync(bs->file,
2287                            offsetof(QCowHeader, refcount_table_offset),
2288                            &reftable_offset_and_clusters,
2289                            sizeof(reftable_offset_and_clusters));
2290     if (ret < 0) {
2291         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2292         goto fail;
2293     }
2294 
2295     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2296         be64_to_cpus(&on_disk_reftable[refblock_index]);
2297     }
2298     s->refcount_table = on_disk_reftable;
2299     s->refcount_table_offset = reftable_offset;
2300     s->refcount_table_size = reftable_size;
2301     update_max_refcount_table_index(s);
2302 
2303     return 0;
2304 
2305 fail:
2306     g_free(on_disk_reftable);
2307     return ret;
2308 }
2309 
2310 /*
2311  * Checks an image for refcount consistency.
2312  *
2313  * Returns 0 if no errors are found, the number of errors in case the image is
2314  * detected as corrupted, and -errno when an internal error occurred.
2315  */
2316 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2317                           BdrvCheckMode fix)
2318 {
2319     BDRVQcow2State *s = bs->opaque;
2320     BdrvCheckResult pre_compare_res;
2321     int64_t size, highest_cluster, nb_clusters;
2322     void *refcount_table = NULL;
2323     bool rebuild = false;
2324     int ret;
2325 
2326     size = bdrv_getlength(bs->file->bs);
2327     if (size < 0) {
2328         res->check_errors++;
2329         return size;
2330     }
2331 
2332     nb_clusters = size_to_clusters(s, size);
2333     if (nb_clusters > INT_MAX) {
2334         res->check_errors++;
2335         return -EFBIG;
2336     }
2337 
2338     res->bfi.total_clusters =
2339         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2340 
2341     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2342                               &nb_clusters);
2343     if (ret < 0) {
2344         goto fail;
2345     }
2346 
2347     /* In case we don't need to rebuild the refcount structure (but want to fix
2348      * something), this function is immediately called again, in which case the
2349      * result should be ignored */
2350     pre_compare_res = *res;
2351     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2352                       nb_clusters);
2353 
2354     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2355         BdrvCheckResult old_res = *res;
2356         int fresh_leaks = 0;
2357 
2358         fprintf(stderr, "Rebuilding refcount structure\n");
2359         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2360                                          &nb_clusters);
2361         if (ret < 0) {
2362             goto fail;
2363         }
2364 
2365         res->corruptions = 0;
2366         res->leaks = 0;
2367 
2368         /* Because the old reftable has been exchanged for a new one the
2369          * references have to be recalculated */
2370         rebuild = false;
2371         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2372         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2373                                   &nb_clusters);
2374         if (ret < 0) {
2375             goto fail;
2376         }
2377 
2378         if (fix & BDRV_FIX_LEAKS) {
2379             /* The old refcount structures are now leaked, fix it; the result
2380              * can be ignored, aside from leaks which were introduced by
2381              * rebuild_refcount_structure() that could not be fixed */
2382             BdrvCheckResult saved_res = *res;
2383             *res = (BdrvCheckResult){ 0 };
2384 
2385             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2386                               &highest_cluster, refcount_table, nb_clusters);
2387             if (rebuild) {
2388                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2389                         "broken\n");
2390             }
2391 
2392             /* Any leaks accounted for here were introduced by
2393              * rebuild_refcount_structure() because that function has created a
2394              * new refcount structure from scratch */
2395             fresh_leaks = res->leaks;
2396             *res = saved_res;
2397         }
2398 
2399         if (res->corruptions < old_res.corruptions) {
2400             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2401         }
2402         if (res->leaks < old_res.leaks) {
2403             res->leaks_fixed += old_res.leaks - res->leaks;
2404         }
2405         res->leaks += fresh_leaks;
2406     } else if (fix) {
2407         if (rebuild) {
2408             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2409             res->check_errors++;
2410             ret = -EIO;
2411             goto fail;
2412         }
2413 
2414         if (res->leaks || res->corruptions) {
2415             *res = pre_compare_res;
2416             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2417                               refcount_table, nb_clusters);
2418         }
2419     }
2420 
2421     /* check OFLAG_COPIED */
2422     ret = check_oflag_copied(bs, res, fix);
2423     if (ret < 0) {
2424         goto fail;
2425     }
2426 
2427     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2428     ret = 0;
2429 
2430 fail:
2431     g_free(refcount_table);
2432 
2433     return ret;
2434 }
2435 
2436 #define overlaps_with(ofs, sz) \
2437     ranges_overlap(offset, size, ofs, sz)
2438 
2439 /*
2440  * Checks if the given offset into the image file is actually free to use by
2441  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2442  * i.e. a sanity check without relying on the refcount tables.
