xref: /openbmc/qemu/block/qcow2-cluster.c (revision dc5bd18f)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qemu-common.h"
29 #include "block/block_int.h"
30 #include "block/qcow2.h"
31 #include "qemu/bswap.h"
32 #include "trace.h"
33 
34 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
35 {
36     BDRVQcow2State *s = bs->opaque;
37     int new_l1_size, i, ret;
38 
39     if (exact_size >= s->l1_size) {
40         return 0;
41     }
42 
43     new_l1_size = exact_size;
44 
45 #ifdef DEBUG_ALLOC2
46     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
47 #endif
48 
49     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
50     ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
51                                        new_l1_size * sizeof(uint64_t),
52                              (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
53     if (ret < 0) {
54         goto fail;
55     }
56 
57     ret = bdrv_flush(bs->file->bs);
58     if (ret < 0) {
59         goto fail;
60     }
61 
62     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
63     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
64         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
65             continue;
66         }
67         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
68                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
69         s->l1_table[i] = 0;
70     }
71     return 0;
72 
73 fail:
74     /*
75      * If the write in the l1_table failed the image may contain a partially
76      * overwritten l1_table. In this case it would be better to clear the
77      * l1_table in memory to avoid possible image corruption.
78      */
79     memset(s->l1_table + new_l1_size, 0,
80            (s->l1_size - new_l1_size) * sizeof(uint64_t));
81     return ret;
82 }
83 
84 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
85                         bool exact_size)
86 {
87     BDRVQcow2State *s = bs->opaque;
88     int new_l1_size2, ret, i;
89     uint64_t *new_l1_table;
90     int64_t old_l1_table_offset, old_l1_size;
91     int64_t new_l1_table_offset, new_l1_size;
92     uint8_t data[12];
93 
94     if (min_size <= s->l1_size)
95         return 0;
96 
97     /* Do a sanity check on min_size before trying to calculate new_l1_size
98      * (this prevents overflows during the while loop for the calculation of
99      * new_l1_size) */
100     if (min_size > INT_MAX / sizeof(uint64_t)) {
101         return -EFBIG;
102     }
103 
104     if (exact_size) {
105         new_l1_size = min_size;
106     } else {
107         /* Bump size up to reduce the number of times we have to grow */
108         new_l1_size = s->l1_size;
109         if (new_l1_size == 0) {
110             new_l1_size = 1;
111         }
112         while (min_size > new_l1_size) {
113             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
114         }
115     }
116 
117     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
118     if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
119         return -EFBIG;
120     }
121 
122 #ifdef DEBUG_ALLOC2
123     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
124             s->l1_size, new_l1_size);
125 #endif
126 
127     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
128     new_l1_table = qemu_try_blockalign(bs->file->bs,
129                                        ROUND_UP(new_l1_size2, 512));
130     if (new_l1_table == NULL) {
131         return -ENOMEM;
132     }
133     memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
134 
135     if (s->l1_size) {
136         memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
137     }
138 
139     /* write new table (align to cluster) */
140     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
141     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
142     if (new_l1_table_offset < 0) {
143         qemu_vfree(new_l1_table);
144         return new_l1_table_offset;
145     }
146 
147     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
148     if (ret < 0) {
149         goto fail;
150     }
151 
152     /* the L1 position has not yet been updated, so these clusters must
153      * indeed be completely free */
154     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
155                                         new_l1_size2);
156     if (ret < 0) {
157         goto fail;
158     }
159 
160     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
161     for(i = 0; i < s->l1_size; i++)
162         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
163     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
164                            new_l1_table, new_l1_size2);
165     if (ret < 0)
166         goto fail;
167     for(i = 0; i < s->l1_size; i++)
168         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
169 
170     /* set new table */
171     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
172     stl_be_p(data, new_l1_size);
173     stq_be_p(data + 4, new_l1_table_offset);
174     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
175                            data, sizeof(data));
176     if (ret < 0) {
177         goto fail;
178     }
179     qemu_vfree(s->l1_table);
180     old_l1_table_offset = s->l1_table_offset;
181     s->l1_table_offset = new_l1_table_offset;
182     s->l1_table = new_l1_table;
183     old_l1_size = s->l1_size;
184     s->l1_size = new_l1_size;
185     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
186                         QCOW2_DISCARD_OTHER);
187     return 0;
188  fail:
189     qemu_vfree(new_l1_table);
190     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
191                         QCOW2_DISCARD_OTHER);
192     return ret;
193 }
194 
195 /*
196  * l2_load
197  *
198  * @bs: The BlockDriverState
199  * @offset: A guest offset, used to calculate what slice of the L2
200  *          table to load.
201  * @l2_offset: Offset to the L2 table in the image file.
202  * @l2_slice: Location to store the pointer to the L2 slice.
203  *
204  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
205  * that are loaded by the qcow2 cache). If the slice is in the cache,
206  * the cache is used; otherwise the L2 slice is loaded from the image
207  * file.
208  */
209 static int l2_load(BlockDriverState *bs, uint64_t offset,
210                    uint64_t l2_offset, uint64_t **l2_slice)
211 {
212     BDRVQcow2State *s = bs->opaque;
213     int start_of_slice = sizeof(uint64_t) *
214         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
215 
216     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
217                            (void **)l2_slice);
218 }
219 
220 /*
221  * Writes one sector of the L1 table to the disk (can't update single entries
222  * and we really don't want bdrv_pread to perform a read-modify-write)
223  */
224 #define L1_ENTRIES_PER_SECTOR (512 / 8)
225 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
226 {
227     BDRVQcow2State *s = bs->opaque;
228     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
229     int l1_start_index;
230     int i, ret;
231 
232     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
233     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
234          i++)
235     {
236         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
237     }
238 
239     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
240             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
241     if (ret < 0) {
242         return ret;
243     }
244 
245     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
246     ret = bdrv_pwrite_sync(bs->file,
247                            s->l1_table_offset + 8 * l1_start_index,
248                            buf, sizeof(buf));
249     if (ret < 0) {
250         return ret;
251     }
252 
253     return 0;
254 }
255 
256 /*
257  * l2_allocate
258  *
259  * Allocate a new l2 entry in the file. If l1_index points to an already
260  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
261  * table) copy the contents of the old L2 table into the newly allocated one.
262  * Otherwise the new table is initialized with zeros.
