1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "trace.h" 31 32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 33 bool exact_size) 34 { 35 BDRVQcow2State *s = bs->opaque; 36 int new_l1_size2, ret, i; 37 uint64_t *new_l1_table; 38 int64_t old_l1_table_offset, old_l1_size; 39 int64_t new_l1_table_offset, new_l1_size; 40 uint8_t data[12]; 41 42 if (min_size <= s->l1_size) 43 return 0; 44 45 /* Do a sanity check on min_size before trying to calculate new_l1_size 46 * (this prevents overflows during the while loop for the calculation of 47 * new_l1_size) */ 48 if (min_size > INT_MAX / sizeof(uint64_t)) { 49 return -EFBIG; 50 } 51 52 if (exact_size) { 53 new_l1_size = min_size; 54 } else { 55 /* Bump size up to reduce the number of times we have to grow */ 56 new_l1_size = s->l1_size; 57 if (new_l1_size == 0) { 58 new_l1_size = 1; 59 } 60 while (min_size > new_l1_size) { 61 new_l1_size = (new_l1_size * 3 + 1) / 2; 62 } 63 } 64 65 if (new_l1_size > INT_MAX / sizeof(uint64_t)) { 66 return -EFBIG; 67 } 68 69 #ifdef DEBUG_ALLOC2 70 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 71 s->l1_size, new_l1_size); 72 #endif 73 74 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 75 new_l1_table = qemu_try_blockalign(bs->file->bs, 76 align_offset(new_l1_size2, 512)); 77 if (new_l1_table == NULL) { 78 return -ENOMEM; 79 } 80 memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); 81 82 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 83 84 /* write new table (align to cluster) */ 85 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 86 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 87 if (new_l1_table_offset < 0) { 88 qemu_vfree(new_l1_table); 89 return new_l1_table_offset; 90 } 91 92 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 93 if (ret < 0) { 94 goto fail; 95 } 96 97 /* the L1 position has not yet been updated, so these clusters must 98 * indeed be completely free */ 99 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 100 new_l1_size2); 101 if (ret < 0) { 102 goto fail; 103 } 104 105 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 106 for(i = 0; i < s->l1_size; i++) 107 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 108 ret = bdrv_pwrite_sync(bs->file->bs, new_l1_table_offset, 109 new_l1_table, new_l1_size2); 110 if (ret < 0) 111 goto fail; 112 for(i = 0; i < s->l1_size; i++) 113 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 114 115 /* set new table */ 116 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 117 cpu_to_be32w((uint32_t*)data, new_l1_size); 118 stq_be_p(data + 4, new_l1_table_offset); 119 ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, l1_size), 120 data, sizeof(data)); 121 if (ret < 0) { 122 goto fail; 123 } 124 qemu_vfree(s->l1_table); 125 old_l1_table_offset = s->l1_table_offset; 126 s->l1_table_offset = new_l1_table_offset; 127 s->l1_table = new_l1_table; 128 old_l1_size = s->l1_size; 129 s->l1_size = new_l1_size; 130 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 131 QCOW2_DISCARD_OTHER); 132 return 0; 133 fail: 134 qemu_vfree(new_l1_table); 135 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 136 QCOW2_DISCARD_OTHER); 137 return ret; 138 } 139 140 /* 141 * l2_load 142 * 143 * Loads a L2 table into memory. If the table is in the cache, the cache 144 * is used; otherwise the L2 table is loaded from the image file. 145 * 146 * Returns a pointer to the L2 table on success, or NULL if the read from 147 * the image file failed. 148 */ 149 150 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 151 uint64_t **l2_table) 152 { 153 BDRVQcow2State *s = bs->opaque; 154 int ret; 155 156 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 157 158 return ret; 159 } 160 161 /* 162 * Writes one sector of the L1 table to the disk (can't update single entries 163 * and we really don't want bdrv_pread to perform a read-modify-write) 164 */ 165 #define L1_ENTRIES_PER_SECTOR (512 / 8) 166 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 167 { 168 BDRVQcow2State *s = bs->opaque; 169 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; 170 int l1_start_index; 171 int i, ret; 172 173 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 174 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; 175 i++) 176 { 177 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 178 } 179 180 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 181 s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); 182 if (ret < 0) { 183 return ret; 184 } 185 186 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 187 ret = bdrv_pwrite_sync(bs->file->bs, 188 s->l1_table_offset + 8 * l1_start_index, 189 buf, sizeof(buf)); 190 if (ret < 0) { 191 return ret; 192 } 193 194 return 0; 195 } 196 197 /* 198 * l2_allocate 199 * 200 * Allocate a new l2 entry in the file. If l1_index points to an already 201 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 202 * table) copy the contents of the old L2 table into the newly allocated one. 203 * Otherwise the new table is initialized with zeros. 204 * 205 */ 206 207 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 208 { 209 BDRVQcow2State *s = bs->opaque; 210 uint64_t old_l2_offset; 211 uint64_t *l2_table = NULL; 212 int64_t l2_offset; 213 int ret; 214 215 old_l2_offset = s->l1_table[l1_index]; 216 217 trace_qcow2_l2_allocate(bs, l1_index); 218 219 /* allocate a new l2 entry */ 220 221 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 222 if (l2_offset < 0) { 223 ret = l2_offset; 224 goto fail; 225 } 226 227 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 228 if (ret < 0) { 229 goto fail; 230 } 231 232 /* allocate a new entry in the l2 cache */ 233 234 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 235 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 236 if (ret < 0) { 237 goto fail; 238 } 239 240 l2_table = *table; 241 242 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 243 /* if there was no old l2 table, clear the new table */ 244 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 245 } else { 246 uint64_t* old_table; 247 248 /* if there was an old l2 table, read it from the disk */ 249 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 250 ret = qcow2_cache_get(bs, s->l2_table_cache, 251 old_l2_offset & L1E_OFFSET_MASK, 252 (void**) &old_table); 253 if (ret < 0) { 254 goto fail; 255 } 256 257 memcpy(l2_table, old_table, s->cluster_size); 258 259 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table); 260 } 261 262 /* write the l2 table to the file */ 263 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 264 265 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 266 