1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "trace.h" 31 32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 33 bool exact_size) 34 { 35 BDRVQcowState *s = bs->opaque; 36 int new_l1_size2, ret, i; 37 uint64_t *new_l1_table; 38 int64_t old_l1_table_offset, old_l1_size; 39 int64_t new_l1_table_offset, new_l1_size; 40 uint8_t data[12]; 41 42 if (min_size <= s->l1_size) 43 return 0; 44 45 if (exact_size) { 46 new_l1_size = min_size; 47 } else { 48 /* Bump size up to reduce the number of times we have to grow */ 49 new_l1_size = s->l1_size; 50 if (new_l1_size == 0) { 51 new_l1_size = 1; 52 } 53 while (min_size > new_l1_size) { 54 new_l1_size = (new_l1_size * 3 + 1) / 2; 55 } 56 } 57 58 if (new_l1_size > INT_MAX) { 59 return -EFBIG; 60 } 61 62 #ifdef DEBUG_ALLOC2 63 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 64 s->l1_size, new_l1_size); 65 #endif 66 67 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 68 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512)); 69 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 70 71 /* write new table (align to cluster) */ 72 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 73 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 74 if (new_l1_table_offset < 0) { 75 g_free(new_l1_table); 76 return new_l1_table_offset; 77 } 78 79 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 80 if (ret < 0) { 81 goto fail; 82 } 83 84 /* the L1 position has not yet been updated, so these clusters must 85 * indeed be completely free */ 86 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT, 87 new_l1_table_offset, new_l1_size2); 88 if (ret < 0) { 89 goto fail; 90 } 91 92 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 93 for(i = 0; i < s->l1_size; i++) 94 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 95 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); 96 if (ret < 0) 97 goto fail; 98 for(i = 0; i < s->l1_size; i++) 99 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 100 101 /* set new table */ 102 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 103 cpu_to_be32w((uint32_t*)data, new_l1_size); 104 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset); 105 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); 106 if (ret < 0) { 107 goto fail; 108 } 109 g_free(s->l1_table); 110 old_l1_table_offset = s->l1_table_offset; 111 s->l1_table_offset = new_l1_table_offset; 112 s->l1_table = new_l1_table; 113 old_l1_size = s->l1_size; 114 s->l1_size = new_l1_size; 115 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 116 QCOW2_DISCARD_OTHER); 117 return 0; 118 fail: 119 g_free(new_l1_table); 120 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 121 QCOW2_DISCARD_OTHER); 122 return ret; 123 } 124 125 /* 126 * l2_load 127 * 128 * Loads a L2 table into memory. If the table is in the cache, the cache 129 * is used; otherwise the L2 table is loaded from the image file. 130 * 131 * Returns a pointer to the L2 table on success, or NULL if the read from 132 * the image file failed. 133 */ 134 135 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 136 uint64_t **l2_table) 137 { 138 BDRVQcowState *s = bs->opaque; 139 int ret; 140 141 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 142 143 return ret; 144 } 145 146 /* 147 * Writes one sector of the L1 table to the disk (can't update single entries 148 * and we really don't want bdrv_pread to perform a read-modify-write) 149 */ 150 #define L1_ENTRIES_PER_SECTOR (512 / 8) 151 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 152 { 153 BDRVQcowState *s = bs->opaque; 154 uint64_t buf[L1_ENTRIES_PER_SECTOR]; 155 int l1_start_index; 156 int i, ret; 157 158 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 159 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { 160 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 161 } 162 163 ret = qcow2_pre_write_overlap_check(bs, 164 QCOW2_OL_DEFAULT & ~QCOW2_OL_ACTIVE_L1, 165 s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); 166 if (ret < 0) { 167 return ret; 168 } 169 170 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 171 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, 172 buf, sizeof(buf)); 173 if (ret < 0) { 174 return ret; 175 } 176 177 return 0; 178 } 179 180 /* 181 * l2_allocate 182 * 183 * Allocate a new l2 entry in the file. If l1_index points to an already 184 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 185 * table) copy the contents of the old L2 table into the newly allocated one. 186 * Otherwise the new table is initialized with zeros. 187 * 188 */ 189 190 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 191 { 192 BDRVQcowState *s = bs->opaque; 193 uint64_t old_l2_offset; 194 uint64_t *l2_table = NULL; 195 int64_t l2_offset; 196 int ret; 197 198 old_l2_offset = s->l1_table[l1_index]; 199 200 trace_qcow2_l2_allocate(bs, l1_index); 201 202 /* allocate a new l2 entry */ 203 204 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 205 if (l2_offset < 0) { 206 ret = l2_offset; 207 goto fail; 208 } 209 210 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 211 if (ret < 0) { 212 goto fail; 213 } 214 215 /* allocate a new entry in the l2 cache */ 216 217 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 218 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 219 if (ret < 0) { 220 goto fail; 221 } 222 223 l2_table = *table; 224 225 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 226 /* if there was no old l2 table, clear the new table */ 227 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 228 } else { 229 uint64_t* old_table; 230 231 /* if there was an old l2 table, read it from the disk */ 232 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 233 ret = qcow2_cache_get(bs, s->l2_table_cache, 234 old_l2_offset & L1E_OFFSET_MASK, 235 (void**) &old_table); 236 if (ret < 0) { 237 goto fail; 238 } 239 240 memcpy(l2_table, old_table, s->cluster_size); 241 242 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table); 243 if (ret < 0) { 244 goto fail; 245 } 246 } 247 248 /* write the l2 table to the file */ 249 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 250 251 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 252 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 253 ret = qcow2_cache_flush(bs, s->l2_table_cache); 254 if (ret < 0) { 255 goto fail; 256 } 257 258 /* update the L1 entry */ 259 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 260 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 261 ret = qcow2_write_l1_entry(bs, l1_index); 262 if (ret < 0) { 263 goto fail; 264 } 265 266 *table = l2_table; 267 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 268 return 0; 269 270 fail: 271 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 272 if (l2_table != NULL) { 273 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 274 } 275 s->l1_table[l1_index] = old_l2_offset; 276 if (l2_offset > 0) { 277 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 278 QCOW2_DISCARD_ALWAYS); 279 } 280 return ret; 281 } 282 283 /* 284 * Checks how many clusters in a given L2 table are contiguous in the image 285 * file. As soon as one of the flags in the bitmask stop_flags changes compared 286 * to the first cluster, the search is stopped and the cluster is not counted 287 * as contiguous. (This allows it, for example, to stop at the first compressed 288 * cluster which may require a different handling) 289 */ 290 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, 291 uint64_t *l2_table, uint64_t stop_flags) 292 { 293 int i; 294 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW2_CLUSTER_COMPRESSED; 295 uint64_t first_entry = be64_to_cpu(l2_table[0]); 296 uint64_t offset = first_entry & mask; 297 298 if (!offset) 299 return 0; 300 301 assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED); 302 303 for (i = 0; i < nb_clusters; i++) { 304 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 305 if (offset + (uint64_t) i * cluster_size != l2_entry) { 306 break; 307 } 308 } 309 310 return i; 311 } 312 313 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) 314 { 315 int i; 316 317 for (i = 0; i < nb_clusters; i++) { 318 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 319 320 if (type != QCOW2_CLUSTER_UNALLOCATED) { 321 break; 322 } 323 } 324 325 return i; 326 } 327 328 /* The crypt function is compatible with the linux cryptoloop 329 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 330 supported */ 331 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, 332 uint8_t *out_buf, const uint8_t *in_buf, 333 int nb_sectors, int enc, 334 const AES_KEY *key) 335 { 336 union { 337 uint64_t ll[2]; 338 uint8_t b[16]; 339 } ivec; 340 int i; 341 342 for(i = 0; i < nb_sectors; i++) { 343 ivec.ll[0] = cpu_to_le64(sector_num); 344 ivec.ll[1] = 0; 345 AES_cbc_encrypt(in_buf, out_buf, 512, key, 346 ivec.b, enc); 347 sector_num++; 348 in_buf += 512; 349 out_buf += 512; 350 } 351 } 352 353 static int coroutine_fn copy_sectors(BlockDriverState *bs, 354 uint64_t start_sect, 355 uint64_t cluster_offset, 356 int n_start, int n_end) 357 { 358 BDRVQcowState *s = bs->opaque; 359 QEMUIOVector qiov; 360 struct iovec iov; 361 int n, ret; 362 363 /* 364 * If this is the last cluster and it is only partially used, we must only 365 * copy until the end of the image, or bdrv_check_request will fail for the 366 * bdrv_read/write calls below. 367 */ 368 if (start_sect + n_end > bs->total_sectors) { 369 n_end = bs->total_sectors - start_sect; 370 } 371 372 n = n_end - n_start; 373 if (n <= 0) { 374 return 0; 375 } 376 377 iov.iov_len = n * BDRV_SECTOR_SIZE; 378 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 379 380 qemu_iovec_init_external(&qiov, &iov, 1); 381 382 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 383 384 /* Call .bdrv_co_readv() directly instead of using the public block-layer 385 * interface. This avoids double I/O throttling and request tracking, 386 * which can lead to deadlock when block layer copy-on-read is enabled. 387 */ 388 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 389 if (ret < 0) { 390 goto out; 391 } 392 393 if (s->crypt_method) { 394 qcow2_encrypt_sectors(s, start_sect + n_start, 395 iov.iov_base, iov.iov_base, n, 1, 396 &s->aes_encrypt_key); 397 } 398 399 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT, 400 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); 401 if (ret < 0) { 402 goto out; 403 } 404 405 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 406 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); 407 if (ret < 0) { 408 goto out; 409 } 410 411 ret = 0; 412 out: 413 qemu_vfree(iov.iov_base); 414 return ret; 415 } 416 417 418 /* 419 * get_cluster_offset 420 * 421 * For a given offset of the disk image, find the cluster offset in 422 * qcow2 file. The offset is stored in *cluster_offset. 423 * 424 * on entry, *num is the number of contiguous sectors we'd like to 425 * access following offset. 426 * 427 * on exit, *num is the number of contiguous sectors we can read. 428 * 429 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 430 * cases. 431 */ 432 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 433 int *num, uint64_t *cluster_offset) 434 { 435 BDRVQcowState *s = bs->opaque; 436 unsigned int l2_index; 437 uint64_t l1_index, l2_offset, *l2_table; 438 int l1_bits, c; 439 unsigned int index_in_cluster, nb_clusters; 440 uint64_t nb_available, nb_needed; 441 int ret; 442 443 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 444 nb_needed = *num + index_in_cluster; 445 446 l1_bits = s->l2_bits + s->cluster_bits; 447 448 /* compute how many bytes there are between the offset and 449 * the end of the l1 entry 450 */ 451 452 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 453 454 /* compute the number of available sectors */ 455 456 nb_available = (nb_available >> 9) + index_in_cluster; 457 458 if (nb_needed > nb_available) { 459 nb_needed = nb_available; 460 } 461 462 *cluster_offset = 0; 463 464 /* seek the the l2 offset in the l1 table */ 465 466 l1_index = offset >> l1_bits; 467 if (l1_index >= s->l1_size) { 468 ret = QCOW2_CLUSTER_UNALLOCATED; 469 goto out; 470 } 471 472 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 473 if (!l2_offset) { 474 ret = QCOW2_CLUSTER_UNALLOCATED; 475 goto out; 476 } 477 478 /* load the l2 table in memory */ 479 480 ret = l2_load(bs, l2_offset, &l2_table); 481 if (ret < 0) { 482 return ret; 483 } 484 485 /* find the cluster offset for the given disk offset */ 486 487 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 488 