xref: /openbmc/qemu/block/qcow2-cluster.c (revision dd8d6a2d)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
34 
35 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
36 {
37     BDRVQcow2State *s = bs->opaque;
38     int new_l1_size, i, ret;
39 
40     if (exact_size >= s->l1_size) {
41         return 0;
42     }
43 
44     new_l1_size = exact_size;
45 
46 #ifdef DEBUG_ALLOC2
47     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
48 #endif
49 
50     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
51     ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
52                                        new_l1_size * sizeof(uint64_t),
53                              (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
54     if (ret < 0) {
55         goto fail;
56     }
57 
58     ret = bdrv_flush(bs->file->bs);
59     if (ret < 0) {
60         goto fail;
61     }
62 
63     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
64     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
65         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
66             continue;
67         }
68         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
69                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
70         s->l1_table[i] = 0;
71     }
72     return 0;
73 
74 fail:
75     /*
76      * If the write in the l1_table failed the image may contain a partially
77      * overwritten l1_table. In this case it would be better to clear the
78      * l1_table in memory to avoid possible image corruption.
79      */
80     memset(s->l1_table + new_l1_size, 0,
81            (s->l1_size - new_l1_size) * sizeof(uint64_t));
82     return ret;
83 }
84 
85 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
86                         bool exact_size)
87 {
88     BDRVQcow2State *s = bs->opaque;
89     int new_l1_size2, ret, i;
90     uint64_t *new_l1_table;
91     int64_t old_l1_table_offset, old_l1_size;
92     int64_t new_l1_table_offset, new_l1_size;
93     uint8_t data[12];
94 
95     if (min_size <= s->l1_size)
96         return 0;
97 
98     /* Do a sanity check on min_size before trying to calculate new_l1_size
99      * (this prevents overflows during the while loop for the calculation of
100      * new_l1_size) */
101     if (min_size > INT_MAX / sizeof(uint64_t)) {
102         return -EFBIG;
103     }
104 
105     if (exact_size) {
106         new_l1_size = min_size;
107     } else {
108         /* Bump size up to reduce the number of times we have to grow */
109         new_l1_size = s->l1_size;
110         if (new_l1_size == 0) {
111             new_l1_size = 1;
112         }
113         while (min_size > new_l1_size) {
114             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
115         }
116     }
117 
118     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
119     if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
120         return -EFBIG;
121     }
122 
123 #ifdef DEBUG_ALLOC2
124     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
125             s->l1_size, new_l1_size);
126 #endif
127 
128     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
129     new_l1_table = qemu_try_blockalign(bs->file->bs,
130                                        ROUND_UP(new_l1_size2, 512));
131     if (new_l1_table == NULL) {
132         return -ENOMEM;
133     }
134     memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
135 
136     if (s->l1_size) {
137         memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
138     }
139 
140     /* write new table (align to cluster) */
141     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
142     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
143     if (new_l1_table_offset < 0) {
144         qemu_vfree(new_l1_table);
145         return new_l1_table_offset;
146     }
147 
148     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149     if (ret < 0) {
150         goto fail;
151     }
152 
153     /* the L1 position has not yet been updated, so these clusters must
154      * indeed be completely free */
155     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156                                         new_l1_size2, false);
157     if (ret < 0) {
158         goto fail;
159     }
160 
161     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
162     for(i = 0; i < s->l1_size; i++)
163         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
164     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
165                            new_l1_table, new_l1_size2);
166     if (ret < 0)
167         goto fail;
168     for(i = 0; i < s->l1_size; i++)
169         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
170 
171     /* set new table */
172     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
173     stl_be_p(data, new_l1_size);
174     stq_be_p(data + 4, new_l1_table_offset);
175     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
176                            data, sizeof(data));
177     if (ret < 0) {
178         goto fail;
179     }
180     qemu_vfree(s->l1_table);
181     old_l1_table_offset = s->l1_table_offset;
182     s->l1_table_offset = new_l1_table_offset;
183     s->l1_table = new_l1_table;
184     old_l1_size = s->l1_size;
185     s->l1_size = new_l1_size;
186     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
187                         QCOW2_DISCARD_OTHER);
188     return 0;
189  fail:
190     qemu_vfree(new_l1_table);
191     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192                         QCOW2_DISCARD_OTHER);
193     return ret;
194 }
195 
196 /*
197  * l2_load
198  *
199  * @bs: The BlockDriverState
200  * @offset: A guest offset, used to calculate what slice of the L2
201  *          table to load.
202  * @l2_offset: Offset to the L2 table in the image file.
203  * @l2_slice: Location to store the pointer to the L2 slice.
204  *
205  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206  * that are loaded by the qcow2 cache). If the slice is in the cache,
207  * the cache is used; otherwise the L2 slice is loaded from the image
208  * file.
209  */
210 static int l2_load(BlockDriverState *bs, uint64_t offset,
211                    uint64_t l2_offset, uint64_t **l2_slice)
212 {
213     BDRVQcow2State *s = bs->opaque;
214     int start_of_slice = sizeof(uint64_t) *
215         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
216 
217     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
218                            (void **)l2_slice);
219 }
220 
221 /*
222  * Writes one sector of the L1 table to the disk (can't update single entries
223  * and we really don't want bdrv_pread to perform a read-modify-write)
224  */
225 #define L1_ENTRIES_PER_SECTOR (512 / 8)
226 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
227 {
228     BDRVQcow2State *s = bs->opaque;
229     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
230     int l1_start_index;
231     int i, ret;
232 
233     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
234     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
235          i++)
236     {
237         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
238     }
239 
240     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
241             s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false);
242     if (ret < 0) {
243         return ret;
244     }
245 
246     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
247     ret = bdrv_pwrite_sync(bs->file,
248                            s->l1_table_offset + 8 * l1_start_index,
249                            buf, sizeof(buf));
250     if (ret < 0) {
251         return ret;
252     }
253 
254     return 0;
255 }
256 
257 /*
258  * l2_allocate
259  *
260  * Allocate a new l2 entry in the file. If l1_index points to an already
261  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
262  * table) copy the contents of the old L2 table into the newly allocated one.
263  * Otherwise the new table is initialized with zeros.
