xref: /openbmc/qemu/block/qcow2-cluster.c (revision dfeb8679)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include <zlib.h>
26 
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31 
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33                         bool exact_size)
34 {
35     BDRVQcow2State *s = bs->opaque;
36     int new_l1_size2, ret, i;
37     uint64_t *new_l1_table;
38     int64_t old_l1_table_offset, old_l1_size;
39     int64_t new_l1_table_offset, new_l1_size;
40     uint8_t data[12];
41 
42     if (min_size <= s->l1_size)
43         return 0;
44 
45     /* Do a sanity check on min_size before trying to calculate new_l1_size
46      * (this prevents overflows during the while loop for the calculation of
47      * new_l1_size) */
48     if (min_size > INT_MAX / sizeof(uint64_t)) {
49         return -EFBIG;
50     }
51 
52     if (exact_size) {
53         new_l1_size = min_size;
54     } else {
55         /* Bump size up to reduce the number of times we have to grow */
56         new_l1_size = s->l1_size;
57         if (new_l1_size == 0) {
58             new_l1_size = 1;
59         }
60         while (min_size > new_l1_size) {
61             new_l1_size = (new_l1_size * 3 + 1) / 2;
62         }
63     }
64 
65     if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
66         return -EFBIG;
67     }
68 
69 #ifdef DEBUG_ALLOC2
70     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
71             s->l1_size, new_l1_size);
72 #endif
73 
74     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
75     new_l1_table = qemu_try_blockalign(bs->file,
76                                        align_offset(new_l1_size2, 512));
77     if (new_l1_table == NULL) {
78         return -ENOMEM;
79     }
80     memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
81 
82     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
83 
84     /* write new table (align to cluster) */
85     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
86     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
87     if (new_l1_table_offset < 0) {
88         qemu_vfree(new_l1_table);
89         return new_l1_table_offset;
90     }
91 
92     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
93     if (ret < 0) {
94         goto fail;
95     }
96 
97     /* the L1 position has not yet been updated, so these clusters must
98      * indeed be completely free */
99     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
100                                         new_l1_size2);
101     if (ret < 0) {
102         goto fail;
103     }
104 
105     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
106     for(i = 0; i < s->l1_size; i++)
107         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
108     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
109     if (ret < 0)
110         goto fail;
111     for(i = 0; i < s->l1_size; i++)
112         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
113 
114     /* set new table */
115     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
116     cpu_to_be32w((uint32_t*)data, new_l1_size);
117     stq_be_p(data + 4, new_l1_table_offset);
118     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
119     if (ret < 0) {
120         goto fail;
121     }
122     qemu_vfree(s->l1_table);
123     old_l1_table_offset = s->l1_table_offset;
124     s->l1_table_offset = new_l1_table_offset;
125     s->l1_table = new_l1_table;
126     old_l1_size = s->l1_size;
127     s->l1_size = new_l1_size;
128     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
129                         QCOW2_DISCARD_OTHER);
130     return 0;
131  fail:
132     qemu_vfree(new_l1_table);
133     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
134                         QCOW2_DISCARD_OTHER);
135     return ret;
136 }
137 
138 /*
139  * l2_load
140  *
141  * Loads a L2 table into memory. If the table is in the cache, the cache
142  * is used; otherwise the L2 table is loaded from the image file.
143  *
144  * Returns a pointer to the L2 table on success, or NULL if the read from
145  * the image file failed.
146  */
147 
148 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
149     uint64_t **l2_table)
150 {
151     BDRVQcow2State *s = bs->opaque;
152     int ret;
153 
154     ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
155 
156     return ret;
157 }
158 
159 /*
160  * Writes one sector of the L1 table to the disk (can't update single entries
161  * and we really don't want bdrv_pread to perform a read-modify-write)
162  */
163 #define L1_ENTRIES_PER_SECTOR (512 / 8)
164 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
165 {
166     BDRVQcow2State *s = bs->opaque;
167     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
168     int l1_start_index;
169     int i, ret;
170 
171     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
172     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
173          i++)
174     {
175         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
176     }
177 
178     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
179             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
180     if (ret < 0) {
181         return ret;
182     }
183 
184     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
185     ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
186         buf, sizeof(buf));
187     if (ret < 0) {
188         return ret;
189     }
190 
191     return 0;
192 }
193 
194 /*
195  * l2_allocate
196  *
197  * Allocate a new l2 entry in the file. If l1_index points to an already
198  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
199  * table) copy the contents of the old L2 table into the newly allocated one.
200  * Otherwise the new table is initialized with zeros.
201  *
202  */
203 
204 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
205 {
206     BDRVQcow2State *s = bs->opaque;
207     uint64_t old_l2_offset;
208     uint64_t *l2_table = NULL;
209     int64_t l2_offset;
210     int ret;
211 
212     old_l2_offset = s->l1_table[l1_index];
213 
214     trace_qcow2_l2_allocate(bs, l1_index);
215 
216     /* allocate a new l2 entry */
217 
218     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
219     if (l2_offset < 0) {
220         ret = l2_offset;
221         goto fail;
222     }
223 
224     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
225     if (ret < 0) {
226         goto fail;
227     }
228 
229     /* allocate a new entry in the l2 cache */
230 
231     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
232     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
233     if (ret < 0) {
234         goto fail;
235     }
236 
237     l2_table = *table;
238 
239     if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
240         /* if there was no old l2 table, clear the new table */
241         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
242     } else {
243         uint64_t* old_table;
244 
245         /* if there was an old l2 table, read it from the disk */
246         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
247         ret = qcow2_cache_get(bs, s->l2_table_cache,
248             old_l2_offset & L1E_OFFSET_MASK,
249             (void**) &old_table);
250         if (ret < 0) {
251             goto fail;
252         }
253 
254         memcpy(l2_table, old_table, s->cluster_size);
255 
256         qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
257     }
258 
259     /* write the l2 table to the file */
260     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
261 
262     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
263     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
264     ret = qcow2_cache_flush(bs, s->l2_table_cache);
265     if (ret < 0) {
266         goto fail;
267     }
268 
269     /* update the L1 entry */
270     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
271     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
272     ret = qcow2_write_l1_entry(bs, l1_index);
273     if (ret < 0) {
274         goto fail;
275     }
276 
277     *table = l2_table;
278     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
279     return 0;
280 
281 fail:
282     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
283     if (l2_table != NULL) {
284         qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
285     }
286     s->l1_table[l1_index] = old_l2_offset;
287     if (l2_offset > 0) {
288         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
289                             QCOW2_DISCARD_ALWAYS);
290     }
291     return ret;
292 }
293 
294 /*
295  * Checks how many clusters in a given L2 table are contiguous in the image
296  * file. As soon as one of the flags in the bitmask stop_flags changes compared
297  * to the first cluster, the search is stopped and the cluster is not counted
298  * as contiguous. (This allows it, for example, to stop at the first compressed
299  * cluster which may require a different handling)
300  */
301 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
302         uint64_t *l2_table, uint64_t stop_flags)
303 {
304     int i;
305     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
306     uint64_t first_entry = be64_to_cpu(l2_table[0]);
307     uint64_t offset = first_entry & mask;
308 
