xref: /openbmc/qemu/block/qcow2-cluster.c (revision e281c2ba)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qcow2.h"
30 #include "qemu/bswap.h"
31 #include "trace.h"
32 
33 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
34 {
35     BDRVQcow2State *s = bs->opaque;
36     int new_l1_size, i, ret;
37 
38     if (exact_size >= s->l1_size) {
39         return 0;
40     }
41 
42     new_l1_size = exact_size;
43 
44 #ifdef DEBUG_ALLOC2
45     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
46 #endif
47 
48     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
49     ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
50                                        new_l1_size * L1E_SIZE,
51                              (s->l1_size - new_l1_size) * L1E_SIZE, 0);
52     if (ret < 0) {
53         goto fail;
54     }
55 
56     ret = bdrv_flush(bs->file->bs);
57     if (ret < 0) {
58         goto fail;
59     }
60 
61     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
62     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
63         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
64             continue;
65         }
66         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
67                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
68         s->l1_table[i] = 0;
69     }
70     return 0;
71 
72 fail:
73     /*
74      * If the write in the l1_table failed the image may contain a partially
75      * overwritten l1_table. In this case it would be better to clear the
76      * l1_table in memory to avoid possible image corruption.
77      */
78     memset(s->l1_table + new_l1_size, 0,
79            (s->l1_size - new_l1_size) * L1E_SIZE);
80     return ret;
81 }
82 
83 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
84                         bool exact_size)
85 {
86     BDRVQcow2State *s = bs->opaque;
87     int new_l1_size2, ret, i;
88     uint64_t *new_l1_table;
89     int64_t old_l1_table_offset, old_l1_size;
90     int64_t new_l1_table_offset, new_l1_size;
91     uint8_t data[12];
92 
93     if (min_size <= s->l1_size)
94         return 0;
95 
96     /* Do a sanity check on min_size before trying to calculate new_l1_size
97      * (this prevents overflows during the while loop for the calculation of
98      * new_l1_size) */
99     if (min_size > INT_MAX / L1E_SIZE) {
100         return -EFBIG;
101     }
102 
103     if (exact_size) {
104         new_l1_size = min_size;
105     } else {
106         /* Bump size up to reduce the number of times we have to grow */
107         new_l1_size = s->l1_size;
108         if (new_l1_size == 0) {
109             new_l1_size = 1;
110         }
111         while (min_size > new_l1_size) {
112             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
113         }
114     }
115 
116     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
117     if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
118         return -EFBIG;
119     }
120 
121 #ifdef DEBUG_ALLOC2
122     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
123             s->l1_size, new_l1_size);
124 #endif
125 
126     new_l1_size2 = L1E_SIZE * new_l1_size;
127     new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
128     if (new_l1_table == NULL) {
129         return -ENOMEM;
130     }
131     memset(new_l1_table, 0, new_l1_size2);
132 
133     if (s->l1_size) {
134         memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
135     }
136 
137     /* write new table (align to cluster) */
138     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
139     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
140     if (new_l1_table_offset < 0) {
141         qemu_vfree(new_l1_table);
142         return new_l1_table_offset;
143     }
144 
145     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
146     if (ret < 0) {
147         goto fail;
148     }
149 
150     /* the L1 position has not yet been updated, so these clusters must
151      * indeed be completely free */
152     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
153                                         new_l1_size2, false);
154     if (ret < 0) {
155         goto fail;
156     }
157 
158     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
159     for(i = 0; i < s->l1_size; i++)
160         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
161     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
162                            new_l1_table, new_l1_size2);
163     if (ret < 0)
164         goto fail;
165     for(i = 0; i < s->l1_size; i++)
166         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
167 
168     /* set new table */
169     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
170     stl_be_p(data, new_l1_size);
171     stq_be_p(data + 4, new_l1_table_offset);
172     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
173                            data, sizeof(data));
174     if (ret < 0) {
175         goto fail;
176     }
177     qemu_vfree(s->l1_table);
178     old_l1_table_offset = s->l1_table_offset;
179     s->l1_table_offset = new_l1_table_offset;
180     s->l1_table = new_l1_table;
181     old_l1_size = s->l1_size;
182     s->l1_size = new_l1_size;
183     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
184                         QCOW2_DISCARD_OTHER);
185     return 0;
186  fail:
187     qemu_vfree(new_l1_table);
188     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
189                         QCOW2_DISCARD_OTHER);
190     return ret;
191 }
192 
193 /*
194  * l2_load
195  *
196  * @bs: The BlockDriverState
197  * @offset: A guest offset, used to calculate what slice of the L2
198  *          table to load.
199  * @l2_offset: Offset to the L2 table in the image file.
200  * @l2_slice: Location to store the pointer to the L2 slice.
201  *
202  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
203  * that are loaded by the qcow2 cache). If the slice is in the cache,
204  * the cache is used; otherwise the L2 slice is loaded from the image
205  * file.
206  */
207 static int l2_load(BlockDriverState *bs, uint64_t offset,
208                    uint64_t l2_offset, uint64_t **l2_slice)
209 {
210     BDRVQcow2State *s = bs->opaque;
211     int start_of_slice = l2_entry_size(s) *
212         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
213 
214     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
215                            (void **)l2_slice);
216 }
217 
218 /*
219  * Writes an L1 entry to disk (note that depending on the alignment
220  * requirements this function may write more that just one entry in
221  * order to prevent bdrv_pwrite from performing a read-modify-write)
222  */
223 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
224 {
225     BDRVQcow2State *s = bs->opaque;
226     int l1_start_index;
227     int i, ret;
228     int bufsize = MAX(L1E_SIZE,
229                       MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
230     int nentries = bufsize / L1E_SIZE;
231     g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
232 
233     if (buf == NULL) {
234         return -ENOMEM;
235     }
236 
237     l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
238     for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
239         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
240     }
241 
242     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
243             s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
244     if (ret < 0) {
245         return ret;
246     }
247 
248     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
249     ret = bdrv_pwrite_sync(bs->file,
250                            s->l1_table_offset + L1E_SIZE * l1_start_index,
251                            buf, bufsize);
252     if (ret < 0) {
253         return ret;
254     }
255 
256     return 0;
257 }
258 
259 /*
260  * l2_allocate
261  *
262  * Allocate a new l2 entry in the file. If l1_index points to an already
263  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
264  * table) copy the contents of the old L2 table into the newly allocated one.
265  * Otherwise the new table is initialized with zeros.
266  *
267  */
268 
269 static int l2_allocate(BlockDriverState *bs, int l1_index)
270 {
271     BDRVQcow2State *s = bs->opaque;
272     uint64_t old_l2_offset;
273     uint64_t *l2_slice = NULL;
274     unsigned slice, slice_size2, n_slices;
275     int64_t l2_offset;
276     int ret;
277 
278     old_l2_offset = s->l1_table[l1_index];
279 
280     trace_qcow2_l2_allocate(bs, l1_index);
281 
282     /* allocate a new l2 entry */
283 
284     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
285     if (l2_offset < 0) {
286         ret = l2_offset;
287         goto fail;
288     }
289 
290     /* The offset must fit in the offset field of the L1 table entry */
291     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
292 
293     /* If we're allocating the table at offset 0 then something is wrong */
294     if (l2_offset == 0) {
295         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
296                                 "allocation of L2 table at offset 0");
297         ret = -EIO;
298         goto fail;
299     }
300 
301     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
302     if (ret < 0) {
303         goto fail;
304     }
305 
306     /* allocate a new entry in the l2 cache */
307 
308     slice_size2 = s->l2_slice_size * l2_entry_size(s);
309     n_slices = s->cluster_size / slice_size2;
310 
311     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
312     for (slice = 0; slice < n_slices; slice++) {
313         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
314                                     l2_offset + slice * slice_size2,
315                                     (void **) &l2_slice);
316         if (ret < 0) {
317             goto fail;
318         }
319 
320         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
321             /* if there was no old l2 table, clear the new slice */
322             memset(l2_slice, 0, slice_size2);
323         } else {
324             uint64_t *old_slice;
325             uint64_t old_l2_slice_offset =
326                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
327 
328             /* if there was an old l2 table, read a slice from the disk */
329             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
330             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
331                                   (void **) &old_slice);
332             if (ret < 0) {
333                 goto fail;
334             }
335 
336             memcpy(l2_slice, old_slice, slice_size2);
337 
338             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
339         }
340 
341         /* write the l2 slice to the file */
342         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
343 
344         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
345         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
346         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
347     }
348 
349     ret = qcow2_cache_flush(bs, s->l2_table_cache);
350     if (ret < 0) {
351         goto fail;
352     }
353 
354     /* update the L1 entry */
355     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
356     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
357     ret = qcow2_write_l1_entry(bs, l1_index);
358     if (ret < 0) {
359         goto fail;
360     }
361 
362     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
363     return 0;
364 
365 fail:
366     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
367     if (l2_slice != NULL) {
368         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
369     }
370     s->l1_table[l1_index] = old_l2_offset;
371     if (l2_offset > 0) {
372         qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
373                             QCOW2_DISCARD_ALWAYS);
374     }
375     return ret;
376 }
377 
378 /*
379  * For a given L2 entry, count the number of contiguous subclusters of
380  * the same type starting from @sc_from. Compressed clusters are
381  * treated as if they were divided into subclusters of size
382  * s->subcluster_size.