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 489 nb_clusters = size_to_clusters(s, nb_needed << 9); 490 491 ret = qcow2_get_cluster_type(*cluster_offset); 492 switch (ret) { 493 case QCOW2_CLUSTER_COMPRESSED: 494 /* Compressed clusters can only be processed one by one */ 495 c = 1; 496 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 497 break; 498 case QCOW2_CLUSTER_ZERO: 499 if (s->qcow_version < 3) { 500 return -EIO; 501 } 502 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 503 &l2_table[l2_index], QCOW_OFLAG_ZERO); 504 *cluster_offset = 0; 505 break; 506 case QCOW2_CLUSTER_UNALLOCATED: 507 /* how many empty clusters ? */ 508 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); 509 *cluster_offset = 0; 510 break; 511 case QCOW2_CLUSTER_NORMAL: 512 /* how many allocated clusters ? */ 513 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 514 &l2_table[l2_index], QCOW_OFLAG_ZERO); 515 *cluster_offset &= L2E_OFFSET_MASK; 516 break; 517 default: 518 abort(); 519 } 520 521 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 522 523 nb_available = (c * s->cluster_sectors); 524 525 out: 526 if (nb_available > nb_needed) 527 nb_available = nb_needed; 528 529 *num = nb_available - index_in_cluster; 530 531 return ret; 532 } 533 534 /* 535 * get_cluster_table 536 * 537 * for a given disk offset, load (and allocate if needed) 538 * the l2 table. 539 * 540 * the l2 table offset in the qcow2 file and the cluster index 541 * in the l2 table are given to the caller. 542 * 543 * Returns 0 on success, -errno in failure case 544 */ 545 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 546 uint64_t **new_l2_table, 547 int *new_l2_index) 548 { 549 BDRVQcowState *s = bs->opaque; 550 unsigned int l2_index; 551 uint64_t l1_index, l2_offset; 552 uint64_t *l2_table = NULL; 553 int ret; 554 555 /* seek the the l2 offset in the l1 table */ 556 557 l1_index = offset >> (s->l2_bits + s->cluster_bits); 558 if (l1_index >= s->l1_size) { 559 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 560 if (ret < 0) { 561 return ret; 562 } 563 } 564 565 assert(l1_index < s->l1_size); 566 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 567 568 /* seek the l2 table of the given l2 offset */ 569 570 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 571 /* load the l2 table in memory */ 572 ret = l2_load(bs, l2_offset, &l2_table); 573 if (ret < 0) { 574 return ret; 575 } 576 } else { 577 /* First allocate a new L2 table (and do COW if needed) */ 578 ret = l2_allocate(bs, l1_index, &l2_table); 579 if (ret < 0) { 580 return ret; 581 } 582 583 /* Then decrease the refcount of the old table */ 584 if (l2_offset) { 585 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 586 QCOW2_DISCARD_OTHER); 587 } 588 } 589 590 /* find the cluster offset for the given disk offset */ 591 592 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 593 594 *new_l2_table = l2_table; 595 *new_l2_index = l2_index; 596 597 return 0; 598 } 599 600 /* 601 * alloc_compressed_cluster_offset 602 * 603 * For a given offset of the disk image, return cluster offset in 604 * qcow2 file. 605 * 606 * If the offset is not found, allocate a new compressed cluster. 607 * 608 * Return the cluster offset if successful, 609 * Return 0, otherwise. 610 * 611 */ 612 613 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 614 uint64_t offset, 615 int compressed_size) 616 { 617 BDRVQcowState *s = bs->opaque; 618 int l2_index, ret; 619 uint64_t *l2_table; 620 int64_t cluster_offset; 621 int nb_csectors; 622 623 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 624 if (ret < 0) { 625 return 0; 626 } 627 628 /* Compression can't overwrite anything. Fail if the cluster was already 629 * allocated. */ 630 cluster_offset = be64_to_cpu(l2_table[l2_index]); 631 if (cluster_offset & L2E_OFFSET_MASK) { 632 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 633 return 0; 634 } 635 636 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 637 if (cluster_offset < 0) { 638 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 639 return 0; 640 } 641 642 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 643 (cluster_offset >> 9); 644 645 cluster_offset |= QCOW_OFLAG_COMPRESSED | 646 ((uint64_t)nb_csectors << s->csize_shift); 647 648 /* update L2 table */ 649 650 /* compressed clusters never have the copied flag */ 651 652 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 653 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 654 l2_table[l2_index] = cpu_to_be64(cluster_offset); 655 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 656 if (ret < 0) { 657 return 0; 658 } 659 660 return cluster_offset; 661 } 662 663 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 664 { 665 BDRVQcowState *s = bs->opaque; 666 int ret; 667 668 if (r->nb_sectors == 0) { 669 return 0; 670 } 671 672 qemu_co_mutex_unlock(&s->lock); 673 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, 674 r->offset / BDRV_SECTOR_SIZE, 675 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); 676 qemu_co_mutex_lock(&s->lock); 677 678 if (ret < 0) { 679 return ret; 680 } 681 682 /* 683 * Before we update the L2 table to actually point to the new cluster, we 684 * need to be sure that the refcounts have been increased and COW was 685 * handled. 686 */ 687 qcow2_cache_depends_on_flush(s->l2_table_cache); 688 689 return 0; 690 } 691 692 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 693 { 694 BDRVQcowState *s = bs->opaque; 695 int i, j = 0, l2_index, ret; 696 uint64_t *old_cluster, *l2_table; 697 uint64_t cluster_offset = m->alloc_offset; 698 699 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 700 assert(m->nb_clusters > 0); 701 702 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t)); 703 704 /* copy content of unmodified sectors */ 705 ret = perform_cow(bs, m, &m->cow_start); 706 if (ret < 0) { 707 goto err; 708 } 709 710 ret = perform_cow(bs, m, &m->cow_end); 711 if (ret < 0) { 712 goto err; 713 } 714 715 /* Update L2 table. */ 716 if (s->use_lazy_refcounts) { 717 qcow2_mark_dirty(bs); 718 } 719 if (qcow2_need_accurate_refcounts(s)) { 720 qcow2_cache_set_dependency(bs, s->l2_table_cache, 721 s->refcount_block_cache); 722 } 723 724 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 725 if (ret < 0) { 726 goto err; 727 } 728 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 729 730 assert(l2_index + m->nb_clusters <= s->l2_size); 731 for (i = 0; i < m->nb_clusters; i++) { 732 /* if two concurrent writes happen to the same unallocated cluster 733 * each write allocates separate cluster and writes data concurrently. 