2443  *
2444  * The ign parameter specifies what checks not to perform (being a bitmask of
2445  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2446  *
2447  * Returns:
2448  * - 0 if writing to this offset will not affect the mentioned metadata
2449  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2450  * - a negative value (-errno) indicating an error while performing a check,
2451  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2452  */
2453 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2454                                  int64_t size)
2455 {
2456     BDRVQcow2State *s = bs->opaque;
2457     int chk = s->overlap_check & ~ign;
2458     int i, j;
2459 
2460     if (!size) {
2461         return 0;
2462     }
2463 
2464     if (chk & QCOW2_OL_MAIN_HEADER) {
2465         if (offset < s->cluster_size) {
2466             return QCOW2_OL_MAIN_HEADER;
2467         }
2468     }
2469 
2470     /* align range to test to cluster boundaries */
2471     size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2472     offset = start_of_cluster(s, offset);
2473 
2474     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2475         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2476             return QCOW2_OL_ACTIVE_L1;
2477         }
2478     }
2479 
2480     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2481         if (overlaps_with(s->refcount_table_offset,
2482             s->refcount_table_size * sizeof(uint64_t))) {
2483             return QCOW2_OL_REFCOUNT_TABLE;
2484         }
2485     }
2486 
2487     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2488         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2489             return QCOW2_OL_SNAPSHOT_TABLE;
2490         }
2491     }
2492 
2493     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2494         for (i = 0; i < s->nb_snapshots; i++) {
2495             if (s->snapshots[i].l1_size &&
2496                 overlaps_with(s->snapshots[i].l1_table_offset,
2497                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2498                 return QCOW2_OL_INACTIVE_L1;
2499             }
2500         }
2501     }
2502 
2503     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2504         for (i = 0; i < s->l1_size; i++) {
2505             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2506                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2507                 s->cluster_size)) {
2508                 return QCOW2_OL_ACTIVE_L2;
2509             }
2510         }
2511     }
2512 
2513     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2514         unsigned last_entry = s->max_refcount_table_index;
2515         assert(last_entry < s->refcount_table_size);
2516         assert(last_entry + 1 == s->refcount_table_size ||
2517                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2518         for (i = 0; i <= last_entry; i++) {
2519             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2520                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2521                 s->cluster_size)) {
2522                 return QCOW2_OL_REFCOUNT_BLOCK;
2523             }
2524         }
2525     }
2526 
2527     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2528         for (i = 0; i < s->nb_snapshots; i++) {
2529             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2530             uint32_t l1_sz  = s->snapshots[i].l1_size;
2531             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2532             uint64_t *l1 = g_try_malloc(l1_sz2);
2533             int ret;
2534 
2535             if (l1_sz2 && l1 == NULL) {
2536                 return -ENOMEM;
2537             }
2538 
2539             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2540             if (ret < 0) {
2541                 g_free(l1);
2542                 return ret;
2543             }
2544 
2545             for (j = 0; j < l1_sz; j++) {
2546                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2547                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2548                     g_free(l1);
2549                     return QCOW2_OL_INACTIVE_L2;
2550                 }
2551             }
2552 
2553             g_free(l1);
2554         }
2555     }
2556 
2557     return 0;
2558 }
2559 
2560 static const char *metadata_ol_names[] = {
2561     [QCOW2_OL_MAIN_HEADER_BITNR]    = "qcow2_header",
2562     [QCOW2_OL_ACTIVE_L1_BITNR]      = "active L1 table",
2563     [QCOW2_OL_ACTIVE_L2_BITNR]      = "active L2 table",
2564     [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2565     [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2566     [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2567     [QCOW2_OL_INACTIVE_L1_BITNR]    = "inactive L1 table",
2568     [QCOW2_OL_INACTIVE_L2_BITNR]    = "inactive L2 table",
2569 };
2570 
2571 /*
2572  * First performs a check for metadata overlaps (through
2573  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2574  * while performing a check), that value is returned. If an impending overlap
2575  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2576  * and -EIO returned.