383  *
384  * Return the number of contiguous subclusters and set @type to the
385  * subcluster type.
386  *
387  * If the L2 entry is invalid return -errno and set @type to
388  * QCOW2_SUBCLUSTER_INVALID.
389  */
390 static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
391                                            uint64_t l2_entry,
392                                            uint64_t l2_bitmap,
393                                            unsigned sc_from,
394                                            QCow2SubclusterType *type)
395 {
396     BDRVQcow2State *s = bs->opaque;
397     uint32_t val;
398 
399     *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
400 
401     if (*type == QCOW2_SUBCLUSTER_INVALID) {
402         return -EINVAL;
403     } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
404         return s->subclusters_per_cluster - sc_from;
405     }
406 
407     switch (*type) {
408     case QCOW2_SUBCLUSTER_NORMAL:
409         val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
410         return cto32(val) - sc_from;
411 
412     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
413     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
414         val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
415         return cto32(val) - sc_from;
416 
417     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
418     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
419         val = ((l2_bitmap >> 32) | l2_bitmap)
420             & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
421         return ctz32(val) - sc_from;
422 
423     default:
424         g_assert_not_reached();
425     }
426 }
427 
428 /*
429  * Return the number of contiguous subclusters of the exact same type
430  * in a given L2 slice, starting from cluster @l2_index, subcluster
431  * @sc_index. Allocated subclusters are required to be contiguous in
432  * the image file.
433  * At most @nb_clusters are checked (note that this means clusters,
434  * not subclusters).
435  * Compressed clusters are always processed one by one but for the
436  * purpose of this count they are treated as if they were divided into
437  * subclusters of size s->subcluster_size.
438  * On failure return -errno and update @l2_index to point to the
439  * invalid entry.
440  */
441 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
442                                         unsigned sc_index, uint64_t *l2_slice,
443                                         unsigned *l2_index)
444 {
445     BDRVQcow2State *s = bs->opaque;
446     int i, count = 0;
447     bool check_offset = false;
448     uint64_t expected_offset = 0;
449     QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
450 
451     assert(*l2_index + nb_clusters <= s->l2_slice_size);
452 
453     for (i = 0; i < nb_clusters; i++) {
454         unsigned first_sc = (i == 0) ? sc_index : 0;
455         uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
456         uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
457         int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
458                                                   first_sc, &type);
459         if (ret < 0) {
460             *l2_index += i; /* Point to the invalid entry */
461             return -EIO;
462         }
463         if (i == 0) {
464             if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
465                 /* Compressed clusters are always processed one by one */
466                 return ret;
467             }
468             expected_type = type;
469             expected_offset = l2_entry & L2E_OFFSET_MASK;
470             check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
471                             type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
472                             type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
473         } else if (type != expected_type) {
474             break;
475         } else if (check_offset) {
476             expected_offset += s->cluster_size;
477             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
478                 break;
479             }
480         }
481         count += ret;
482         /* Stop if there are type changes before the end of the cluster */
483         if (first_sc + ret < s->subclusters_per_cluster) {
484             break;
485         }
486     }
487 
488     return count;
489 }
490 
491 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
492                                             uint64_t src_cluster_offset,
493                                             unsigned offset_in_cluster,
494                                             QEMUIOVector *qiov)
495 {
496     int ret;
497 
498     if (qiov->size == 0) {
499         return 0;
500     }
501 
502     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
503 
504     if (!bs->drv) {
505         return -ENOMEDIUM;
506     }
507 
508     /*
509      * We never deal with requests that don't satisfy
510      * bdrv_check_qiov_request(), and aligning requests to clusters never
511      * breaks this condition. So, do some assertions before calling
512      * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
513      */
514     assert(src_cluster_offset <= INT64_MAX);
515     assert(src_cluster_offset + offset_in_cluster <= INT64_MAX);
516     assert(qiov->size <= INT64_MAX);
517     bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size,
518                             qiov, 0, &error_abort);
519     /*
520      * Call .bdrv_co_readv() directly instead of using the public block-layer
521      * interface.  This avoids double I/O throttling and request tracking,
522      * which can lead to deadlock when block layer copy-on-read is enabled.
523      */
524     ret = bs->drv->bdrv_co_preadv_part(bs,
525                                        src_cluster_offset + offset_in_cluster,
526                                        qiov->size, qiov, 0, 0);
527     if (ret < 0) {
528         return ret;
529     }
530 
531     return 0;
532 }
533 
534 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
535                                              uint64_t cluster_offset,
536                                              unsigned offset_in_cluster,
537                                              QEMUIOVector *qiov)
538 {
539     BDRVQcow2State *s = bs->opaque;
540     int ret;
541 
542     if (qiov->size == 0) {
543         return 0;
544     }
545 
546     ret = qcow2_pre_write_overlap_check(bs, 0,
547             cluster_offset + offset_in_cluster, qiov->size, true);
548     if (ret < 0) {
549         return ret;
550     }
551 
552     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
553     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
554                           qiov->size, qiov, 0);
555     if (ret < 0) {
556         return ret;
557     }
558 
559     return 0;
560 }
561 
562 
563 /*
564  * get_host_offset
565  *
566  * For a given offset of the virtual disk find the equivalent host
567  * offset in the qcow2 file and store it in *host_offset. Neither
568  * offset needs to be aligned to a cluster boundary.
569  *
570  * If the cluster is unallocated then *host_offset will be 0.
571  * If the cluster is compressed then *host_offset will contain the l2 entry.
572  *
573  * On entry, *bytes is the maximum number of contiguous bytes starting at
574  * offset that we are interested in.
575  *
576  * On exit, *bytes is the number of bytes starting at offset that have the same
577  * subcluster type and (if applicable) are stored contiguously in the image
578  * file. The subcluster type is stored in *subcluster_type.
579  * Compressed clusters are always processed one by one.
580  *
581  * Returns 0 on success, -errno in error cases.
582  */
583 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
584                           unsigned int *bytes, uint64_t *host_offset,
585                           QCow2SubclusterType *subcluster_type)
586 {
587     BDRVQcow2State *s = bs->opaque;
588     unsigned int l2_index, sc_index;
589     uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
590     int sc;
591     unsigned int offset_in_cluster;
592     uint64_t bytes_available, bytes_needed, nb_clusters;
593     QCow2SubclusterType type;
594     int ret;
595 
596     offset_in_cluster = offset_into_cluster(s, offset);
597     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
598 
599     /* compute how many bytes there are between the start of the cluster
600      * containing offset and the end of the l2 slice that contains
601      * the entry pointing to it */
602     bytes_available =
603         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
604         << s->cluster_bits;
605 
606     if (bytes_needed > bytes_available) {
607         bytes_needed = bytes_available;
608     }
609 
610     *host_offset = 0;
611 
612     /* seek to the l2 offset in the l1 table */
613 
614     l1_index = offset_to_l1_index(s, offset);
615     if (l1_index >= s->l1_size) {
616         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
617         goto out;
618     }
619 
620     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
621     if (!l2_offset) {
622         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
623         goto out;
624     }
625 
626     if (offset_into_cluster(s, l2_offset)) {
627         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
628                                 " unaligned (L1 index: %#" PRIx64 ")",
629                                 l2_offset, l1_index);
630         return -EIO;
631     }
632 
633     /* load the l2 slice in memory */
634 
635     ret = l2_load(bs, offset, l2_offset, &l2_slice);
636     if (ret < 0) {
637         return ret;
638     }
639 
640     /* find the cluster offset for the given disk offset */
641 
642     l2_index = offset_to_l2_slice_index(s, offset);
643     sc_index = offset_to_sc_index(s, offset);
644     l2_entry = get_l2_entry(s, l2_slice, l2_index);
645     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
646 
647     nb_clusters = size_to_clusters(s, bytes_needed);
648     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
649      * integers; the minimum cluster size is 512, so this assertion is always
650      * true */
651     assert(nb_clusters <= INT_MAX);
652 
653     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
654     if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
655                                 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
656         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
657                                 " in pre-v3 image (L2 offset: %#" PRIx64
658                                 ", L2 index: %#x)", l2_offset, l2_index);
659         ret = -EIO;
660         goto fail;
661     }
662     switch (type) {
663     case QCOW2_SUBCLUSTER_INVALID:
664         break; /* This is handled by count_contiguous_subclusters() below */
665     case QCOW2_SUBCLUSTER_COMPRESSED:
666         if (has_data_file(bs)) {
667             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
668                                     "entry found in image with external data "
669                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
670                                     "%#x)", l2_offset, l2_index);
671             ret = -EIO;
672             goto fail;
673         }
674         *host_offset = l2_entry;
675         break;
676     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
677     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
678         break;
679     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
680     case QCOW2_SUBCLUSTER_NORMAL:
681     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
682         uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
683         *host_offset = host_cluster_offset + offset_in_cluster;
684         if (offset_into_cluster(s, host_cluster_offset)) {
685             qcow2_signal_corruption(bs, true, -1, -1,
686                                     "Cluster allocation offset %#"
687                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
688                                     ", L2 index: %#x)", host_cluster_offset,
689                                     l2_offset, l2_index);
690             ret = -EIO;
691             goto fail;
692         }
693         if (has_data_file(bs) && *host_offset != offset) {
694             qcow2_signal_corruption(bs, true, -1, -1,
695                                     "External data file host cluster offset %#"
696                                     PRIx64 " does not match guest cluster "
697                                     "offset: %#" PRIx64
698                                     ", L2 index: %#x)", host_cluster_offset,
699                                     offset - offset_in_cluster, l2_index);
700             ret = -EIO;
701             goto fail;
702         }
703         break;
704     }
705     default:
706         abort();
707     }
708 
709     sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
710                                       l2_slice, &l2_index);
711     if (sc < 0) {
712         qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
713                                 " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
714                                 l2_offset, l2_index);
715         ret = -EIO;
716         goto fail;
717     }
718     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
719 
720     bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
721 
722 out:
723     if (bytes_available > bytes_needed) {
724         bytes_available = bytes_needed;
725     }
726 
727     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
728      * subtracting offset_in_cluster will therefore definitely yield something
729      * not exceeding UINT_MAX */
730     assert(bytes_available - offset_in_cluster <= UINT_MAX);
731     *bytes = bytes_available - offset_in_cluster;
732 
733     *subcluster_type = type;
734 
735     return 0;
736 
737 fail:
738     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
739     return ret;
740 }
741 
742 /*
743  * get_cluster_table
744  *
745  * for a given disk offset, load (and allocate if needed)
746  * the appropriate slice of its l2 table.