734 * The first one to complete updates l2 table with pointer to its 735 * cluster the second one has to do RMW (which is done above by 736 * copy_sectors()), update l2 table with its cluster pointer and free 737 * old cluster. This is what this loop does */ 738 if(l2_table[l2_index + i] != 0) 739 old_cluster[j++] = l2_table[l2_index + i]; 740 741 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 742 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 743 } 744 745 746 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 747 if (ret < 0) { 748 goto err; 749 } 750 751 /* 752 * If this was a COW, we need to decrease the refcount of the old cluster. 753 * Also flush bs->file to get the right order for L2 and refcount update. 754 * 755 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 756 * clusters), the next write will reuse them anyway. 757 */ 758 if (j != 0) { 759 for (i = 0; i < j; i++) { 760 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 761 QCOW2_DISCARD_NEVER); 762 } 763 } 764 765 ret = 0; 766 err: 767 g_free(old_cluster); 768 return ret; 769 } 770 771 /* 772 * Returns the number of contiguous clusters that can be used for an allocating 773 * write, but require COW to be performed (this includes yet unallocated space, 774 * which must copy from the backing file) 775 */ 776 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, 777 uint64_t *l2_table, int l2_index) 778 { 779 int i; 780 781 for (i = 0; i < nb_clusters; i++) { 782 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 783 int cluster_type = qcow2_get_cluster_type(l2_entry); 784 785 switch(cluster_type) { 786 case QCOW2_CLUSTER_NORMAL: 787 if (l2_entry & QCOW_OFLAG_COPIED) { 788 goto out; 789 } 790 break; 791 case QCOW2_CLUSTER_UNALLOCATED: 792 case QCOW2_CLUSTER_COMPRESSED: 793 case QCOW2_CLUSTER_ZERO: 794 break; 795 default: 796 abort(); 797 } 798 } 799 800 out: 801 assert(i <= nb_clusters); 802 return i; 803 } 804 805 /* 806 * Check if there already is an AIO write request in flight which allocates 807 * the same cluster. In this case we need to wait until the previous 808 * request has completed and updated the L2 table accordingly. 809 * 810 * Returns: 811 * 0 if there was no dependency. *cur_bytes indicates the number of 812 * bytes from guest_offset that can be read before the next 813 * dependency must be processed (or the request is complete) 814 * 815 * -EAGAIN if we had to wait for another request, previously gathered 816 * information on cluster allocation may be invalid now. The caller 817 * must start over anyway, so consider *cur_bytes undefined. 818 */ 819 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 820 uint64_t *cur_bytes, QCowL2Meta **m) 821 { 822 BDRVQcowState *s = bs->opaque; 823 QCowL2Meta *old_alloc; 824 uint64_t bytes = *cur_bytes; 825 826 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 827 828 uint64_t start = guest_offset; 829 uint64_t end = start + bytes; 830 uint64_t old_start = l2meta_cow_start(old_alloc); 831 uint64_t old_end = l2meta_cow_end(old_alloc); 832 833 if (end <= old_start || start >= old_end) { 834 /* No intersection */ 835 } else { 836 if (start < old_start) { 837 /* Stop at the start of a running allocation */ 838 bytes = old_start - start; 839 } else { 840 bytes = 0; 841 } 842 843 /* Stop if already an l2meta exists. After yielding, it wouldn't 844 * be valid any more, so we'd have to clean up the old L2Metas 845 * and deal with requests depending on them before starting to 846 * gather new ones. Not worth the trouble. */ 847 if (bytes == 0 && *m) { 848 *cur_bytes = 0; 849 return 0; 850 } 851 852 if (bytes == 0) { 853 /* Wait for the dependency to complete. We need to recheck 854 * the free/allocated clusters when we continue. */ 855 qemu_co_mutex_unlock(&s->lock); 856 qemu_co_queue_wait(&old_alloc->dependent_requests); 857 qemu_co_mutex_lock(&s->lock); 858 return -EAGAIN; 859 } 860 } 861 } 862 863 /* Make sure that existing clusters and new allocations are only used up to 864 * the next dependency if we shortened the request above */ 865 *cur_bytes = bytes; 866 867 return 0; 868 } 869 870 /* 871 * Checks how many already allocated clusters that don't require a copy on 872 * write there are at the given guest_offset (up to *bytes). If 873 * *host_offset is not zero, only physically contiguous clusters beginning at 874 * this host offset are counted. 875 * 876 * Note that guest_offset may not be cluster aligned. In this case, the 877 * returned *host_offset points to exact byte referenced by guest_offset and 878 * therefore isn't cluster aligned as well. 879 * 880 * Returns: 881 * 0: if no allocated clusters are available at the given offset. 882 * *bytes is normally unchanged. It is set to 0 if the cluster 883 * is allocated and doesn't need COW, but doesn't have the right 884 * physical offset. 885 * 886 * 1: if allocated clusters that don't require a COW are available at 887 * the requested offset. *bytes may have decreased and describes 888 * the length of the area that can be written to. 889 * 890 * -errno: in error cases 891 */ 892 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 893 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 894 { 895 BDRVQcowState *s = bs->opaque; 896 int l2_index; 897 uint64_t cluster_offset; 898 uint64_t *l2_table; 899 unsigned int nb_clusters; 900 unsigned int keep_clusters; 901 int ret, pret; 902 903 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 904 *bytes); 905 906 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 907 == offset_into_cluster(s, *host_offset)); 908 909 /* 910 * Calculate the number of clusters to look for. We stop at L2 table 911 * boundaries to keep things simple. 