264  *
265  */
266 
267 static int l2_allocate(BlockDriverState *bs, int l1_index)
268 {
269     BDRVQcow2State *s = bs->opaque;
270     uint64_t old_l2_offset;
271     uint64_t *l2_slice = NULL;
272     unsigned slice, slice_size2, n_slices;
273     int64_t l2_offset;
274     int ret;
275 
276     old_l2_offset = s->l1_table[l1_index];
277 
278     trace_qcow2_l2_allocate(bs, l1_index);
279 
280     /* allocate a new l2 entry */
281 
282     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
283     if (l2_offset < 0) {
284         ret = l2_offset;
285         goto fail;
286     }
287 
288     /* The offset must fit in the offset field of the L1 table entry */
289     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
290 
291     /* If we're allocating the table at offset 0 then something is wrong */
292     if (l2_offset == 0) {
293         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
294                                 "allocation of L2 table at offset 0");
295         ret = -EIO;
296         goto fail;
297     }
298 
299     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
300     if (ret < 0) {
301         goto fail;
302     }
303 
304     /* allocate a new entry in the l2 cache */
305 
306     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
307     n_slices = s->cluster_size / slice_size2;
308 
309     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
310     for (slice = 0; slice < n_slices; slice++) {
311         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
312                                     l2_offset + slice * slice_size2,
313                                     (void **) &l2_slice);
314         if (ret < 0) {
315             goto fail;
316         }
317 
318         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
319             /* if there was no old l2 table, clear the new slice */
320             memset(l2_slice, 0, slice_size2);
321         } else {
322             uint64_t *old_slice;
323             uint64_t old_l2_slice_offset =
324                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
325 
326             /* if there was an old l2 table, read a slice from the disk */
327             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
328             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
329                                   (void **) &old_slice);
330             if (ret < 0) {
331                 goto fail;
332             }
333 
334             memcpy(l2_slice, old_slice, slice_size2);
335 
336             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
337         }
338 
339         /* write the l2 slice to the file */
340         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
341 
342         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
343         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
344         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
345     }
346 
347     ret = qcow2_cache_flush(bs, s->l2_table_cache);
348     if (ret < 0) {
349         goto fail;
350     }
351 
352     /* update the L1 entry */
353     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
354     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
355     ret = qcow2_write_l1_entry(bs, l1_index);
356     if (ret < 0) {
357         goto fail;
358     }
359 
360     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
361     return 0;
362 
363 fail:
364     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
365     if (l2_slice != NULL) {
366         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
367     }
368     s->l1_table[l1_index] = old_l2_offset;
369     if (l2_offset > 0) {
370         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
371                             QCOW2_DISCARD_ALWAYS);
372     }
373     return ret;
374 }
375 
376 /*
377  * Checks how many clusters in a given L2 slice are contiguous in the image
378  * file. As soon as one of the flags in the bitmask stop_flags changes compared
379  * to the first cluster, the search is stopped and the cluster is not counted
380  * as contiguous. (This allows it, for example, to stop at the first compressed
381  * cluster which may require a different handling)
382  */
383 static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
384         int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
385 {
386     int i;
387     QCow2ClusterType first_cluster_type;
388     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
389     uint64_t first_entry = be64_to_cpu(l2_slice[0]);
390     uint64_t offset = first_entry & mask;
391 
392     first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
393     if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
394         return 0;
395     }
396 
397     /* must be allocated */
398     assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
399            first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
400 
401     for (i = 0; i < nb_clusters; i++) {
402         uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
403         if (offset + (uint64_t) i * cluster_size != l2_entry) {
404             break;
405         }
406     }
407 
408         return i;
409 }
410 
411 /*
412  * Checks how many consecutive unallocated clusters in a given L2
413  * slice have the same cluster type.
414  */
415 static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
416                                                  int nb_clusters,
417                                                  uint64_t *l2_slice,
418                                                  QCow2ClusterType wanted_type)
419 {
420     int i;
421 
422     assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
423            wanted_type == QCOW2_CLUSTER_UNALLOCATED);
424     for (i = 0; i < nb_clusters; i++) {
425         uint64_t entry = be64_to_cpu(l2_slice[i]);
426         QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
427 
428         if (type != wanted_type) {
429             break;
430         }
431     }
432 
433     return i;
434 }
435 
436 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
437                                             uint64_t src_cluster_offset,
438                                             unsigned offset_in_cluster,
439                                             QEMUIOVector *qiov)
440 {
441     int ret;
442 
443     if (qiov->size == 0) {
444         return 0;
445     }
446 
447     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
448 
449     if (!bs->drv) {
450         return -ENOMEDIUM;
451     }
452 
453     /* Call .bdrv_co_readv() directly instead of using the public block-layer
454      * interface.  This avoids double I/O throttling and request tracking,
455      * which can lead to deadlock when block layer copy-on-read is enabled.
456      */
457     ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
458                                   qiov->size, qiov, 0);
459     if (ret < 0) {
460         return ret;
461     }
462 
463     return 0;
464 }
465 
466 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
467                                                 uint64_t src_cluster_offset,
468                                                 uint64_t cluster_offset,
469                                                 unsigned offset_in_cluster,
470                                                 uint8_t *buffer,
471                                                 unsigned bytes)
472 {
473     if (bytes && bs->encrypted) {
474         BDRVQcow2State *s = bs->opaque;
475         int64_t offset = (s->crypt_physical_offset ?
476                           (cluster_offset + offset_in_cluster) :
477                           (src_cluster_offset + offset_in_cluster));
478         assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
479         assert((bytes & ~BDRV_SECTOR_MASK) == 0);
480         assert(s->crypto);
481         if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
482             return false;
483         }
484     }
485     return true;
486 }
487 
488 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
489                                              uint64_t cluster_offset,
490                                              unsigned offset_in_cluster,
491                                              QEMUIOVector *qiov)
492 {
493     BDRVQcow2State *s = bs->opaque;
494     int ret;
495 
496     if (qiov->size == 0) {
497         return 0;
498     }
499 
500     ret = qcow2_pre_write_overlap_check(bs, 0,
501             cluster_offset + offset_in_cluster, qiov->size, true);
502     if (ret < 0) {
503         return ret;
504     }
505 
506     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
507     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
508                           qiov->size, qiov, 0);
509     if (ret < 0) {
510         return ret;
511     }
512 
513     return 0;
514 }
515 
516 
517 /*
518  * get_cluster_offset
519  *
520  * For a given offset of the virtual disk, find the cluster type and offset in
521  * the qcow2 file. The offset is stored in *cluster_offset.
522  *
523  * On entry, *bytes is the maximum number of contiguous bytes starting at
524  * offset that we are interested in.
525  *
526  * On exit, *bytes is the number of bytes starting at offset that have the same
527  * cluster type and (if applicable) are stored contiguously in the image file.
528  * Compressed clusters are always returned one by one.
529  *
530  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
531  * cases.