747  *
748  * the cluster index in the l2 slice is given to the caller.
749  *
750  * Returns 0 on success, -errno in failure case
751  */
752 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
753                              uint64_t **new_l2_slice,
754                              int *new_l2_index)
755 {
756     BDRVQcow2State *s = bs->opaque;
757     unsigned int l2_index;
758     uint64_t l1_index, l2_offset;
759     uint64_t *l2_slice = NULL;
760     int ret;
761 
762     /* seek to the l2 offset in the l1 table */
763 
764     l1_index = offset_to_l1_index(s, offset);
765     if (l1_index >= s->l1_size) {
766         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
767         if (ret < 0) {
768             return ret;
769         }
770     }
771 
772     assert(l1_index < s->l1_size);
773     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
774     if (offset_into_cluster(s, l2_offset)) {
775         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
776                                 " unaligned (L1 index: %#" PRIx64 ")",
777                                 l2_offset, l1_index);
778         return -EIO;
779     }
780 
781     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
782         /* First allocate a new L2 table (and do COW if needed) */
783         ret = l2_allocate(bs, l1_index);
784         if (ret < 0) {
785             return ret;
786         }
787 
788         /* Then decrease the refcount of the old table */
789         if (l2_offset) {
790             qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
791                                 QCOW2_DISCARD_OTHER);
792         }
793 
794         /* Get the offset of the newly-allocated l2 table */
795         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
796         assert(offset_into_cluster(s, l2_offset) == 0);
797     }
798 
799     /* load the l2 slice in memory */
800     ret = l2_load(bs, offset, l2_offset, &l2_slice);
801     if (ret < 0) {
802         return ret;
803     }
804 
805     /* find the cluster offset for the given disk offset */
806 
807     l2_index = offset_to_l2_slice_index(s, offset);
808 
809     *new_l2_slice = l2_slice;
810     *new_l2_index = l2_index;
811 
812     return 0;
813 }
814 
815 /*
816  * alloc_compressed_cluster_offset
817  *
818  * For a given offset on the virtual disk, allocate a new compressed cluster
819  * and put the host offset of the cluster into *host_offset. If a cluster is
820  * already allocated at the offset, return an error.
821  *
822  * Return 0 on success and -errno in error cases
823  */
824 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
825                                           uint64_t offset,
826                                           int compressed_size,
827                                           uint64_t *host_offset)
828 {
829     BDRVQcow2State *s = bs->opaque;
830     int l2_index, ret;
831     uint64_t *l2_slice;
832     int64_t cluster_offset;
833     int nb_csectors;
834 
835     if (has_data_file(bs)) {
836         return 0;
837     }
838 
839     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
840     if (ret < 0) {
841         return ret;
842     }
843 
844     /* Compression can't overwrite anything. Fail if the cluster was already
845      * allocated. */
846     cluster_offset = get_l2_entry(s, l2_slice, l2_index);
847     if (cluster_offset & L2E_OFFSET_MASK) {
848         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
849         return -EIO;
850     }
851 
852     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
853     if (cluster_offset < 0) {
854         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
855         return cluster_offset;
856     }
857 
858     nb_csectors =
859         (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
860         (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
861 
862     /* The offset and size must fit in their fields of the L2 table entry */
863     assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
864     assert((nb_csectors & s->csize_mask) == nb_csectors);
865 
866     cluster_offset |= QCOW_OFLAG_COMPRESSED |
867                       ((uint64_t)nb_csectors << s->csize_shift);
868 
869     /* update L2 table */
870 
871     /* compressed clusters never have the copied flag */
872 
873     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
874     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
875     set_l2_entry(s, l2_slice, l2_index, cluster_offset);
876     if (has_subclusters(s)) {
877         set_l2_bitmap(s, l2_slice, l2_index, 0);
878     }
879     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
880 
881     *host_offset = cluster_offset & s->cluster_offset_mask;
882     return 0;
883 }
884 
885 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
886 {
887     BDRVQcow2State *s = bs->opaque;
888     Qcow2COWRegion *start = &m->cow_start;
889     Qcow2COWRegion *end = &m->cow_end;
890     unsigned buffer_size;
891     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
892     bool merge_reads;
893     uint8_t *start_buffer, *end_buffer;
894     QEMUIOVector qiov;
895     int ret;
896 
897     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
898     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
899     assert(start->offset + start->nb_bytes <= end->offset);
900 
901     if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
902         return 0;
903     }
904 
905     /* If we have to read both the start and end COW regions and the
906      * middle region is not too large then perform just one read
907      * operation */
908     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
909     if (merge_reads) {
910         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
911     } else {
912         /* If we have to do two reads, add some padding in the middle
913          * if necessary to make sure that the end region is optimally
914          * aligned. */
915         size_t align = bdrv_opt_mem_align(bs);
916         assert(align > 0 && align <= UINT_MAX);
917         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
918                UINT_MAX - end->nb_bytes);
919         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
920     }
921 
922     /* Reserve a buffer large enough to store all the data that we're
923      * going to read */
924     start_buffer = qemu_try_blockalign(bs, buffer_size);
925     if (start_buffer == NULL) {
926         return -ENOMEM;
927     }
928     /* The part of the buffer where the end region is located */
929     end_buffer = start_buffer + buffer_size - end->nb_bytes;
930 
931     qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
932                                 qemu_iovec_subvec_niov(m->data_qiov,
933                                                        m->data_qiov_offset,
934                                                        data_bytes)
935                                 : 0));
936 
937     qemu_co_mutex_unlock(&s->lock);
938     /* First we read the existing data from both COW regions. We
939      * either read the whole region in one go, or the start and end
940      * regions separately. */
941     if (merge_reads) {
942         qemu_iovec_add(&qiov, start_buffer, buffer_size);
943         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
944     } else {
945         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
946         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
947         if (ret < 0) {
948             goto fail;
949         }
950 
951         qemu_iovec_reset(&qiov);
952         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
953         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
954     }
955     if (ret < 0) {
956         goto fail;
957     }
958 
959     /* Encrypt the data if necessary before writing it */
960     if (bs->encrypted) {
961         ret = qcow2_co_encrypt(bs,
962                                m->alloc_offset + start->offset,
963                                m->offset + start->offset,
964                                start_buffer, start->nb_bytes);
965         if (ret < 0) {
966             goto fail;
967         }
968 
969         ret = qcow2_co_encrypt(bs,
970                                m->alloc_offset + end->offset,
971                                m->offset + end->offset,
972                                end_buffer, end->nb_bytes);
973         if (ret < 0) {
974             goto fail;
975         }
976     }
977 
978     /* And now we can write everything. If we have the guest data we
979      * can write everything in one single operation */
980     if (m->data_qiov) {
981         qemu_iovec_reset(&qiov);
982         if (start->nb_bytes) {
983             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
984         }
985         qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
986         if (end->nb_bytes) {
987             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
988         }
989         /* NOTE: we have a write_aio blkdebug event here followed by
990          * a cow_write one in do_perform_cow_write(), but there's only
991          * one single I/O operation */
992         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
993         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
994     } else {
995         /* If there's no guest data then write both COW regions separately */
996         qemu_iovec_reset(&qiov);
997         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
998         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
999         if (ret < 0) {
1000             goto fail;
1001         }
1002 
1003         qemu_iovec_reset(&qiov);
1004         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
1005         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
1006     }
1007 
1008 fail:
1009     qemu_co_mutex_lock(&s->lock);
1010 
1011     /*
1012      * Before we update the L2 table to actually point to the new cluster, we
1013      * need to be sure that the refcounts have been increased and COW was
1014      * handled.