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 267 ret = qcow2_cache_flush(bs, s->l2_table_cache); 268 if (ret < 0) { 269 goto fail; 270 } 271 272 /* update the L1 entry */ 273 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 274 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 275 ret = qcow2_write_l1_entry(bs, l1_index); 276 if (ret < 0) { 277 goto fail; 278 } 279 280 *table = l2_table; 281 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 282 return 0; 283 284 fail: 285 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 286 if (l2_table != NULL) { 287 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 288 } 289 s->l1_table[l1_index] = old_l2_offset; 290 if (l2_offset > 0) { 291 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 292 QCOW2_DISCARD_ALWAYS); 293 } 294 return ret; 295 } 296 297 /* 298 * Checks how many clusters in a given L2 table are contiguous in the image 299 * file. As soon as one of the flags in the bitmask stop_flags changes compared 300 * to the first cluster, the search is stopped and the cluster is not counted 301 * as contiguous. (This allows it, for example, to stop at the first compressed 302 * cluster which may require a different handling) 303 */ 304 static int count_contiguous_clusters(int nb_clusters, int cluster_size, 305 uint64_t *l2_table, uint64_t stop_flags) 306 { 307 int i; 308 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 309 uint64_t first_entry = be64_to_cpu(l2_table[0]); 310 uint64_t offset = first_entry & mask; 311 312 if (!offset) 313 return 0; 314 315 assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL); 316 317 for (i = 0; i < nb_clusters; i++) { 318 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 319 if (offset + (uint64_t) i * cluster_size != l2_entry) { 320 break; 321 } 322 } 323 324 return i; 325 } 326 327 static int count_contiguous_clusters_by_type(int nb_clusters, 328 uint64_t *l2_table, 329 int wanted_type) 330 { 331 int i; 332 333 for (i = 0; i < nb_clusters; i++) { 334 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 335 336 if (type != wanted_type) { 337 break; 338 } 339 } 340 341 return i; 342 } 343 344 /* The crypt function is compatible with the linux cryptoloop 345 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 346 supported */ 347 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num, 348 uint8_t *out_buf, const uint8_t *in_buf, 349 int nb_sectors, bool enc, 350 Error **errp) 351 { 352 union { 353 uint64_t ll[2]; 354 uint8_t b[16]; 355 } ivec; 356 int i; 357 int ret; 358 359 for(i = 0; i < nb_sectors; i++) { 360 ivec.ll[0] = cpu_to_le64(sector_num); 361 ivec.ll[1] = 0; 362 if (qcrypto_cipher_setiv(s->cipher, 363 ivec.b, G_N_ELEMENTS(ivec.b), 364 errp) < 0) { 365 return -1; 366 } 367 if (enc) { 368 ret = qcrypto_cipher_encrypt(s->cipher, 369 in_buf, 370 out_buf, 371 512, 372 errp); 373 } else { 374 ret = qcrypto_cipher_decrypt(s->cipher, 375 in_buf, 376 out_buf, 377 512, 378 errp); 379 } 380 if (ret < 0) { 381 return -1; 382 } 383 sector_num++; 384 in_buf += 512; 385 out_buf += 512; 386 } 387 return 0; 388 } 389 390 static int coroutine_fn copy_sectors(BlockDriverState *bs, 391 uint64_t start_sect, 392 uint64_t cluster_offset, 393 int n_start, int n_end) 394 { 395 BDRVQcow2State *s = bs->opaque; 396 QEMUIOVector qiov; 397 struct iovec iov; 398 int n, ret; 399 400 n = n_end - n_start; 401 if (n <= 0) { 402 return 0; 403 } 404 405 iov.iov_len = n * BDRV_SECTOR_SIZE; 406 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); 407 if (iov.iov_base == NULL) { 408 return -ENOMEM; 409 } 410 411 qemu_iovec_init_external(&qiov, &iov, 1); 412 413 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 414 415 if (!bs->drv) { 416 ret = -ENOMEDIUM; 417 goto out; 418 } 419 420 /* Call .bdrv_co_readv() directly instead of using the public block-layer 421 * interface. This avoids double I/O throttling and request tracking, 422 * which can lead to deadlock when block layer copy-on-read is enabled. 423 */ 424 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 425 if (ret < 0) { 426 goto out; 427 } 428 429 if (bs->encrypted) { 430 Error *err = NULL; 431 assert(s->cipher); 432 if (qcow2_encrypt_sectors(s, start_sect + n_start, 433 iov.iov_base, iov.iov_base, n, 434 true, &err) < 0) { 435 ret = -EIO; 436 error_free(err); 437 goto out; 438 } 439 } 440 441 ret = qcow2_pre_write_overlap_check(bs, 0, 442 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); 443 if (ret < 0) { 444 goto out; 445 } 446 447 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 448 ret = bdrv_co_writev(bs->file->bs, (cluster_offset >> 9) + n_start, n, 449 &qiov); 450 if (ret < 0) { 451 goto out; 452 } 453 454 ret = 0; 455 out: 456 qemu_vfree(iov.iov_base); 457 return ret; 458 } 459 460 461 /* 462 * get_cluster_offset 463 * 464 * For a given offset of the disk image, find the cluster offset in 465 * qcow2 file. The offset is stored in *cluster_offset. 466 * 467 * on entry, *num is the number of contiguous sectors we'd like to 468 * access following offset. 469 * 470 * on exit, *num is the number of contiguous sectors we can read. 471 * 472 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 473 * cases. 474 */ 475 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 476 int *num, uint64_t *cluster_offset) 477 { 478 BDRVQcow2State *s = bs->opaque; 479 unsigned int l2_index; 480 uint64_t l1_index, l2_offset, *l2_table; 481 int l1_bits, c; 482 unsigned int index_in_cluster, nb_clusters; 483 uint64_t nb_available, nb_needed; 484 int ret; 485 486 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 487 nb_needed = *num + index_in_cluster; 488 489 l1_bits = s->l2_bits + s->cluster_bits; 490 491 /* compute how many bytes there are between the offset and 492 * the end of the l1 entry 493 */ 494 495 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 496 497 /* compute the number of available sectors */ 498 499 nb_available = (nb_available >> 9) + index_in_cluster; 500 501 if (nb_needed > nb_available) { 502 nb_needed = nb_available; 503 } 504 assert(nb_needed <= INT_MAX); 505 506 *cluster_offset = 0; 507 508 /* seek to the l2 offset in the l1 table */ 509 510 l1_index = offset >> l1_bits; 511 if (l1_index >= s->l1_size) { 512 ret = QCOW2_CLUSTER_UNALLOCATED; 513 goto out; 514 } 515 516 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 517 if (!l2_offset) { 518 ret = QCOW2_CLUSTER_UNALLOCATED; 519 goto out; 520 } 521 522 if (offset_into_cluster(s, l2_offset)) { 523 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 524 " unaligned (L1 index: %#" PRIx64 ")", 525 l2_offset, l1_index); 526 return -EIO; 527 } 528 529 /* load the l2 table in memory */ 