263  *
264  */
265 
266 static int l2_allocate(BlockDriverState *bs, int l1_index)
267 {
268     BDRVQcow2State *s = bs->opaque;
269     uint64_t old_l2_offset;
270     uint64_t *l2_slice = NULL;
271     unsigned slice, slice_size2, n_slices;
272     int64_t l2_offset;
273     int ret;
274 
275     old_l2_offset = s->l1_table[l1_index];
276 
277     trace_qcow2_l2_allocate(bs, l1_index);
278 
279     /* allocate a new l2 entry */
280 
281     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
282     if (l2_offset < 0) {
283         ret = l2_offset;
284         goto fail;
285     }
286 
287     /* If we're allocating the table at offset 0 then something is wrong */
288     if (l2_offset == 0) {
289         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
290                                 "allocation of L2 table at offset 0");
291         ret = -EIO;
292         goto fail;
293     }
294 
295     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
296     if (ret < 0) {
297         goto fail;
298     }
299 
300     /* allocate a new entry in the l2 cache */
301 
302     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
303     n_slices = s->cluster_size / slice_size2;
304 
305     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
306     for (slice = 0; slice < n_slices; slice++) {
307         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
308                                     l2_offset + slice * slice_size2,
309                                     (void **) &l2_slice);
310         if (ret < 0) {
311             goto fail;
312         }
313 
314         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
315             /* if there was no old l2 table, clear the new slice */
316             memset(l2_slice, 0, slice_size2);
317         } else {
318             uint64_t *old_slice;
319             uint64_t old_l2_slice_offset =
320                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
321 
322             /* if there was an old l2 table, read a slice from the disk */
323             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
324             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
325                                   (void **) &old_slice);
326             if (ret < 0) {
327                 goto fail;
328             }
329 
330             memcpy(l2_slice, old_slice, slice_size2);
331 
332             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
333         }
334 
335         /* write the l2 slice to the file */
336         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
337 
338         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
339         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
340         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
341     }
342 
343     ret = qcow2_cache_flush(bs, s->l2_table_cache);
344     if (ret < 0) {
345         goto fail;
346     }
347 
348     /* update the L1 entry */
349     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
350     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
351     ret = qcow2_write_l1_entry(bs, l1_index);
352     if (ret < 0) {
353         goto fail;
354     }
355 
356     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
357     return 0;
358 
359 fail:
360     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
361     if (l2_slice != NULL) {
362         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
363     }
364     s->l1_table[l1_index] = old_l2_offset;
365     if (l2_offset > 0) {
366         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
367                             QCOW2_DISCARD_ALWAYS);
368     }
369     return ret;
370 }
371 
372 /*
373  * Checks how many clusters in a given L2 slice are contiguous in the image
374  * file. As soon as one of the flags in the bitmask stop_flags changes compared
375  * to the first cluster, the search is stopped and the cluster is not counted
376  * as contiguous. (This allows it, for example, to stop at the first compressed
377  * cluster which may require a different handling)
378  */
379 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
380         uint64_t *l2_slice, uint64_t stop_flags)
381 {
382     int i;
383     QCow2ClusterType first_cluster_type;
384     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
385     uint64_t first_entry = be64_to_cpu(l2_slice[0]);
386     uint64_t offset = first_entry & mask;
387 
388     if (!offset) {
389         return 0;
390     }
391 
392     /* must be allocated */
393     first_cluster_type = qcow2_get_cluster_type(first_entry);
394     assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
395            first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
396 
397     for (i = 0; i < nb_clusters; i++) {
398         uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
399         if (offset + (uint64_t) i * cluster_size != l2_entry) {
400             break;
401         }
402     }
403 
404 	return i;
405 }
406 
407 /*
408  * Checks how many consecutive unallocated clusters in a given L2
409  * slice have the same cluster type.
410  */
411 static int count_contiguous_clusters_unallocated(int nb_clusters,
412                                                  uint64_t *l2_slice,
413                                                  QCow2ClusterType wanted_type)
414 {
415     int i;
416 
417     assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
418            wanted_type == QCOW2_CLUSTER_UNALLOCATED);
419     for (i = 0; i < nb_clusters; i++) {
420         uint64_t entry = be64_to_cpu(l2_slice[i]);
421         QCow2ClusterType type = qcow2_get_cluster_type(entry);
422 
423         if (type != wanted_type) {
424             break;
425         }
426     }
427 
428     return i;
429 }
430 
431 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
432                                             uint64_t src_cluster_offset,
433                                             unsigned offset_in_cluster,
434                                             QEMUIOVector *qiov)
435 {
436     int ret;
437 
438     if (qiov->size == 0) {
439         return 0;
440     }
441 
442     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
443 
444     if (!bs->drv) {
445         return -ENOMEDIUM;
446     }
447 
448     /* Call .bdrv_co_readv() directly instead of using the public block-layer
449      * interface.  This avoids double I/O throttling and request tracking,
450      * which can lead to deadlock when block layer copy-on-read is enabled.
451      */
452     ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
453                                   qiov->size, qiov, 0);
454     if (ret < 0) {
455         return ret;
456     }
457 
458     return 0;
459 }
460 
461 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
462                                                 uint64_t src_cluster_offset,
463                                                 uint64_t cluster_offset,
464                                                 unsigned offset_in_cluster,
465                                                 uint8_t *buffer,
466                                                 unsigned bytes)
467 {
468     if (bytes && bs->encrypted) {
469         BDRVQcow2State *s = bs->opaque;
470         int64_t offset = (s->crypt_physical_offset ?
471                           (cluster_offset + offset_in_cluster) :
472                           (src_cluster_offset + offset_in_cluster));
473         assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
474         assert((bytes & ~BDRV_SECTOR_MASK) == 0);
475         assert(s->crypto);
476         if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
477             return false;
478         }
479     }
480     return true;
481 }
482 
483 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
484                                              uint64_t cluster_offset,
485                                              unsigned offset_in_cluster,
486                                              QEMUIOVector *qiov)
487 {
488     int ret;
489 
490     if (qiov->size == 0) {
491         return 0;
492     }
493 
494     ret = qcow2_pre_write_overlap_check(bs, 0,
495             cluster_offset + offset_in_cluster, qiov->size);
496     if (ret < 0) {
497         return ret;
498     }
499 
500     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
501     ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
502                           qiov->size, qiov, 0);
503     if (ret < 0) {
504         return ret;
505     }
506 
507     return 0;
508 }
509 
510 
511 /*
512  * get_cluster_offset
513  *
514  * For a given offset of the virtual disk, find the cluster type and offset in
515  * the qcow2 file. The offset is stored in *cluster_offset.
516  *
517  * On entry, *bytes is the maximum number of contiguous bytes starting at
518  * offset that we are interested in.
519  *
520  * On exit, *bytes is the number of bytes starting at offset that have the same
521  * cluster type and (if applicable) are stored contiguously in the image file.
522  * Compressed clusters are always returned one by one.
523  *
524  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
525  * cases.