1015      */
1016     if (ret == 0) {
1017         qcow2_cache_depends_on_flush(s->l2_table_cache);
1018     }
1019 
1020     qemu_vfree(start_buffer);
1021     qemu_iovec_destroy(&qiov);
1022     return ret;
1023 }
1024 
1025 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
1026 {
1027     BDRVQcow2State *s = bs->opaque;
1028     int i, j = 0, l2_index, ret;
1029     uint64_t *old_cluster, *l2_slice;
1030     uint64_t cluster_offset = m->alloc_offset;
1031 
1032     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1033     assert(m->nb_clusters > 0);
1034 
1035     old_cluster = g_try_new(uint64_t, m->nb_clusters);
1036     if (old_cluster == NULL) {
1037         ret = -ENOMEM;
1038         goto err;
1039     }
1040 
1041     /* copy content of unmodified sectors */
1042     ret = perform_cow(bs, m);
1043     if (ret < 0) {
1044         goto err;
1045     }
1046 
1047     /* Update L2 table. */
1048     if (s->use_lazy_refcounts) {
1049         qcow2_mark_dirty(bs);
1050     }
1051     if (qcow2_need_accurate_refcounts(s)) {
1052         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1053                                    s->refcount_block_cache);
1054     }
1055 
1056     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1057     if (ret < 0) {
1058         goto err;
1059     }
1060     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1061 
1062     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1063     assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1064            m->nb_clusters << s->cluster_bits);
1065     for (i = 0; i < m->nb_clusters; i++) {
1066         uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1067         /* if two concurrent writes happen to the same unallocated cluster
1068          * each write allocates separate cluster and writes data concurrently.
1069          * The first one to complete updates l2 table with pointer to its
1070          * cluster the second one has to do RMW (which is done above by
1071          * perform_cow()), update l2 table with its cluster pointer and free
1072          * old cluster. This is what this loop does */
1073         if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1074             old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1075         }
1076 
1077         /* The offset must fit in the offset field of the L2 table entry */
1078         assert((offset & L2E_OFFSET_MASK) == offset);
1079 
1080         set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1081 
1082         /* Update bitmap with the subclusters that were just written */
1083         if (has_subclusters(s) && !m->prealloc) {
1084             uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1085             unsigned written_from = m->cow_start.offset;
1086             unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1087             int first_sc, last_sc;
1088             /* Narrow written_from and written_to down to the current cluster */
1089             written_from = MAX(written_from, i << s->cluster_bits);
1090             written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
1091             assert(written_from < written_to);
1092             first_sc = offset_to_sc_index(s, written_from);
1093             last_sc  = offset_to_sc_index(s, written_to - 1);
1094             l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1095             l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1096             set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1097         }
1098      }
1099 
1100 
1101     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1102 
1103     /*
1104      * If this was a COW, we need to decrease the refcount of the old cluster.
1105      *
1106      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1107      * clusters), the next write will reuse them anyway.
1108      */
1109     if (!m->keep_old_clusters && j != 0) {
1110         for (i = 0; i < j; i++) {
1111             qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1112         }
1113     }
1114 
1115     ret = 0;
1116 err:
1117     g_free(old_cluster);
1118     return ret;
1119  }
1120 
1121 /**
1122  * Frees the allocated clusters because the request failed and they won't
1123  * actually be linked.
1124  */
1125 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1126 {
1127     BDRVQcow2State *s = bs->opaque;
1128     if (!has_data_file(bs) && !m->keep_old_clusters) {
1129         qcow2_free_clusters(bs, m->alloc_offset,
1130                             m->nb_clusters << s->cluster_bits,
1131                             QCOW2_DISCARD_NEVER);
1132     }
1133 }
1134 
1135 /*
1136  * For a given write request, create a new QCowL2Meta structure, add
1137  * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1138  * request does not need copy-on-write or changes to the L2 metadata
1139  * then this function does nothing.
1140  *
1141  * @host_cluster_offset points to the beginning of the first cluster.
1142  *
1143  * @guest_offset and @bytes indicate the offset and length of the
1144  * request.
1145  *
1146  * @l2_slice contains the L2 entries of all clusters involved in this
1147  * write request.
1148  *
1149  * If @keep_old is true it means that the clusters were already
1150  * allocated and will be overwritten. If false then the clusters are
1151  * new and we have to decrease the reference count of the old ones.
1152  *
1153  * Returns 0 on success, -errno on failure.
1154  */
1155 static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1156                              uint64_t guest_offset, unsigned bytes,
1157                              uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
1158 {
1159     BDRVQcow2State *s = bs->opaque;
1160     int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1161     uint64_t l2_entry, l2_bitmap;
1162     unsigned cow_start_from, cow_end_to;
1163     unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1164     unsigned cow_end_from = cow_start_to + bytes;
1165     unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1166     QCowL2Meta *old_m = *m;
1167     QCow2SubclusterType type;
1168     int i;
1169     bool skip_cow = keep_old;
1170 
1171     assert(nb_clusters <= s->l2_slice_size - l2_index);
1172 
1173     /* Check the type of all affected subclusters */
1174     for (i = 0; i < nb_clusters; i++) {
1175         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1176         l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1177         if (skip_cow) {
1178             unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1179             unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1180             int first_sc = offset_to_sc_index(s, write_from);
1181             int last_sc = offset_to_sc_index(s, write_to - 1);
1182             int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1183                                                       first_sc, &type);
1184             /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1185             if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1186                 skip_cow = false;
1187             }
1188         } else {
1189             /* If we can't skip the cow we can still look for invalid entries */
1190             type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1191         }
1192         if (type == QCOW2_SUBCLUSTER_INVALID) {
1193             int l1_index = offset_to_l1_index(s, guest_offset);
1194             uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1195             qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1196                                     "entry found (L2 offset: %#" PRIx64
1197                                     ", L2 index: %#x)",
1198                                     l2_offset, l2_index + i);
1199             return -EIO;
1200         }
1201     }
1202 
1203     if (skip_cow) {
1204         return 0;
1205     }
1206 
1207     /* Get the L2 entry of the first cluster */
1208     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1209     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1210     sc_index = offset_to_sc_index(s, guest_offset);
1211     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1212 
1213     if (!keep_old) {
1214         switch (type) {
1215         case QCOW2_SUBCLUSTER_COMPRESSED:
1216             cow_start_from = 0;
1217             break;
1218         case QCOW2_SUBCLUSTER_NORMAL:
1219         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1220         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1221             if (has_subclusters(s)) {
1222                 /* Skip all leading zero and unallocated subclusters */
1223                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1224                 cow_start_from =
1225                     MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1226             } else {
1227                 cow_start_from = 0;
1228             }
1229             break;
1230         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1231         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1232             cow_start_from = sc_index << s->subcluster_bits;
1233             break;
1234         default:
1235             g_assert_not_reached();
1236         }
1237     } else {
1238         switch (type) {
1239         case QCOW2_SUBCLUSTER_NORMAL:
1240             cow_start_from = cow_start_to;
1241             break;
1242         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1243         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1244             cow_start_from = sc_index << s->subcluster_bits;
1245             break;
1246         default:
1247             g_assert_not_reached();
1248         }
1249     }
1250 
1251     /* Get the L2 entry of the last cluster */
1252     l2_index += nb_clusters - 1;
1253     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1254     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1255     sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1256     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1257 
1258     if (!keep_old) {
1259         switch (type) {
1260         case QCOW2_SUBCLUSTER_COMPRESSED:
1261             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1262             break;
1263         case QCOW2_SUBCLUSTER_NORMAL:
1264         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1265         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1266             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1267             if (has_subclusters(s)) {
1268                 /* Skip all trailing zero and unallocated subclusters */
1269                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1270                 cow_end_to -=
1271                     MIN(s->subclusters_per_cluster - sc_index - 1,
1272                         clz32(alloc_bitmap)) << s->subcluster_bits;
1273             }
1274             break;
1275         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1276         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1277             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1278             break;
1279         default:
1280             g_assert_not_reached();
1281         }
1282     } else {
1283         switch (type) {
1284         case QCOW2_SUBCLUSTER_NORMAL:
1285             cow_end_to = cow_end_from;
1286             break;
1287         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1288         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1289             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1290             break;
1291         default:
1292             g_assert_not_reached();
1293         }
1294     }
1295 
1296     *m = g_malloc0(sizeof(**m));
1297     **m = (QCowL2Meta) {
1298         .next           = old_m,
1299 
1300         .alloc_offset   = host_cluster_offset,
1301         .offset         = start_of_cluster(s, guest_offset),
1302         .nb_clusters    = nb_clusters,
1303 
1304         .keep_old_clusters = keep_old,
1305 
1306         .cow_start = {
1307             .offset     = cow_start_from,
1308             .nb_bytes   = cow_start_to - cow_start_from,
1309         },
1310         .cow_end = {
1311             .offset     = cow_end_from,
1312             .nb_bytes   = cow_end_to - cow_end_from,
1313         },
1314     };
1315 
1316     qemu_co_queue_init(&(*m)->dependent_requests);
1317     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1318 
1319     return 0;
1320 }
1321 
1322 /*
1323  * Returns true if writing to the cluster pointed to by @l2_entry
1324  * requires a new allocation (that is, if the cluster is unallocated
1325  * or has refcount > 1 and therefore cannot be written in-place).