530 531 ret = l2_load(bs, l2_offset, &l2_table); 532 if (ret < 0) { 533 return ret; 534 } 535 536 /* find the cluster offset for the given disk offset */ 537 538 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 539 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 540 541 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */ 542 nb_clusters = size_to_clusters(s, nb_needed << 9); 543 544 ret = qcow2_get_cluster_type(*cluster_offset); 545 switch (ret) { 546 case QCOW2_CLUSTER_COMPRESSED: 547 /* Compressed clusters can only be processed one by one */ 548 c = 1; 549 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 550 break; 551 case QCOW2_CLUSTER_ZERO: 552 if (s->qcow_version < 3) { 553 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 554 " in pre-v3 image (L2 offset: %#" PRIx64 555 ", L2 index: %#x)", l2_offset, l2_index); 556 ret = -EIO; 557 goto fail; 558 } 559 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], 560 QCOW2_CLUSTER_ZERO); 561 *cluster_offset = 0; 562 break; 563 case QCOW2_CLUSTER_UNALLOCATED: 564 /* how many empty clusters ? */ 565 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], 566 QCOW2_CLUSTER_UNALLOCATED); 567 *cluster_offset = 0; 568 break; 569 case QCOW2_CLUSTER_NORMAL: 570 /* how many allocated clusters ? */ 571 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 572 &l2_table[l2_index], QCOW_OFLAG_ZERO); 573 *cluster_offset &= L2E_OFFSET_MASK; 574 if (offset_into_cluster(s, *cluster_offset)) { 575 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#" 576 PRIx64 " unaligned (L2 offset: %#" PRIx64 577 ", L2 index: %#x)", *cluster_offset, 578 l2_offset, l2_index); 579 ret = -EIO; 580 goto fail; 581 } 582 break; 583 default: 584 abort(); 585 } 586 587 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 588 589 nb_available = (c * s->cluster_sectors); 590 591 out: 592 if (nb_available > nb_needed) 593 nb_available = nb_needed; 594 595 *num = nb_available - index_in_cluster; 596 597 return ret; 598 599 fail: 600 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 601 return ret; 602 } 603 604 /* 605 * get_cluster_table 606 * 607 * for a given disk offset, load (and allocate if needed) 608 * the l2 table. 609 * 610 * the l2 table offset in the qcow2 file and the cluster index 611 * in the l2 table are given to the caller. 612 * 613 * Returns 0 on success, -errno in failure case 614 */ 615 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 616 uint64_t **new_l2_table, 617 int *new_l2_index) 618 { 619 BDRVQcow2State *s = bs->opaque; 620 unsigned int l2_index; 621 uint64_t l1_index, l2_offset; 622 uint64_t *l2_table = NULL; 623 int ret; 624 625 /* seek to the l2 offset in the l1 table */ 626 627 l1_index = offset >> (s->l2_bits + s->cluster_bits); 628 if (l1_index >= s->l1_size) { 629 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 630 if (ret < 0) { 631 return ret; 632 } 633 } 634 635 assert(l1_index < s->l1_size); 636 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 637 if (offset_into_cluster(s, l2_offset)) { 638 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 639 " unaligned (L1 index: %#" PRIx64 ")", 640 l2_offset, l1_index); 641 return -EIO; 642 } 643 644 /* seek the l2 table of the given l2 offset */ 645 646 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 647 /* load the l2 table in memory */ 648 ret = l2_load(bs, l2_offset, &l2_table); 649 if (ret < 0) { 650 return ret; 651 } 652 } else { 653 /* First allocate a new L2 table (and do COW if needed) */ 654 ret = l2_allocate(bs, l1_index, &l2_table); 655 if (ret < 0) { 656 return ret; 657 } 658 659 /* Then decrease the refcount of the old table */ 660 if (l2_offset) { 661 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 662 QCOW2_DISCARD_OTHER); 663 } 664 } 665 666 /* find the cluster offset for the given disk offset */ 667 668 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 669 670 *new_l2_table = l2_table; 671 *new_l2_index = l2_index; 672 673 return 0; 674 } 675 676 /* 677 * alloc_compressed_cluster_offset 678 * 679 * For a given offset of the disk image, return cluster offset in 680 * qcow2 file. 681 * 682 * If the offset is not found, allocate a new compressed cluster. 683 * 684 * Return the cluster offset if successful, 685 * Return 0, otherwise. 686 * 687 */ 688 689 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 690 uint64_t offset, 691 int compressed_size) 692 { 693 BDRVQcow2State *s = bs->opaque; 694 int l2_index, ret; 695 uint64_t *l2_table; 696 int64_t cluster_offset; 697 int nb_csectors; 698 699 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 700 if (ret < 0) { 701 return 0; 702 } 703 704 /* Compression can't overwrite anything. Fail if the cluster was already 705 * allocated. */ 706 cluster_offset = be64_to_cpu(l2_table[l2_index]); 707 if (cluster_offset & L2E_OFFSET_MASK) { 708 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 709 return 0; 710 } 711 712 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 713 if (cluster_offset < 0) { 714 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 715 return 0; 716 } 717 718 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 719 (cluster_offset >> 9); 720 721 cluster_offset |= QCOW_OFLAG_COMPRESSED | 722 ((uint64_t)nb_csectors << s->csize_shift); 723 724 /* update L2 table */ 725 726 /* compressed clusters never have the copied flag */ 727 728 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 729 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 730 l2_table[l2_index] = cpu_to_be64(cluster_offset); 731 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 732 733 return cluster_offset; 734 } 735 736 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 737 { 738 BDRVQcow2State *s = bs->opaque; 739 int ret; 740 741 if (r->nb_sectors == 0) { 742 return 0; 743 } 744 745 qemu_co_mutex_unlock(&s->lock); 746 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, 747 r->offset / BDRV_SECTOR_SIZE, 748 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); 749 qemu_co_mutex_lock(&s->lock); 750 751 if (ret < 0) { 752 return ret; 753 } 754 755 /* 756 * Before we update the L2 table to actually point to the new cluster, we 757 * need to be sure that the refcounts have been increased and COW was 758 * handled. 