526  */
527 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
528                              unsigned int *bytes, uint64_t *cluster_offset)
529 {
530     BDRVQcow2State *s = bs->opaque;
531     unsigned int l2_index;
532     uint64_t l1_index, l2_offset, *l2_slice;
533     int c;
534     unsigned int offset_in_cluster;
535     uint64_t bytes_available, bytes_needed, nb_clusters;
536     QCow2ClusterType type;
537     int ret;
538 
539     offset_in_cluster = offset_into_cluster(s, offset);
540     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
541 
542     /* compute how many bytes there are between the start of the cluster
543      * containing offset and the end of the l2 slice that contains
544      * the entry pointing to it */
545     bytes_available =
546         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
547         << s->cluster_bits;
548 
549     if (bytes_needed > bytes_available) {
550         bytes_needed = bytes_available;
551     }
552 
553     *cluster_offset = 0;
554 
555     /* seek to the l2 offset in the l1 table */
556 
557     l1_index = offset_to_l1_index(s, offset);
558     if (l1_index >= s->l1_size) {
559         type = QCOW2_CLUSTER_UNALLOCATED;
560         goto out;
561     }
562 
563     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
564     if (!l2_offset) {
565         type = QCOW2_CLUSTER_UNALLOCATED;
566         goto out;
567     }
568 
569     if (offset_into_cluster(s, l2_offset)) {
570         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
571                                 " unaligned (L1 index: %#" PRIx64 ")",
572                                 l2_offset, l1_index);
573         return -EIO;
574     }
575 
576     /* load the l2 slice in memory */
577 
578     ret = l2_load(bs, offset, l2_offset, &l2_slice);
579     if (ret < 0) {
580         return ret;
581     }
582 
583     /* find the cluster offset for the given disk offset */
584 
585     l2_index = offset_to_l2_slice_index(s, offset);
586     *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
587 
588     nb_clusters = size_to_clusters(s, bytes_needed);
589     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
590      * integers; the minimum cluster size is 512, so this assertion is always
591      * true */
592     assert(nb_clusters <= INT_MAX);
593 
594     type = qcow2_get_cluster_type(*cluster_offset);
595     if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
596                                 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
597         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
598                                 " in pre-v3 image (L2 offset: %#" PRIx64
599                                 ", L2 index: %#x)", l2_offset, l2_index);
600         ret = -EIO;
601         goto fail;
602     }
603     switch (type) {
604     case QCOW2_CLUSTER_COMPRESSED:
605         /* Compressed clusters can only be processed one by one */
606         c = 1;
607         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
608         break;
609     case QCOW2_CLUSTER_ZERO_PLAIN:
610     case QCOW2_CLUSTER_UNALLOCATED:
611         /* how many empty clusters ? */
612         c = count_contiguous_clusters_unallocated(nb_clusters,
613                                                   &l2_slice[l2_index], type);
614         *cluster_offset = 0;
615         break;
616     case QCOW2_CLUSTER_ZERO_ALLOC:
617     case QCOW2_CLUSTER_NORMAL:
618         /* how many allocated clusters ? */
619         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
620                                       &l2_slice[l2_index], QCOW_OFLAG_ZERO);
621         *cluster_offset &= L2E_OFFSET_MASK;
622         if (offset_into_cluster(s, *cluster_offset)) {
623             qcow2_signal_corruption(bs, true, -1, -1,
624                                     "Cluster allocation offset %#"
625                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
626                                     ", L2 index: %#x)", *cluster_offset,
627                                     l2_offset, l2_index);
628             ret = -EIO;
629             goto fail;
630         }
631         break;
632     default:
633         abort();
634     }
635 
636     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
637 
638     bytes_available = (int64_t)c * s->cluster_size;
639 
640 out:
641     if (bytes_available > bytes_needed) {
642         bytes_available = bytes_needed;
643     }
644 
645     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
646      * subtracting offset_in_cluster will therefore definitely yield something
647      * not exceeding UINT_MAX */
648     assert(bytes_available - offset_in_cluster <= UINT_MAX);
649     *bytes = bytes_available - offset_in_cluster;
650 
651     return type;
652 
653 fail:
654     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
655     return ret;
656 }
657 
658 /*
659  * get_cluster_table
660  *
661  * for a given disk offset, load (and allocate if needed)
662  * the appropriate slice of its l2 table.
663  *
664  * the cluster index in the l2 slice is given to the caller.
665  *
666  * Returns 0 on success, -errno in failure case
667  */
668 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
669                              uint64_t **new_l2_slice,
670                              int *new_l2_index)
671 {
672     BDRVQcow2State *s = bs->opaque;
673     unsigned int l2_index;
674     uint64_t l1_index, l2_offset;
675     uint64_t *l2_slice = NULL;
676     int ret;
677 
678     /* seek to the l2 offset in the l1 table */
679 
680     l1_index = offset_to_l1_index(s, offset);
681     if (l1_index >= s->l1_size) {
682         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
683         if (ret < 0) {
684             return ret;
685         }
686     }
687 
688     assert(l1_index < s->l1_size);
689     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
690     if (offset_into_cluster(s, l2_offset)) {
691         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
692                                 " unaligned (L1 index: %#" PRIx64 ")",
693                                 l2_offset, l1_index);
694         return -EIO;
695     }
696 
697     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
698         /* First allocate a new L2 table (and do COW if needed) */
699         ret = l2_allocate(bs, l1_index);
700         if (ret < 0) {
701             return ret;
702         }
703 
704         /* Then decrease the refcount of the old table */
705         if (l2_offset) {
706             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
707                                 QCOW2_DISCARD_OTHER);
708         }
709 
710         /* Get the offset of the newly-allocated l2 table */
711         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
712         assert(offset_into_cluster(s, l2_offset) == 0);
713     }
714 
715     /* load the l2 slice in memory */
716     ret = l2_load(bs, offset, l2_offset, &l2_slice);
717     if (ret < 0) {
718         return ret;
719     }
720 
721     /* find the cluster offset for the given disk offset */
722 
723     l2_index = offset_to_l2_slice_index(s, offset);
724 
725     *new_l2_slice = l2_slice;
726     *new_l2_index = l2_index;
727 
728     return 0;
729 }
730 
731 /*
732  * alloc_compressed_cluster_offset
733  *
734  * For a given offset of the disk image, return cluster offset in
735  * qcow2 file.
736  *
737  * If the offset is not found, allocate a new compressed cluster.
738  *
739  * Return the cluster offset if successful,
740  * Return 0, otherwise.