1326  */
1327 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1328 {
1329     switch (qcow2_get_cluster_type(bs, l2_entry)) {
1330     case QCOW2_CLUSTER_NORMAL:
1331     case QCOW2_CLUSTER_ZERO_ALLOC:
1332         if (l2_entry & QCOW_OFLAG_COPIED) {
1333             return false;
1334         }
1335         /* fallthrough */
1336     case QCOW2_CLUSTER_UNALLOCATED:
1337     case QCOW2_CLUSTER_COMPRESSED:
1338     case QCOW2_CLUSTER_ZERO_PLAIN:
1339         return true;
1340     default:
1341         abort();
1342     }
1343 }
1344 
1345 /*
1346  * Returns the number of contiguous clusters that can be written to
1347  * using one single write request, starting from @l2_index.
1348  * At most @nb_clusters are checked.
1349  *
1350  * If @new_alloc is true this counts clusters that are either
1351  * unallocated, or allocated but with refcount > 1 (so they need to be
1352  * newly allocated and COWed).
1353  *
1354  * If @new_alloc is false this counts clusters that are already
1355  * allocated and can be overwritten in-place (this includes clusters
1356  * of type QCOW2_CLUSTER_ZERO_ALLOC).
1357  */
1358 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1359                                        uint64_t *l2_slice, int l2_index,
1360                                        bool new_alloc)
1361 {
1362     BDRVQcow2State *s = bs->opaque;
1363     uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1364     uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1365     int i;
1366 
1367     for (i = 0; i < nb_clusters; i++) {
1368         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1369         if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1370             break;
1371         }
1372         if (!new_alloc) {
1373             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1374                 break;
1375             }
1376             expected_offset += s->cluster_size;
1377         }
1378     }
1379 
1380     assert(i <= nb_clusters);
1381     return i;
1382 }
1383 
1384 /*
1385  * Check if there already is an AIO write request in flight which allocates
1386  * the same cluster. In this case we need to wait until the previous
1387  * request has completed and updated the L2 table accordingly.
1388  *
1389  * Returns:
1390  *   0       if there was no dependency. *cur_bytes indicates the number of
1391  *           bytes from guest_offset that can be read before the next
1392  *           dependency must be processed (or the request is complete)
1393  *
1394  *   -EAGAIN if we had to wait for another request, previously gathered
1395  *           information on cluster allocation may be invalid now. The caller
1396  *           must start over anyway, so consider *cur_bytes undefined.
1397  */
1398 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1399     uint64_t *cur_bytes, QCowL2Meta **m)
1400 {
1401     BDRVQcow2State *s = bs->opaque;
1402     QCowL2Meta *old_alloc;
1403     uint64_t bytes = *cur_bytes;
1404 
1405     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1406 
1407         uint64_t start = guest_offset;
1408         uint64_t end = start + bytes;
1409         uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1410         uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1411 
1412         if (end <= old_start || start >= old_end) {
1413             /* No intersection */
1414             continue;
1415         }
1416 
1417         if (old_alloc->keep_old_clusters &&
1418             (end <= l2meta_cow_start(old_alloc) ||
1419              start >= l2meta_cow_end(old_alloc)))
1420         {
1421             /*
1422              * Clusters intersect but COW areas don't. And cluster itself is
1423              * already allocated. So, there is no actual conflict.
1424              */
1425             continue;
1426         }
1427 
1428         /* Conflict */
1429 
1430         if (start < old_start) {
1431             /* Stop at the start of a running allocation */
1432             bytes = old_start - start;
1433         } else {
1434             bytes = 0;
1435         }
1436 
1437         /*
1438          * Stop if an l2meta already exists. After yielding, it wouldn't
1439          * be valid any more, so we'd have to clean up the old L2Metas
1440          * and deal with requests depending on them before starting to
1441          * gather new ones. Not worth the trouble.
1442          */
1443         if (bytes == 0 && *m) {
1444             *cur_bytes = 0;
1445             return 0;
1446         }
1447 
1448         if (bytes == 0) {
1449             /*
1450              * Wait for the dependency to complete. We need to recheck
1451              * the free/allocated clusters when we continue.
1452              */
1453             qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1454             return -EAGAIN;
1455         }
1456     }
1457 
1458     /* Make sure that existing clusters and new allocations are only used up to
1459      * the next dependency if we shortened the request above */
1460     *cur_bytes = bytes;
1461 
1462     return 0;
1463 }
1464 
1465 /*
1466  * Checks how many already allocated clusters that don't require a new
1467  * allocation there are at the given guest_offset (up to *bytes).
1468  * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1469  * beginning at this host offset are counted.
1470  *
1471  * Note that guest_offset may not be cluster aligned. In this case, the
1472  * returned *host_offset points to exact byte referenced by guest_offset and
1473  * therefore isn't cluster aligned as well.
1474  *
1475  * Returns:
1476  *   0:     if no allocated clusters are available at the given offset.
1477  *          *bytes is normally unchanged. It is set to 0 if the cluster
1478  *          is allocated and can be overwritten in-place but doesn't have
1479  *          the right physical offset.
1480  *
1481  *   1:     if allocated clusters that can be overwritten in place are
1482  *          available at the requested offset. *bytes may have decreased
1483  *          and describes the length of the area that can be written to.
1484  *
1485  *  -errno: in error cases
1486  */
1487 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1488     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1489 {
1490     BDRVQcow2State *s = bs->opaque;
1491     int l2_index;
1492     uint64_t l2_entry, cluster_offset;
1493     uint64_t *l2_slice;
1494     uint64_t nb_clusters;
1495     unsigned int keep_clusters;
1496     int ret;
1497 
1498     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1499                               *bytes);
1500 
1501     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1502                                       == offset_into_cluster(s, *host_offset));
1503 
1504     /*
1505      * Calculate the number of clusters to look for. We stop at L2 slice
1506      * boundaries to keep things simple.
1507      */
1508     nb_clusters =
1509         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1510 
1511     l2_index = offset_to_l2_slice_index(s, guest_offset);
1512     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1513     /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1514     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1515 
1516     /* Find L2 entry for the first involved cluster */
1517     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1518     if (ret < 0) {
1519         return ret;
1520     }
1521 
1522     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1523     cluster_offset = l2_entry & L2E_OFFSET_MASK;
1524 
1525     if (!cluster_needs_new_alloc(bs, l2_entry)) {
1526         if (offset_into_cluster(s, cluster_offset)) {
1527             qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1528                                     "%#" PRIx64 " unaligned (guest offset: %#"
1529                                     PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1530                                     "Preallocated zero" : "Data",
1531                                     cluster_offset, guest_offset);
1532             ret = -EIO;
1533             goto out;
1534         }
1535 
1536         /* If a specific host_offset is required, check it */
1537         if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1538             *bytes = 0;
1539             ret = 0;
1540             goto out;
1541         }
1542 
1543         /* We keep all QCOW_OFLAG_COPIED clusters */
1544         keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1545                                                     l2_index, false);
1546         assert(keep_clusters <= nb_clusters);
1547 
1548         *bytes = MIN(*bytes,
1549                  keep_clusters * s->cluster_size
1550                  - offset_into_cluster(s, guest_offset));
1551         assert(*bytes != 0);
1552 
1553         ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1554                                 *bytes, l2_slice, m, true);
1555         if (ret < 0) {
1556             goto out;
1557         }
1558 
1559         ret = 1;
1560     } else {
1561         ret = 0;
1562     }
1563 
1564     /* Cleanup */
1565 out:
1566     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1567 
1568     /* Only return a host offset if we actually made progress. Otherwise we
1569      * would make requirements for handle_alloc() that it can't fulfill */
1570     if (ret > 0) {
1571         *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1572     }
1573 
1574     return ret;
1575 }
1576 
1577 /*
1578  * Allocates new clusters for the given guest_offset.
1579  *
1580  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1581  * contain the number of clusters that have been allocated and are contiguous
1582  * in the image file.
1583  *
1584  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1585  * at which the new clusters must start. *nb_clusters can be 0 on return in
1586  * this case if the cluster at host_offset is already in use. If *host_offset
1587  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1588  *
1589  * *host_offset is updated to contain the offset into the image file at which
1590  * the first allocated cluster starts.
1591  *
1592  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1593  * function has been waiting for another request and the allocation must be
1594  * restarted, but the whole request should not be failed.