532  */
533 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
534                              unsigned int *bytes, uint64_t *cluster_offset)
535 {
536     BDRVQcow2State *s = bs->opaque;
537     unsigned int l2_index;
538     uint64_t l1_index, l2_offset, *l2_slice;
539     int c;
540     unsigned int offset_in_cluster;
541     uint64_t bytes_available, bytes_needed, nb_clusters;
542     QCow2ClusterType type;
543     int ret;
544 
545     offset_in_cluster = offset_into_cluster(s, offset);
546     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
547 
548     /* compute how many bytes there are between the start of the cluster
549      * containing offset and the end of the l2 slice that contains
550      * the entry pointing to it */
551     bytes_available =
552         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
553         << s->cluster_bits;
554 
555     if (bytes_needed > bytes_available) {
556         bytes_needed = bytes_available;
557     }
558 
559     *cluster_offset = 0;
560 
561     /* seek to the l2 offset in the l1 table */
562 
563     l1_index = offset_to_l1_index(s, offset);
564     if (l1_index >= s->l1_size) {
565         type = QCOW2_CLUSTER_UNALLOCATED;
566         goto out;
567     }
568 
569     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
570     if (!l2_offset) {
571         type = QCOW2_CLUSTER_UNALLOCATED;
572         goto out;
573     }
574 
575     if (offset_into_cluster(s, l2_offset)) {
576         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
577                                 " unaligned (L1 index: %#" PRIx64 ")",
578                                 l2_offset, l1_index);
579         return -EIO;
580     }
581 
582     /* load the l2 slice in memory */
583 
584     ret = l2_load(bs, offset, l2_offset, &l2_slice);
585     if (ret < 0) {
586         return ret;
587     }
588 
589     /* find the cluster offset for the given disk offset */
590 
591     l2_index = offset_to_l2_slice_index(s, offset);
592     *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
593 
594     nb_clusters = size_to_clusters(s, bytes_needed);
595     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
596      * integers; the minimum cluster size is 512, so this assertion is always
597      * true */
598     assert(nb_clusters <= INT_MAX);
599 
600     type = qcow2_get_cluster_type(bs, *cluster_offset);
601     if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
602                                 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
603         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
604                                 " in pre-v3 image (L2 offset: %#" PRIx64
605                                 ", L2 index: %#x)", l2_offset, l2_index);
606         ret = -EIO;
607         goto fail;
608     }
609     switch (type) {
610     case QCOW2_CLUSTER_COMPRESSED:
611         if (has_data_file(bs)) {
612             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
613                                     "entry found in image with external data "
614                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
615                                     "%#x)", l2_offset, l2_index);
616             ret = -EIO;
617             goto fail;
618         }
619         /* Compressed clusters can only be processed one by one */
620         c = 1;
621         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
622         break;
623     case QCOW2_CLUSTER_ZERO_PLAIN:
624     case QCOW2_CLUSTER_UNALLOCATED:
625         /* how many empty clusters ? */
626         c = count_contiguous_clusters_unallocated(bs, nb_clusters,
627                                                   &l2_slice[l2_index], type);
628         *cluster_offset = 0;
629         break;
630     case QCOW2_CLUSTER_ZERO_ALLOC:
631     case QCOW2_CLUSTER_NORMAL:
632         /* how many allocated clusters ? */
633         c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
634                                       &l2_slice[l2_index], QCOW_OFLAG_ZERO);
635         *cluster_offset &= L2E_OFFSET_MASK;
636         if (offset_into_cluster(s, *cluster_offset)) {
637             qcow2_signal_corruption(bs, true, -1, -1,
638                                     "Cluster allocation offset %#"
639                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
640                                     ", L2 index: %#x)", *cluster_offset,
641                                     l2_offset, l2_index);
642             ret = -EIO;
643             goto fail;
644         }
645         if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster)
646         {
647             qcow2_signal_corruption(bs, true, -1, -1,
648                                     "External data file host cluster offset %#"
649                                     PRIx64 " does not match guest cluster "
650                                     "offset: %#" PRIx64
651                                     ", L2 index: %#x)", *cluster_offset,
652                                     offset - offset_in_cluster, l2_index);
653             ret = -EIO;
654             goto fail;
655         }
656         break;
657     default:
658         abort();
659     }
660 
661     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
662 
663     bytes_available = (int64_t)c * s->cluster_size;
664 
665 out:
666     if (bytes_available > bytes_needed) {
667         bytes_available = bytes_needed;
668     }
669 
670     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
671      * subtracting offset_in_cluster will therefore definitely yield something
672      * not exceeding UINT_MAX */
673     assert(bytes_available - offset_in_cluster <= UINT_MAX);
674     *bytes = bytes_available - offset_in_cluster;
675 
676     return type;
677 
678 fail:
679     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
680     return ret;
681 }
682 
683 /*
684  * get_cluster_table
685  *
686  * for a given disk offset, load (and allocate if needed)
687  * the appropriate slice of its l2 table.
688  *
689  * the cluster index in the l2 slice is given to the caller.
690  *
691  * Returns 0 on success, -errno in failure case
692  */
693 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
694                              uint64_t **new_l2_slice,
695                              int *new_l2_index)
696 {
697     BDRVQcow2State *s = bs->opaque;
698     unsigned int l2_index;
699     uint64_t l1_index, l2_offset;
700     uint64_t *l2_slice = NULL;
701     int ret;
702 
703     /* seek to the l2 offset in the l1 table */
704 
705     l1_index = offset_to_l1_index(s, offset);
706     if (l1_index >= s->l1_size) {
707         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
708         if (ret < 0) {
709             return ret;
710         }
711     }
712 
713     assert(l1_index < s->l1_size);
714     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
715     if (offset_into_cluster(s, l2_offset)) {
716         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
717                                 " unaligned (L1 index: %#" PRIx64 ")",
718                                 l2_offset, l1_index);
719         return -EIO;
720     }
721 
722     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
723         /* First allocate a new L2 table (and do COW if needed) */
724         ret = l2_allocate(bs, l1_index);
725         if (ret < 0) {
726             return ret;
727         }
728 
729         /* Then decrease the refcount of the old table */
730         if (l2_offset) {
731             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
732                                 QCOW2_DISCARD_OTHER);
733         }
734 
735         /* Get the offset of the newly-allocated l2 table */
736         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
737         assert(offset_into_cluster(s, l2_offset) == 0);
738     }
739 
740     /* load the l2 slice in memory */
741     ret = l2_load(bs, offset, l2_offset, &l2_slice);
742     if (ret < 0) {
743         return ret;
744     }
745 
746     /* find the cluster offset for the given disk offset */
747 
748     l2_index = offset_to_l2_slice_index(s, offset);
749 
750     *new_l2_slice = l2_slice;
751     *new_l2_index = l2_index;
752 
753     return 0;
754 }
755 
756 /*
757  * alloc_compressed_cluster_offset
758  *
759  * For a given offset on the virtual disk, allocate a new compressed cluster
760  * and put the host offset of the cluster into *host_offset. If a cluster is
761  * already allocated at the offset, return an error.
762  *
763  * Return 0 on success and -errno in error cases
764  */
765 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
766                                           uint64_t offset,
767                                           int compressed_size,
768                                           uint64_t *host_offset)
769 {
770     BDRVQcow2State *s = bs->opaque;
771     int l2_index, ret;
772     uint64_t *l2_slice;
773     int64_t cluster_offset;
774     int nb_csectors;
775 
776     if (has_data_file(bs)) {
777         return 0;
778     }
779 
780     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
781     if (ret < 0) {
782         return ret;
783     }
784 
785     /* Compression can't overwrite anything. Fail if the cluster was already
786      * allocated. */
787     cluster_offset = be64_to_cpu(l2_slice[l2_index]);
788     if (cluster_offset & L2E_OFFSET_MASK) {
789         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
790         return -EIO;
791     }
792 
793     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
794     if (cluster_offset < 0) {
795         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
796         return cluster_offset;
797     }
798 
799     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
800                   (cluster_offset >> 9);
801 
802     cluster_offset |= QCOW_OFLAG_COMPRESSED |
803                       ((uint64_t)nb_csectors << s->csize_shift);
804 
805     /* update L2 table */
806 
807     /* compressed clusters never have the copied flag */
808 
809     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
810     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
811     l2_slice[l2_index] = cpu_to_be64(cluster_offset);
812     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
813 
814     *host_offset = cluster_offset & s->cluster_offset_mask;
815     return 0;
816 }
817 
818 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
819 {
820     BDRVQcow2State *s = bs->opaque;
821     Qcow2COWRegion *start = &m->cow_start;
822     Qcow2COWRegion *end = &m->cow_end;
823     unsigned buffer_size;
824     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
825     bool merge_reads;
826     uint8_t *start_buffer, *end_buffer;
827     QEMUIOVector qiov;
828     int ret;
829 
830     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
831     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
832     assert(start->offset + start->nb_bytes <= end->offset);
833     assert(!m->data_qiov || m->data_qiov->size == data_bytes);
834 
835     if (start->nb_bytes == 0 && end->nb_bytes == 0) {
836         return 0;
837     }
838 
839     /* If we have to read both the start and end COW regions and the
840      * middle region is not too large then perform just one read
841      * operation */
842     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
843     if (merge_reads) {
844         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
845     } else {
846         /* If we have to do two reads, add some padding in the middle
847          * if necessary to make sure that the end region is optimally
848          * aligned. */
849         size_t align = bdrv_opt_mem_align(bs);
850         assert(align > 0 && align <= UINT_MAX);
851         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
852                UINT_MAX - end->nb_bytes);
853         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
854     }
855 
856     /* Reserve a buffer large enough to store all the data that we're
857      * going to read */
858     start_buffer = qemu_try_blockalign(bs, buffer_size);
859     if (start_buffer == NULL) {
860         return -ENOMEM;
861     }
862     /* The part of the buffer where the end region is located */
863     end_buffer = start_buffer + buffer_size - end->nb_bytes;
864 
865     qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
866 
867     qemu_co_mutex_unlock(&s->lock);
868     /* First we read the existing data from both COW regions. We
869      * either read the whole region in one go, or the start and end
870      * regions separately. */
871     if (merge_reads) {
872         qemu_iovec_add(&qiov, start_buffer, buffer_size);
873         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
874     } else {
875         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
876         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
877         if (ret < 0) {
878             goto fail;
879         }
880 
881         qemu_iovec_reset(&qiov);
882         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
883         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
884     }
885     if (ret < 0) {
886         goto fail;
887     }
888 
889     /* Encrypt the data if necessary before writing it */
890     if (bs->encrypted) {
891         if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
892                                     start->offset, start_buffer,
893                                     start->nb_bytes) ||
894             !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
895                                     end->offset, end_buffer, end->nb_bytes)) {
896             ret = -EIO;
897             goto fail;
898         }
899     }
900 
901     /* And now we can write everything. If we have the guest data we
902      * can write everything in one single operation */
903     if (m->data_qiov) {
904         qemu_iovec_reset(&qiov);
905         if (start->nb_bytes) {
906             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
907         }
908         qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
909         if (end->nb_bytes) {
910             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
911         }
912         /* NOTE: we have a write_aio blkdebug event here followed by
913          * a cow_write one in do_perform_cow_write(), but there's only
914          * one single I/O operation */
915         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
916         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
917     } else {
918         /* If there's no guest data then write both COW regions separately */
919         qemu_iovec_reset(&qiov);
920         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
921         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
922         if (ret < 0) {
923             goto fail;
924         }
925 
926         qemu_iovec_reset(&qiov);
927         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
928         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
929     }
930 
931 fail:
932     qemu_co_mutex_lock(&s->lock);
933 
934     /*
935      * Before we update the L2 table to actually point to the new cluster, we
936      * need to be sure that the refcounts have been increased and COW was
937      * handled.