741  *
742  */
743 
744 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
745                                                uint64_t offset,
746                                                int compressed_size)
747 {
748     BDRVQcow2State *s = bs->opaque;
749     int l2_index, ret;
750     uint64_t *l2_slice;
751     int64_t cluster_offset;
752     int nb_csectors;
753 
754     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
755     if (ret < 0) {
756         return 0;
757     }
758 
759     /* Compression can't overwrite anything. Fail if the cluster was already
760      * allocated. */
761     cluster_offset = be64_to_cpu(l2_slice[l2_index]);
762     if (cluster_offset & L2E_OFFSET_MASK) {
763         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
764         return 0;
765     }
766 
767     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
768     if (cluster_offset < 0) {
769         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
770         return 0;
771     }
772 
773     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
774                   (cluster_offset >> 9);
775 
776     cluster_offset |= QCOW_OFLAG_COMPRESSED |
777                       ((uint64_t)nb_csectors << s->csize_shift);
778 
779     /* update L2 table */
780 
781     /* compressed clusters never have the copied flag */
782 
783     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
784     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
785     l2_slice[l2_index] = cpu_to_be64(cluster_offset);
786     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
787 
788     return cluster_offset;
789 }
790 
791 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
792 {
793     BDRVQcow2State *s = bs->opaque;
794     Qcow2COWRegion *start = &m->cow_start;
795     Qcow2COWRegion *end = &m->cow_end;
796     unsigned buffer_size;
797     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
798     bool merge_reads;
799     uint8_t *start_buffer, *end_buffer;
800     QEMUIOVector qiov;
801     int ret;
802 
803     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
804     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
805     assert(start->offset + start->nb_bytes <= end->offset);
806     assert(!m->data_qiov || m->data_qiov->size == data_bytes);
807 
808     if (start->nb_bytes == 0 && end->nb_bytes == 0) {
809         return 0;
810     }
811 
812     /* If we have to read both the start and end COW regions and the
813      * middle region is not too large then perform just one read
814      * operation */
815     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
816     if (merge_reads) {
817         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
818     } else {
819         /* If we have to do two reads, add some padding in the middle
820          * if necessary to make sure that the end region is optimally
821          * aligned. */
822         size_t align = bdrv_opt_mem_align(bs);
823         assert(align > 0 && align <= UINT_MAX);
824         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
825                UINT_MAX - end->nb_bytes);
826         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
827     }
828 
829     /* Reserve a buffer large enough to store all the data that we're
830      * going to read */
831     start_buffer = qemu_try_blockalign(bs, buffer_size);
832     if (start_buffer == NULL) {
833         return -ENOMEM;
834     }
835     /* The part of the buffer where the end region is located */
836     end_buffer = start_buffer + buffer_size - end->nb_bytes;
837 
838     qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
839 
840     qemu_co_mutex_unlock(&s->lock);
841     /* First we read the existing data from both COW regions. We
842      * either read the whole region in one go, or the start and end
843      * regions separately. */
844     if (merge_reads) {
845         qemu_iovec_add(&qiov, start_buffer, buffer_size);
846         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
847     } else {
848         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
849         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
850         if (ret < 0) {
851             goto fail;
852         }
853 
854         qemu_iovec_reset(&qiov);
855         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
856         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
857     }
858     if (ret < 0) {
859         goto fail;
860     }
861 
862     /* Encrypt the data if necessary before writing it */
863     if (bs->encrypted) {
864         if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
865                                     start->offset, start_buffer,
866                                     start->nb_bytes) ||
867             !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
868                                     end->offset, end_buffer, end->nb_bytes)) {
869             ret = -EIO;
870             goto fail;
871         }
872     }
873 
874     /* And now we can write everything. If we have the guest data we
875      * can write everything in one single operation */
876     if (m->data_qiov) {
877         qemu_iovec_reset(&qiov);
878         if (start->nb_bytes) {
879             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
880         }
881         qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
882         if (end->nb_bytes) {
883             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
884         }
885         /* NOTE: we have a write_aio blkdebug event here followed by
886          * a cow_write one in do_perform_cow_write(), but there's only
887          * one single I/O operation */
888         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
889         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
890     } else {
891         /* If there's no guest data then write both COW regions separately */
892         qemu_iovec_reset(&qiov);
893         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
894         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
895         if (ret < 0) {
896             goto fail;
897         }
898 
899         qemu_iovec_reset(&qiov);
900         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
901         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
902     }
903 
904 fail:
905     qemu_co_mutex_lock(&s->lock);
906 
907     /*
908      * Before we update the L2 table to actually point to the new cluster, we
909      * need to be sure that the refcounts have been increased and COW was
910      * handled.
911      */
912     if (ret == 0) {
913         qcow2_cache_depends_on_flush(s->l2_table_cache);
914     }
915 
916     qemu_vfree(start_buffer);
917     qemu_iovec_destroy(&qiov);
918     return ret;
919 }
920 
921 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
922 {
923     BDRVQcow2State *s = bs->opaque;
924     int i, j = 0, l2_index, ret;
925     uint64_t *old_cluster, *l2_slice;
926     uint64_t cluster_offset = m->alloc_offset;
927 
928     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
929     assert(m->nb_clusters > 0);
930 
931     old_cluster = g_try_new(uint64_t, m->nb_clusters);
932     if (old_cluster == NULL) {
933         ret = -ENOMEM;
934         goto err;
935     }
936 
937     /* copy content of unmodified sectors */
938     ret = perform_cow(bs, m);
939     if (ret < 0) {
940         goto err;
941     }
942 
943     /* Update L2 table. */
944     if (s->use_lazy_refcounts) {
945         qcow2_mark_dirty(bs);
946     }
947     if (qcow2_need_accurate_refcounts(s)) {
948         qcow2_cache_set_dependency(bs, s->l2_table_cache,
949                                    s->refcount_block_cache);
950     }
951 
952     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
953     if (ret < 0) {
954         goto err;
955     }
956     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
957 
958     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
959     for (i = 0; i < m->nb_clusters; i++) {
960         /* if two concurrent writes happen to the same unallocated cluster
961          * each write allocates separate cluster and writes data concurrently.
962          * The first one to complete updates l2 table with pointer to its
963          * cluster the second one has to do RMW (which is done above by
964          * perform_cow()), update l2 table with its cluster pointer and free
965          * old cluster. This is what this loop does */
966         if (l2_slice[l2_index + i] != 0) {
967             old_cluster[j++] = l2_slice[l2_index + i];
968         }
969 
970         l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
971                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
972      }
973 
974 
975     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
976 
977     /*
978      * If this was a COW, we need to decrease the refcount of the old cluster.
979      *
980      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
981      * clusters), the next write will reuse them anyway.
982      */
983     if (!m->keep_old_clusters && j != 0) {
984         for (i = 0; i < j; i++) {
985             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
986                                     QCOW2_DISCARD_NEVER);
987         }
988     }
989 
990     ret = 0;
991 err:
992     g_free(old_cluster);
993     return ret;
994  }
995 
996 /*
997  * Returns the number of contiguous clusters that can be used for an allocating
998  * write, but require COW to be performed (this includes yet unallocated space,
999  * which must copy from the backing file)
1000  */
1001 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
1002     uint64_t *l2_slice, int l2_index)
1003 {
1004     int i;
1005 
1006     for (i = 0; i < nb_clusters; i++) {
1007         uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1008         QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1009 
1010         switch(cluster_type) {
1011         case QCOW2_CLUSTER_NORMAL:
1012             if (l2_entry & QCOW_OFLAG_COPIED) {
1013                 goto out;
1014             }
1015             break;
1016         case QCOW2_CLUSTER_UNALLOCATED:
1017         case QCOW2_CLUSTER_COMPRESSED:
1018         case QCOW2_CLUSTER_ZERO_PLAIN:
1019         case QCOW2_CLUSTER_ZERO_ALLOC:
1020             break;
1021         default:
1022             abort();
1023         }
1024     }
1025 
1026 out:
1027     assert(i <= nb_clusters);
1028     return i;
1029 }
1030 
1031 /*
1032  * Check if there already is an AIO write request in flight which allocates
1033  * the same cluster. In this case we need to wait until the previous
1034  * request has completed and updated the L2 table accordingly.