2577  *
2578  * Returns 0 if there were neither overlaps nor errors while checking for
2579  * overlaps; or a negative value (-errno) on error.
2580  */
2581 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2582                                   int64_t size)
2583 {
2584     int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2585 
2586     if (ret < 0) {
2587         return ret;
2588     } else if (ret > 0) {
2589         int metadata_ol_bitnr = ctz32(ret);
2590         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2591 
2592         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2593                                 "write on metadata (overlaps with %s)",
2594                                 metadata_ol_names[metadata_ol_bitnr]);
2595         return -EIO;
2596     }
2597 
2598     return 0;
2599 }
2600 
2601 /* A pointer to a function of this type is given to walk_over_reftable(). That
2602  * function will create refblocks and pass them to a RefblockFinishOp once they
2603  * are completed (@refblock). @refblock_empty is set if the refblock is
2604  * completely empty.
2605  *
2606  * Along with the refblock, a corresponding reftable entry is passed, in the
2607  * reftable @reftable (which may be reallocated) at @reftable_index.
2608  *
2609  * @allocated should be set to true if a new cluster has been allocated.
2610  */
2611 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2612                                uint64_t reftable_index, uint64_t *reftable_size,
2613                                void *refblock, bool refblock_empty,
2614                                bool *allocated, Error **errp);
2615 
2616 /**
2617  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2618  * it is not empty) and inserts its offset into the new reftable. The size of
2619  * this new reftable is increased as required.
2620  */
2621 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2622                           uint64_t reftable_index, uint64_t *reftable_size,
2623                           void *refblock, bool refblock_empty, bool *allocated,
2624                           Error **errp)
2625 {
2626     BDRVQcow2State *s = bs->opaque;
2627     int64_t offset;
2628 
2629     if (!refblock_empty && reftable_index >= *reftable_size) {
2630         uint64_t *new_reftable;
2631         uint64_t new_reftable_size;
2632 
2633         new_reftable_size = ROUND_UP(reftable_index + 1,
2634                                      s->cluster_size / sizeof(uint64_t));
2635         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2636             error_setg(errp,
2637                        "This operation would make the refcount table grow "
2638                        "beyond the maximum size supported by QEMU, aborting");
2639             return -ENOTSUP;
2640         }
2641 
2642         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2643                                                 sizeof(uint64_t));
2644         if (!new_reftable) {
2645             error_setg(errp, "Failed to increase reftable buffer size");
2646             return -ENOMEM;
2647         }
2648 
2649         memset(new_reftable + *reftable_size, 0,
2650                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2651 
2652         *reftable      = new_reftable;
2653         *reftable_size = new_reftable_size;
2654     }
2655 
2656     if (!refblock_empty && !(*reftable)[reftable_index]) {
2657         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2658         if (offset < 0) {
2659             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2660             return offset;
2661         }
2662         (*reftable)[reftable_index] = offset;
2663         *allocated = true;
2664     }
2665 
2666     return 0;
2667 }
2668 
2669 /**
2670  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2671  * offset specified by the new reftable's entry. It does not modify the new
2672  * reftable or change any refcounts.