938      */
939     if (ret == 0) {
940         qcow2_cache_depends_on_flush(s->l2_table_cache);
941     }
942 
943     qemu_vfree(start_buffer);
944     qemu_iovec_destroy(&qiov);
945     return ret;
946 }
947 
948 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
949 {
950     BDRVQcow2State *s = bs->opaque;
951     int i, j = 0, l2_index, ret;
952     uint64_t *old_cluster, *l2_slice;
953     uint64_t cluster_offset = m->alloc_offset;
954 
955     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
956     assert(m->nb_clusters > 0);
957 
958     old_cluster = g_try_new(uint64_t, m->nb_clusters);
959     if (old_cluster == NULL) {
960         ret = -ENOMEM;
961         goto err;
962     }
963 
964     /* copy content of unmodified sectors */
965     ret = perform_cow(bs, m);
966     if (ret < 0) {
967         goto err;
968     }
969 
970     /* Update L2 table. */
971     if (s->use_lazy_refcounts) {
972         qcow2_mark_dirty(bs);
973     }
974     if (qcow2_need_accurate_refcounts(s)) {
975         qcow2_cache_set_dependency(bs, s->l2_table_cache,
976                                    s->refcount_block_cache);
977     }
978 
979     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
980     if (ret < 0) {
981         goto err;
982     }
983     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
984 
985     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
986     for (i = 0; i < m->nb_clusters; i++) {
987         /* if two concurrent writes happen to the same unallocated cluster
988          * each write allocates separate cluster and writes data concurrently.
989          * The first one to complete updates l2 table with pointer to its
990          * cluster the second one has to do RMW (which is done above by
991          * perform_cow()), update l2 table with its cluster pointer and free
992          * old cluster. This is what this loop does */
993         if (l2_slice[l2_index + i] != 0) {
994             old_cluster[j++] = l2_slice[l2_index + i];
995         }
996 
997         l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
998                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
999      }
1000 
1001 
1002     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1003 
1004     /*
1005      * If this was a COW, we need to decrease the refcount of the old cluster.
1006      *
1007      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1008      * clusters), the next write will reuse them anyway.
1009      */
1010     if (!m->keep_old_clusters && j != 0) {
1011         for (i = 0; i < j; i++) {
1012             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1013                                     QCOW2_DISCARD_NEVER);
1014         }
1015     }
1016 
1017     ret = 0;
1018 err:
1019     g_free(old_cluster);
1020     return ret;
1021  }
1022 
1023 /**
1024  * Frees the allocated clusters because the request failed and they won't
1025  * actually be linked.
1026  */
1027 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1028 {
1029     BDRVQcow2State *s = bs->opaque;
1030     qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits,
1031                         QCOW2_DISCARD_NEVER);
1032 }
1033 
1034 /*
1035  * Returns the number of contiguous clusters that can be used for an allocating
1036  * write, but require COW to be performed (this includes yet unallocated space,
1037  * which must copy from the backing file)
1038  */
1039 static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
1040     uint64_t *l2_slice, int l2_index)
1041 {
1042     int i;
1043 
1044     for (i = 0; i < nb_clusters; i++) {
1045         uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1046         QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1047 
1048         switch(cluster_type) {
1049         case QCOW2_CLUSTER_NORMAL:
1050             if (l2_entry & QCOW_OFLAG_COPIED) {
1051                 goto out;
1052             }
1053             break;
1054         case QCOW2_CLUSTER_UNALLOCATED:
1055         case QCOW2_CLUSTER_COMPRESSED:
1056         case QCOW2_CLUSTER_ZERO_PLAIN:
1057         case QCOW2_CLUSTER_ZERO_ALLOC:
1058             break;
1059         default:
1060             abort();
1061         }
1062     }
1063 
1064 out:
1065     assert(i <= nb_clusters);
1066     return i;
1067 }
1068 
1069 /*
1070  * Check if there already is an AIO write request in flight which allocates
1071  * the same cluster. In this case we need to wait until the previous
1072  * request has completed and updated the L2 table accordingly.
1073  *
1074  * Returns:
1075  *   0       if there was no dependency. *cur_bytes indicates the number of
1076  *           bytes from guest_offset that can be read before the next
1077  *           dependency must be processed (or the request is complete)
1078  *
1079  *   -EAGAIN if we had to wait for another request, previously gathered
1080  *           information on cluster allocation may be invalid now. The caller
1081  *           must start over anyway, so consider *cur_bytes undefined.
1082  */
1083 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1084     uint64_t *cur_bytes, QCowL2Meta **m)
1085 {
1086     BDRVQcow2State *s = bs->opaque;
1087     QCowL2Meta *old_alloc;
1088     uint64_t bytes = *cur_bytes;
1089 
1090     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1091 
1092         uint64_t start = guest_offset;
1093         uint64_t end = start + bytes;
1094         uint64_t old_start = l2meta_cow_start(old_alloc);
1095         uint64_t old_end = l2meta_cow_end(old_alloc);
1096 
1097         if (end <= old_start || start >= old_end) {
1098             /* No intersection */
1099         } else {
1100             if (start < old_start) {
1101                 /* Stop at the start of a running allocation */
1102                 bytes = old_start - start;
1103             } else {
1104                 bytes = 0;
1105             }
1106 
1107             /* Stop if already an l2meta exists. After yielding, it wouldn't
1108              * be valid any more, so we'd have to clean up the old L2Metas
1109              * and deal with requests depending on them before starting to
1110              * gather new ones. Not worth the trouble. */
1111             if (bytes == 0 && *m) {
1112                 *cur_bytes = 0;
1113                 return 0;
1114             }
1115 
1116             if (bytes == 0) {
1117                 /* Wait for the dependency to complete. We need to recheck
1118                  * the free/allocated clusters when we continue. */
1119                 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1120                 return -EAGAIN;
1121             }
1122         }
1123     }
1124 
1125     /* Make sure that existing clusters and new allocations are only used up to
1126      * the next dependency if we shortened the request above */
1127     *cur_bytes = bytes;
1128 
1129     return 0;
1130 }
1131 
1132 /*
1133  * Checks how many already allocated clusters that don't require a copy on
1134  * write there are at the given guest_offset (up to *bytes). If *host_offset is
1135  * not INV_OFFSET, only physically contiguous clusters beginning at this host
1136  * offset are counted.