1035  *
1036  * Returns:
1037  *   0       if there was no dependency. *cur_bytes indicates the number of
1038  *           bytes from guest_offset that can be read before the next
1039  *           dependency must be processed (or the request is complete)
1040  *
1041  *   -EAGAIN if we had to wait for another request, previously gathered
1042  *           information on cluster allocation may be invalid now. The caller
1043  *           must start over anyway, so consider *cur_bytes undefined.
1044  */
1045 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1046     uint64_t *cur_bytes, QCowL2Meta **m)
1047 {
1048     BDRVQcow2State *s = bs->opaque;
1049     QCowL2Meta *old_alloc;
1050     uint64_t bytes = *cur_bytes;
1051 
1052     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1053 
1054         uint64_t start = guest_offset;
1055         uint64_t end = start + bytes;
1056         uint64_t old_start = l2meta_cow_start(old_alloc);
1057         uint64_t old_end = l2meta_cow_end(old_alloc);
1058 
1059         if (end <= old_start || start >= old_end) {
1060             /* No intersection */
1061         } else {
1062             if (start < old_start) {
1063                 /* Stop at the start of a running allocation */
1064                 bytes = old_start - start;
1065             } else {
1066                 bytes = 0;
1067             }
1068 
1069             /* Stop if already an l2meta exists. After yielding, it wouldn't
1070              * be valid any more, so we'd have to clean up the old L2Metas
1071              * and deal with requests depending on them before starting to
1072              * gather new ones. Not worth the trouble. */
1073             if (bytes == 0 && *m) {
1074                 *cur_bytes = 0;
1075                 return 0;
1076             }
1077 
1078             if (bytes == 0) {
1079                 /* Wait for the dependency to complete. We need to recheck
1080                  * the free/allocated clusters when we continue. */
1081                 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1082                 return -EAGAIN;
1083             }
1084         }
1085     }
1086 
1087     /* Make sure that existing clusters and new allocations are only used up to
1088      * the next dependency if we shortened the request above */
1089     *cur_bytes = bytes;
1090 
1091     return 0;
1092 }
1093 
1094 /*
1095  * Checks how many already allocated clusters that don't require a copy on
1096  * write there are at the given guest_offset (up to *bytes). If
1097  * *host_offset is not zero, only physically contiguous clusters beginning at
1098  * this host offset are counted.
1099  *
1100  * Note that guest_offset may not be cluster aligned. In this case, the
1101  * returned *host_offset points to exact byte referenced by guest_offset and
1102  * therefore isn't cluster aligned as well.
1103  *
1104  * Returns:
1105  *   0:     if no allocated clusters are available at the given offset.
1106  *          *bytes is normally unchanged. It is set to 0 if the cluster
1107  *          is allocated and doesn't need COW, but doesn't have the right
1108  *          physical offset.
1109  *
1110  *   1:     if allocated clusters that don't require a COW are available at
1111  *          the requested offset. *bytes may have decreased and describes
1112  *          the length of the area that can be written to.
1113  *
1114  *  -errno: in error cases
1115  */
1116 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1117     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1118 {
1119     BDRVQcow2State *s = bs->opaque;
1120     int l2_index;
1121     uint64_t cluster_offset;
1122     uint64_t *l2_slice;
1123     uint64_t nb_clusters;
1124     unsigned int keep_clusters;
1125     int ret;
1126 
1127     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1128                               *bytes);
1129 
1130     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
1131                                 == offset_into_cluster(s, *host_offset));
1132 
1133     /*
1134      * Calculate the number of clusters to look for. We stop at L2 slice
1135      * boundaries to keep things simple.
1136      */
1137     nb_clusters =
1138         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1139 
1140     l2_index = offset_to_l2_slice_index(s, guest_offset);
1141     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1142     assert(nb_clusters <= INT_MAX);
1143 
1144     /* Find L2 entry for the first involved cluster */
1145     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1146     if (ret < 0) {
1147         return ret;
1148     }
1149 
1150     cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1151 
1152     /* Check how many clusters are already allocated and don't need COW */
1153     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1154         && (cluster_offset & QCOW_OFLAG_COPIED))
1155     {
1156         /* If a specific host_offset is required, check it */
1157         bool offset_matches =
1158             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1159 
1160         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1161             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1162                                     "%#llx unaligned (guest offset: %#" PRIx64
1163                                     ")", cluster_offset & L2E_OFFSET_MASK,
1164                                     guest_offset);
1165             ret = -EIO;
1166             goto out;
1167         }
1168 
1169         if (*host_offset != 0 && !offset_matches) {
1170             *bytes = 0;
1171             ret = 0;
1172             goto out;
1173         }
1174 
1175         /* We keep all QCOW_OFLAG_COPIED clusters */
1176         keep_clusters =
1177             count_contiguous_clusters(nb_clusters, s->cluster_size,
1178                                       &l2_slice[l2_index],
1179                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1180         assert(keep_clusters <= nb_clusters);
1181 
1182         *bytes = MIN(*bytes,
1183                  keep_clusters * s->cluster_size
1184                  - offset_into_cluster(s, guest_offset));
1185 
1186         ret = 1;
1187     } else {
1188         ret = 0;
1189     }
1190 
1191     /* Cleanup */
1192 out:
1193     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1194 
1195     /* Only return a host offset if we actually made progress. Otherwise we
1196      * would make requirements for handle_alloc() that it can't fulfill */
1197     if (ret > 0) {
1198         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1199                      + offset_into_cluster(s, guest_offset);
1200     }
1201 
1202     return ret;
1203 }
1204 
1205 /*
1206  * Allocates new clusters for the given guest_offset.
1207  *
1208  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1209  * contain the number of clusters that have been allocated and are contiguous
1210  * in the image file.
1211  *
1212  * If *host_offset is non-zero, it specifies the offset in the image file at
1213  * which the new clusters must start. *nb_clusters can be 0 on return in this
1214  * case if the cluster at host_offset is already in use. If *host_offset is
1215  * zero, the clusters can be allocated anywhere in the image file.
1216  *
1217  * *host_offset is updated to contain the offset into the image file at which
1218  * the first allocated cluster starts.