2673  */
2674 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2675                           uint64_t reftable_index, uint64_t *reftable_size,
2676                           void *refblock, bool refblock_empty, bool *allocated,
2677                           Error **errp)
2678 {
2679     BDRVQcow2State *s = bs->opaque;
2680     int64_t offset;
2681     int ret;
2682 
2683     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2684         offset = (*reftable)[reftable_index];
2685 
2686         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2687         if (ret < 0) {
2688             error_setg_errno(errp, -ret, "Overlap check failed");
2689             return ret;
2690         }
2691 
2692         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2693         if (ret < 0) {
2694             error_setg_errno(errp, -ret, "Failed to write refblock");
2695             return ret;
2696         }
2697     } else {
2698         assert(refblock_empty);
2699     }
2700 
2701     return 0;
2702 }
2703 
2704 /**
2705  * This function walks over the existing reftable and every referenced refblock;
2706  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2707  * create an equal new entry in the passed @new_refblock. Once that
2708  * @new_refblock is completely filled, @operation will be called.
2709  *
2710  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2711  * @index is the index of the walk_over_reftable() calls and @total is the total
2712  * number of walk_over_reftable() calls per amend operation. Both are used for
2713  * calculating the parameters for the status callback.
2714  *
2715  * @allocated is set to true if a new cluster has been allocated.
2716  */
2717 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2718                               uint64_t *new_reftable_index,
2719                               uint64_t *new_reftable_size,
2720                               void *new_refblock, int new_refblock_size,
2721                               int new_refcount_bits,
2722                               RefblockFinishOp *operation, bool *allocated,
2723                               Qcow2SetRefcountFunc *new_set_refcount,
2724                               BlockDriverAmendStatusCB *status_cb,
2725                               void *cb_opaque, int index, int total,
2726                               Error **errp)
2727 {
2728     BDRVQcow2State *s = bs->opaque;
2729     uint64_t reftable_index;
2730     bool new_refblock_empty = true;
2731     int refblock_index;
2732     int new_refblock_index = 0;
2733     int ret;
2734 
2735     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2736          reftable_index++)
2737     {
2738         uint64_t refblock_offset = s->refcount_table[reftable_index]
2739                                  & REFT_OFFSET_MASK;
2740 
2741         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2742                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2743 
2744         if (refblock_offset) {
2745             void *refblock;
2746 
2747             if (offset_into_cluster(s, refblock_offset)) {
2748                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2749                                         PRIx64 " unaligned (reftable index: %#"
2750                                         PRIx64 ")", refblock_offset,
2751                                         reftable_index);
2752                 error_setg(errp,
2753                            "Image is corrupt (unaligned refblock offset)");
2754                 return -EIO;
2755             }
2756 
2757             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2758                                   &refblock);
2759             if (ret < 0) {
2760                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2761                 return ret;
2762             }
2763 
2764             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2765                  refblock_index++)
2766             {
2767                 uint64_t refcount;
2768 
2769                 if (new_refblock_index >= new_refblock_size) {
2770                     /* new_refblock is now complete */
2771                     ret = operation(bs, new_reftable, *new_reftable_index,
2772                                     new_reftable_size, new_refblock,
2773                                     new_refblock_empty, allocated, errp);
2774                     if (ret < 0) {
2775                         qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2776                         return ret;
2777                     }
2778 
2779                     (*new_reftable_index)++;
2780                     new_refblock_index = 0;
2781                     new_refblock_empty = true;
2782                 }
2783 
2784                 refcount = s->get_refcount(refblock, refblock_index);
2785                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2786                     uint64_t offset;
2787 
2788                     qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2789 
2790                     offset = ((reftable_index << s->refcount_block_bits)
2791                               + refblock_index) << s->cluster_bits;
2792 