912 */ 913 nb_clusters = 914 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 915 916 l2_index = offset_to_l2_index(s, guest_offset); 917 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 918 919 /* Find L2 entry for the first involved cluster */ 920 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 921 if (ret < 0) { 922 return ret; 923 } 924 925 cluster_offset = be64_to_cpu(l2_table[l2_index]); 926 927 /* Check how many clusters are already allocated and don't need COW */ 928 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 929 && (cluster_offset & QCOW_OFLAG_COPIED)) 930 { 931 /* If a specific host_offset is required, check it */ 932 bool offset_matches = 933 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 934 935 if (*host_offset != 0 && !offset_matches) { 936 *bytes = 0; 937 ret = 0; 938 goto out; 939 } 940 941 /* We keep all QCOW_OFLAG_COPIED clusters */ 942 keep_clusters = 943 count_contiguous_clusters(nb_clusters, s->cluster_size, 944 &l2_table[l2_index], 945 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 946 assert(keep_clusters <= nb_clusters); 947 948 *bytes = MIN(*bytes, 949 keep_clusters * s->cluster_size 950 - offset_into_cluster(s, guest_offset)); 951 952 ret = 1; 953 } else { 954 ret = 0; 955 } 956 957 /* Cleanup */ 958 out: 959 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 960 if (pret < 0) { 961 return pret; 962 } 963 964 /* Only return a host offset if we actually made progress. Otherwise we 965 * would make requirements for handle_alloc() that it can't fulfill */ 966 if (ret) { 967 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 968 + offset_into_cluster(s, guest_offset); 969 } 970 971 return ret; 972 } 973 974 /* 975 * Allocates new clusters for the given guest_offset. 976 * 977 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 978 * contain the number of clusters that have been allocated and are contiguous 979 * in the image file. 980 * 981 * If *host_offset is non-zero, it specifies the offset in the image file at 982 * which the new clusters must start. *nb_clusters can be 0 on return in this 983 * case if the cluster at host_offset is already in use. If *host_offset is 984 * zero, the clusters can be allocated anywhere in the image file. 985 * 986 * *host_offset is updated to contain the offset into the image file at which 987 * the first allocated cluster starts. 988 * 989 * Return 0 on success and -errno in error cases. -EAGAIN means that the 990 * function has been waiting for another request and the allocation must be 991 * restarted, but the whole request should not be failed. 992 */ 993 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 994 uint64_t *host_offset, unsigned int *nb_clusters) 995 { 996 BDRVQcowState *s = bs->opaque; 997 998 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 999 *host_offset, *nb_clusters); 1000 1001 /* Allocate new clusters */ 1002 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1003 if (*host_offset == 0) { 1004 int64_t cluster_offset = 1005 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1006 if (cluster_offset < 0) { 1007 return cluster_offset; 1008 } 1009 *host_offset = cluster_offset; 1010 return 0; 1011 } else { 1012 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1013 if (ret < 0) { 1014 return ret; 1015 } 1016 *nb_clusters = ret; 1017 return 0; 1018 } 1019 } 1020 1021 /* 1022 * Allocates new clusters for an area that either is yet unallocated or needs a 1023 * copy on write. If *host_offset is non-zero, clusters are only allocated if 1024 * the new allocation can match the specified host offset. 1025 * 1026 * Note that guest_offset may not be cluster aligned. In this case, the 1027 * returned *host_offset points to exact byte referenced by guest_offset and 1028 * therefore isn't cluster aligned as well. 1029 * 1030 * Returns: 1031 * 0: if no clusters could be allocated. *bytes is set to 0, 1032 * *host_offset is left unchanged. 1033 * 1034 * 1: if new clusters were allocated. *bytes may be decreased if the 1035 * new allocation doesn't cover all of the requested area. 1036 * *host_offset is updated to contain the host offset of the first 1037 * newly allocated cluster. 1038 * 1039 * -errno: in error cases 1040 */ 1041 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1042 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1043 { 1044 BDRVQcowState *s = bs->opaque; 1045 int l2_index; 1046 uint64_t *l2_table; 1047 uint64_t entry; 1048 unsigned int nb_clusters; 1049 int ret; 1050 1051 uint64_t alloc_cluster_offset; 1052 1053 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1054 *bytes); 1055 assert(*bytes > 0); 1056 1057 /* 1058 * Calculate the number of clusters to look for. We stop at L2 table 1059 * boundaries to keep things simple. 1060 */ 1061 nb_clusters = 1062 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1063 1064 l2_index = offset_to_l2_index(s, guest_offset); 1065 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1066 1067 /* Find L2 entry for the first involved cluster */ 1068 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1069 if (ret < 0) { 1070 return ret; 1071 } 1072 1073 entry = be64_to_cpu(l2_table[l2_index]); 1074 1075 /* For the moment, overwrite compressed clusters one by one */ 1076 if (entry & QCOW_OFLAG_COMPRESSED) { 1077 nb_clusters = 1; 1078 } else { 1079 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1080 } 1081 1082 /* This function is only called when there were no non-COW clusters, so if 1083 * we can't find any unallocated or COW clusters either, something is 1084 * wrong with our code. */ 1085 assert(nb_clusters > 0); 1086 1087 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1088 if (ret < 0) { 1089 return ret; 1090 } 1091 1092 /* Allocate, if necessary at a given offset in the image file */ 1093 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1094 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1095 &nb_clusters); 1096 if (ret < 0) { 1097 goto fail; 1098 } 1099 1100 /* Can't extend contiguous allocation */ 1101 if (nb_clusters == 0) { 1102 *bytes = 0; 1103 return 0; 1104 } 1105 1106 /* 1107 * Save info needed for meta data update. 1108 * 1109 * requested_sectors: Number of sectors from the start of the first 1110 * newly allocated cluster to the end of the (possibly shortened 1111 * before) write request. 1112 * 1113 * avail_sectors: Number of sectors from the start of the first 1114 * newly allocated to the end of the last newly allocated cluster. 