759 */ 760 qcow2_cache_depends_on_flush(s->l2_table_cache); 761 762 return 0; 763 } 764 765 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 766 { 767 BDRVQcow2State *s = bs->opaque; 768 int i, j = 0, l2_index, ret; 769 uint64_t *old_cluster, *l2_table; 770 uint64_t cluster_offset = m->alloc_offset; 771 772 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 773 assert(m->nb_clusters > 0); 774 775 old_cluster = g_try_new(uint64_t, m->nb_clusters); 776 if (old_cluster == NULL) { 777 ret = -ENOMEM; 778 goto err; 779 } 780 781 /* copy content of unmodified sectors */ 782 ret = perform_cow(bs, m, &m->cow_start); 783 if (ret < 0) { 784 goto err; 785 } 786 787 ret = perform_cow(bs, m, &m->cow_end); 788 if (ret < 0) { 789 goto err; 790 } 791 792 /* Update L2 table. */ 793 if (s->use_lazy_refcounts) { 794 qcow2_mark_dirty(bs); 795 } 796 if (qcow2_need_accurate_refcounts(s)) { 797 qcow2_cache_set_dependency(bs, s->l2_table_cache, 798 s->refcount_block_cache); 799 } 800 801 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 802 if (ret < 0) { 803 goto err; 804 } 805 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 806 807 assert(l2_index + m->nb_clusters <= s->l2_size); 808 for (i = 0; i < m->nb_clusters; i++) { 809 /* if two concurrent writes happen to the same unallocated cluster 810 * each write allocates separate cluster and writes data concurrently. 811 * The first one to complete updates l2 table with pointer to its 812 * cluster the second one has to do RMW (which is done above by 813 * copy_sectors()), update l2 table with its cluster pointer and free 814 * old cluster. This is what this loop does */ 815 if(l2_table[l2_index + i] != 0) 816 old_cluster[j++] = l2_table[l2_index + i]; 817 818 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 819 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 820 } 821 822 823 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 824 825 /* 826 * If this was a COW, we need to decrease the refcount of the old cluster. 827 * 828 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 829 * clusters), the next write will reuse them anyway. 830 */ 831 if (j != 0) { 832 for (i = 0; i < j; i++) { 833 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 834 QCOW2_DISCARD_NEVER); 835 } 836 } 837 838 ret = 0; 839 err: 840 g_free(old_cluster); 841 return ret; 842 } 843 844 /* 845 * Returns the number of contiguous clusters that can be used for an allocating 846 * write, but require COW to be performed (this includes yet unallocated space, 847 * which must copy from the backing file) 848 */ 849 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters, 850 uint64_t *l2_table, int l2_index) 851 { 852 int i; 853 854 for (i = 0; i < nb_clusters; i++) { 855 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 856 int cluster_type = qcow2_get_cluster_type(l2_entry); 857 858 switch(cluster_type) { 859 case QCOW2_CLUSTER_NORMAL: 860 if (l2_entry & QCOW_OFLAG_COPIED) { 861 goto out; 862 } 863 break; 864 case QCOW2_CLUSTER_UNALLOCATED: 865 case QCOW2_CLUSTER_COMPRESSED: 866 case QCOW2_CLUSTER_ZERO: 867 break; 868 default: 869 abort(); 870 } 871 } 872 873 out: 874 assert(i <= nb_clusters); 875 return i; 876 } 877 878 /* 879 * Check if there already is an AIO write request in flight which allocates 880 * the same cluster. In this case we need to wait until the previous 881 * request has completed and updated the L2 table accordingly. 882 * 883 * Returns: 884 * 0 if there was no dependency. *cur_bytes indicates the number of 885 * bytes from guest_offset that can be read before the next 886 * dependency must be processed (or the request is complete) 887 * 888 * -EAGAIN if we had to wait for another request, previously gathered 889 * information on cluster allocation may be invalid now. The caller 890 * must start over anyway, so consider *cur_bytes undefined. 891 */ 892 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 893 uint64_t *cur_bytes, QCowL2Meta **m) 894 { 895 BDRVQcow2State *s = bs->opaque; 896 QCowL2Meta *old_alloc; 897 uint64_t bytes = *cur_bytes; 898 899 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 900 901 uint64_t start = guest_offset; 902 uint64_t end = start + bytes; 903 uint64_t old_start = l2meta_cow_start(old_alloc); 904 uint64_t old_end = l2meta_cow_end(old_alloc); 905 906 if (end <= old_start || start >= old_end) { 907 /* No intersection */ 908 } else { 909 if (start < old_start) { 910 /* Stop at the start of a running allocation */ 911 bytes = old_start - start; 912 } else { 913 bytes = 0; 914 } 915 916 /* Stop if already an l2meta exists. After yielding, it wouldn't 917 * be valid any more, so we'd have to clean up the old L2Metas 918 * and deal with requests depending on them before starting to 919 * gather new ones. Not worth the trouble. */ 920 if (bytes == 0 && *m) { 921 *cur_bytes = 0; 922 return 0; 923 } 924 925 if (bytes == 0) { 926 /* Wait for the dependency to complete. We need to recheck 927 * the free/allocated clusters when we continue. */ 928 qemu_co_mutex_unlock(&s->lock); 929 qemu_co_queue_wait(&old_alloc->dependent_requests); 930 qemu_co_mutex_lock(&s->lock); 931 return -EAGAIN; 932 } 933 } 934 } 935 936 /* Make sure that existing clusters and new allocations are only used up to 937 * the next dependency if we shortened the request above */ 938 *cur_bytes = bytes; 939 940 return 0; 941 } 942 943 /* 944 * Checks how many already allocated clusters that don't require a copy on 945 * write there are at the given guest_offset (up to *bytes). If 946 * *host_offset is not zero, only physically contiguous clusters beginning at 947 * this host offset are counted. 948 * 949 * Note that guest_offset may not be cluster aligned. In this case, the 950 * returned *host_offset points to exact byte referenced by guest_offset and 951 * therefore isn't cluster aligned as well. 952 * 953 * Returns: 954 * 0: if no allocated clusters are available at the given offset. 955 * *bytes is normally unchanged. It is set to 0 if the cluster 956 * is allocated and doesn't need COW, but doesn't have the right 957 * physical offset. 958 * 959 * 1: if allocated clusters that don't require a COW are available at 960 * the requested offset. *bytes may have decreased and describes 961 * the length of the area that can be written to. 962 * 963 * -errno: in error cases 964 */ 965 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 966 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 967 { 968 BDRVQcow2State *s = bs->opaque; 969 int l2_index; 970 uint64_t cluster_offset; 971 uint64_t *l2_table; 972 uint64_t nb_clusters; 973 unsigned int keep_clusters; 974 int ret; 975 976 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 977 *bytes); 978 979 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 980 == offset_into_cluster(s, *host_offset)); 981 982 /* 983 * Calculate the number of clusters to look for. We stop at L2 table 984 * boundaries to keep things simple. 