1219  *
1220  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1221  * function has been waiting for another request and the allocation must be
1222  * restarted, but the whole request should not be failed.
1223  */
1224 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1225                                    uint64_t *host_offset, uint64_t *nb_clusters)
1226 {
1227     BDRVQcow2State *s = bs->opaque;
1228 
1229     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1230                                          *host_offset, *nb_clusters);
1231 
1232     /* Allocate new clusters */
1233     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1234     if (*host_offset == 0) {
1235         int64_t cluster_offset =
1236             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1237         if (cluster_offset < 0) {
1238             return cluster_offset;
1239         }
1240         *host_offset = cluster_offset;
1241         return 0;
1242     } else {
1243         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1244         if (ret < 0) {
1245             return ret;
1246         }
1247         *nb_clusters = ret;
1248         return 0;
1249     }
1250 }
1251 
1252 /*
1253  * Allocates new clusters for an area that either is yet unallocated or needs a
1254  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1255  * the new allocation can match the specified host offset.
1256  *
1257  * Note that guest_offset may not be cluster aligned. In this case, the
1258  * returned *host_offset points to exact byte referenced by guest_offset and
1259  * therefore isn't cluster aligned as well.
1260  *
1261  * Returns:
1262  *   0:     if no clusters could be allocated. *bytes is set to 0,
1263  *          *host_offset is left unchanged.
1264  *
1265  *   1:     if new clusters were allocated. *bytes may be decreased if the
1266  *          new allocation doesn't cover all of the requested area.
1267  *          *host_offset is updated to contain the host offset of the first
1268  *          newly allocated cluster.
1269  *
1270  *  -errno: in error cases
1271  */
1272 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1273     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1274 {
1275     BDRVQcow2State *s = bs->opaque;
1276     int l2_index;
1277     uint64_t *l2_slice;
1278     uint64_t entry;
1279     uint64_t nb_clusters;
1280     int ret;
1281     bool keep_old_clusters = false;
1282 
1283     uint64_t alloc_cluster_offset = 0;
1284 
1285     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1286                              *bytes);
1287     assert(*bytes > 0);
1288 
1289     /*
1290      * Calculate the number of clusters to look for. We stop at L2 slice
1291      * boundaries to keep things simple.
1292      */
1293     nb_clusters =
1294         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1295 
1296     l2_index = offset_to_l2_slice_index(s, guest_offset);
1297     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1298     assert(nb_clusters <= INT_MAX);
1299 
1300     /* Find L2 entry for the first involved cluster */
1301     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1302     if (ret < 0) {
1303         return ret;
1304     }
1305 
1306     entry = be64_to_cpu(l2_slice[l2_index]);
1307 
1308     /* For the moment, overwrite compressed clusters one by one */
1309     if (entry & QCOW_OFLAG_COMPRESSED) {
1310         nb_clusters = 1;
1311     } else {
1312         nb_clusters = count_cow_clusters(s, nb_clusters, l2_slice, l2_index);
1313     }
1314 
1315     /* This function is only called when there were no non-COW clusters, so if
1316      * we can't find any unallocated or COW clusters either, something is
1317      * wrong with our code. */
1318     assert(nb_clusters > 0);
1319 
1320     if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1321         (entry & QCOW_OFLAG_COPIED) &&
1322         (!*host_offset ||
1323          start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1324     {
1325         int preallocated_nb_clusters;
1326 
1327         if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1328             qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1329                                     "cluster offset %#llx unaligned (guest "
1330                                     "offset: %#" PRIx64 ")",
1331                                     entry & L2E_OFFSET_MASK, guest_offset);
1332             ret = -EIO;
1333             goto fail;
1334         }
1335 
1336         /* Try to reuse preallocated zero clusters; contiguous normal clusters
1337          * would be fine, too, but count_cow_clusters() above has limited
1338          * nb_clusters already to a range of COW clusters */
1339         preallocated_nb_clusters =
1340             count_contiguous_clusters(nb_clusters, s->cluster_size,
1341                                       &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1342         assert(preallocated_nb_clusters > 0);
1343 
1344         nb_clusters = preallocated_nb_clusters;
1345         alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1346 
1347         /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1348          * should not free them. */
1349         keep_old_clusters = true;
1350     }
1351 
1352     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1353 
1354     if (!alloc_cluster_offset) {
1355         /* Allocate, if necessary at a given offset in the image file */
1356         alloc_cluster_offset = start_of_cluster(s, *host_offset);
1357         ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1358                                       &nb_clusters);
1359         if (ret < 0) {
1360             goto fail;
1361         }
1362 
1363         /* Can't extend contiguous allocation */
1364         if (nb_clusters == 0) {
1365             *bytes = 0;
1366             return 0;
1367         }
1368 
1369         /* !*host_offset would overwrite the image header and is reserved for
1370          * "no host offset preferred". If 0 was a valid host offset, it'd
1371          * trigger the following overlap check; do that now to avoid having an
1372          * invalid value in *host_offset. */
1373         if (!alloc_cluster_offset) {
1374             ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1375                                                 nb_clusters * s->cluster_size);
1376             assert(ret < 0);
1377             goto fail;
1378         }
1379     }
1380 
1381     /*
1382      * Save info needed for meta data update.
1383      *
1384      * requested_bytes: Number of bytes from the start of the first
1385      * newly allocated cluster to the end of the (possibly shortened
1386      * before) write request.
1387      *
1388      * avail_bytes: Number of bytes from the start of the first
1389      * newly allocated to the end of the last newly allocated cluster.
1390      *
1391      * nb_bytes: The number of bytes from the start of the first
1392      * newly allocated cluster to the end of the area that the write
1393      * request actually writes to (excluding COW at the end)
1394      */
1395     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1396     int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1397     int nb_bytes = MIN(requested_bytes, avail_bytes);
1398     QCowL2Meta *old_m = *m;
1399 
1400     *m = g_malloc0(sizeof(**m));
1401 
1402     **m = (QCowL2Meta) {
1403         .next           = old_m,
1404 
1405         .alloc_offset   = alloc_cluster_offset,
1406         .offset         = start_of_cluster(s, guest_offset),
1407         .nb_clusters    = nb_clusters,
1408 
1409         .keep_old_clusters  = keep_old_clusters,
1410 
1411         .cow_start = {
1412             .offset     = 0,
1413             .nb_bytes   = offset_into_cluster(s, guest_offset),
1414         },
1415         .cow_end = {
1416             .offset     = nb_bytes,
1417             .nb_bytes   = avail_bytes - nb_bytes,
1418         },
1419     };
1420     qemu_co_queue_init(&(*m)->dependent_requests);
1421     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1422 
1423     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1424     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1425     assert(*bytes != 0);
1426 
1427     return 1;
1428 
1429 fail:
1430     if (*m && (*m)->nb_clusters > 0) {
1431         QLIST_REMOVE(*m, next_in_flight);
1432     }
1433     return ret;
1434 }
1435 
1436 /*
1437  * alloc_cluster_offset
1438  *
1439  * For a given offset on the virtual disk, find the cluster offset in qcow2
1440  * file. If the offset is not found, allocate a new cluster.