1137  *
1138  * Note that guest_offset may not be cluster aligned. In this case, the
1139  * returned *host_offset points to exact byte referenced by guest_offset and
1140  * therefore isn't cluster aligned as well.
1141  *
1142  * Returns:
1143  *   0:     if no allocated clusters are available at the given offset.
1144  *          *bytes is normally unchanged. It is set to 0 if the cluster
1145  *          is allocated and doesn't need COW, but doesn't have the right
1146  *          physical offset.
1147  *
1148  *   1:     if allocated clusters that don't require a COW are available at
1149  *          the requested offset. *bytes may have decreased and describes
1150  *          the length of the area that can be written to.
1151  *
1152  *  -errno: in error cases
1153  */
1154 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1155     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1156 {
1157     BDRVQcow2State *s = bs->opaque;
1158     int l2_index;
1159     uint64_t cluster_offset;
1160     uint64_t *l2_slice;
1161     uint64_t nb_clusters;
1162     unsigned int keep_clusters;
1163     int ret;
1164 
1165     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1166                               *bytes);
1167 
1168     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1169                                       == offset_into_cluster(s, *host_offset));
1170 
1171     /*
1172      * Calculate the number of clusters to look for. We stop at L2 slice
1173      * boundaries to keep things simple.
1174      */
1175     nb_clusters =
1176         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1177 
1178     l2_index = offset_to_l2_slice_index(s, guest_offset);
1179     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1180     assert(nb_clusters <= INT_MAX);
1181 
1182     /* Find L2 entry for the first involved cluster */
1183     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1184     if (ret < 0) {
1185         return ret;
1186     }
1187 
1188     cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1189 
1190     /* Check how many clusters are already allocated and don't need COW */
1191     if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
1192         && (cluster_offset & QCOW_OFLAG_COPIED))
1193     {
1194         /* If a specific host_offset is required, check it */
1195         bool offset_matches =
1196             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1197 
1198         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1199             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1200                                     "%#llx unaligned (guest offset: %#" PRIx64
1201                                     ")", cluster_offset & L2E_OFFSET_MASK,
1202                                     guest_offset);
1203             ret = -EIO;
1204             goto out;
1205         }
1206 
1207         if (*host_offset != INV_OFFSET && !offset_matches) {
1208             *bytes = 0;
1209             ret = 0;
1210             goto out;
1211         }
1212 
1213         /* We keep all QCOW_OFLAG_COPIED clusters */
1214         keep_clusters =
1215             count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1216                                       &l2_slice[l2_index],
1217                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1218         assert(keep_clusters <= nb_clusters);
1219 
1220         *bytes = MIN(*bytes,
1221                  keep_clusters * s->cluster_size
1222                  - offset_into_cluster(s, guest_offset));
1223 
1224         ret = 1;
1225     } else {
1226         ret = 0;
1227     }
1228 
1229     /* Cleanup */
1230 out:
1231     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1232 
1233     /* Only return a host offset if we actually made progress. Otherwise we
1234      * would make requirements for handle_alloc() that it can't fulfill */
1235     if (ret > 0) {
1236         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1237                      + offset_into_cluster(s, guest_offset);
1238     }
1239 
1240     return ret;
1241 }
1242 
1243 /*
1244  * Allocates new clusters for the given guest_offset.
1245  *
1246  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1247  * contain the number of clusters that have been allocated and are contiguous
1248  * in the image file.
1249  *
1250  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1251  * at which the new clusters must start. *nb_clusters can be 0 on return in
1252  * this case if the cluster at host_offset is already in use. If *host_offset
1253  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1254  *
1255  * *host_offset is updated to contain the offset into the image file at which
1256  * the first allocated cluster starts.
1257  *
1258  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1259  * function has been waiting for another request and the allocation must be
1260  * restarted, but the whole request should not be failed.
1261  */
1262 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1263                                    uint64_t *host_offset, uint64_t *nb_clusters)
1264 {
1265     BDRVQcow2State *s = bs->opaque;
1266 
1267     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1268                                          *host_offset, *nb_clusters);
1269 
1270     if (has_data_file(bs)) {
1271         assert(*host_offset == INV_OFFSET ||
1272                *host_offset == start_of_cluster(s, guest_offset));
1273         *host_offset = start_of_cluster(s, guest_offset);
1274         return 0;
1275     }
1276 
1277     /* Allocate new clusters */
1278     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1279     if (*host_offset == INV_OFFSET) {
1280         int64_t cluster_offset =
1281             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1282         if (cluster_offset < 0) {
1283             return cluster_offset;
1284         }
1285         *host_offset = cluster_offset;
1286         return 0;
1287     } else {
1288         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1289         if (ret < 0) {
1290             return ret;
1291         }
1292         *nb_clusters = ret;
1293         return 0;
1294     }
1295 }
1296 
1297 /*
1298  * Allocates new clusters for an area that either is yet unallocated or needs a
1299  * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1300  * allocated if the new allocation can match the specified host offset.
1301  *
1302  * Note that guest_offset may not be cluster aligned. In this case, the
1303  * returned *host_offset points to exact byte referenced by guest_offset and
1304  * therefore isn't cluster aligned as well.
1305  *
1306  * Returns:
1307  *   0:     if no clusters could be allocated. *bytes is set to 0,
1308  *          *host_offset is left unchanged.
1309  *
1310  *   1:     if new clusters were allocated. *bytes may be decreased if the
1311  *          new allocation doesn't cover all of the requested area.
1312  *          *host_offset is updated to contain the host offset of the first
1313  *          newly allocated cluster.
1314  *
1315  *  -errno: in error cases
1316  */
1317 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1318     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1319 {
1320     BDRVQcow2State *s = bs->opaque;
1321     int l2_index;
1322     uint64_t *l2_slice;
1323     uint64_t entry;
1324     uint64_t nb_clusters;
1325     int ret;
1326     bool keep_old_clusters = false;
1327 
1328     uint64_t alloc_cluster_offset = INV_OFFSET;
1329 
1330     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1331                              *bytes);
1332     assert(*bytes > 0);
1333 
1334     /*
1335      * Calculate the number of clusters to look for. We stop at L2 slice
1336      * boundaries to keep things simple.