309     if (!offset)
310         return 0;
311 
312     assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
313 
314     for (i = 0; i < nb_clusters; i++) {
315         uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
316         if (offset + (uint64_t) i * cluster_size != l2_entry) {
317             break;
318         }
319     }
320 
321 	return i;
322 }
323 
324 static int count_contiguous_free_clusters(int nb_clusters, uint64_t *l2_table)
325 {
326     int i;
327 
328     for (i = 0; i < nb_clusters; i++) {
329         int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
330 
331         if (type != QCOW2_CLUSTER_UNALLOCATED) {
332             break;
333         }
334     }
335 
336     return i;
337 }
338 
339 /* The crypt function is compatible with the linux cryptoloop
340    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
341    supported */
342 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
343                           uint8_t *out_buf, const uint8_t *in_buf,
344                           int nb_sectors, bool enc,
345                           Error **errp)
346 {
347     union {
348         uint64_t ll[2];
349         uint8_t b[16];
350     } ivec;
351     int i;
352     int ret;
353 
354     for(i = 0; i < nb_sectors; i++) {
355         ivec.ll[0] = cpu_to_le64(sector_num);
356         ivec.ll[1] = 0;
357         if (qcrypto_cipher_setiv(s->cipher,
358                                  ivec.b, G_N_ELEMENTS(ivec.b),
359                                  errp) < 0) {
360             return -1;
361         }
362         if (enc) {
363             ret = qcrypto_cipher_encrypt(s->cipher,
364                                          in_buf,
365                                          out_buf,
366                                          512,
367                                          errp);
368         } else {
369             ret = qcrypto_cipher_decrypt(s->cipher,
370                                          in_buf,
371                                          out_buf,
372                                          512,
373                                          errp);
374         }
375         if (ret < 0) {
376             return -1;
377         }
378         sector_num++;
379         in_buf += 512;
380         out_buf += 512;
381     }
382     return 0;
383 }
384 
385 static int coroutine_fn copy_sectors(BlockDriverState *bs,
386                                      uint64_t start_sect,
387                                      uint64_t cluster_offset,
388                                      int n_start, int n_end)
389 {
390     BDRVQcow2State *s = bs->opaque;
391     QEMUIOVector qiov;
392     struct iovec iov;
393     int n, ret;
394 
395     n = n_end - n_start;
396     if (n <= 0) {
397         return 0;
398     }
399 
400     iov.iov_len = n * BDRV_SECTOR_SIZE;
401     iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
402     if (iov.iov_base == NULL) {
403         return -ENOMEM;
404     }
405 
406     qemu_iovec_init_external(&qiov, &iov, 1);
407 
408     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
409 
410     if (!bs->drv) {
411         ret = -ENOMEDIUM;
412         goto out;
413     }
414 
415     /* Call .bdrv_co_readv() directly instead of using the public block-layer
416      * interface.  This avoids double I/O throttling and request tracking,
417      * which can lead to deadlock when block layer copy-on-read is enabled.
418      */
419     ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
420     if (ret < 0) {
421         goto out;
422     }
423 
424     if (bs->encrypted) {
425         Error *err = NULL;
426         assert(s->cipher);
427         if (qcow2_encrypt_sectors(s, start_sect + n_start,
428                                   iov.iov_base, iov.iov_base, n,
429                                   true, &err) < 0) {
430             ret = -EIO;
431             error_free(err);
432             goto out;
433         }
434     }
435 
436     ret = qcow2_pre_write_overlap_check(bs, 0,
437             cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
438     if (ret < 0) {
439         goto out;
440     }
441 
442     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
443     ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
444     if (ret < 0) {
445         goto out;
446     }
447 
448     ret = 0;
449 out:
450     qemu_vfree(iov.iov_base);
451     return ret;
452 }
453 
454 
455 /*
456  * get_cluster_offset
457  *
458  * For a given offset of the disk image, find the cluster offset in
459  * qcow2 file. The offset is stored in *cluster_offset.
460  *
461  * on entry, *num is the number of contiguous sectors we'd like to
462  * access following offset.
463  *
464  * on exit, *num is the number of contiguous sectors we can read.
465  *
466  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
467  * cases.
468  */
469 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
470     int *num, uint64_t *cluster_offset)
471 {
472     BDRVQcow2State *s = bs->opaque;
473     unsigned int l2_index;
474     uint64_t l1_index, l2_offset, *l2_table;
475     int l1_bits, c;
476     unsigned int index_in_cluster, nb_clusters;
477     uint64_t nb_available, nb_needed;
478     int ret;
479 
480     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
481     nb_needed = *num + index_in_cluster;
482 
483     l1_bits = s->l2_bits + s->cluster_bits;
484 
485     /* compute how many bytes there are between the offset and
486      * the end of the l1 entry
487      */
488 
489     nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
490 
491     /* compute the number of available sectors */
492 
493     nb_available = (nb_available >> 9) + index_in_cluster;
494 
495     if (nb_needed > nb_available) {
496         nb_needed = nb_available;
497     }
498     assert(nb_needed <= INT_MAX);
499 
500     *cluster_offset = 0;
501 
502     /* seek to the l2 offset in the l1 table */
503 
504     l1_index = offset >> l1_bits;
505     if (l1_index >= s->l1_size) {
506         ret = QCOW2_CLUSTER_UNALLOCATED;
507         goto out;
508     }
509 
510     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
511     if (!l2_offset) {
512         ret = QCOW2_CLUSTER_UNALLOCATED;
513         goto out;
514     }
515 
516     if (offset_into_cluster(s, l2_offset)) {
517         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
518                                 " unaligned (L1 index: %#" PRIx64 ")",
519                                 l2_offset, l1_index);
520         return -EIO;
521     }
522 
523     /* load the l2 table in memory */
524 
525     ret = l2_load(bs, l2_offset, &l2_table);
526     if (ret < 0) {
527         return ret;
528     }
529 
530     /* find the cluster offset for the given disk offset */
531 
532     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
533     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
534 
535     /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
536     nb_clusters = size_to_clusters(s, nb_needed << 9);
537 
538     ret = qcow2_get_cluster_type(*cluster_offset);
539     switch (ret) {
540     case QCOW2_CLUSTER_COMPRESSED:
541         /* Compressed clusters can only be processed one by one */
542         c = 1;
543         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
544         break;
545     case QCOW2_CLUSTER_ZERO:
546         if (s->qcow_version < 3) {
547             qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
548                                     " in pre-v3 image (L2 offset: %#" PRIx64
549                                     ", L2 index: %#x)", l2_offset, l2_index);
550             ret = -EIO;
551             goto fail;
552         }
553         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
554                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
555         *cluster_offset = 0;
556         break;
557     case QCOW2_CLUSTER_UNALLOCATED:
558         /* how many empty clusters ? */
559         c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
560         *cluster_offset = 0;
561         break;
562     case QCOW2_CLUSTER_NORMAL:
563         /* how many allocated clusters ? */
564         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
565                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
566         *cluster_offset &= L2E_OFFSET_MASK;
567         if (offset_into_cluster(s, *cluster_offset)) {
568             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
569                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
570                                     ", L2 index: %#x)", *cluster_offset,
571                                     l2_offset, l2_index);
572             ret = -EIO;
573             goto fail;
574         }
575         break;
576     default:
577         abort();
578     }
579 
580     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
581 
582     nb_available = (c * s->cluster_sectors);
583 
584 out:
585     if (nb_available > nb_needed)
586         nb_available = nb_needed;
587 
588     *num = nb_available - index_in_cluster;
589 
590     return ret;
591 
592 fail:
593     qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
594     return ret;
595 }
596 
597 /*
598  * get_cluster_table
599  *
600  * for a given disk offset, load (and allocate if needed)
601  * the l2 table.