985 */ 986 nb_clusters = 987 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 988 989 l2_index = offset_to_l2_index(s, guest_offset); 990 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 991 assert(nb_clusters <= INT_MAX); 992 993 /* Find L2 entry for the first involved cluster */ 994 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 995 if (ret < 0) { 996 return ret; 997 } 998 999 cluster_offset = be64_to_cpu(l2_table[l2_index]); 1000 1001 /* Check how many clusters are already allocated and don't need COW */ 1002 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 1003 && (cluster_offset & QCOW_OFLAG_COPIED)) 1004 { 1005 /* If a specific host_offset is required, check it */ 1006 bool offset_matches = 1007 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 1008 1009 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { 1010 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1011 "%#llx unaligned (guest offset: %#" PRIx64 1012 ")", cluster_offset & L2E_OFFSET_MASK, 1013 guest_offset); 1014 ret = -EIO; 1015 goto out; 1016 } 1017 1018 if (*host_offset != 0 && !offset_matches) { 1019 *bytes = 0; 1020 ret = 0; 1021 goto out; 1022 } 1023 1024 /* We keep all QCOW_OFLAG_COPIED clusters */ 1025 keep_clusters = 1026 count_contiguous_clusters(nb_clusters, s->cluster_size, 1027 &l2_table[l2_index], 1028 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 1029 assert(keep_clusters <= nb_clusters); 1030 1031 *bytes = MIN(*bytes, 1032 keep_clusters * s->cluster_size 1033 - offset_into_cluster(s, guest_offset)); 1034 1035 ret = 1; 1036 } else { 1037 ret = 0; 1038 } 1039 1040 /* Cleanup */ 1041 out: 1042 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1043 1044 /* Only return a host offset if we actually made progress. Otherwise we 1045 * would make requirements for handle_alloc() that it can't fulfill */ 1046 if (ret > 0) { 1047 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 1048 + offset_into_cluster(s, guest_offset); 1049 } 1050 1051 return ret; 1052 } 1053 1054 /* 1055 * Allocates new clusters for the given guest_offset. 1056 * 1057 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1058 * contain the number of clusters that have been allocated and are contiguous 1059 * in the image file. 1060 * 1061 * If *host_offset is non-zero, it specifies the offset in the image file at 1062 * which the new clusters must start. *nb_clusters can be 0 on return in this 1063 * case if the cluster at host_offset is already in use. If *host_offset is 1064 * zero, the clusters can be allocated anywhere in the image file. 1065 * 1066 * *host_offset is updated to contain the offset into the image file at which 1067 * the first allocated cluster starts. 1068 * 1069 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1070 * function has been waiting for another request and the allocation must be 1071 * restarted, but the whole request should not be failed. 1072 */ 1073 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1074 uint64_t *host_offset, uint64_t *nb_clusters) 1075 { 1076 BDRVQcow2State *s = bs->opaque; 1077 1078 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1079 *host_offset, *nb_clusters); 1080 1081 /* Allocate new clusters */ 1082 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1083 if (*host_offset == 0) { 1084 int64_t cluster_offset = 1085 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1086 if (cluster_offset < 0) { 1087 return cluster_offset; 1088 } 1089 *host_offset = cluster_offset; 1090 return 0; 1091 } else { 1092 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1093 if (ret < 0) { 1094 return ret; 1095 } 1096 *nb_clusters = ret; 1097 return 0; 1098 } 1099 } 1100 1101 /* 1102 * Allocates new clusters for an area that either is yet unallocated or needs a 1103 * copy on write. If *host_offset is non-zero, clusters are only allocated if 1104 * the new allocation can match the specified host offset. 1105 * 1106 * Note that guest_offset may not be cluster aligned. In this case, the 1107 * returned *host_offset points to exact byte referenced by guest_offset and 1108 * therefore isn't cluster aligned as well. 1109 * 1110 * Returns: 1111 * 0: if no clusters could be allocated. *bytes is set to 0, 1112 * *host_offset is left unchanged. 1113 * 1114 * 1: if new clusters were allocated. *bytes may be decreased if the 1115 * new allocation doesn't cover all of the requested area. 1116 * *host_offset is updated to contain the host offset of the first 1117 * newly allocated cluster. 1118 * 1119 * -errno: in error cases 1120 */ 1121 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1122 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1123 { 1124 BDRVQcow2State *s = bs->opaque; 1125 int l2_index; 1126 uint64_t *l2_table; 1127 uint64_t entry; 1128 uint64_t nb_clusters; 1129 int ret; 1130 1131 uint64_t alloc_cluster_offset; 1132 1133 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1134 *bytes); 1135 assert(*bytes > 0); 1136 1137 /* 1138 * Calculate the number of clusters to look for. We stop at L2 table 1139 * boundaries to keep things simple. 1140 */ 1141 nb_clusters = 1142 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1143 1144 l2_index = offset_to_l2_index(s, guest_offset); 1145 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1146 assert(nb_clusters <= INT_MAX); 1147 1148 /* Find L2 entry for the first involved cluster */ 1149 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1150 if (ret < 0) { 1151 return ret; 1152 } 1153 1154 entry = be64_to_cpu(l2_table[l2_index]); 1155 1156 /* For the moment, overwrite compressed clusters one by one */ 1157 if (entry & QCOW_OFLAG_COMPRESSED) { 1158 nb_clusters = 1; 1159 } else { 1160 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1161 } 1162 1163 /* This function is only called when there were no non-COW clusters, so if 1164 * we can't find any unallocated or COW clusters either, something is 1165 * wrong with our code. */ 1166 assert(nb_clusters > 0); 1167 1168 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1169 1170 /* Allocate, if necessary at a given offset in the image file */ 1171 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1172 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1173 &nb_clusters); 1174 if (ret < 0) { 1175 goto fail; 1176 } 1177 1178 /* Can't extend contiguous allocation */ 1179 if (nb_clusters == 0) { 1180 *bytes = 0; 1181 return 0; 1182 } 1183 1184 /* !*host_offset would overwrite the image header and is reserved for "no 1185 * host offset preferred". If 0 was a valid host offset, it'd trigger the 1186 * following overlap check; do that now to avoid having an invalid value in 1187 * *host_offset. */ 1188 if (!alloc_cluster_offset) { 1189 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, 1190 nb_clusters * s->cluster_size); 1191 assert(ret < 0); 1192 goto fail; 1193 } 1194 1195 /* 1196 * Save info needed for meta data update. 