1337      */
1338     nb_clusters =
1339         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1340 
1341     l2_index = offset_to_l2_slice_index(s, guest_offset);
1342     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1343     assert(nb_clusters <= INT_MAX);
1344 
1345     /* Find L2 entry for the first involved cluster */
1346     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1347     if (ret < 0) {
1348         return ret;
1349     }
1350 
1351     entry = be64_to_cpu(l2_slice[l2_index]);
1352 
1353     /* For the moment, overwrite compressed clusters one by one */
1354     if (entry & QCOW_OFLAG_COMPRESSED) {
1355         nb_clusters = 1;
1356     } else {
1357         nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
1358     }
1359 
1360     /* This function is only called when there were no non-COW clusters, so if
1361      * we can't find any unallocated or COW clusters either, something is
1362      * wrong with our code. */
1363     assert(nb_clusters > 0);
1364 
1365     if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1366         (entry & QCOW_OFLAG_COPIED) &&
1367         (*host_offset == INV_OFFSET ||
1368          start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1369     {
1370         int preallocated_nb_clusters;
1371 
1372         if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1373             qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1374                                     "cluster offset %#llx unaligned (guest "
1375                                     "offset: %#" PRIx64 ")",
1376                                     entry & L2E_OFFSET_MASK, guest_offset);
1377             ret = -EIO;
1378             goto fail;
1379         }
1380 
1381         /* Try to reuse preallocated zero clusters; contiguous normal clusters
1382          * would be fine, too, but count_cow_clusters() above has limited
1383          * nb_clusters already to a range of COW clusters */
1384         preallocated_nb_clusters =
1385             count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1386                                       &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1387         assert(preallocated_nb_clusters > 0);
1388 
1389         nb_clusters = preallocated_nb_clusters;
1390         alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1391 
1392         /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1393          * should not free them. */
1394         keep_old_clusters = true;
1395     }
1396 
1397     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1398 
1399     if (alloc_cluster_offset == INV_OFFSET) {
1400         /* Allocate, if necessary at a given offset in the image file */
1401         alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1402                                start_of_cluster(s, *host_offset);
1403         ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1404                                       &nb_clusters);
1405         if (ret < 0) {
1406             goto fail;
1407         }
1408 
1409         /* Can't extend contiguous allocation */
1410         if (nb_clusters == 0) {
1411             *bytes = 0;
1412             return 0;
1413         }
1414 
1415         assert(alloc_cluster_offset != INV_OFFSET);
1416     }
1417 
1418     /*
1419      * Save info needed for meta data update.
1420      *
1421      * requested_bytes: Number of bytes from the start of the first
1422      * newly allocated cluster to the end of the (possibly shortened
1423      * before) write request.
1424      *
1425      * avail_bytes: Number of bytes from the start of the first
1426      * newly allocated to the end of the last newly allocated cluster.
1427      *
1428      * nb_bytes: The number of bytes from the start of the first
1429      * newly allocated cluster to the end of the area that the write
1430      * request actually writes to (excluding COW at the end)
1431      */
1432     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1433     int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1434     int nb_bytes = MIN(requested_bytes, avail_bytes);
1435     QCowL2Meta *old_m = *m;
1436 
1437     *m = g_malloc0(sizeof(**m));
1438 
1439     **m = (QCowL2Meta) {
1440         .next           = old_m,
1441 
1442         .alloc_offset   = alloc_cluster_offset,
1443         .offset         = start_of_cluster(s, guest_offset),
1444         .nb_clusters    = nb_clusters,
1445 
1446         .keep_old_clusters  = keep_old_clusters,
1447 
1448         .cow_start = {
1449             .offset     = 0,
1450             .nb_bytes   = offset_into_cluster(s, guest_offset),
1451         },
1452         .cow_end = {
1453             .offset     = nb_bytes,
1454             .nb_bytes   = avail_bytes - nb_bytes,
1455         },
1456     };
1457     qemu_co_queue_init(&(*m)->dependent_requests);
1458     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1459 
1460     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1461     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1462     assert(*bytes != 0);
1463 
1464     return 1;
1465 
1466 fail:
1467     if (*m && (*m)->nb_clusters > 0) {
1468         QLIST_REMOVE(*m, next_in_flight);
1469     }
1470     return ret;
1471 }
1472 
1473 /*
1474  * alloc_cluster_offset
1475  *
1476  * For a given offset on the virtual disk, find the cluster offset in qcow2
1477  * file. If the offset is not found, allocate a new cluster.
1478  *
1479  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1480  * other fields in m are meaningless.
1481  *
1482  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1483  * contiguous clusters that have been allocated. In this case, the other
1484  * fields of m are valid and contain information about the first allocated
1485  * cluster.
1486  *
1487  * If the request conflicts with another write request in flight, the coroutine
1488  * is queued and will be reentered when the dependency has completed.
1489  *
1490  * Return 0 on success and -errno in error cases
1491  */
1492 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1493                                unsigned int *bytes, uint64_t *host_offset,
1494                                QCowL2Meta **m)
1495 {
1496     BDRVQcow2State *s = bs->opaque;
1497     uint64_t start, remaining;
1498     uint64_t cluster_offset;
1499     uint64_t cur_bytes;
1500     int ret;
1501 
1502     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1503 
1504 again:
1505     start = offset;
1506     remaining = *bytes;
1507     cluster_offset = INV_OFFSET;
1508     *host_offset = INV_OFFSET;
1509     cur_bytes = 0;
1510     *m = NULL;
1511 
1512     while (true) {
1513 
1514         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1515             *host_offset = start_of_cluster(s, cluster_offset);
1516         }
1517 
1518         assert(remaining >= cur_bytes);
1519 
1520         start           += cur_bytes;
1521         remaining       -= cur_bytes;
1522 
1523         if (cluster_offset != INV_OFFSET) {
1524             cluster_offset += cur_bytes;
1525         }
1526 
1527         if (remaining == 0) {
1528             break;
1529         }
1530 
1531         cur_bytes = remaining;
1532 
1533         /*
1534          * Now start gathering as many contiguous clusters as possible:
1535          *
1536          * 1. Check for overlaps with in-flight allocations
1537          *
1538          *      a) Overlap not in the first cluster -> shorten this request and
1539          *         let the caller handle the rest in its next loop iteration.
1540          *
1541          *      b) Real overlaps of two requests. Yield and restart the search
1542          *         for contiguous clusters (the situation could have changed
1543          *         while we were sleeping)
1544          *
1545          *      c) TODO: Request starts in the same cluster as the in-flight
1546          *         allocation ends. Shorten the COW of the in-fight allocation,
1547          *         set cluster_offset to write to the same cluster and set up
1548          *         the right synchronisation between the in-flight request and
1549          *         the new one.
1550          */
1551         ret = handle_dependencies(bs, start, &cur_bytes, m);
1552         if (ret == -EAGAIN) {
1553             /* Currently handle_dependencies() doesn't yield if we already had
1554              * an allocation. If it did, we would have to clean up the L2Meta
1555              * structs before starting over. */
1556             assert(*m == NULL);
1557             goto again;
1558         } else if (ret < 0) {
1559             return ret;
1560         } else if (cur_bytes == 0) {
1561             break;
1562         } else {
1563             /* handle_dependencies() may have decreased cur_bytes (shortened
1564              * the allocations below) so that the next dependency is processed
1565              * correctly during the next loop iteration. */
1566         }
1567 
1568         /*
1569          * 2. Count contiguous COPIED clusters.
1570          */
1571         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1572         if (ret < 0) {
1573             return ret;
1574         } else if (ret) {
1575             continue;
1576         } else if (cur_bytes == 0) {
1577             break;
1578         }
1579 
1580         /*
1581          * 3. If the request still hasn't completed, allocate new clusters,
1582          *    considering any cluster_offset of steps 1c or 2.
1583          */
1584         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1585         if (ret < 0) {
1586             return ret;
1587         } else if (ret) {
1588             continue;
1589         } else {
1590             assert(cur_bytes == 0);
1591             break;
1592         }
1593     }
1594 
1595     *bytes -= remaining;
1596     assert(*bytes > 0);
1597     assert(*host_offset != INV_OFFSET);
1598 
1599     return 0;
1600 }
1601 
1602 /*
1603  * This discards as many clusters of nb_clusters as possible at once (i.e.