602  *
603  * the l2 table offset in the qcow2 file and the cluster index
604  * in the l2 table are given to the caller.
605  *
606  * Returns 0 on success, -errno in failure case
607  */
608 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
609                              uint64_t **new_l2_table,
610                              int *new_l2_index)
611 {
612     BDRVQcow2State *s = bs->opaque;
613     unsigned int l2_index;
614     uint64_t l1_index, l2_offset;
615     uint64_t *l2_table = NULL;
616     int ret;
617 
618     /* seek to the l2 offset in the l1 table */
619 
620     l1_index = offset >> (s->l2_bits + s->cluster_bits);
621     if (l1_index >= s->l1_size) {
622         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
623         if (ret < 0) {
624             return ret;
625         }
626     }
627 
628     assert(l1_index < s->l1_size);
629     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
630     if (offset_into_cluster(s, l2_offset)) {
631         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
632                                 " unaligned (L1 index: %#" PRIx64 ")",
633                                 l2_offset, l1_index);
634         return -EIO;
635     }
636 
637     /* seek the l2 table of the given l2 offset */
638 
639     if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
640         /* load the l2 table in memory */
641         ret = l2_load(bs, l2_offset, &l2_table);
642         if (ret < 0) {
643             return ret;
644         }
645     } else {
646         /* First allocate a new L2 table (and do COW if needed) */
647         ret = l2_allocate(bs, l1_index, &l2_table);
648         if (ret < 0) {
649             return ret;
650         }
651 
652         /* Then decrease the refcount of the old table */
653         if (l2_offset) {
654             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
655                                 QCOW2_DISCARD_OTHER);
656         }
657     }
658 
659     /* find the cluster offset for the given disk offset */
660 
661     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
662 
663     *new_l2_table = l2_table;
664     *new_l2_index = l2_index;
665 
666     return 0;
667 }
668 
669 /*
670  * alloc_compressed_cluster_offset
671  *
672  * For a given offset of the disk image, return cluster offset in
673  * qcow2 file.
674  *
675  * If the offset is not found, allocate a new compressed cluster.
676  *
677  * Return the cluster offset if successful,
678  * Return 0, otherwise.
679  *
680  */
681 
682 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
683                                                uint64_t offset,
684                                                int compressed_size)
685 {
686     BDRVQcow2State *s = bs->opaque;
687     int l2_index, ret;
688     uint64_t *l2_table;
689     int64_t cluster_offset;
690     int nb_csectors;
691 
692     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
693     if (ret < 0) {
694         return 0;
695     }
696 
697     /* Compression can't overwrite anything. Fail if the cluster was already
698      * allocated. */
699     cluster_offset = be64_to_cpu(l2_table[l2_index]);
700     if (cluster_offset & L2E_OFFSET_MASK) {
701         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
702         return 0;
703     }
704 
705     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
706     if (cluster_offset < 0) {
707         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
708         return 0;
709     }
710 
711     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
712                   (cluster_offset >> 9);
713 
714     cluster_offset |= QCOW_OFLAG_COMPRESSED |
715                       ((uint64_t)nb_csectors << s->csize_shift);
716 
717     /* update L2 table */
718 
719     /* compressed clusters never have the copied flag */
720 
721     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
722     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
723     l2_table[l2_index] = cpu_to_be64(cluster_offset);
724     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
725 
726     return cluster_offset;
727 }
728 
729 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
730 {
731     BDRVQcow2State *s = bs->opaque;
732     int ret;
733 
734     if (r->nb_sectors == 0) {
735         return 0;
736     }
737 
738     qemu_co_mutex_unlock(&s->lock);
739     ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
740                        r->offset / BDRV_SECTOR_SIZE,
741                        r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
742     qemu_co_mutex_lock(&s->lock);
743 
744     if (ret < 0) {
745         return ret;
746     }
747 
748     /*
749      * Before we update the L2 table to actually point to the new cluster, we
750      * need to be sure that the refcounts have been increased and COW was
751      * handled.
752      */
753     qcow2_cache_depends_on_flush(s->l2_table_cache);
754 
755     return 0;
756 }
757 
758 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
759 {
760     BDRVQcow2State *s = bs->opaque;
761     int i, j = 0, l2_index, ret;
762     uint64_t *old_cluster, *l2_table;
763     uint64_t cluster_offset = m->alloc_offset;
764 
765     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
766     assert(m->nb_clusters > 0);
767 
768     old_cluster = g_try_new(uint64_t, m->nb_clusters);
769     if (old_cluster == NULL) {
770         ret = -ENOMEM;
771         goto err;
772     }
773 
774     /* copy content of unmodified sectors */
775     ret = perform_cow(bs, m, &m->cow_start);
776     if (ret < 0) {
777         goto err;
778     }
779 
780     ret = perform_cow(bs, m, &m->cow_end);
781     if (ret < 0) {
782         goto err;
783     }
784 
785     /* Update L2 table. */
786     if (s->use_lazy_refcounts) {
787         qcow2_mark_dirty(bs);
788     }
789     if (qcow2_need_accurate_refcounts(s)) {
790         qcow2_cache_set_dependency(bs, s->l2_table_cache,
791                                    s->refcount_block_cache);
792     }
793 
794     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
795     if (ret < 0) {
796         goto err;
797     }
798     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
799 
800     assert(l2_index + m->nb_clusters <= s->l2_size);
801     for (i = 0; i < m->nb_clusters; i++) {
802         /* if two concurrent writes happen to the same unallocated cluster
803 	 * each write allocates separate cluster and writes data concurrently.