1441  *
1442  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1443  * other fields in m are meaningless.
1444  *
1445  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1446  * contiguous clusters that have been allocated. In this case, the other
1447  * fields of m are valid and contain information about the first allocated
1448  * cluster.
1449  *
1450  * If the request conflicts with another write request in flight, the coroutine
1451  * is queued and will be reentered when the dependency has completed.
1452  *
1453  * Return 0 on success and -errno in error cases
1454  */
1455 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1456                                unsigned int *bytes, uint64_t *host_offset,
1457                                QCowL2Meta **m)
1458 {
1459     BDRVQcow2State *s = bs->opaque;
1460     uint64_t start, remaining;
1461     uint64_t cluster_offset;
1462     uint64_t cur_bytes;
1463     int ret;
1464 
1465     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1466 
1467 again:
1468     start = offset;
1469     remaining = *bytes;
1470     cluster_offset = 0;
1471     *host_offset = 0;
1472     cur_bytes = 0;
1473     *m = NULL;
1474 
1475     while (true) {
1476 
1477         if (!*host_offset) {
1478             *host_offset = start_of_cluster(s, cluster_offset);
1479         }
1480 
1481         assert(remaining >= cur_bytes);
1482 
1483         start           += cur_bytes;
1484         remaining       -= cur_bytes;
1485         cluster_offset  += cur_bytes;
1486 
1487         if (remaining == 0) {
1488             break;
1489         }
1490 
1491         cur_bytes = remaining;
1492 
1493         /*
1494          * Now start gathering as many contiguous clusters as possible:
1495          *
1496          * 1. Check for overlaps with in-flight allocations
1497          *
1498          *      a) Overlap not in the first cluster -> shorten this request and
1499          *         let the caller handle the rest in its next loop iteration.
1500          *
1501          *      b) Real overlaps of two requests. Yield and restart the search
1502          *         for contiguous clusters (the situation could have changed
1503          *         while we were sleeping)
1504          *
1505          *      c) TODO: Request starts in the same cluster as the in-flight
1506          *         allocation ends. Shorten the COW of the in-fight allocation,
1507          *         set cluster_offset to write to the same cluster and set up
1508          *         the right synchronisation between the in-flight request and
1509          *         the new one.
1510          */
1511         ret = handle_dependencies(bs, start, &cur_bytes, m);
1512         if (ret == -EAGAIN) {
1513             /* Currently handle_dependencies() doesn't yield if we already had
1514              * an allocation. If it did, we would have to clean up the L2Meta
1515              * structs before starting over. */
1516             assert(*m == NULL);
1517             goto again;
1518         } else if (ret < 0) {
1519             return ret;
1520         } else if (cur_bytes == 0) {
1521             break;
1522         } else {
1523             /* handle_dependencies() may have decreased cur_bytes (shortened
1524              * the allocations below) so that the next dependency is processed
1525              * correctly during the next loop iteration. */
1526         }
1527 
1528         /*
1529          * 2. Count contiguous COPIED clusters.
1530          */
1531         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1532         if (ret < 0) {
1533             return ret;
1534         } else if (ret) {
1535             continue;
1536         } else if (cur_bytes == 0) {
1537             break;
1538         }
1539 
1540         /*
1541          * 3. If the request still hasn't completed, allocate new clusters,
1542          *    considering any cluster_offset of steps 1c or 2.
1543          */
1544         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1545         if (ret < 0) {
1546             return ret;
1547         } else if (ret) {
1548             continue;
1549         } else {
1550             assert(cur_bytes == 0);
1551             break;
1552         }
1553     }
1554 
1555     *bytes -= remaining;
1556     assert(*bytes > 0);
1557     assert(*host_offset != 0);
1558 
1559     return 0;
1560 }
1561 
1562 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1563                              const uint8_t *buf, int buf_size)
1564 {
1565     z_stream strm1, *strm = &strm1;
1566     int ret, out_len;
1567 
1568     memset(strm, 0, sizeof(*strm));
1569 
1570     strm->next_in = (uint8_t *)buf;
1571     strm->avail_in = buf_size;
1572     strm->next_out = out_buf;
1573     strm->avail_out = out_buf_size;
1574 
1575     ret = inflateInit2(strm, -12);
1576     if (ret != Z_OK)
1577         return -1;
1578     ret = inflate(strm, Z_FINISH);
1579     out_len = strm->next_out - out_buf;
1580     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1581         out_len != out_buf_size) {
1582         inflateEnd(strm);
1583         return -1;
1584     }
1585     inflateEnd(strm);
1586     return 0;
1587 }
1588 
1589 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1590 {
1591     BDRVQcow2State *s = bs->opaque;
1592     int ret, csize, nb_csectors, sector_offset;
1593     uint64_t coffset;
1594 
1595     coffset = cluster_offset & s->cluster_offset_mask;
1596     if (s->cluster_cache_offset != coffset) {
1597         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1598         sector_offset = coffset & 511;
1599         csize = nb_csectors * 512 - sector_offset;
1600 
1601         /* Allocate buffers on first decompress operation, most images are
1602          * uncompressed and the memory overhead can be avoided.  The buffers
1603          * are freed in .bdrv_close().
1604          */
1605         if (!s->cluster_data) {
1606             /* one more sector for decompressed data alignment */
1607             s->cluster_data = qemu_try_blockalign(bs->file->bs,
1608                     QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512);
1609             if (!s->cluster_data) {
1610                 return -ENOMEM;
1611             }
1612         }
1613         if (!s->cluster_cache) {
1614             s->cluster_cache = g_malloc(s->cluster_size);
1615         }
1616 
1617         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1618         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1619                         nb_csectors);
1620         if (ret < 0) {
1621             return ret;
1622         }
1623         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1624                               s->cluster_data + sector_offset, csize) < 0) {
1625             return -EIO;
1626         }
1627         s->cluster_cache_offset = coffset;
1628     }
1629     return 0;
1630 }
1631 
1632 /*
1633  * This discards as many clusters of nb_clusters as possible at once (i.e.
1634  * all clusters in the same L2 slice) and returns the number of discarded
1635  * clusters.