1604  * all clusters in the same L2 slice) and returns the number of discarded
1605  * clusters.
1606  */
1607 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1608                                uint64_t nb_clusters,
1609                                enum qcow2_discard_type type, bool full_discard)
1610 {
1611     BDRVQcow2State *s = bs->opaque;
1612     uint64_t *l2_slice;
1613     int l2_index;
1614     int ret;
1615     int i;
1616 
1617     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1618     if (ret < 0) {
1619         return ret;
1620     }
1621 
1622     /* Limit nb_clusters to one L2 slice */
1623     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1624     assert(nb_clusters <= INT_MAX);
1625 
1626     for (i = 0; i < nb_clusters; i++) {
1627         uint64_t old_l2_entry;
1628 
1629         old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1630 
1631         /*
1632          * If full_discard is false, make sure that a discarded area reads back
1633          * as zeroes for v3 images (we cannot do it for v2 without actually
1634          * writing a zero-filled buffer). We can skip the operation if the
1635          * cluster is already marked as zero, or if it's unallocated and we
1636          * don't have a backing file.
1637          *
1638          * TODO We might want to use bdrv_block_status(bs) here, but we're
1639          * holding s->lock, so that doesn't work today.
1640          *
1641          * If full_discard is true, the sector should not read back as zeroes,
1642          * but rather fall through to the backing file.
1643          */
1644         switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
1645         case QCOW2_CLUSTER_UNALLOCATED:
1646             if (full_discard || !bs->backing) {
1647                 continue;
1648             }
1649             break;
1650 
1651         case QCOW2_CLUSTER_ZERO_PLAIN:
1652             if (!full_discard) {
1653                 continue;
1654             }
1655             break;
1656 
1657         case QCOW2_CLUSTER_ZERO_ALLOC:
1658         case QCOW2_CLUSTER_NORMAL:
1659         case QCOW2_CLUSTER_COMPRESSED:
1660             break;
1661 
1662         default:
1663             abort();
1664         }
1665 
1666         /* First remove L2 entries */
1667         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1668         if (!full_discard && s->qcow_version >= 3) {
1669             l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1670         } else {
1671             l2_slice[l2_index + i] = cpu_to_be64(0);
1672         }
1673 
1674         /* Then decrease the refcount */
1675         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1676     }
1677 
1678     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1679 
1680     return nb_clusters;
1681 }
1682 
1683 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1684                           uint64_t bytes, enum qcow2_discard_type type,
1685                           bool full_discard)
1686 {
1687     BDRVQcow2State *s = bs->opaque;
1688     uint64_t end_offset = offset + bytes;
1689     uint64_t nb_clusters;
1690     int64_t cleared;
1691     int ret;
1692 
1693     /* Caller must pass aligned values, except at image end */
1694     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1695     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1696            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1697 
1698     nb_clusters = size_to_clusters(s, bytes);
1699 
1700     s->cache_discards = true;
1701 
1702     /* Each L2 slice is handled by its own loop iteration */
1703     while (nb_clusters > 0) {
1704         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1705                                       full_discard);
1706         if (cleared < 0) {
1707             ret = cleared;
1708             goto fail;
1709         }
1710 
1711         nb_clusters -= cleared;
1712         offset += (cleared * s->cluster_size);
1713     }
1714 
1715     ret = 0;
1716 fail:
1717     s->cache_discards = false;
1718     qcow2_process_discards(bs, ret);
1719 
1720     return ret;
1721 }
1722 
1723 /*
1724  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1725  * all clusters in the same L2 slice) and returns the number of zeroed
1726  * clusters.
1727  */
1728 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1729                             uint64_t nb_clusters, int flags)
1730 {
1731     BDRVQcow2State *s = bs->opaque;
1732     uint64_t *l2_slice;
1733     int l2_index;
1734     int ret;
1735     int i;
1736     bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1737 
1738     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1739     if (ret < 0) {
1740         return ret;
1741     }
1742 
1743     /* Limit nb_clusters to one L2 slice */
1744     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1745     assert(nb_clusters <= INT_MAX);
1746 
1747     for (i = 0; i < nb_clusters; i++) {
1748         uint64_t old_offset;
1749         QCow2ClusterType cluster_type;
1750 
1751         old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1752 
1753         /*
1754          * Minimize L2 changes if the cluster already reads back as
1755          * zeroes with correct allocation.
1756          */
1757         cluster_type = qcow2_get_cluster_type(bs, old_offset);
1758         if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1759             (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1760             continue;
1761         }
1762 
1763         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1764         if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1765             l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1766             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1767         } else {
1768             l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1769         }
1770     }
1771 
1772     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1773 
1774     return nb_clusters;
1775 }
1776 
1777 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1778                           uint64_t bytes, int flags)
1779 {
1780     BDRVQcow2State *s = bs->opaque;
1781     uint64_t end_offset = offset + bytes;
1782     uint64_t nb_clusters;
1783     int64_t cleared;
1784     int ret;
1785 
1786     /* If we have to stay in sync with an external data file, zero out
1787      * s->data_file first. */
1788     if (data_file_is_raw(bs)) {
1789         assert(has_data_file(bs));
1790         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1791         if (ret < 0) {
1792             return ret;
1793         }
1794     }
1795 
1796     /* Caller must pass aligned values, except at image end */
1797     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1798     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1799            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1800 
1801     /* The zero flag is only supported by version 3 and newer */
1802     if (s->qcow_version < 3) {
1803         return -ENOTSUP;
1804     }
1805 
1806     /* Each L2 slice is handled by its own loop iteration */
1807     nb_clusters = size_to_clusters(s, bytes);
1808 
1809     s->cache_discards = true;
1810 
1811     while (nb_clusters > 0) {
1812         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1813         if (cleared < 0) {
1814             ret = cleared;
1815             goto fail;
1816         }
1817 
1818         nb_clusters -= cleared;
1819         offset += (cleared * s->cluster_size);
1820     }
1821 
1822     ret = 0;
1823 fail:
1824     s->cache_discards = false;
1825     qcow2_process_discards(bs, ret);
1826 
1827     return ret;
1828 }
1829 
1830 /*
1831  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1832  * non-backed non-pre-allocated zero clusters).
1833  *
1834  * l1_entries and *visited_l1_entries are used to keep track of progress for
1835  * status_cb(). l1_entries contains the total number of L1 entries and
1836  * *visited_l1_entries counts all visited L1 entries.