804 	 * The first one to complete updates l2 table with pointer to its
805 	 * cluster the second one has to do RMW (which is done above by
806 	 * copy_sectors()), update l2 table with its cluster pointer and free
807 	 * old cluster. This is what this loop does */
808         if(l2_table[l2_index + i] != 0)
809             old_cluster[j++] = l2_table[l2_index + i];
810 
811         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
812                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
813      }
814 
815 
816     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
817 
818     /*
819      * If this was a COW, we need to decrease the refcount of the old cluster.
820      * Also flush bs->file to get the right order for L2 and refcount update.
821      *
822      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
823      * clusters), the next write will reuse them anyway.
824      */
825     if (j != 0) {
826         for (i = 0; i < j; i++) {
827             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
828                                     QCOW2_DISCARD_NEVER);
829         }
830     }
831 
832     ret = 0;
833 err:
834     g_free(old_cluster);
835     return ret;
836  }
837 
838 /*
839  * Returns the number of contiguous clusters that can be used for an allocating
840  * write, but require COW to be performed (this includes yet unallocated space,
841  * which must copy from the backing file)
842  */
843 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
844     uint64_t *l2_table, int l2_index)
845 {
846     int i;
847 
848     for (i = 0; i < nb_clusters; i++) {
849         uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
850         int cluster_type = qcow2_get_cluster_type(l2_entry);
851 
852         switch(cluster_type) {
853         case QCOW2_CLUSTER_NORMAL:
854             if (l2_entry & QCOW_OFLAG_COPIED) {
855                 goto out;
856             }
857             break;
858         case QCOW2_CLUSTER_UNALLOCATED:
859         case QCOW2_CLUSTER_COMPRESSED:
860         case QCOW2_CLUSTER_ZERO:
861             break;
862         default:
863             abort();
864         }
865     }
866 
867 out:
868     assert(i <= nb_clusters);
869     return i;
870 }
871 
872 /*
873  * Check if there already is an AIO write request in flight which allocates
874  * the same cluster. In this case we need to wait until the previous
875  * request has completed and updated the L2 table accordingly.
876  *
877  * Returns:
878  *   0       if there was no dependency. *cur_bytes indicates the number of
879  *           bytes from guest_offset that can be read before the next
880  *           dependency must be processed (or the request is complete)
881  *
882  *   -EAGAIN if we had to wait for another request, previously gathered
883  *           information on cluster allocation may be invalid now. The caller
884  *           must start over anyway, so consider *cur_bytes undefined.
885  */
886 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
887     uint64_t *cur_bytes, QCowL2Meta **m)
888 {
889     BDRVQcow2State *s = bs->opaque;
890     QCowL2Meta *old_alloc;
891     uint64_t bytes = *cur_bytes;
892 
893     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
894 
895         uint64_t start = guest_offset;
896         uint64_t end = start + bytes;
897         uint64_t old_start = l2meta_cow_start(old_alloc);
898         uint64_t old_end = l2meta_cow_end(old_alloc);
899 
900         if (end <= old_start || start >= old_end) {
901             /* No intersection */
902         } else {
903             if (start < old_start) {
904                 /* Stop at the start of a running allocation */
905                 bytes = old_start - start;
906             } else {
907                 bytes = 0;
908             }
909 
910             /* Stop if already an l2meta exists. After yielding, it wouldn't
911              * be valid any more, so we'd have to clean up the old L2Metas
912              * and deal with requests depending on them before starting to
913              * gather new ones. Not worth the trouble. */
914             if (bytes == 0 && *m) {
915                 *cur_bytes = 0;
916                 return 0;
917             }
918 
919             if (bytes == 0) {
920                 /* Wait for the dependency to complete. We need to recheck
921                  * the free/allocated clusters when we continue. */
922                 qemu_co_mutex_unlock(&s->lock);
923                 qemu_co_queue_wait(&old_alloc->dependent_requests);
924                 qemu_co_mutex_lock(&s->lock);
925                 return -EAGAIN;
926             }
927         }
928     }
929 
930     /* Make sure that existing clusters and new allocations are only used up to
931      * the next dependency if we shortened the request above */
932     *cur_bytes = bytes;
933 
934     return 0;
935 }
936 
937 /*
938  * Checks how many already allocated clusters that don't require a copy on
939  * write there are at the given guest_offset (up to *bytes). If
940  * *host_offset is not zero, only physically contiguous clusters beginning at
941  * this host offset are counted.
942  *
943  * Note that guest_offset may not be cluster aligned. In this case, the
944  * returned *host_offset points to exact byte referenced by guest_offset and
945  * therefore isn't cluster aligned as well.
946  *
947  * Returns:
948  *   0:     if no allocated clusters are available at the given offset.
949  *          *bytes is normally unchanged. It is set to 0 if the cluster
950  *          is allocated and doesn't need COW, but doesn't have the right
951  *          physical offset.
952  *
953  *   1:     if allocated clusters that don't require a COW are available at
954  *          the requested offset. *bytes may have decreased and describes
955  *          the length of the area that can be written to.
956  *
957  *  -errno: in error cases
958  */
959 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
960     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
961 {
962     BDRVQcow2State *s = bs->opaque;
963     int l2_index;
964     uint64_t cluster_offset;
965     uint64_t *l2_table;
966     uint64_t nb_clusters;
967     unsigned int keep_clusters;
968     int ret;
969 
970     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
971                               *bytes);
972 
973     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
974                                 == offset_into_cluster(s, *host_offset));
975 
976     /*
977      * Calculate the number of clusters to look for. We stop at L2 table
978      * boundaries to keep things simple.