1197 * 1198 * requested_sectors: Number of sectors from the start of the first 1199 * newly allocated cluster to the end of the (possibly shortened 1200 * before) write request. 1201 * 1202 * avail_sectors: Number of sectors from the start of the first 1203 * newly allocated to the end of the last newly allocated cluster. 1204 * 1205 * nb_sectors: The number of sectors from the start of the first 1206 * newly allocated cluster to the end of the area that the write 1207 * request actually writes to (excluding COW at the end) 1208 */ 1209 int requested_sectors = 1210 (*bytes + offset_into_cluster(s, guest_offset)) 1211 >> BDRV_SECTOR_BITS; 1212 int avail_sectors = nb_clusters 1213 << (s->cluster_bits - BDRV_SECTOR_BITS); 1214 int alloc_n_start = offset_into_cluster(s, guest_offset) 1215 >> BDRV_SECTOR_BITS; 1216 int nb_sectors = MIN(requested_sectors, avail_sectors); 1217 QCowL2Meta *old_m = *m; 1218 1219 *m = g_malloc0(sizeof(**m)); 1220 1221 **m = (QCowL2Meta) { 1222 .next = old_m, 1223 1224 .alloc_offset = alloc_cluster_offset, 1225 .offset = start_of_cluster(s, guest_offset), 1226 .nb_clusters = nb_clusters, 1227 .nb_available = nb_sectors, 1228 1229 .cow_start = { 1230 .offset = 0, 1231 .nb_sectors = alloc_n_start, 1232 }, 1233 .cow_end = { 1234 .offset = nb_sectors * BDRV_SECTOR_SIZE, 1235 .nb_sectors = avail_sectors - nb_sectors, 1236 }, 1237 }; 1238 qemu_co_queue_init(&(*m)->dependent_requests); 1239 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1240 1241 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1242 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) 1243 - offset_into_cluster(s, guest_offset)); 1244 assert(*bytes != 0); 1245 1246 return 1; 1247 1248 fail: 1249 if (*m && (*m)->nb_clusters > 0) { 1250 QLIST_REMOVE(*m, next_in_flight); 1251 } 1252 return ret; 1253 } 1254 1255 /* 1256 * alloc_cluster_offset 1257 * 1258 * For a given offset on the virtual disk, find the cluster offset in qcow2 1259 * file. If the offset is not found, allocate a new cluster. 1260 * 1261 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1262 * other fields in m are meaningless. 1263 * 1264 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1265 * contiguous clusters that have been allocated. In this case, the other 1266 * fields of m are valid and contain information about the first allocated 1267 * cluster. 1268 * 1269 * If the request conflicts with another write request in flight, the coroutine 1270 * is queued and will be reentered when the dependency has completed. 1271 * 1272 * Return 0 on success and -errno in error cases 1273 */ 1274 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1275 int *num, uint64_t *host_offset, QCowL2Meta **m) 1276 { 1277 BDRVQcow2State *s = bs->opaque; 1278 uint64_t start, remaining; 1279 uint64_t cluster_offset; 1280 uint64_t cur_bytes; 1281 int ret; 1282 1283 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num); 1284 1285 assert((offset & ~BDRV_SECTOR_MASK) == 0); 1286 1287 again: 1288 start = offset; 1289 remaining = (uint64_t)*num << BDRV_SECTOR_BITS; 1290 cluster_offset = 0; 1291 *host_offset = 0; 1292 cur_bytes = 0; 1293 *m = NULL; 1294 1295 while (true) { 1296 1297 if (!*host_offset) { 1298 *host_offset = start_of_cluster(s, cluster_offset); 1299 } 1300 1301 assert(remaining >= cur_bytes); 1302 1303 start += cur_bytes; 1304 remaining -= cur_bytes; 1305 cluster_offset += cur_bytes; 1306 1307 if (remaining == 0) { 1308 break; 1309 } 1310 1311 cur_bytes = remaining; 1312 1313 /* 1314 * Now start gathering as many contiguous clusters as possible: 1315 * 1316 * 1. Check for overlaps with in-flight allocations 1317 * 1318 * a) Overlap not in the first cluster -> shorten this request and 1319 * let the caller handle the rest in its next loop iteration. 1320 * 1321 * b) Real overlaps of two requests. Yield and restart the search 1322 * for contiguous clusters (the situation could have changed 1323 * while we were sleeping) 1324 * 1325 * c) TODO: Request starts in the same cluster as the in-flight 1326 * allocation ends. Shorten the COW of the in-fight allocation, 1327 * set cluster_offset to write to the same cluster and set up 1328 * the right synchronisation between the in-flight request and 1329 * the new one. 1330 */ 1331 ret = handle_dependencies(bs, start, &cur_bytes, m); 1332 if (ret == -EAGAIN) { 1333 /* Currently handle_dependencies() doesn't yield if we already had 1334 * an allocation. If it did, we would have to clean up the L2Meta 1335 * structs before starting over. */ 1336 assert(*m == NULL); 1337 goto again; 1338 } else if (ret < 0) { 1339 return ret; 1340 } else if (cur_bytes == 0) { 1341 break; 1342 } else { 1343 /* handle_dependencies() may have decreased cur_bytes (shortened 1344 * the allocations below) so that the next dependency is processed 1345 * correctly during the next loop iteration. */ 1346 } 1347 1348 /* 1349 * 2. Count contiguous COPIED clusters. 1350 */ 1351 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1352 if (ret < 0) { 1353 return ret; 1354 } else if (ret) { 1355 continue; 1356 } else if (cur_bytes == 0) { 1357 break; 1358 } 1359 1360 /* 1361 * 3. If the request still hasn't completed, allocate new clusters, 1362 * considering any cluster_offset of steps 1c or 2. 1363 */ 1364 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1365 if (ret < 0) { 1366 return ret; 1367 } else if (ret) { 1368 continue; 1369 } else { 1370 assert(cur_bytes == 0); 1371 break; 1372 } 1373 } 1374 1375 *num -= remaining >> BDRV_SECTOR_BITS; 1376 assert(*num > 0); 1377 assert(*host_offset != 0); 1378 1379 return 0; 1380 } 1381 1382 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1383 const uint8_t *buf, int buf_size) 1384 { 1385 z_stream strm1, *strm = &strm1; 1386 int ret, out_len; 1387 1388 memset(strm, 0, sizeof(*strm)); 1389 1390 strm->next_in = (uint8_t *)buf; 1391 strm->avail_in = buf_size; 1392 strm->next_out = out_buf; 1393 strm->avail_out = out_buf_size; 1394 1395 ret = inflateInit2(strm, -12); 1396 if (ret != Z_OK) 1397 return -1; 1398 ret = inflate(strm, Z_FINISH); 1399 out_len = strm->next_out - out_buf; 1400 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1401 out_len != out_buf_size) { 1402 inflateEnd(strm); 1403 return -1; 1404 } 1405 inflateEnd(strm); 1406 return 0; 1407 } 1408 1409 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1410 { 1411 BDRVQcow2State *s = bs->opaque; 1412 int ret, csize, nb_csectors, sector_offset; 1413 uint64_t coffset; 1414 1415 coffset = cluster_offset & s->cluster_offset_mask; 1416 if (s->cluster_cache_offset != coffset) { 1417 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1418 sector_offset = coffset & 511; 1419 csize = nb_csectors * 512 - sector_offset; 1420 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1421 ret = bdrv_read(bs->file->bs, coffset >> 9, s->cluster_data, 1422 nb_csectors); 1423 if (ret < 0) { 1424 return ret; 1425 } 1426 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1427 s->cluster_data + sector_offset, csize) < 0) { 1428 return -EIO; 1429 } 1430 s->cluster_cache_offset = coffset; 1431 } 1432 return 0; 1433 } 1434 1435 /* 1436 * This discards as many clusters of nb_clusters as possible at once (i.e. 1437 * all clusters in the same L2 table) and returns the number of discarded 1438 * clusters. 