1115 * 1116 * nb_sectors: The number of sectors from the start of the first 1117 * newly allocated cluster to the end of the area that the write 1118 * request actually writes to (excluding COW at the end) 1119 */ 1120 int requested_sectors = 1121 (*bytes + offset_into_cluster(s, guest_offset)) 1122 >> BDRV_SECTOR_BITS; 1123 int avail_sectors = nb_clusters 1124 << (s->cluster_bits - BDRV_SECTOR_BITS); 1125 int alloc_n_start = offset_into_cluster(s, guest_offset) 1126 >> BDRV_SECTOR_BITS; 1127 int nb_sectors = MIN(requested_sectors, avail_sectors); 1128 QCowL2Meta *old_m = *m; 1129 1130 *m = g_malloc0(sizeof(**m)); 1131 1132 **m = (QCowL2Meta) { 1133 .next = old_m, 1134 1135 .alloc_offset = alloc_cluster_offset, 1136 .offset = start_of_cluster(s, guest_offset), 1137 .nb_clusters = nb_clusters, 1138 .nb_available = nb_sectors, 1139 1140 .cow_start = { 1141 .offset = 0, 1142 .nb_sectors = alloc_n_start, 1143 }, 1144 .cow_end = { 1145 .offset = nb_sectors * BDRV_SECTOR_SIZE, 1146 .nb_sectors = avail_sectors - nb_sectors, 1147 }, 1148 }; 1149 qemu_co_queue_init(&(*m)->dependent_requests); 1150 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1151 1152 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1153 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) 1154 - offset_into_cluster(s, guest_offset)); 1155 assert(*bytes != 0); 1156 1157 return 1; 1158 1159 fail: 1160 if (*m && (*m)->nb_clusters > 0) { 1161 QLIST_REMOVE(*m, next_in_flight); 1162 } 1163 return ret; 1164 } 1165 1166 /* 1167 * alloc_cluster_offset 1168 * 1169 * For a given offset on the virtual disk, find the cluster offset in qcow2 1170 * file. If the offset is not found, allocate a new cluster. 1171 * 1172 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1173 * other fields in m are meaningless. 1174 * 1175 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1176 * contiguous clusters that have been allocated. In this case, the other 1177 * fields of m are valid and contain information about the first allocated 1178 * cluster. 1179 * 1180 * If the request conflicts with another write request in flight, the coroutine 1181 * is queued and will be reentered when the dependency has completed. 1182 * 1183 * Return 0 on success and -errno in error cases 1184 */ 1185 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1186 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m) 1187 { 1188 BDRVQcowState *s = bs->opaque; 1189 uint64_t start, remaining; 1190 uint64_t cluster_offset; 1191 uint64_t cur_bytes; 1192 int ret; 1193 1194 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, 1195 n_start, n_end); 1196 1197 assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset)); 1198 offset = start_of_cluster(s, offset); 1199 1200 again: 1201 start = offset + (n_start << BDRV_SECTOR_BITS); 1202 remaining = (n_end - n_start) << BDRV_SECTOR_BITS; 1203 cluster_offset = 0; 1204 *host_offset = 0; 1205 cur_bytes = 0; 1206 *m = NULL; 1207 1208 while (true) { 1209 1210 if (!*host_offset) { 1211 *host_offset = start_of_cluster(s, cluster_offset); 1212 } 1213 1214 assert(remaining >= cur_bytes); 1215 1216 start += cur_bytes; 1217 remaining -= cur_bytes; 1218 cluster_offset += cur_bytes; 1219 1220 if (remaining == 0) { 1221 break; 1222 } 1223 1224 cur_bytes = remaining; 1225 1226 /* 1227 * Now start gathering as many contiguous clusters as possible: 1228 * 1229 * 1. Check for overlaps with in-flight allocations 1230 * 1231 * a) Overlap not in the first cluster -> shorten this request and 1232 * let the caller handle the rest in its next loop iteration. 1233 * 1234 * b) Real overlaps of two requests. Yield and restart the search 1235 * for contiguous clusters (the situation could have changed 1236 * while we were sleeping) 1237 * 1238 * c) TODO: Request starts in the same cluster as the in-flight 1239 * allocation ends. Shorten the COW of the in-fight allocation, 1240 * set cluster_offset to write to the same cluster and set up 1241 * the right synchronisation between the in-flight request and 1242 * the new one. 1243 */ 1244 ret = handle_dependencies(bs, start, &cur_bytes, m); 1245 if (ret == -EAGAIN) { 1246 /* Currently handle_dependencies() doesn't yield if we already had 1247 * an allocation. If it did, we would have to clean up the L2Meta 1248 * structs before starting over. */ 1249 assert(*m == NULL); 1250 goto again; 1251 } else if (ret < 0) { 1252 return ret; 1253 } else if (cur_bytes == 0) { 1254 break; 1255 } else { 1256 /* handle_dependencies() may have decreased cur_bytes (shortened 1257 * the allocations below) so that the next dependency is processed 1258 * correctly during the next loop iteration. */ 1259 } 1260 1261 /* 1262 * 2. Count contiguous COPIED clusters. 1263 */ 1264 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1265 if (ret < 0) { 1266 return ret; 1267 } else if (ret) { 1268 continue; 1269 } else if (cur_bytes == 0) { 1270 break; 1271 } 1272 1273 /* 1274 * 3. If the request still hasn't completed, allocate new clusters, 1275 * considering any cluster_offset of steps 1c or 2. 1276 */ 1277 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1278 if (ret < 0) { 1279 return ret; 1280 } else if (ret) { 1281 continue; 1282 } else { 1283 assert(cur_bytes == 0); 1284 break; 1285 } 1286 } 1287 1288 *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS); 1289 assert(*num > 0); 1290 assert(*host_offset != 0); 1291 1292 return 0; 1293 } 1294 1295 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1296 const uint8_t *buf, int buf_size) 1297 { 1298 z_stream strm1, *strm = &strm1; 1299 int ret, out_len; 1300 1301 memset(strm, 0, sizeof(*strm)); 1302 1303 strm->next_in = (uint8_t *)buf; 1304 strm->avail_in = buf_size; 1305 strm->next_out = out_buf; 1306 strm->avail_out = out_buf_size; 1307 1308 ret = inflateInit2(strm, -12); 1309 if (ret != Z_OK) 1310 return -1; 1311 ret = inflate(strm, Z_FINISH); 1312 out_len = strm->next_out - out_buf; 1313 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1314 out_len != out_buf_size) { 1315 inflateEnd(strm); 1316 return -1; 1317 } 1318 inflateEnd(strm); 1319 return 0; 1320 } 1321 1322 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1323 { 1324 BDRVQcowState *s = bs->opaque; 1325 int ret, csize, nb_csectors, sector_offset; 1326 uint64_t coffset; 1327 1328 coffset = cluster_offset & s->cluster_offset_mask; 1329 if (s->cluster_cache_offset != coffset) { 1330 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1331 sector_offset = coffset & 511; 1332 csize = nb_csectors * 512 - sector_offset; 1333 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1334 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); 1335 if (ret < 0) { 1336 return ret; 1337 } 1338 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1339 s->cluster_data + sector_offset, csize) < 0) { 1340 return -EIO; 1341 } 1342 s->cluster_cache_offset = coffset; 1343 } 1344 return 0; 1345 } 1346 1347 /* 1348 * This discards as many clusters of nb_clusters as possible at once (i.e. 1349 * all clusters in the same L2 table) and returns the number of discarded 1350 * clusters. 