979      */
980     nb_clusters =
981         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
982 
983     l2_index = offset_to_l2_index(s, guest_offset);
984     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
985     assert(nb_clusters <= INT_MAX);
986 
987     /* Find L2 entry for the first involved cluster */
988     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
989     if (ret < 0) {
990         return ret;
991     }
992 
993     cluster_offset = be64_to_cpu(l2_table[l2_index]);
994 
995     /* Check how many clusters are already allocated and don't need COW */
996     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
997         && (cluster_offset & QCOW_OFLAG_COPIED))
998     {
999         /* If a specific host_offset is required, check it */
1000         bool offset_matches =
1001             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1002 
1003         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1004             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1005                                     "%#llx unaligned (guest offset: %#" PRIx64
1006                                     ")", cluster_offset & L2E_OFFSET_MASK,
1007                                     guest_offset);
1008             ret = -EIO;
1009             goto out;
1010         }
1011 
1012         if (*host_offset != 0 && !offset_matches) {
1013             *bytes = 0;
1014             ret = 0;
1015             goto out;
1016         }
1017 
1018         /* We keep all QCOW_OFLAG_COPIED clusters */
1019         keep_clusters =
1020             count_contiguous_clusters(nb_clusters, s->cluster_size,
1021                                       &l2_table[l2_index],
1022                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1023         assert(keep_clusters <= nb_clusters);
1024 
1025         *bytes = MIN(*bytes,
1026                  keep_clusters * s->cluster_size
1027                  - offset_into_cluster(s, guest_offset));
1028 
1029         ret = 1;
1030     } else {
1031         ret = 0;
1032     }
1033 
1034     /* Cleanup */
1035 out:
1036     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1037 
1038     /* Only return a host offset if we actually made progress. Otherwise we
1039      * would make requirements for handle_alloc() that it can't fulfill */
1040     if (ret > 0) {
1041         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1042                      + offset_into_cluster(s, guest_offset);
1043     }
1044 
1045     return ret;
1046 }
1047 
1048 /*
1049  * Allocates new clusters for the given guest_offset.
1050  *
1051  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1052  * contain the number of clusters that have been allocated and are contiguous
1053  * in the image file.
1054  *
1055  * If *host_offset is non-zero, it specifies the offset in the image file at
1056  * which the new clusters must start. *nb_clusters can be 0 on return in this
1057  * case if the cluster at host_offset is already in use. If *host_offset is
1058  * zero, the clusters can be allocated anywhere in the image file.
1059  *
1060  * *host_offset is updated to contain the offset into the image file at which
1061  * the first allocated cluster starts.
1062  *
1063  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1064  * function has been waiting for another request and the allocation must be
1065  * restarted, but the whole request should not be failed.
1066  */
1067 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1068                                    uint64_t *host_offset, uint64_t *nb_clusters)
1069 {
1070     BDRVQcow2State *s = bs->opaque;
1071 
1072     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1073                                          *host_offset, *nb_clusters);
1074 
1075     /* Allocate new clusters */
1076     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1077     if (*host_offset == 0) {
1078         int64_t cluster_offset =
1079             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1080         if (cluster_offset < 0) {
1081             return cluster_offset;
1082         }
1083         *host_offset = cluster_offset;
1084         return 0;
1085     } else {
1086         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1087         if (ret < 0) {
1088             return ret;
1089         }
1090         *nb_clusters = ret;
1091         return 0;
1092     }
1093 }
1094 
1095 /*
1096  * Allocates new clusters for an area that either is yet unallocated or needs a
1097  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1098  * the new allocation can match the specified host offset.
1099  *
1100  * Note that guest_offset may not be cluster aligned. In this case, the
1101  * returned *host_offset points to exact byte referenced by guest_offset and
1102  * therefore isn't cluster aligned as well.
1103  *
1104  * Returns:
1105  *   0:     if no clusters could be allocated. *bytes is set to 0,
1106  *          *host_offset is left unchanged.
1107  *
1108  *   1:     if new clusters were allocated. *bytes may be decreased if the
1109  *          new allocation doesn't cover all of the requested area.
1110  *          *host_offset is updated to contain the host offset of the first
1111  *          newly allocated cluster.
1112  *
1113  *  -errno: in error cases
1114  */
1115 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1116     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1117 {
1118     BDRVQcow2State *s = bs->opaque;
1119     int l2_index;
1120     uint64_t *l2_table;
1121     uint64_t entry;
1122     uint64_t nb_clusters;
1123     int ret;
1124 
1125     uint64_t alloc_cluster_offset;
1126 
1127     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1128                              *bytes);
1129     assert(*bytes > 0);
1130 
1131     /*
1132      * Calculate the number of clusters to look for. We stop at L2 table
1133      * boundaries to keep things simple.
1134      */
1135     nb_clusters =
1136         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1137 
1138     l2_index = offset_to_l2_index(s, guest_offset);
1139     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1140     assert(nb_clusters <= INT_MAX);
1141 
1142     /* Find L2 entry for the first involved cluster */
1143     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1144     if (ret < 0) {
1145         return ret;
1146     }
1147 
1148     entry = be64_to_cpu(l2_table[l2_index]);
1149 
1150     /* For the moment, overwrite compressed clusters one by one */
1151     if (entry & QCOW_OFLAG_COMPRESSED) {
1152         nb_clusters = 1;
1153     } else {
1154         nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1155     }
1156 
1157     /* This function is only called when there were no non-COW clusters, so if
1158      * we can't find any unallocated or COW clusters either, something is
1159      * wrong with our code. */
1160     assert(nb_clusters > 0);
1161 
1162     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1163 
1164     /* Allocate, if necessary at a given offset in the image file */
1165     alloc_cluster_offset = start_of_cluster(s, *host_offset);
1166     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1167                                   &nb_clusters);
1168     if (ret < 0) {
1169         goto fail;
1170     }
1171 
1172     /* Can't extend contiguous allocation */
1173     if (nb_clusters == 0) {
1174         *bytes = 0;
1175         return 0;
1176     }
1177 
1178     /* !*host_offset would overwrite the image header and is reserved for "no
1179      * host offset preferred". If 0 was a valid host offset, it'd trigger the
1180      * following overlap check; do that now to avoid having an invalid value in
1181      * *host_offset. */
1182     if (!alloc_cluster_offset) {
1183         ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1184                                             nb_clusters * s->cluster_size);
1185         assert(ret < 0);
1186         goto fail;
1187     }
1188 
1189     /*
1190      * Save info needed for meta data update.
1191      *
1192      * requested_sectors: Number of sectors from the start of the first
1193      * newly allocated cluster to the end of the (possibly shortened
1194      * before) write request.
1195      *
1196      * avail_sectors: Number of sectors from the start of the first
1197      * newly allocated to the end of the last newly allocated cluster.