1837  */
1838 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1839                                       int l1_size, int64_t *visited_l1_entries,
1840                                       int64_t l1_entries,
1841                                       BlockDriverAmendStatusCB *status_cb,
1842                                       void *cb_opaque)
1843 {
1844     BDRVQcow2State *s = bs->opaque;
1845     bool is_active_l1 = (l1_table == s->l1_table);
1846     uint64_t *l2_slice = NULL;
1847     unsigned slice, slice_size2, n_slices;
1848     int ret;
1849     int i, j;
1850 
1851     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1852     n_slices = s->cluster_size / slice_size2;
1853 
1854     if (!is_active_l1) {
1855         /* inactive L2 tables require a buffer to be stored in when loading
1856          * them from disk */
1857         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1858         if (l2_slice == NULL) {
1859             return -ENOMEM;
1860         }
1861     }
1862 
1863     for (i = 0; i < l1_size; i++) {
1864         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1865         uint64_t l2_refcount;
1866 
1867         if (!l2_offset) {
1868             /* unallocated */
1869             (*visited_l1_entries)++;
1870             if (status_cb) {
1871                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1872             }
1873             continue;
1874         }
1875 
1876         if (offset_into_cluster(s, l2_offset)) {
1877             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1878                                     PRIx64 " unaligned (L1 index: %#x)",
1879                                     l2_offset, i);
1880             ret = -EIO;
1881             goto fail;
1882         }
1883 
1884         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1885                                  &l2_refcount);
1886         if (ret < 0) {
1887             goto fail;
1888         }
1889 
1890         for (slice = 0; slice < n_slices; slice++) {
1891             uint64_t slice_offset = l2_offset + slice * slice_size2;
1892             bool l2_dirty = false;
1893             if (is_active_l1) {
1894                 /* get active L2 tables from cache */
1895                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1896                                       (void **)&l2_slice);
1897             } else {
1898                 /* load inactive L2 tables from disk */
1899                 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1900             }
1901             if (ret < 0) {
1902                 goto fail;
1903             }
1904 
1905             for (j = 0; j < s->l2_slice_size; j++) {
1906                 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1907                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1908                 QCow2ClusterType cluster_type =
1909                     qcow2_get_cluster_type(bs, l2_entry);
1910 
1911                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1912                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1913                     continue;
1914                 }
1915 
1916                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1917                     if (!bs->backing) {
1918                         /* not backed; therefore we can simply deallocate the
1919                          * cluster */
1920                         l2_slice[j] = 0;
1921                         l2_dirty = true;
1922                         continue;
1923                     }
1924 
1925                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
1926                     if (offset < 0) {
1927                         ret = offset;
1928                         goto fail;
1929                     }
1930 
1931                     if (l2_refcount > 1) {
1932                         /* For shared L2 tables, set the refcount accordingly
1933                          * (it is already 1 and needs to be l2_refcount) */
1934                         ret = qcow2_update_cluster_refcount(
1935                             bs, offset >> s->cluster_bits,
1936                             refcount_diff(1, l2_refcount), false,
1937                             QCOW2_DISCARD_OTHER);
1938                         if (ret < 0) {
1939                             qcow2_free_clusters(bs, offset, s->cluster_size,
1940                                                 QCOW2_DISCARD_OTHER);
1941                             goto fail;
1942                         }
1943                     }
1944                 }
1945 
1946                 if (offset_into_cluster(s, offset)) {
1947                     int l2_index = slice * s->l2_slice_size + j;
1948                     qcow2_signal_corruption(
1949                         bs, true, -1, -1,
1950                         "Cluster allocation offset "
1951                         "%#" PRIx64 " unaligned (L2 offset: %#"
1952                         PRIx64 ", L2 index: %#x)", offset,
1953                         l2_offset, l2_index);
1954                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1955                         qcow2_free_clusters(bs, offset, s->cluster_size,
1956                                             QCOW2_DISCARD_ALWAYS);
1957                     }
1958                     ret = -EIO;
1959                     goto fail;
1960                 }
1961 
1962                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1963                                                     s->cluster_size, true);
1964                 if (ret < 0) {
1965                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1966                         qcow2_free_clusters(bs, offset, s->cluster_size,
1967                                             QCOW2_DISCARD_ALWAYS);
1968                     }
1969                     goto fail;
1970                 }
1971 
1972                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
1973                                          s->cluster_size, 0);
1974                 if (ret < 0) {
1975                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1976                         qcow2_free_clusters(bs, offset, s->cluster_size,
1977                                             QCOW2_DISCARD_ALWAYS);
1978                     }
1979                     goto fail;
1980                 }
1981 
1982                 if (l2_refcount == 1) {
1983                     l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1984                 } else {
1985                     l2_slice[j] = cpu_to_be64(offset);
1986                 }
1987                 l2_dirty = true;
1988             }
1989 
1990             if (is_active_l1) {
1991                 if (l2_dirty) {
1992                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1993                     qcow2_cache_depends_on_flush(s->l2_table_cache);
1994                 }
1995                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1996             } else {
1997                 if (l2_dirty) {
1998                     ret = qcow2_pre_write_overlap_check(
1999                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2000                         slice_offset, slice_size2, false);
2001                     if (ret < 0) {
2002                         goto fail;
2003                     }
2004 
2005                     ret = bdrv_pwrite(bs->file, slice_offset,
2006                                       l2_slice, slice_size2);
2007                     if (ret < 0) {
2008                         goto fail;
2009                     }
2010                 }
2011             }
2012         }
2013 
2014         (*visited_l1_entries)++;
2015         if (status_cb) {
2016             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2017         }
2018     }
2019 
2020     ret = 0;
2021 
2022 fail:
2023     if (l2_slice) {
2024         if (!is_active_l1) {
2025             qemu_vfree(l2_slice);
2026         } else {
2027             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2028         }
2029     }
2030     return ret;
2031 }
2032 
2033 /*
2034  * For backed images, expands all zero clusters on the image. For non-backed
2035  * images, deallocates all non-pre-allocated zero clusters (and claims the
2036  * allocation for pre-allocated ones). This is important for downgrading to a
2037  * qcow2 version which doesn't yet support metadata zero clusters.
2038  */
2039 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2040                                BlockDriverAmendStatusCB *status_cb,
2041                                void *cb_opaque)
2042 {
2043     BDRVQcow2State *s = bs->opaque;
2044     uint64_t *l1_table = NULL;
2045     int64_t l1_entries = 0, visited_l1_entries = 0;
2046     int ret;
2047     int i, j;
2048 
2049     if (status_cb) {
2050         l1_entries = s->l1_size;
2051         for (i = 0; i < s->nb_snapshots; i++) {
2052             l1_entries += s->snapshots[i].l1_size;
2053         }
2054     }
2055 
2056     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2057                                      &visited_l1_entries, l1_entries,
2058                                      status_cb, cb_opaque);
2059     if (ret < 0) {
2060         goto fail;
2061     }
2062 
2063     /* Inactive L1 tables may point to active L2 tables - therefore it is
2064      * necessary to flush the L2 table cache before trying to access the L2
2065      * tables pointed to by inactive L1 entries (else we might try to expand
2066      * zero clusters that have already been expanded); furthermore, it is also
2067      * necessary to empty the L2 table cache, since it may contain tables which
2068      * are now going to be modified directly on disk, bypassing the cache.
2069      * qcow2_cache_empty() does both for us. */
2070     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2071     if (ret < 0) {
2072         goto fail;
2073     }
2074 
2075     for (i = 0; i < s->nb_snapshots; i++) {
2076         int l1_size2;
2077         uint64_t *new_l1_table;
2078         Error *local_err = NULL;
2079 
2080         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2081                                    s->snapshots[i].l1_size, sizeof(uint64_t),
2082                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2083                                    &local_err);
2084         if (ret < 0) {
2085             error_report_err(local_err);
2086             goto fail;
2087         }
2088 
2089         l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2090         new_l1_table = g_try_realloc(l1_table, l1_size2);
2091 
2092         if (!new_l1_table) {
2093             ret = -ENOMEM;
2094             goto fail;
2095         }
2096 
2097         l1_table = new_l1_table;
2098 
2099         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2100                          l1_table, l1_size2);
2101         if (ret < 0) {
2102             goto fail;
2103         }
2104 
2105         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2106             be64_to_cpus(&l1_table[j]);
2107         }
2108 
2109         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2110                                          &visited_l1_entries, l1_entries,
2111                                          status_cb, cb_opaque);
2112         if (ret < 0) {
2113             goto fail;
2114         }
2115     }
2116 
2117     ret = 0;
2118 
2119 fail:
2120     g_free(l1_table);
2121     return ret;
2122 }
2123