1351 */ 1352 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1353 unsigned int nb_clusters, enum qcow2_discard_type type) 1354 { 1355 BDRVQcowState *s = bs->opaque; 1356 uint64_t *l2_table; 1357 int l2_index; 1358 int ret; 1359 int i; 1360 1361 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1362 if (ret < 0) { 1363 return ret; 1364 } 1365 1366 /* Limit nb_clusters to one L2 table */ 1367 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1368 1369 for (i = 0; i < nb_clusters; i++) { 1370 uint64_t old_offset; 1371 1372 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1373 if ((old_offset & L2E_OFFSET_MASK) == 0) { 1374 continue; 1375 } 1376 1377 /* First remove L2 entries */ 1378 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1379 l2_table[l2_index + i] = cpu_to_be64(0); 1380 1381 /* Then decrease the refcount */ 1382 qcow2_free_any_clusters(bs, old_offset, 1, type); 1383 } 1384 1385 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1386 if (ret < 0) { 1387 return ret; 1388 } 1389 1390 return nb_clusters; 1391 } 1392 1393 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1394 int nb_sectors, enum qcow2_discard_type type) 1395 { 1396 BDRVQcowState *s = bs->opaque; 1397 uint64_t end_offset; 1398 unsigned int nb_clusters; 1399 int ret; 1400 1401 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1402 1403 /* Round start up and end down */ 1404 offset = align_offset(offset, s->cluster_size); 1405 end_offset &= ~(s->cluster_size - 1); 1406 1407 if (offset > end_offset) { 1408 return 0; 1409 } 1410 1411 nb_clusters = size_to_clusters(s, end_offset - offset); 1412 1413 s->cache_discards = true; 1414 1415 /* Each L2 table is handled by its own loop iteration */ 1416 while (nb_clusters > 0) { 1417 ret = discard_single_l2(bs, offset, nb_clusters, type); 1418 if (ret < 0) { 1419 goto fail; 1420 } 1421 1422 nb_clusters -= ret; 1423 offset += (ret * s->cluster_size); 1424 } 1425 1426 ret = 0; 1427 fail: 1428 s->cache_discards = false; 1429 qcow2_process_discards(bs, ret); 1430 1431 return ret; 1432 } 1433 1434 /* 1435 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1436 * all clusters in the same L2 table) and returns the number of zeroed 1437 * clusters. 1438 */ 1439 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1440 unsigned int nb_clusters) 1441 { 1442 BDRVQcowState *s = bs->opaque; 1443 uint64_t *l2_table; 1444 int l2_index; 1445 int ret; 1446 int i; 1447 1448 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1449 if (ret < 0) { 1450 return ret; 1451 } 1452 1453 /* Limit nb_clusters to one L2 table */ 1454 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1455 1456 for (i = 0; i < nb_clusters; i++) { 1457 uint64_t old_offset; 1458 1459 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1460 1461 /* Update L2 entries */ 1462 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1463 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1464 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1465 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1466 } else { 1467 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1468 } 1469 } 1470 1471 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1472 if (ret < 0) { 1473 return ret; 1474 } 1475 1476 return nb_clusters; 1477 } 1478 1479 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1480 { 1481 BDRVQcowState *s = bs->opaque; 1482 unsigned int nb_clusters; 1483 int ret; 1484 1485 /* The zero flag is only supported by version 3 and newer */ 1486 if (s->qcow_version < 3) { 1487 return -ENOTSUP; 1488 } 1489 1490 /* Each L2 table is handled by its own loop iteration */ 1491 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1492 1493 s->cache_discards = true; 1494 1495 while (nb_clusters > 0) { 1496 ret = zero_single_l2(bs, offset, nb_clusters); 1497 if (ret < 0) { 1498 goto fail; 1499 } 1500 1501 nb_clusters -= ret; 1502 offset += (ret * s->cluster_size); 1503 } 1504 1505 ret = 0; 1506 fail: 1507 s->cache_discards = false; 1508 qcow2_process_discards(bs, ret); 1509 1510 return ret; 1511 } 1512 1513 /* 1514 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1515 * non-backed non-pre-allocated zero clusters). 1516 * 1517 * expanded_clusters is a bitmap where every bit corresponds to one cluster in 1518 * the image file; a bit gets set if the corresponding cluster has been used for 1519 * zero expansion (i.e., has been filled with zeroes and is referenced from an 1520 * L2 table). nb_clusters contains the total cluster count of the image file, 1521 * i.e., the number of bits in expanded_clusters. 1522 */ 1523 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1524 int l1_size, uint8_t **expanded_clusters, 1525 uint64_t *nb_clusters) 1526 { 1527 BDRVQcowState *s = bs->opaque; 1528 bool is_active_l1 = (l1_table == s->l1_table); 1529 uint64_t *l2_table = NULL; 1530 int ret; 1531 int i, j; 1532 1533 if (!is_active_l1) { 1534 /* inactive L2 tables require a buffer to be stored in when loading 1535 * them from disk */ 1536 l2_table = qemu_blockalign(bs, s->cluster_size); 1537 } 1538 1539 for (i = 0; i < l1_size; i++) { 1540 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1541 bool l2_dirty = false; 1542 1543 if (!l2_offset) { 1544 /* unallocated */ 1545 continue; 1546 } 1547 1548 if (is_active_l1) { 1549 /* get active L2 tables from cache */ 1550 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1551 (void **)&l2_table); 1552 } else { 1553 /* load inactive L2 tables from disk */ 1554 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1555 (void *)l2_table, s->cluster_sectors); 1556 } 1557 if (ret < 0) { 1558 goto fail; 1559 } 1560 1561 for (j = 0; j < s->l2_size; j++) { 1562 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1563 int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index; 1564 int cluster_type = qcow2_get_cluster_type(l2_entry); 1565 bool preallocated = offset != 0; 1566 1567 if (cluster_type == QCOW2_CLUSTER_NORMAL) { 1568 cluster_index = offset >> s->cluster_bits; 1569 assert((cluster_index >= 0) && (cluster_index < *nb_clusters)); 1570 if ((*expanded_clusters)[cluster_index / 8] & 1571 (1 << (cluster_index % 8))) { 1572 /* Probably a shared L2 table; this cluster was a zero 1573 * cluster which has been expanded, its refcount 1574 * therefore most likely requires an update. */ 1575 ret = qcow2_update_cluster_refcount(bs, cluster_index, 1, 1576 QCOW2_DISCARD_NEVER); 1577 if (ret < 0) { 1578 goto fail; 1579 } 1580 /* Since we just increased the refcount, the COPIED flag may 1581 * no longer be set. */ 1582 l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED); 1583 l2_dirty = true; 1584 } 1585 continue; 1586 } 1587 else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) { 1588 continue; 1589 } 1590 1591 if (!preallocated) { 1592 if (!bs->backing_hd) { 1593 /* not backed; therefore we can simply deallocate the 1594 * cluster */ 1595 l2_table[j] = 0; 1596 l2_dirty = true; 1597 continue; 1598 } 1599 1600 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1601 if (offset < 0) { 1602 ret = offset; 1603 goto fail; 1604 } 1605 } 1606 1607 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT, 1608 offset, s->cluster_size); 1609 if (ret < 0) { 1610 if (!preallocated) { 1611 qcow2_free_clusters(bs, offset, s->cluster_size, 1612 QCOW2_DISCARD_ALWAYS); 1613 } 1614 goto fail; 1615 } 1616 1617 ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE, 1618 s->cluster_sectors); 1619 if (ret < 0) { 1620 if (!preallocated) { 1621 qcow2_free_clusters(bs, offset, s->cluster_size, 1622 QCOW2_DISCARD_ALWAYS); 1623 } 1624 goto fail; 1625 } 1626 1627 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1628 l2_dirty = true; 1629 1630 cluster_index = offset >> s->cluster_bits; 1631 1632 if (cluster_index >= *nb_clusters) { 1633 uint64_t old_bitmap_size = (*nb_clusters + 7) / 8; 1634 uint64_t new_bitmap_size; 1635 /* The offset may lie beyond the old end of the underlying image 1636 * file for growable files only */ 1637 assert(bs->file->growable); 1638 *nb_clusters = size_to_clusters(s, bs->file->total_sectors * 1639 BDRV_SECTOR_SIZE); 1640 new_bitmap_size = (*nb_clusters + 7) / 8; 1641 *expanded_clusters = g_realloc(*expanded_clusters, 1642 new_bitmap_size); 1643 /* clear the newly allocated space */ 1644 memset(&(*expanded_clusters)[old_bitmap_size], 0, 1645 new_bitmap_size - old_bitmap_size); 1646 } 1647 1648 assert((cluster_index >= 0) && (cluster_index < *nb_clusters)); 1649 (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8); 1650 } 1651 1652 if (is_active_l1) { 1653 if (l2_dirty) { 1654 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1655 qcow2_cache_depends_on_flush(s->l2_table_cache); 1656 } 1657 ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 1658 if (ret < 0) { 1659 l2_table = NULL; 1660 goto fail; 1661 } 1662 } else { 1663 if (l2_dirty) { 1664 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT & 1665 ~(QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2), l2_offset, 1666 s->cluster_size); 1667 if (ret < 0) { 1668 goto fail; 1669 } 1670 1671 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1672 (void *)l2_table, s->cluster_sectors); 1673 if (ret < 0) { 1674 goto fail; 1675 } 1676 } 1677 } 1678 } 1679 1680 ret = 0; 1681 1682 fail: 1683 if (l2_table) { 1684 if (!is_active_l1) { 1685 qemu_vfree(l2_table); 1686 } else { 1687 if (ret < 0) { 1688 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 1689 } else { 1690 ret = qcow2_cache_put(bs, s->l2_table_cache, 1691 (void **)&l2_table); 1692 } 1693 } 1694 } 1695 return ret; 1696 } 1697 1698 /* 1699 * For backed images, expands all zero clusters on the image. For non-backed 1700 * images, deallocates all non-pre-allocated zero clusters (and claims the 1701 * allocation for pre-allocated ones). This is important for downgrading to a 1702 * qcow2 version which doesn't yet support metadata zero clusters. 1703 */ 1704 int qcow2_expand_zero_clusters(BlockDriverState *bs) 1705 { 1706 BDRVQcowState *s = bs->opaque; 1707 uint64_t *l1_table = NULL; 1708 uint64_t nb_clusters; 1709 uint8_t *expanded_clusters; 1710 int ret; 1711 int i, j; 1712 1713 nb_clusters = size_to_clusters(s, bs->file->total_sectors * 1714 BDRV_SECTOR_SIZE); 1715 expanded_clusters = g_malloc0((nb_clusters + 7) / 8); 1716 1717 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 1718 &expanded_clusters, &nb_clusters); 1719 if (ret < 0) { 1720 goto fail; 1721 } 1722 1723 /* Inactive L1 tables may point to active L2 tables - therefore it is 1724 * necessary to flush the L2 table cache before trying to access the L2 1725 * tables pointed to by inactive L1 entries (else we might try to expand 1726 * zero clusters that have already been expanded); furthermore, it is also 1727 * necessary to empty the L2 table cache, since it may contain tables which 1728 * are now going to be modified directly on disk, bypassing the cache. 1729 * qcow2_cache_empty() does both for us. */ 1730 ret = qcow2_cache_empty(bs, s->l2_table_cache); 1731 if (ret < 0) { 1732 goto fail; 1733 } 1734 1735 for (i = 0; i < s->nb_snapshots; i++) { 1736 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) + 1737 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE; 1738 1739 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); 1740 1741 ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset / 1742 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors); 1743 if (ret < 0) { 1744 goto fail; 1745 } 1746 1747 for (j = 0; j < s->snapshots[i].l1_size; j++) { 1748 be64_to_cpus(&l1_table[j]); 1749 } 1750 1751 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 1752 &expanded_clusters, &nb_clusters); 1753 if (ret < 0) { 1754 goto fail; 1755 } 1756 } 1757 1758 ret = 0; 1759 1760 fail: 1761 g_free(expanded_clusters); 1762 g_free(l1_table); 1763 return ret; 1764 } 1765