1198      *
1199      * nb_sectors: The number of sectors from the start of the first
1200      * newly allocated cluster to the end of the area that the write
1201      * request actually writes to (excluding COW at the end)
1202      */
1203     int requested_sectors =
1204         (*bytes + offset_into_cluster(s, guest_offset))
1205         >> BDRV_SECTOR_BITS;
1206     int avail_sectors = nb_clusters
1207                         << (s->cluster_bits - BDRV_SECTOR_BITS);
1208     int alloc_n_start = offset_into_cluster(s, guest_offset)
1209                         >> BDRV_SECTOR_BITS;
1210     int nb_sectors = MIN(requested_sectors, avail_sectors);
1211     QCowL2Meta *old_m = *m;
1212 
1213     *m = g_malloc0(sizeof(**m));
1214 
1215     **m = (QCowL2Meta) {
1216         .next           = old_m,
1217 
1218         .alloc_offset   = alloc_cluster_offset,
1219         .offset         = start_of_cluster(s, guest_offset),
1220         .nb_clusters    = nb_clusters,
1221         .nb_available   = nb_sectors,
1222 
1223         .cow_start = {
1224             .offset     = 0,
1225             .nb_sectors = alloc_n_start,
1226         },
1227         .cow_end = {
1228             .offset     = nb_sectors * BDRV_SECTOR_SIZE,
1229             .nb_sectors = avail_sectors - nb_sectors,
1230         },
1231     };
1232     qemu_co_queue_init(&(*m)->dependent_requests);
1233     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1234 
1235     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1236     *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1237                          - offset_into_cluster(s, guest_offset));
1238     assert(*bytes != 0);
1239 
1240     return 1;
1241 
1242 fail:
1243     if (*m && (*m)->nb_clusters > 0) {
1244         QLIST_REMOVE(*m, next_in_flight);
1245     }
1246     return ret;
1247 }
1248 
1249 /*
1250  * alloc_cluster_offset
1251  *
1252  * For a given offset on the virtual disk, find the cluster offset in qcow2
1253  * file. If the offset is not found, allocate a new cluster.
1254  *
1255  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1256  * other fields in m are meaningless.
1257  *
1258  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1259  * contiguous clusters that have been allocated. In this case, the other
1260  * fields of m are valid and contain information about the first allocated
1261  * cluster.
1262  *
1263  * If the request conflicts with another write request in flight, the coroutine
1264  * is queued and will be reentered when the dependency has completed.
1265  *
1266  * Return 0 on success and -errno in error cases
1267  */
1268 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1269     int *num, uint64_t *host_offset, QCowL2Meta **m)
1270 {
1271     BDRVQcow2State *s = bs->opaque;
1272     uint64_t start, remaining;
1273     uint64_t cluster_offset;
1274     uint64_t cur_bytes;
1275     int ret;
1276 
1277     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
1278 
1279     assert((offset & ~BDRV_SECTOR_MASK) == 0);
1280 
1281 again:
1282     start = offset;
1283     remaining = (uint64_t)*num << BDRV_SECTOR_BITS;
1284     cluster_offset = 0;
1285     *host_offset = 0;
1286     cur_bytes = 0;
1287     *m = NULL;
1288 
1289     while (true) {
1290 
1291         if (!*host_offset) {
1292             *host_offset = start_of_cluster(s, cluster_offset);
1293         }
1294 
1295         assert(remaining >= cur_bytes);
1296 
1297         start           += cur_bytes;
1298         remaining       -= cur_bytes;
1299         cluster_offset  += cur_bytes;
1300 
1301         if (remaining == 0) {
1302             break;
1303         }
1304 
1305         cur_bytes = remaining;
1306 
1307         /*
1308          * Now start gathering as many contiguous clusters as possible:
1309          *
1310          * 1. Check for overlaps with in-flight allocations
1311          *
1312          *      a) Overlap not in the first cluster -> shorten this request and
1313          *         let the caller handle the rest in its next loop iteration.
1314          *
1315          *      b) Real overlaps of two requests. Yield and restart the search
1316          *         for contiguous clusters (the situation could have changed
1317          *         while we were sleeping)
1318          *
1319          *      c) TODO: Request starts in the same cluster as the in-flight
1320          *         allocation ends. Shorten the COW of the in-fight allocation,
1321          *         set cluster_offset to write to the same cluster and set up
1322          *         the right synchronisation between the in-flight request and
1323          *         the new one.
1324          */
1325         ret = handle_dependencies(bs, start, &cur_bytes, m);
1326         if (ret == -EAGAIN) {
1327             /* Currently handle_dependencies() doesn't yield if we already had
1328              * an allocation. If it did, we would have to clean up the L2Meta
1329              * structs before starting over. */
1330             assert(*m == NULL);
1331             goto again;
1332         } else if (ret < 0) {
1333             return ret;
1334         } else if (cur_bytes == 0) {
1335             break;
1336         } else {
1337             /* handle_dependencies() may have decreased cur_bytes (shortened
1338              * the allocations below) so that the next dependency is processed
1339              * correctly during the next loop iteration. */
1340         }
1341 
1342         /*
1343          * 2. Count contiguous COPIED clusters.
1344          */
1345         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1346         if (ret < 0) {
1347             return ret;
1348         } else if (ret) {
1349             continue;
1350         } else if (cur_bytes == 0) {
1351             break;
1352         }
1353 
1354         /*
1355          * 3. If the request still hasn't completed, allocate new clusters,
1356          *    considering any cluster_offset of steps 1c or 2.
1357          */
1358         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1359         if (ret < 0) {
1360             return ret;
1361         } else if (ret) {
1362             continue;
1363         } else {
1364             assert(cur_bytes == 0);
1365             break;
1366         }
1367     }
1368 
1369     *num -= remaining >> BDRV_SECTOR_BITS;
1370     assert(*num > 0);
1371     assert(*host_offset != 0);
1372 
1373     return 0;
1374 }
1375 
1376 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1377                              const uint8_t *buf, int buf_size)
1378 {
1379     z_stream strm1, *strm = &strm1;
1380     int ret, out_len;
1381 
1382     memset(strm, 0, sizeof(*strm));
1383 
1384     strm->next_in = (uint8_t *)buf;
1385     strm->avail_in = buf_size;
1386     strm->next_out = out_buf;
1387     strm->avail_out = out_buf_size;
1388 
1389     ret = inflateInit2(strm, -12);
1390     if (ret != Z_OK)
1391         return -1;
1392     ret = inflate(strm, Z_FINISH);
1393     out_len = strm->next_out - out_buf;
1394     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1395         out_len != out_buf_size) {
1396         inflateEnd(strm);
1397         return -1;
1398     }
1399     inflateEnd(strm);
1400     return 0;
1401 }
1402 
1403 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1404 {
1405     BDRVQcow2State *s = bs->opaque;
1406     int ret, csize, nb_csectors, sector_offset;
1407     uint64_t coffset;
1408 
1409     coffset = cluster_offset & s->cluster_offset_mask;
1410     if (s->cluster_cache_offset != coffset) {
1411         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1412         sector_offset = coffset & 511;
1413         csize = nb_csectors * 512 - sector_offset;
1414         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1415         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1416         if (ret < 0) {
1417             return ret;
1418         }
1419         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1420                               s->cluster_data + sector_offset, csize) < 0) {
1421             return -EIO;
1422         }
1423         s->cluster_cache_offset = coffset;
1424     }
1425     return 0;
1426 }
1427 
1428 /*
1429  * This discards as many clusters of nb_clusters as possible at once (i.e.
1430  * all clusters in the same L2 table) and returns the number of discarded
1431  * clusters.