2793                     error_setg(errp, "Cannot decrease refcount entry width to "
2794                                "%i bits: Cluster at offset %#" PRIx64 " has a "
2795                                "refcount of %" PRIu64, new_refcount_bits,
2796                                offset, refcount);
2797                     return -EINVAL;
2798                 }
2799 
2800                 if (new_set_refcount) {
2801                     new_set_refcount(new_refblock, new_refblock_index++,
2802                                      refcount);
2803                 } else {
2804                     new_refblock_index++;
2805                 }
2806                 new_refblock_empty = new_refblock_empty && refcount == 0;
2807             }
2808 
2809             qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2810         } else {
2811             /* No refblock means every refcount is 0 */
2812             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2813                  refblock_index++)
2814             {
2815                 if (new_refblock_index >= new_refblock_size) {
2816                     /* new_refblock is now complete */
2817                     ret = operation(bs, new_reftable, *new_reftable_index,
2818                                     new_reftable_size, new_refblock,
2819                                     new_refblock_empty, allocated, errp);
2820                     if (ret < 0) {
2821                         return ret;
2822                     }
2823 
2824                     (*new_reftable_index)++;
2825                     new_refblock_index = 0;
2826                     new_refblock_empty = true;
2827                 }
2828 
2829                 if (new_set_refcount) {
2830                     new_set_refcount(new_refblock, new_refblock_index++, 0);
2831                 } else {
2832                     new_refblock_index++;
2833                 }
2834             }
2835         }
2836     }
2837 
2838     if (new_refblock_index > 0) {
2839         /* Complete the potentially existing partially filled final refblock */
2840         if (new_set_refcount) {
2841             for (; new_refblock_index < new_refblock_size;
2842                  new_refblock_index++)
2843             {
2844                 new_set_refcount(new_refblock, new_refblock_index, 0);
2845             }
2846         }
2847 
2848         ret = operation(bs, new_reftable, *new_reftable_index,
2849                         new_reftable_size, new_refblock, new_refblock_empty,
2850                         allocated, errp);
2851         if (ret < 0) {
2852             return ret;
2853         }
2854 
2855         (*new_reftable_index)++;
2856     }
2857 
2858     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2859               (uint64_t)total * s->refcount_table_size, cb_opaque);
2860 
2861     return 0;
2862 }
2863 
2864 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2865                                 BlockDriverAmendStatusCB *status_cb,
2866                                 void *cb_opaque, Error **errp)
2867 {
2868     BDRVQcow2State *s = bs->opaque;
2869     Qcow2GetRefcountFunc *new_get_refcount;
2870     Qcow2SetRefcountFunc *new_set_refcount;
2871     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2872     uint64_t *new_reftable = NULL, new_reftable_size = 0;
2873     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2874     uint64_t new_reftable_index = 0;
2875     uint64_t i;
2876     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2877     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2878     int old_refcount_order;
2879     int walk_index = 0;
2880     int ret;
2881     bool new_allocation;
2882 
2883     assert(s->qcow_version >= 3);
2884     assert(refcount_order >= 0 && refcount_order <= 6);
2885 
2886     /* see qcow2_open() */
2887     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2888 
2889     new_get_refcount = get_refcount_funcs[refcount_order];
2890     new_set_refcount = set_refcount_funcs[refcount_order];
2891 
2892 
2893     do {
2894         int total_walks;
2895 
2896         new_allocation = false;
2897 
2898         /* At least we have to do this walk and the one which writes the
2899          * refblocks; also, at least we have to do this loop here at least
2900          * twice (normally), first to do the allocations, and second to
2901          * determine that everything is correctly allocated, this then makes
2902          * three walks in total */
2903         total_walks = MAX(walk_index + 2, 3);
2904 
2905         /* First, allocate the structures so they are present in the refcount
2906          * structures */
2907         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2908                                  &new_reftable_size, NULL, new_refblock_size,
2909                                  new_refcount_bits, &alloc_refblock,
2910                                  &new_allocation, NULL, status_cb, cb_opaque,
2911                                  walk_index++, total_walks, errp);
2912         if (ret < 0) {
2913             goto done;
2914         }
2915 
2916         new_reftable_index = 0;
2917 
2918         if (new_allocation) {
2919             if (new_reftable_offset) {