1439 */ 1440 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1441 uint64_t nb_clusters, enum qcow2_discard_type type, 1442 bool full_discard) 1443 { 1444 BDRVQcow2State *s = bs->opaque; 1445 uint64_t *l2_table; 1446 int l2_index; 1447 int ret; 1448 int i; 1449 1450 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1451 if (ret < 0) { 1452 return ret; 1453 } 1454 1455 /* Limit nb_clusters to one L2 table */ 1456 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1457 assert(nb_clusters <= INT_MAX); 1458 1459 for (i = 0; i < nb_clusters; i++) { 1460 uint64_t old_l2_entry; 1461 1462 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); 1463 1464 /* 1465 * If full_discard is false, make sure that a discarded area reads back 1466 * as zeroes for v3 images (we cannot do it for v2 without actually 1467 * writing a zero-filled buffer). We can skip the operation if the 1468 * cluster is already marked as zero, or if it's unallocated and we 1469 * don't have a backing file. 1470 * 1471 * TODO We might want to use bdrv_get_block_status(bs) here, but we're 1472 * holding s->lock, so that doesn't work today. 1473 * 1474 * If full_discard is true, the sector should not read back as zeroes, 1475 * but rather fall through to the backing file. 1476 */ 1477 switch (qcow2_get_cluster_type(old_l2_entry)) { 1478 case QCOW2_CLUSTER_UNALLOCATED: 1479 if (full_discard || !bs->backing) { 1480 continue; 1481 } 1482 break; 1483 1484 case QCOW2_CLUSTER_ZERO: 1485 if (!full_discard) { 1486 continue; 1487 } 1488 break; 1489 1490 case QCOW2_CLUSTER_NORMAL: 1491 case QCOW2_CLUSTER_COMPRESSED: 1492 break; 1493 1494 default: 1495 abort(); 1496 } 1497 1498 /* First remove L2 entries */ 1499 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1500 if (!full_discard && s->qcow_version >= 3) { 1501 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1502 } else { 1503 l2_table[l2_index + i] = cpu_to_be64(0); 1504 } 1505 1506 /* Then decrease the refcount */ 1507 qcow2_free_any_clusters(bs, old_l2_entry, 1, type); 1508 } 1509 1510 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1511 1512 return nb_clusters; 1513 } 1514 1515 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1516 int nb_sectors, enum qcow2_discard_type type, bool full_discard) 1517 { 1518 BDRVQcow2State *s = bs->opaque; 1519 uint64_t end_offset; 1520 uint64_t nb_clusters; 1521 int ret; 1522 1523 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1524 1525 /* Round start up and end down */ 1526 offset = align_offset(offset, s->cluster_size); 1527 end_offset = start_of_cluster(s, end_offset); 1528 1529 if (offset > end_offset) { 1530 return 0; 1531 } 1532 1533 nb_clusters = size_to_clusters(s, end_offset - offset); 1534 1535 s->cache_discards = true; 1536 1537 /* Each L2 table is handled by its own loop iteration */ 1538 while (nb_clusters > 0) { 1539 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard); 1540 if (ret < 0) { 1541 goto fail; 1542 } 1543 1544 nb_clusters -= ret; 1545 offset += (ret * s->cluster_size); 1546 } 1547 1548 ret = 0; 1549 fail: 1550 s->cache_discards = false; 1551 qcow2_process_discards(bs, ret); 1552 1553 return ret; 1554 } 1555 1556 /* 1557 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1558 * all clusters in the same L2 table) and returns the number of zeroed 1559 * clusters. 1560 */ 1561 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1562 uint64_t nb_clusters) 1563 { 1564 BDRVQcow2State *s = bs->opaque; 1565 uint64_t *l2_table; 1566 int l2_index; 1567 int ret; 1568 int i; 1569 1570 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1571 if (ret < 0) { 1572 return ret; 1573 } 1574 1575 /* Limit nb_clusters to one L2 table */ 1576 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1577 assert(nb_clusters <= INT_MAX); 1578 1579 for (i = 0; i < nb_clusters; i++) { 1580 uint64_t old_offset; 1581 1582 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1583 1584 /* Update L2 entries */ 1585 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1586 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1587 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1588 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1589 } else { 1590 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1591 } 1592 } 1593 1594 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1595 1596 return nb_clusters; 1597 } 1598 1599 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1600 { 1601 BDRVQcow2State *s = bs->opaque; 1602 uint64_t nb_clusters; 1603 int ret; 1604 1605 /* The zero flag is only supported by version 3 and newer */ 1606 if (s->qcow_version < 3) { 1607 return -ENOTSUP; 1608 } 1609 1610 /* Each L2 table is handled by its own loop iteration */ 1611 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1612 1613 s->cache_discards = true; 1614 1615 while (nb_clusters > 0) { 1616 ret = zero_single_l2(bs, offset, nb_clusters); 1617 if (ret < 0) { 1618 goto fail; 1619 } 1620 1621 nb_clusters -= ret; 1622 offset += (ret * s->cluster_size); 1623 } 1624 1625 ret = 0; 1626 fail: 1627 s->cache_discards = false; 1628 qcow2_process_discards(bs, ret); 1629 1630 return ret; 1631 } 1632 1633 /* 1634 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1635 * non-backed non-pre-allocated zero clusters). 1636 * 1637 * l1_entries and *visited_l1_entries are used to keep track of progress for 1638 * status_cb(). l1_entries contains the total number of L1 entries and 1639 * *visited_l1_entries counts all visited L1 entries. 