1432  */
1433 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1434                              uint64_t nb_clusters, enum qcow2_discard_type type,
1435                              bool full_discard)
1436 {
1437     BDRVQcow2State *s = bs->opaque;
1438     uint64_t *l2_table;
1439     int l2_index;
1440     int ret;
1441     int i;
1442 
1443     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1444     if (ret < 0) {
1445         return ret;
1446     }
1447 
1448     /* Limit nb_clusters to one L2 table */
1449     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1450     assert(nb_clusters <= INT_MAX);
1451 
1452     for (i = 0; i < nb_clusters; i++) {
1453         uint64_t old_l2_entry;
1454 
1455         old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1456 
1457         /*
1458          * If full_discard is false, make sure that a discarded area reads back
1459          * as zeroes for v3 images (we cannot do it for v2 without actually
1460          * writing a zero-filled buffer). We can skip the operation if the
1461          * cluster is already marked as zero, or if it's unallocated and we
1462          * don't have a backing file.
1463          *
1464          * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1465          * holding s->lock, so that doesn't work today.
1466          *
1467          * If full_discard is true, the sector should not read back as zeroes,
1468          * but rather fall through to the backing file.
1469          */
1470         switch (qcow2_get_cluster_type(old_l2_entry)) {
1471             case QCOW2_CLUSTER_UNALLOCATED:
1472                 if (full_discard || !bs->backing_hd) {
1473                     continue;
1474                 }
1475                 break;
1476 
1477             case QCOW2_CLUSTER_ZERO:
1478                 if (!full_discard) {
1479                     continue;
1480                 }
1481                 break;
1482 
1483             case QCOW2_CLUSTER_NORMAL:
1484             case QCOW2_CLUSTER_COMPRESSED:
1485                 break;
1486 
1487             default:
1488                 abort();
1489         }
1490 
1491         /* First remove L2 entries */
1492         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1493         if (!full_discard && s->qcow_version >= 3) {
1494             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1495         } else {
1496             l2_table[l2_index + i] = cpu_to_be64(0);
1497         }
1498 
1499         /* Then decrease the refcount */
1500         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1501     }
1502 
1503     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1504 
1505     return nb_clusters;
1506 }
1507 
1508 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1509     int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1510 {
1511     BDRVQcow2State *s = bs->opaque;
1512     uint64_t end_offset;
1513     uint64_t nb_clusters;
1514     int ret;
1515 
1516     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1517 
1518     /* Round start up and end down */
1519     offset = align_offset(offset, s->cluster_size);
1520     end_offset = start_of_cluster(s, end_offset);
1521 
1522     if (offset > end_offset) {
1523         return 0;
1524     }
1525 
1526     nb_clusters = size_to_clusters(s, end_offset - offset);
1527 
1528     s->cache_discards = true;
1529 
1530     /* Each L2 table is handled by its own loop iteration */
1531     while (nb_clusters > 0) {
1532         ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1533         if (ret < 0) {
1534             goto fail;
1535         }
1536 
1537         nb_clusters -= ret;
1538         offset += (ret * s->cluster_size);
1539     }
1540 
1541     ret = 0;
1542 fail:
1543     s->cache_discards = false;
1544     qcow2_process_discards(bs, ret);
1545 
1546     return ret;
1547 }
1548 
1549 /*
1550  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1551  * all clusters in the same L2 table) and returns the number of zeroed
1552  * clusters.
1553  */
1554 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1555                           uint64_t nb_clusters)
1556 {
1557     BDRVQcow2State *s = bs->opaque;
1558     uint64_t *l2_table;
1559     int l2_index;
1560     int ret;
1561     int i;
1562 
1563     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1564     if (ret < 0) {
1565         return ret;
1566     }
1567 
1568     /* Limit nb_clusters to one L2 table */
1569     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1570     assert(nb_clusters <= INT_MAX);
1571 
1572     for (i = 0; i < nb_clusters; i++) {
1573         uint64_t old_offset;
1574 
1575         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1576 
1577         /* Update L2 entries */
1578         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1579         if (old_offset & QCOW_OFLAG_COMPRESSED) {
1580             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1581             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1582         } else {
1583             l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1584         }
1585     }
1586 
1587     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1588 
1589     return nb_clusters;
1590 }
1591 
1592 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1593 {
1594     BDRVQcow2State *s = bs->opaque;
1595     uint64_t nb_clusters;
1596     int ret;
1597 
1598     /* The zero flag is only supported by version 3 and newer */
1599     if (s->qcow_version < 3) {
1600         return -ENOTSUP;
1601     }
1602 
1603     /* Each L2 table is handled by its own loop iteration */
1604     nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1605 
1606     s->cache_discards = true;
1607 
1608     while (nb_clusters > 0) {
1609         ret = zero_single_l2(bs, offset, nb_clusters);
1610         if (ret < 0) {
1611             goto fail;
1612         }
1613 
1614         nb_clusters -= ret;
1615         offset += (ret * s->cluster_size);
1616     }
1617 
1618     ret = 0;
1619 fail:
1620     s->cache_discards = false;
1621     qcow2_process_discards(bs, ret);
1622 
1623     return ret;
1624 }
1625 
1626 /*
1627  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1628  * non-backed non-pre-allocated zero clusters).
1629  *
1630  * l1_entries and *visited_l1_entries are used to keep track of progress for
1631  * status_cb(). l1_entries contains the total number of L1 entries and
1632  * *visited_l1_entries counts all visited L1 entries.