1595  */
1596 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1597                                    uint64_t *host_offset, uint64_t *nb_clusters)
1598 {
1599     BDRVQcow2State *s = bs->opaque;
1600 
1601     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1602                                          *host_offset, *nb_clusters);
1603 
1604     if (has_data_file(bs)) {
1605         assert(*host_offset == INV_OFFSET ||
1606                *host_offset == start_of_cluster(s, guest_offset));
1607         *host_offset = start_of_cluster(s, guest_offset);
1608         return 0;
1609     }
1610 
1611     /* Allocate new clusters */
1612     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1613     if (*host_offset == INV_OFFSET) {
1614         int64_t cluster_offset =
1615             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1616         if (cluster_offset < 0) {
1617             return cluster_offset;
1618         }
1619         *host_offset = cluster_offset;
1620         return 0;
1621     } else {
1622         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1623         if (ret < 0) {
1624             return ret;
1625         }
1626         *nb_clusters = ret;
1627         return 0;
1628     }
1629 }
1630 
1631 /*
1632  * Allocates new clusters for an area that is either still unallocated or
1633  * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1634  * clusters are only allocated if the new allocation can match the specified
1635  * host offset.
1636  *
1637  * Note that guest_offset may not be cluster aligned. In this case, the
1638  * returned *host_offset points to exact byte referenced by guest_offset and
1639  * therefore isn't cluster aligned as well.
1640  *
1641  * Returns:
1642  *   0:     if no clusters could be allocated. *bytes is set to 0,
1643  *          *host_offset is left unchanged.
1644  *
1645  *   1:     if new clusters were allocated. *bytes may be decreased if the
1646  *          new allocation doesn't cover all of the requested area.
1647  *          *host_offset is updated to contain the host offset of the first
1648  *          newly allocated cluster.
1649  *
1650  *  -errno: in error cases
1651  */
1652 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1653     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1654 {
1655     BDRVQcow2State *s = bs->opaque;
1656     int l2_index;
1657     uint64_t *l2_slice;
1658     uint64_t nb_clusters;
1659     int ret;
1660 
1661     uint64_t alloc_cluster_offset;
1662 
1663     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1664                              *bytes);
1665     assert(*bytes > 0);
1666 
1667     /*
1668      * Calculate the number of clusters to look for. We stop at L2 slice
1669      * boundaries to keep things simple.
1670      */
1671     nb_clusters =
1672         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1673 
1674     l2_index = offset_to_l2_slice_index(s, guest_offset);
1675     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1676     /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1677     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1678 
1679     /* Find L2 entry for the first involved cluster */
1680     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1681     if (ret < 0) {
1682         return ret;
1683     }
1684 
1685     nb_clusters = count_single_write_clusters(bs, nb_clusters,
1686                                               l2_slice, l2_index, true);
1687 
1688     /* This function is only called when there were no non-COW clusters, so if
1689      * we can't find any unallocated or COW clusters either, something is
1690      * wrong with our code. */
1691     assert(nb_clusters > 0);
1692 
1693     /* Allocate at a given offset in the image file */
1694     alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1695         start_of_cluster(s, *host_offset);
1696     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1697                                   &nb_clusters);
1698     if (ret < 0) {
1699         goto out;
1700     }
1701 
1702     /* Can't extend contiguous allocation */
1703     if (nb_clusters == 0) {
1704         *bytes = 0;
1705         ret = 0;
1706         goto out;
1707     }
1708 
1709     assert(alloc_cluster_offset != INV_OFFSET);
1710 
1711     /*
1712      * Save info needed for meta data update.
1713      *
1714      * requested_bytes: Number of bytes from the start of the first
1715      * newly allocated cluster to the end of the (possibly shortened
1716      * before) write request.
1717      *
1718      * avail_bytes: Number of bytes from the start of the first
1719      * newly allocated to the end of the last newly allocated cluster.
1720      *
1721      * nb_bytes: The number of bytes from the start of the first
1722      * newly allocated cluster to the end of the area that the write
1723      * request actually writes to (excluding COW at the end)
1724      */
1725     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1726     int avail_bytes = nb_clusters << s->cluster_bits;
1727     int nb_bytes = MIN(requested_bytes, avail_bytes);
1728 
1729     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1730     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1731     assert(*bytes != 0);
1732 
1733     ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1734                             l2_slice, m, false);
1735     if (ret < 0) {
1736         goto out;
1737     }
1738 
1739     ret = 1;
1740 
1741 out:
1742     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1743     return ret;
1744 }
1745 
1746 /*
1747  * For a given area on the virtual disk defined by @offset and @bytes,
1748  * find the corresponding area on the qcow2 image, allocating new
1749  * clusters (or subclusters) if necessary. The result can span a
1750  * combination of allocated and previously unallocated clusters.
1751  *
1752  * Note that offset may not be cluster aligned. In this case, the returned
1753  * *host_offset points to exact byte referenced by offset and therefore
1754  * isn't cluster aligned as well.
1755  *
1756  * On return, @host_offset is set to the beginning of the requested
1757  * area. This area is guaranteed to be contiguous on the qcow2 file
1758  * but it can be smaller than initially requested. In this case @bytes
1759  * is updated with the actual size.
1760  *
1761  * If any clusters or subclusters were allocated then @m contains a
1762  * list with the information of all the affected regions. Note that
1763  * this can happen regardless of whether this function succeeds or
1764  * not. The caller is responsible for updating the L2 metadata of the
1765  * allocated clusters (on success) or freeing them (on failure), and
1766  * for clearing the contents of @m afterwards in both cases.
1767  *
1768  * If the request conflicts with another write request in flight, the coroutine
1769  * is queued and will be reentered when the dependency has completed.
1770  *
1771  * Return 0 on success and -errno in error cases
1772  */
1773 int qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1774                             unsigned int *bytes, uint64_t *host_offset,
1775                             QCowL2Meta **m)
1776 {
1777     BDRVQcow2State *s = bs->opaque;
1778     uint64_t start, remaining;
1779     uint64_t cluster_offset;
1780     uint64_t cur_bytes;
1781     int ret;
1782 
1783     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1784 
1785 again:
1786     start = offset;
1787     remaining = *bytes;
1788     cluster_offset = INV_OFFSET;
1789     *host_offset = INV_OFFSET;
1790     cur_bytes = 0;
1791     *m = NULL;
1792 
1793     while (true) {
1794 
1795         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1796             *host_offset = cluster_offset;
1797         }
1798 
1799         assert(remaining >= cur_bytes);
1800 
1801         start           += cur_bytes;
1802         remaining       -= cur_bytes;
1803 
1804         if (cluster_offset != INV_OFFSET) {
1805             cluster_offset += cur_bytes;
1806         }
1807 
1808         if (remaining == 0) {
1809             break;
1810         }
1811 
1812         cur_bytes = remaining;
1813 
1814         /*
1815          * Now start gathering as many contiguous clusters as possible:
1816          *
1817          * 1. Check for overlaps with in-flight allocations
1818          *
1819          *      a) Overlap not in the first cluster -> shorten this request and
1820          *         let the caller handle the rest in its next loop iteration.
1821          *
1822          *      b) Real overlaps of two requests. Yield and restart the search
1823          *         for contiguous clusters (the situation could have changed
1824          *         while we were sleeping)
1825          *
1826          *      c) TODO: Request starts in the same cluster as the in-flight
1827          *         allocation ends. Shorten the COW of the in-fight allocation,
1828          *         set cluster_offset to write to the same cluster and set up
1829          *         the right synchronisation between the in-flight request and
1830          *         the new one.
1831          */
1832         ret = handle_dependencies(bs, start, &cur_bytes, m);
1833         if (ret == -EAGAIN) {
1834             /* Currently handle_dependencies() doesn't yield if we already had
1835              * an allocation. If it did, we would have to clean up the L2Meta
1836              * structs before starting over. */
1837             assert(*m == NULL);
1838             goto again;
1839         } else if (ret < 0) {
1840             return ret;
1841         } else if (cur_bytes == 0) {
1842             break;
1843         } else {
1844             /* handle_dependencies() may have decreased cur_bytes (shortened
1845              * the allocations below) so that the next dependency is processed
1846              * correctly during the next loop iteration. */
1847         }
1848 
1849         /*
1850          * 2. Count contiguous COPIED clusters.
1851          */
1852         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1853         if (ret < 0) {
1854             return ret;
1855         } else if (ret) {
1856             continue;
1857         } else if (cur_bytes == 0) {
1858             break;
1859         }
1860 
1861         /*
1862          * 3. If the request still hasn't completed, allocate new clusters,
1863          *    considering any cluster_offset of steps 1c or 2.
1864          */
1865         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1866         if (ret < 0) {
1867             return ret;
1868         } else if (ret) {
1869             continue;
1870         } else {
1871             assert(cur_bytes == 0);
1872             break;
1873         }
1874     }
1875 
1876     *bytes -= remaining;
1877     assert(*bytes > 0);
1878     assert(*host_offset != INV_OFFSET);
1879     assert(offset_into_cluster(s, *host_offset) ==
1880            offset_into_cluster(s, offset));
1881 
1882     return 0;
1883 }
1884 
1885 /*
1886  * This discards as many clusters of nb_clusters as possible at once (i.e.