1640 */ 1641 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1642 int l1_size, int64_t *visited_l1_entries, 1643 int64_t l1_entries, 1644 BlockDriverAmendStatusCB *status_cb) 1645 { 1646 BDRVQcow2State *s = bs->opaque; 1647 bool is_active_l1 = (l1_table == s->l1_table); 1648 uint64_t *l2_table = NULL; 1649 int ret; 1650 int i, j; 1651 1652 if (!is_active_l1) { 1653 /* inactive L2 tables require a buffer to be stored in when loading 1654 * them from disk */ 1655 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size); 1656 if (l2_table == NULL) { 1657 return -ENOMEM; 1658 } 1659 } 1660 1661 for (i = 0; i < l1_size; i++) { 1662 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1663 bool l2_dirty = false; 1664 uint64_t l2_refcount; 1665 1666 if (!l2_offset) { 1667 /* unallocated */ 1668 (*visited_l1_entries)++; 1669 if (status_cb) { 1670 status_cb(bs, *visited_l1_entries, l1_entries); 1671 } 1672 continue; 1673 } 1674 1675 if (offset_into_cluster(s, l2_offset)) { 1676 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1677 PRIx64 " unaligned (L1 index: %#x)", 1678 l2_offset, i); 1679 ret = -EIO; 1680 goto fail; 1681 } 1682 1683 if (is_active_l1) { 1684 /* get active L2 tables from cache */ 1685 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1686 (void **)&l2_table); 1687 } else { 1688 /* load inactive L2 tables from disk */ 1689 ret = bdrv_read(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, 1690 (void *)l2_table, s->cluster_sectors); 1691 } 1692 if (ret < 0) { 1693 goto fail; 1694 } 1695 1696 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1697 &l2_refcount); 1698 if (ret < 0) { 1699 goto fail; 1700 } 1701 1702 for (j = 0; j < s->l2_size; j++) { 1703 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1704 int64_t offset = l2_entry & L2E_OFFSET_MASK; 1705 int cluster_type = qcow2_get_cluster_type(l2_entry); 1706 bool preallocated = offset != 0; 1707 1708 if (cluster_type != QCOW2_CLUSTER_ZERO) { 1709 continue; 1710 } 1711 1712 if (!preallocated) { 1713 if (!bs->backing) { 1714 /* not backed; therefore we can simply deallocate the 1715 * cluster */ 1716 l2_table[j] = 0; 1717 l2_dirty = true; 1718 continue; 1719 } 1720 1721 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1722 if (offset < 0) { 1723 ret = offset; 1724 goto fail; 1725 } 1726 1727 if (l2_refcount > 1) { 1728 /* For shared L2 tables, set the refcount accordingly (it is 1729 * already 1 and needs to be l2_refcount) */ 1730 ret = qcow2_update_cluster_refcount(bs, 1731 offset >> s->cluster_bits, 1732 refcount_diff(1, l2_refcount), false, 1733 QCOW2_DISCARD_OTHER); 1734 if (ret < 0) { 1735 qcow2_free_clusters(bs, offset, s->cluster_size, 1736 QCOW2_DISCARD_OTHER); 1737 goto fail; 1738 } 1739 } 1740 } 1741 1742 if (offset_into_cluster(s, offset)) { 1743 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1744 "%#" PRIx64 " unaligned (L2 offset: %#" 1745 PRIx64 ", L2 index: %#x)", offset, 1746 l2_offset, j); 1747 if (!preallocated) { 1748 qcow2_free_clusters(bs, offset, s->cluster_size, 1749 QCOW2_DISCARD_ALWAYS); 1750 } 1751 ret = -EIO; 1752 goto fail; 1753 } 1754 1755 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 1756 if (ret < 0) { 1757 if (!preallocated) { 1758 qcow2_free_clusters(bs, offset, s->cluster_size, 1759 QCOW2_DISCARD_ALWAYS); 1760 } 1761 goto fail; 1762 } 1763 1764 ret = bdrv_write_zeroes(bs->file->bs, offset / BDRV_SECTOR_SIZE, 1765 s->cluster_sectors, 0); 1766 if (ret < 0) { 1767 if (!preallocated) { 1768 qcow2_free_clusters(bs, offset, s->cluster_size, 1769 QCOW2_DISCARD_ALWAYS); 1770 } 1771 goto fail; 1772 } 1773 1774 if (l2_refcount == 1) { 1775 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1776 } else { 1777 l2_table[j] = cpu_to_be64(offset); 1778 } 1779 l2_dirty = true; 1780 } 1781 1782 if (is_active_l1) { 1783 if (l2_dirty) { 1784 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1785 qcow2_cache_depends_on_flush(s->l2_table_cache); 1786 } 1787 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1788 } else { 1789 if (l2_dirty) { 1790 ret = qcow2_pre_write_overlap_check(bs, 1791 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, 1792 s->cluster_size); 1793 if (ret < 0) { 1794 goto fail; 1795 } 1796 1797 ret = bdrv_write(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, 1798 (void *)l2_table, s->cluster_sectors); 1799 if (ret < 0) { 1800 goto fail; 1801 } 1802 } 1803 } 1804 1805 (*visited_l1_entries)++; 1806 if (status_cb) { 1807 status_cb(bs, *visited_l1_entries, l1_entries); 1808 } 1809 } 1810 1811 ret = 0; 1812 1813 fail: 1814 if (l2_table) { 1815 if (!is_active_l1) { 1816 qemu_vfree(l2_table); 1817 } else { 1818 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1819 } 1820 } 1821 return ret; 1822 } 1823 1824 /* 1825 * For backed images, expands all zero clusters on the image. For non-backed 1826 * images, deallocates all non-pre-allocated zero clusters (and claims the 1827 * allocation for pre-allocated ones). This is important for downgrading to a 1828 * qcow2 version which doesn't yet support metadata zero clusters. 1829 */ 1830 int qcow2_expand_zero_clusters(BlockDriverState *bs, 1831 BlockDriverAmendStatusCB *status_cb) 1832 { 1833 BDRVQcow2State *s = bs->opaque; 1834 uint64_t *l1_table = NULL; 1835 int64_t l1_entries = 0, visited_l1_entries = 0; 1836 int ret; 1837 int i, j; 1838 1839 if (status_cb) { 1840 l1_entries = s->l1_size; 1841 for (i = 0; i < s->nb_snapshots; i++) { 1842 l1_entries += s->snapshots[i].l1_size; 1843 } 1844 } 1845 1846 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 1847 &visited_l1_entries, l1_entries, 1848 status_cb); 1849 if (ret < 0) { 1850 goto fail; 1851 } 1852 1853 /* Inactive L1 tables may point to active L2 tables - therefore it is 1854 * necessary to flush the L2 table cache before trying to access the L2 1855 * tables pointed to by inactive L1 entries (else we might try to expand 1856 * zero clusters that have already been expanded); furthermore, it is also 1857 * necessary to empty the L2 table cache, since it may contain tables which 1858 * are now going to be modified directly on disk, bypassing the cache. 1859 * qcow2_cache_empty() does both for us. */ 1860 ret = qcow2_cache_empty(bs, s->l2_table_cache); 1861 if (ret < 0) { 1862 goto fail; 1863 } 1864 1865 for (i = 0; i < s->nb_snapshots; i++) { 1866 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) + 1867 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE; 1868 1869 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); 1870 1871 ret = bdrv_read(bs->file->bs, 1872 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE, 1873 (void *)l1_table, l1_sectors); 1874 if (ret < 0) { 1875 goto fail; 1876 } 1877 1878 for (j = 0; j < s->snapshots[i].l1_size; j++) { 1879 be64_to_cpus(&l1_table[j]); 1880 } 1881 1882 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 1883 &visited_l1_entries, l1_entries, 1884 status_cb); 1885 if (ret < 0) { 1886 goto fail; 1887 } 1888 } 1889 1890 ret = 0; 1891 1892 fail: 1893 g_free(l1_table); 1894 return ret; 1895 } 1896