1633  */
1634 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1635                                       int l1_size, int64_t *visited_l1_entries,
1636                                       int64_t l1_entries,
1637                                       BlockDriverAmendStatusCB *status_cb)
1638 {
1639     BDRVQcow2State *s = bs->opaque;
1640     bool is_active_l1 = (l1_table == s->l1_table);
1641     uint64_t *l2_table = NULL;
1642     int ret;
1643     int i, j;
1644 
1645     if (!is_active_l1) {
1646         /* inactive L2 tables require a buffer to be stored in when loading
1647          * them from disk */
1648         l2_table = qemu_try_blockalign(bs->file, s->cluster_size);
1649         if (l2_table == NULL) {
1650             return -ENOMEM;
1651         }
1652     }
1653 
1654     for (i = 0; i < l1_size; i++) {
1655         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1656         bool l2_dirty = false;
1657         uint64_t l2_refcount;
1658 
1659         if (!l2_offset) {
1660             /* unallocated */
1661             (*visited_l1_entries)++;
1662             if (status_cb) {
1663                 status_cb(bs, *visited_l1_entries, l1_entries);
1664             }
1665             continue;
1666         }
1667 
1668         if (offset_into_cluster(s, l2_offset)) {
1669             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1670                                     PRIx64 " unaligned (L1 index: %#x)",
1671                                     l2_offset, i);
1672             ret = -EIO;
1673             goto fail;
1674         }
1675 
1676         if (is_active_l1) {
1677             /* get active L2 tables from cache */
1678             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1679                     (void **)&l2_table);
1680         } else {
1681             /* load inactive L2 tables from disk */
1682             ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1683                     (void *)l2_table, s->cluster_sectors);
1684         }
1685         if (ret < 0) {
1686             goto fail;
1687         }
1688 
1689         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1690                                  &l2_refcount);
1691         if (ret < 0) {
1692             goto fail;
1693         }
1694 
1695         for (j = 0; j < s->l2_size; j++) {
1696             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1697             int64_t offset = l2_entry & L2E_OFFSET_MASK;
1698             int cluster_type = qcow2_get_cluster_type(l2_entry);
1699             bool preallocated = offset != 0;
1700 
1701             if (cluster_type != QCOW2_CLUSTER_ZERO) {
1702                 continue;
1703             }
1704 
1705             if (!preallocated) {
1706                 if (!bs->backing_hd) {
1707                     /* not backed; therefore we can simply deallocate the
1708                      * cluster */
1709                     l2_table[j] = 0;
1710                     l2_dirty = true;
1711                     continue;
1712                 }
1713 
1714                 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1715                 if (offset < 0) {
1716                     ret = offset;
1717                     goto fail;
1718                 }
1719 
1720                 if (l2_refcount > 1) {
1721                     /* For shared L2 tables, set the refcount accordingly (it is
1722                      * already 1 and needs to be l2_refcount) */
1723                     ret = qcow2_update_cluster_refcount(bs,
1724                             offset >> s->cluster_bits,
1725                             refcount_diff(1, l2_refcount), false,
1726                             QCOW2_DISCARD_OTHER);
1727                     if (ret < 0) {
1728                         qcow2_free_clusters(bs, offset, s->cluster_size,
1729                                             QCOW2_DISCARD_OTHER);
1730                         goto fail;
1731                     }
1732                 }
1733             }
1734 
1735             if (offset_into_cluster(s, offset)) {
1736                 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1737                                         "%#" PRIx64 " unaligned (L2 offset: %#"
1738                                         PRIx64 ", L2 index: %#x)", offset,
1739                                         l2_offset, j);
1740                 if (!preallocated) {
1741                     qcow2_free_clusters(bs, offset, s->cluster_size,
1742                                         QCOW2_DISCARD_ALWAYS);
1743                 }
1744                 ret = -EIO;
1745                 goto fail;
1746             }
1747 
1748             ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1749             if (ret < 0) {
1750                 if (!preallocated) {
1751                     qcow2_free_clusters(bs, offset, s->cluster_size,
1752                                         QCOW2_DISCARD_ALWAYS);
1753                 }
1754                 goto fail;
1755             }
1756 
1757             ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
1758                                     s->cluster_sectors, 0);
1759             if (ret < 0) {
1760                 if (!preallocated) {
1761                     qcow2_free_clusters(bs, offset, s->cluster_size,
1762                                         QCOW2_DISCARD_ALWAYS);
1763                 }
1764                 goto fail;
1765             }
1766 
1767             if (l2_refcount == 1) {
1768                 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1769             } else {
1770                 l2_table[j] = cpu_to_be64(offset);
1771             }
1772             l2_dirty = true;
1773         }
1774 
1775         if (is_active_l1) {
1776             if (l2_dirty) {
1777                 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1778                 qcow2_cache_depends_on_flush(s->l2_table_cache);
1779             }
1780             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1781         } else {
1782             if (l2_dirty) {
1783                 ret = qcow2_pre_write_overlap_check(bs,
1784                         QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1785                         s->cluster_size);
1786                 if (ret < 0) {
1787                     goto fail;
1788                 }
1789 
1790                 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1791                         (void *)l2_table, s->cluster_sectors);
1792                 if (ret < 0) {
1793                     goto fail;
1794                 }
1795             }
1796         }
1797 
1798         (*visited_l1_entries)++;
1799         if (status_cb) {
1800             status_cb(bs, *visited_l1_entries, l1_entries);
1801         }
1802     }
1803 
1804     ret = 0;
1805 
1806 fail:
1807     if (l2_table) {
1808         if (!is_active_l1) {
1809             qemu_vfree(l2_table);
1810         } else {
1811             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1812         }
1813     }
1814     return ret;
1815 }
1816 
1817 /*
1818  * For backed images, expands all zero clusters on the image. For non-backed
1819  * images, deallocates all non-pre-allocated zero clusters (and claims the
1820  * allocation for pre-allocated ones). This is important for downgrading to a
1821  * qcow2 version which doesn't yet support metadata zero clusters.
1822  */
1823 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1824                                BlockDriverAmendStatusCB *status_cb)
1825 {
1826     BDRVQcow2State *s = bs->opaque;
1827     uint64_t *l1_table = NULL;
1828     int64_t l1_entries = 0, visited_l1_entries = 0;
1829     int ret;
1830     int i, j;
1831 
1832     if (status_cb) {
1833         l1_entries = s->l1_size;
1834         for (i = 0; i < s->nb_snapshots; i++) {
1835             l1_entries += s->snapshots[i].l1_size;
1836         }
1837     }
1838 
1839     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1840                                      &visited_l1_entries, l1_entries,
1841                                      status_cb);
1842     if (ret < 0) {
1843         goto fail;
1844     }
1845 
1846     /* Inactive L1 tables may point to active L2 tables - therefore it is
1847      * necessary to flush the L2 table cache before trying to access the L2
1848      * tables pointed to by inactive L1 entries (else we might try to expand
1849      * zero clusters that have already been expanded); furthermore, it is also
1850      * necessary to empty the L2 table cache, since it may contain tables which
1851      * are now going to be modified directly on disk, bypassing the cache.
1852      * qcow2_cache_empty() does both for us. */
1853     ret = qcow2_cache_empty(bs, s->l2_table_cache);
1854     if (ret < 0) {
1855         goto fail;
1856     }
1857 
1858     for (i = 0; i < s->nb_snapshots; i++) {
1859         int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1860                 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1861 
1862         l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1863 
1864         ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1865                 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1866         if (ret < 0) {
1867             goto fail;
1868         }
1869 
1870         for (j = 0; j < s->snapshots[i].l1_size; j++) {
1871             be64_to_cpus(&l1_table[j]);
1872         }
1873 
1874         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1875                                          &visited_l1_entries, l1_entries,
1876                                          status_cb);
1877         if (ret < 0) {
1878             goto fail;
1879         }
1880     }
1881 
1882     ret = 0;
1883 
1884 fail:
1885     g_free(l1_table);
1886     return ret;
1887 }
1888