1887  * all clusters in the same L2 slice) and returns the number of discarded
1888  * clusters.
1889  */
1890 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1891                                uint64_t nb_clusters,
1892                                enum qcow2_discard_type type, bool full_discard)
1893 {
1894     BDRVQcow2State *s = bs->opaque;
1895     uint64_t *l2_slice;
1896     int l2_index;
1897     int ret;
1898     int i;
1899 
1900     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1901     if (ret < 0) {
1902         return ret;
1903     }
1904 
1905     /* Limit nb_clusters to one L2 slice */
1906     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1907     assert(nb_clusters <= INT_MAX);
1908 
1909     for (i = 0; i < nb_clusters; i++) {
1910         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1911         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1912         uint64_t new_l2_entry = old_l2_entry;
1913         uint64_t new_l2_bitmap = old_l2_bitmap;
1914         QCow2ClusterType cluster_type =
1915             qcow2_get_cluster_type(bs, old_l2_entry);
1916 
1917         /*
1918          * If full_discard is true, the cluster should not read back as zeroes,
1919          * but rather fall through to the backing file.
1920          *
1921          * If full_discard is false, make sure that a discarded area reads back
1922          * as zeroes for v3 images (we cannot do it for v2 without actually
1923          * writing a zero-filled buffer). We can skip the operation if the
1924          * cluster is already marked as zero, or if it's unallocated and we
1925          * don't have a backing file.
1926          *
1927          * TODO We might want to use bdrv_block_status(bs) here, but we're
1928          * holding s->lock, so that doesn't work today.
1929          */
1930         if (full_discard) {
1931             new_l2_entry = new_l2_bitmap = 0;
1932         } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1933             if (has_subclusters(s)) {
1934                 new_l2_entry = 0;
1935                 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1936             } else {
1937                 new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
1938             }
1939         }
1940 
1941         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1942             continue;
1943         }
1944 
1945         /* First remove L2 entries */
1946         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1947         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1948         if (has_subclusters(s)) {
1949             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1950         }
1951         /* Then decrease the refcount */
1952         qcow2_free_any_cluster(bs, old_l2_entry, type);
1953     }
1954 
1955     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1956 
1957     return nb_clusters;
1958 }
1959 
1960 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1961                           uint64_t bytes, enum qcow2_discard_type type,
1962                           bool full_discard)
1963 {
1964     BDRVQcow2State *s = bs->opaque;
1965     uint64_t end_offset = offset + bytes;
1966     uint64_t nb_clusters;
1967     int64_t cleared;
1968     int ret;
1969 
1970     /* Caller must pass aligned values, except at image end */
1971     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1972     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1973            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1974 
1975     nb_clusters = size_to_clusters(s, bytes);
1976 
1977     s->cache_discards = true;
1978 
1979     /* Each L2 slice is handled by its own loop iteration */
1980     while (nb_clusters > 0) {
1981         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1982                                       full_discard);
1983         if (cleared < 0) {
1984             ret = cleared;
1985             goto fail;
1986         }
1987 
1988         nb_clusters -= cleared;
1989         offset += (cleared * s->cluster_size);
1990     }
1991 
1992     ret = 0;
1993 fail:
1994     s->cache_discards = false;
1995     qcow2_process_discards(bs, ret);
1996 
1997     return ret;
1998 }
1999 
2000 /*
2001  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2002  * all clusters in the same L2 slice) and returns the number of zeroed
2003  * clusters.
2004  */
2005 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
2006                             uint64_t nb_clusters, int flags)
2007 {
2008     BDRVQcow2State *s = bs->opaque;
2009     uint64_t *l2_slice;
2010     int l2_index;
2011     int ret;
2012     int i;
2013 
2014     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2015     if (ret < 0) {
2016         return ret;
2017     }
2018 
2019     /* Limit nb_clusters to one L2 slice */
2020     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
2021     assert(nb_clusters <= INT_MAX);
2022 
2023     for (i = 0; i < nb_clusters; i++) {
2024         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
2025         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
2026         QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
2027         bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
2028             ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2029         uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2030         uint64_t new_l2_bitmap = old_l2_bitmap;
2031 
2032         if (has_subclusters(s)) {
2033             new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2034         } else {
2035             new_l2_entry |= QCOW_OFLAG_ZERO;
2036         }
2037 
2038         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2039             continue;
2040         }
2041 
2042         /* First update L2 entries */
2043         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2044         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2045         if (has_subclusters(s)) {
2046             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2047         }
2048 
2049         /* Then decrease the refcount */
2050         if (unmap) {
2051             qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2052         }
2053     }
2054 
2055     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2056 
2057     return nb_clusters;
2058 }
2059 
2060 static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2061                                unsigned nb_subclusters)
2062 {
2063     BDRVQcow2State *s = bs->opaque;
2064     uint64_t *l2_slice;
2065     uint64_t old_l2_bitmap, l2_bitmap;
2066     int l2_index, ret, sc = offset_to_sc_index(s, offset);
2067 
2068     /* For full clusters use zero_in_l2_slice() instead */
2069     assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2070     assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2071     assert(offset_into_subcluster(s, offset) == 0);
2072 
2073     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2074     if (ret < 0) {
2075         return ret;
2076     }
2077 
2078     switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2079     case QCOW2_CLUSTER_COMPRESSED:
2080         ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2081         goto out;
2082     case QCOW2_CLUSTER_NORMAL:
2083     case QCOW2_CLUSTER_UNALLOCATED:
2084         break;
2085     default:
2086         g_assert_not_reached();
2087     }
2088 
2089     old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2090 
2091     l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2092     l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2093 
2094     if (old_l2_bitmap != l2_bitmap) {
2095         set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2096         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2097     }
2098 
2099     ret = 0;
2100 out:
2101     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2102 
2103     return ret;
2104 }
2105 
2106 int qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2107                              uint64_t bytes, int flags)
2108 {
2109     BDRVQcow2State *s = bs->opaque;
2110     uint64_t end_offset = offset + bytes;
2111     uint64_t nb_clusters;
2112     unsigned head, tail;
2113     int64_t cleared;
2114     int ret;
2115 
2116     /* If we have to stay in sync with an external data file, zero out
2117      * s->data_file first. */
2118     if (data_file_is_raw(bs)) {
2119         assert(has_data_file(bs));
2120         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2121         if (ret < 0) {
2122             return ret;
2123         }
2124     }
2125 
2126     /* Caller must pass aligned values, except at image end */
2127     assert(offset_into_subcluster(s, offset) == 0);
2128     assert(offset_into_subcluster(s, end_offset) == 0 ||
2129            end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2130 
2131     /*
2132      * The zero flag is only supported by version 3 and newer. However, if we
2133      * have no backing file, we can resort to discard in version 2.
2134      */
2135     if (s->qcow_version < 3) {
2136         if (!bs->backing) {
2137             return qcow2_cluster_discard(bs, offset, bytes,
2138                                          QCOW2_DISCARD_REQUEST, false);
2139         }
2140         return -ENOTSUP;
2141     }
2142 
2143     head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2144     offset += head;
2145 
2146     tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2147         end_offset - MAX(offset, start_of_cluster(s, end_offset));
2148     end_offset -= tail;
2149 
2150     s->cache_discards = true;
2151 
2152     if (head) {
2153         ret = zero_l2_subclusters(bs, offset - head,
2154                                   size_to_subclusters(s, head));
2155         if (ret < 0) {
2156             goto fail;
2157         }
2158     }
2159 
2160     /* Each L2 slice is handled by its own loop iteration */
2161     nb_clusters = size_to_clusters(s, end_offset - offset);
2162 
2163     while (nb_clusters > 0) {
2164         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2165         if (cleared < 0) {
2166             ret = cleared;
2167             goto fail;
2168         }
2169 
2170         nb_clusters -= cleared;
2171         offset += (cleared * s->cluster_size);
2172     }
2173 
2174     if (tail) {
2175         ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2176         if (ret < 0) {
2177             goto fail;
2178         }
2179     }
2180 
2181     ret = 0;
2182 fail:
2183     s->cache_discards = false;
2184     qcow2_process_discards(bs, ret);
2185 
2186     return ret;
2187 }
2188 
2189 /*
2190  * Expands all zero clusters in a specific L1 table (or deallocates them, for
2191  * non-backed non-pre-allocated zero clusters).
2192  *
2193  * l1_entries and *visited_l1_entries are used to keep track of progress for
2194  * status_cb(). l1_entries contains the total number of L1 entries and
2195  * *visited_l1_entries counts all visited L1 entries.