2920                 qcow2_free_clusters(bs, new_reftable_offset,
2921                                     allocated_reftable_size * sizeof(uint64_t),
2922                                     QCOW2_DISCARD_NEVER);
2923             }
2924 
2925             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2926                                                            sizeof(uint64_t));
2927             if (new_reftable_offset < 0) {
2928                 error_setg_errno(errp, -new_reftable_offset,
2929                                  "Failed to allocate the new reftable");
2930                 ret = new_reftable_offset;
2931                 goto done;
2932             }
2933             allocated_reftable_size = new_reftable_size;
2934         }
2935     } while (new_allocation);
2936 
2937     /* Second, write the new refblocks */
2938     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2939                              &new_reftable_size, new_refblock,
2940                              new_refblock_size, new_refcount_bits,
2941                              &flush_refblock, &new_allocation, new_set_refcount,
2942                              status_cb, cb_opaque, walk_index, walk_index + 1,
2943                              errp);
2944     if (ret < 0) {
2945         goto done;
2946     }
2947     assert(!new_allocation);
2948 
2949 
2950     /* Write the new reftable */
2951     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2952                                         new_reftable_size * sizeof(uint64_t));
2953     if (ret < 0) {
2954         error_setg_errno(errp, -ret, "Overlap check failed");
2955         goto done;
2956     }
2957 
2958     for (i = 0; i < new_reftable_size; i++) {
2959         cpu_to_be64s(&new_reftable[i]);
2960     }
2961 
2962     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
2963                       new_reftable_size * sizeof(uint64_t));
2964 
2965     for (i = 0; i < new_reftable_size; i++) {
2966         be64_to_cpus(&new_reftable[i]);
2967     }
2968 
2969     if (ret < 0) {
2970         error_setg_errno(errp, -ret, "Failed to write the new reftable");
2971         goto done;
2972     }
2973 
2974 
2975     /* Empty the refcount cache */
2976     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2977     if (ret < 0) {
2978         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2979         goto done;
2980     }
2981 
2982     /* Update the image header to point to the new reftable; this only updates
2983      * the fields which are relevant to qcow2_update_header(); other fields
2984      * such as s->refcount_table or s->refcount_bits stay stale for now
2985      * (because we have to restore everything if qcow2_update_header() fails) */
2986     old_refcount_order  = s->refcount_order;
2987     old_reftable_size   = s->refcount_table_size;
2988     old_reftable_offset = s->refcount_table_offset;
2989 
2990     s->refcount_order        = refcount_order;
2991     s->refcount_table_size   = new_reftable_size;
2992     s->refcount_table_offset = new_reftable_offset;
2993 
2994     ret = qcow2_update_header(bs);
2995     if (ret < 0) {
2996         s->refcount_order        = old_refcount_order;
2997         s->refcount_table_size   = old_reftable_size;
2998         s->refcount_table_offset = old_reftable_offset;
2999         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3000         goto done;
3001     }
3002 
3003     /* Now update the rest of the in-memory information */
3004     old_reftable = s->refcount_table;
3005     s->refcount_table = new_reftable;
3006     update_max_refcount_table_index(s);
3007 
3008     s->refcount_bits = 1 << refcount_order;
3009     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3010     s->refcount_max += s->refcount_max - 1;
3011 
3012     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3013     s->refcount_block_size = 1 << s->refcount_block_bits;
3014 
3015     s->get_refcount = new_get_refcount;
3016     s->set_refcount = new_set_refcount;
3017 
3018     /* For cleaning up all old refblocks and the old reftable below the "done"
3019      * label */
3020     new_reftable        = old_reftable;
3021     new_reftable_size   = old_reftable_size;
3022     new_reftable_offset = old_reftable_offset;
3023 
3024 done:
3025     if (new_reftable) {
3026         /* On success, new_reftable actually points to the old reftable (and
3027          * new_reftable_size is the old reftable's size); but that is just
3028          * fine */
3029         for (i = 0; i < new_reftable_size; i++) {
3030             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3031             if (offset) {
3032                 qcow2_free_clusters(bs, offset, s->cluster_size,
3033                                     QCOW2_DISCARD_OTHER);
3034             }
3035         }
3036         g_free(new_reftable);
3037 
3038         if (new_reftable_offset > 0) {
3039             qcow2_free_clusters(bs, new_reftable_offset,
3040                                 new_reftable_size * sizeof(uint64_t),
3041                                 QCOW2_DISCARD_OTHER);
3042         }
3043     }
3044 
3045     qemu_vfree(new_refblock);
3046     return ret;
3047 }
3048