2196  */
2197 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2198                                       int l1_size, int64_t *visited_l1_entries,
2199                                       int64_t l1_entries,
2200                                       BlockDriverAmendStatusCB *status_cb,
2201                                       void *cb_opaque)
2202 {
2203     BDRVQcow2State *s = bs->opaque;
2204     bool is_active_l1 = (l1_table == s->l1_table);
2205     uint64_t *l2_slice = NULL;
2206     unsigned slice, slice_size2, n_slices;
2207     int ret;
2208     int i, j;
2209 
2210     /* qcow2_downgrade() is not allowed in images with subclusters */
2211     assert(!has_subclusters(s));
2212 
2213     slice_size2 = s->l2_slice_size * l2_entry_size(s);
2214     n_slices = s->cluster_size / slice_size2;
2215 
2216     if (!is_active_l1) {
2217         /* inactive L2 tables require a buffer to be stored in when loading
2218          * them from disk */
2219         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2220         if (l2_slice == NULL) {
2221             return -ENOMEM;
2222         }
2223     }
2224 
2225     for (i = 0; i < l1_size; i++) {
2226         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2227         uint64_t l2_refcount;
2228 
2229         if (!l2_offset) {
2230             /* unallocated */
2231             (*visited_l1_entries)++;
2232             if (status_cb) {
2233                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2234             }
2235             continue;
2236         }
2237 
2238         if (offset_into_cluster(s, l2_offset)) {
2239             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2240                                     PRIx64 " unaligned (L1 index: %#x)",
2241                                     l2_offset, i);
2242             ret = -EIO;
2243             goto fail;
2244         }
2245 
2246         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2247                                  &l2_refcount);
2248         if (ret < 0) {
2249             goto fail;
2250         }
2251 
2252         for (slice = 0; slice < n_slices; slice++) {
2253             uint64_t slice_offset = l2_offset + slice * slice_size2;
2254             bool l2_dirty = false;
2255             if (is_active_l1) {
2256                 /* get active L2 tables from cache */
2257                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2258                                       (void **)&l2_slice);
2259             } else {
2260                 /* load inactive L2 tables from disk */
2261                 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
2262             }
2263             if (ret < 0) {
2264                 goto fail;
2265             }
2266 
2267             for (j = 0; j < s->l2_slice_size; j++) {
2268                 uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2269                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
2270                 QCow2ClusterType cluster_type =
2271                     qcow2_get_cluster_type(bs, l2_entry);
2272 
2273                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2274                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2275                     continue;
2276                 }
2277 
2278                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2279                     if (!bs->backing) {
2280                         /*
2281                          * not backed; therefore we can simply deallocate the
2282                          * cluster. No need to call set_l2_bitmap(), this
2283                          * function doesn't support images with subclusters.
2284                          */
2285                         set_l2_entry(s, l2_slice, j, 0);
2286                         l2_dirty = true;
2287                         continue;
2288                     }
2289 
2290                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
2291                     if (offset < 0) {
2292                         ret = offset;
2293                         goto fail;
2294                     }
2295 
2296                     /* The offset must fit in the offset field */
2297                     assert((offset & L2E_OFFSET_MASK) == offset);
2298 
2299                     if (l2_refcount > 1) {
2300                         /* For shared L2 tables, set the refcount accordingly
2301                          * (it is already 1 and needs to be l2_refcount) */
2302                         ret = qcow2_update_cluster_refcount(
2303                             bs, offset >> s->cluster_bits,
2304                             refcount_diff(1, l2_refcount), false,
2305                             QCOW2_DISCARD_OTHER);
2306                         if (ret < 0) {
2307                             qcow2_free_clusters(bs, offset, s->cluster_size,
2308                                                 QCOW2_DISCARD_OTHER);
2309                             goto fail;
2310                         }
2311                     }
2312                 }
2313 
2314                 if (offset_into_cluster(s, offset)) {
2315                     int l2_index = slice * s->l2_slice_size + j;
2316                     qcow2_signal_corruption(
2317                         bs, true, -1, -1,
2318                         "Cluster allocation offset "
2319                         "%#" PRIx64 " unaligned (L2 offset: %#"
2320                         PRIx64 ", L2 index: %#x)", offset,
2321                         l2_offset, l2_index);
2322                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2323                         qcow2_free_clusters(bs, offset, s->cluster_size,
2324                                             QCOW2_DISCARD_ALWAYS);
2325                     }
2326                     ret = -EIO;
2327                     goto fail;
2328                 }
2329 
2330                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2331                                                     s->cluster_size, true);
2332                 if (ret < 0) {
2333                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2334                         qcow2_free_clusters(bs, offset, s->cluster_size,
2335                                             QCOW2_DISCARD_ALWAYS);
2336                     }
2337                     goto fail;
2338                 }
2339 
2340                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
2341                                          s->cluster_size, 0);
2342                 if (ret < 0) {
2343                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2344                         qcow2_free_clusters(bs, offset, s->cluster_size,
2345                                             QCOW2_DISCARD_ALWAYS);
2346                     }
2347                     goto fail;
2348                 }
2349 
2350                 if (l2_refcount == 1) {
2351                     set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2352                 } else {
2353                     set_l2_entry(s, l2_slice, j, offset);
2354                 }
2355                 /*
2356                  * No need to call set_l2_bitmap() after set_l2_entry() because
2357                  * this function doesn't support images with subclusters.
2358                  */
2359                 l2_dirty = true;
2360             }
2361 
2362             if (is_active_l1) {
2363                 if (l2_dirty) {
2364                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2365                     qcow2_cache_depends_on_flush(s->l2_table_cache);
2366                 }
2367                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2368             } else {
2369                 if (l2_dirty) {
2370                     ret = qcow2_pre_write_overlap_check(
2371                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2372                         slice_offset, slice_size2, false);
2373                     if (ret < 0) {
2374                         goto fail;
2375                     }
2376 
2377                     ret = bdrv_pwrite(bs->file, slice_offset,
2378                                       l2_slice, slice_size2);
2379                     if (ret < 0) {
2380                         goto fail;
2381                     }
2382                 }
2383             }
2384         }
2385 
2386         (*visited_l1_entries)++;
2387         if (status_cb) {
2388             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2389         }
2390     }
2391 
2392     ret = 0;
2393 
2394 fail:
2395     if (l2_slice) {
2396         if (!is_active_l1) {
2397             qemu_vfree(l2_slice);
2398         } else {
2399             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2400         }
2401     }
2402     return ret;
2403 }
2404 
2405 /*
2406  * For backed images, expands all zero clusters on the image. For non-backed
2407  * images, deallocates all non-pre-allocated zero clusters (and claims the
2408  * allocation for pre-allocated ones). This is important for downgrading to a
2409  * qcow2 version which doesn't yet support metadata zero clusters.
2410  */
2411 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2412                                BlockDriverAmendStatusCB *status_cb,
2413                                void *cb_opaque)
2414 {
2415     BDRVQcow2State *s = bs->opaque;
2416     uint64_t *l1_table = NULL;
2417     int64_t l1_entries = 0, visited_l1_entries = 0;
2418     int ret;
2419     int i, j;
2420 
2421     if (status_cb) {
2422         l1_entries = s->l1_size;
2423         for (i = 0; i < s->nb_snapshots; i++) {
2424             l1_entries += s->snapshots[i].l1_size;
2425         }
2426     }
2427 
2428     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2429                                      &visited_l1_entries, l1_entries,
2430                                      status_cb, cb_opaque);
2431     if (ret < 0) {
2432         goto fail;
2433     }
2434 
2435     /* Inactive L1 tables may point to active L2 tables - therefore it is
2436      * necessary to flush the L2 table cache before trying to access the L2
2437      * tables pointed to by inactive L1 entries (else we might try to expand
2438      * zero clusters that have already been expanded); furthermore, it is also
2439      * necessary to empty the L2 table cache, since it may contain tables which
2440      * are now going to be modified directly on disk, bypassing the cache.
2441      * qcow2_cache_empty() does both for us. */
2442     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2443     if (ret < 0) {
2444         goto fail;
2445     }
2446 
2447     for (i = 0; i < s->nb_snapshots; i++) {
2448         int l1_size2;
2449         uint64_t *new_l1_table;
2450         Error *local_err = NULL;
2451 
2452         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2453                                    s->snapshots[i].l1_size, L1E_SIZE,
2454                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2455                                    &local_err);
2456         if (ret < 0) {
2457             error_report_err(local_err);
2458             goto fail;
2459         }
2460 
2461         l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2462         new_l1_table = g_try_realloc(l1_table, l1_size2);
2463 
2464         if (!new_l1_table) {
2465             ret = -ENOMEM;
2466             goto fail;
2467         }
2468 
2469         l1_table = new_l1_table;
2470 
2471         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2472                          l1_table, l1_size2);
2473         if (ret < 0) {
2474             goto fail;
2475         }
2476 
2477         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2478             be64_to_cpus(&l1_table[j]);
2479         }
2480 
2481         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2482                                          &visited_l1_entries, l1_entries,
2483                                          status_cb, cb_opaque);
2484         if (ret < 0) {
2485             goto fail;
2486         }
2487     }
2488 
2489     ret = 0;
2490 
2491 fail:
2492     g_free(l1_table);
2493     return ret;
2494 }
2495 
2496 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
2497                                      uint64_t *coffset, int *csize)
2498 {
2499     BDRVQcow2State *s = bs->opaque;
2500     int nb_csectors;
2501 
2502     assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
2503 
2504     *coffset = l2_entry & s->cluster_offset_mask;
2505 
2506     nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
2507     *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
2508         (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));
2509 }
2510