1636  */
1637 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1638                                uint64_t nb_clusters,
1639                                enum qcow2_discard_type type, bool full_discard)
1640 {
1641     BDRVQcow2State *s = bs->opaque;
1642     uint64_t *l2_slice;
1643     int l2_index;
1644     int ret;
1645     int i;
1646 
1647     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1648     if (ret < 0) {
1649         return ret;
1650     }
1651 
1652     /* Limit nb_clusters to one L2 slice */
1653     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1654     assert(nb_clusters <= INT_MAX);
1655 
1656     for (i = 0; i < nb_clusters; i++) {
1657         uint64_t old_l2_entry;
1658 
1659         old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1660 
1661         /*
1662          * If full_discard is false, make sure that a discarded area reads back
1663          * as zeroes for v3 images (we cannot do it for v2 without actually
1664          * writing a zero-filled buffer). We can skip the operation if the
1665          * cluster is already marked as zero, or if it's unallocated and we
1666          * don't have a backing file.
1667          *
1668          * TODO We might want to use bdrv_block_status(bs) here, but we're
1669          * holding s->lock, so that doesn't work today.
1670          *
1671          * If full_discard is true, the sector should not read back as zeroes,
1672          * but rather fall through to the backing file.
1673          */
1674         switch (qcow2_get_cluster_type(old_l2_entry)) {
1675         case QCOW2_CLUSTER_UNALLOCATED:
1676             if (full_discard || !bs->backing) {
1677                 continue;
1678             }
1679             break;
1680 
1681         case QCOW2_CLUSTER_ZERO_PLAIN:
1682             if (!full_discard) {
1683                 continue;
1684             }
1685             break;
1686 
1687         case QCOW2_CLUSTER_ZERO_ALLOC:
1688         case QCOW2_CLUSTER_NORMAL:
1689         case QCOW2_CLUSTER_COMPRESSED:
1690             break;
1691 
1692         default:
1693             abort();
1694         }
1695 
1696         /* First remove L2 entries */
1697         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1698         if (!full_discard && s->qcow_version >= 3) {
1699             l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1700         } else {
1701             l2_slice[l2_index + i] = cpu_to_be64(0);
1702         }
1703 
1704         /* Then decrease the refcount */
1705         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1706     }
1707 
1708     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1709 
1710     return nb_clusters;
1711 }
1712 
1713 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1714                           uint64_t bytes, enum qcow2_discard_type type,
1715                           bool full_discard)
1716 {
1717     BDRVQcow2State *s = bs->opaque;
1718     uint64_t end_offset = offset + bytes;
1719     uint64_t nb_clusters;
1720     int64_t cleared;
1721     int ret;
1722 
1723     /* Caller must pass aligned values, except at image end */
1724     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1725     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1726            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1727 
1728     nb_clusters = size_to_clusters(s, bytes);
1729 
1730     s->cache_discards = true;
1731 
1732     /* Each L2 slice is handled by its own loop iteration */
1733     while (nb_clusters > 0) {
1734         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1735                                       full_discard);
1736         if (cleared < 0) {
1737             ret = cleared;
1738             goto fail;
1739         }
1740 
1741         nb_clusters -= cleared;
1742         offset += (cleared * s->cluster_size);
1743     }
1744 
1745     ret = 0;
1746 fail:
1747     s->cache_discards = false;
1748     qcow2_process_discards(bs, ret);
1749 
1750     return ret;
1751 }
1752 
1753 /*
1754  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1755  * all clusters in the same L2 slice) and returns the number of zeroed
1756  * clusters.
1757  */
1758 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1759                             uint64_t nb_clusters, int flags)
1760 {
1761     BDRVQcow2State *s = bs->opaque;
1762     uint64_t *l2_slice;
1763     int l2_index;
1764     int ret;
1765     int i;
1766     bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1767 
1768     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1769     if (ret < 0) {
1770         return ret;
1771     }
1772 
1773     /* Limit nb_clusters to one L2 slice */
1774     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1775     assert(nb_clusters <= INT_MAX);
1776 
1777     for (i = 0; i < nb_clusters; i++) {
1778         uint64_t old_offset;
1779         QCow2ClusterType cluster_type;
1780 
1781         old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1782 
1783         /*
1784          * Minimize L2 changes if the cluster already reads back as
1785          * zeroes with correct allocation.
1786          */
1787         cluster_type = qcow2_get_cluster_type(old_offset);
1788         if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1789             (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1790             continue;
1791         }
1792 
1793         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1794         if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1795             l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1796             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1797         } else {
1798             l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1799         }
1800     }
1801 
1802     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1803 
1804     return nb_clusters;
1805 }
1806 
1807 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1808                           uint64_t bytes, int flags)
1809 {
1810     BDRVQcow2State *s = bs->opaque;
1811     uint64_t end_offset = offset + bytes;
1812     uint64_t nb_clusters;
1813     int64_t cleared;
1814     int ret;
1815 
1816     /* Caller must pass aligned values, except at image end */
1817     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1818     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1819            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1820 
1821     /* The zero flag is only supported by version 3 and newer */
1822     if (s->qcow_version < 3) {
1823         return -ENOTSUP;
1824     }
1825 
1826     /* Each L2 slice is handled by its own loop iteration */
1827     nb_clusters = size_to_clusters(s, bytes);
1828 
1829     s->cache_discards = true;
1830 
1831     while (nb_clusters > 0) {
1832         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1833         if (cleared < 0) {
1834             ret = cleared;
1835             goto fail;
1836         }
1837 
1838         nb_clusters -= cleared;
1839         offset += (cleared * s->cluster_size);
1840     }
1841 
1842     ret = 0;
1843 fail:
1844     s->cache_discards = false;
1845     qcow2_process_discards(bs, ret);
1846 
1847     return ret;
1848 }
1849 
1850 /*
1851  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1852  * non-backed non-pre-allocated zero clusters).
1853  *
1854  * l1_entries and *visited_l1_entries are used to keep track of progress for
1855  * status_cb(). l1_entries contains the total number of L1 entries and
1856  * *visited_l1_entries counts all visited L1 entries.
1857  */
1858 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1859                                       int l1_size, int64_t *visited_l1_entries,
1860                                       int64_t l1_entries,
1861                                       BlockDriverAmendStatusCB *status_cb,
1862                                       void *cb_opaque)
1863 {
1864     BDRVQcow2State *s = bs->opaque;
1865     bool is_active_l1 = (l1_table == s->l1_table);
1866     uint64_t *l2_slice = NULL;
1867     unsigned slice, slice_size2, n_slices;
1868     int ret;
1869     int i, j;
1870 
1871     slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1872     n_slices = s->cluster_size / slice_size2;
1873 
1874     if (!is_active_l1) {
1875         /* inactive L2 tables require a buffer to be stored in when loading
1876          * them from disk */
1877         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1878         if (l2_slice == NULL) {
1879             return -ENOMEM;
1880         }
1881     }
1882 
1883     for (i = 0; i < l1_size; i++) {
1884         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1885         uint64_t l2_refcount;
1886 
1887         if (!l2_offset) {
1888             /* unallocated */
1889             (*visited_l1_entries)++;
1890             if (status_cb) {
1891                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1892             }
1893             continue;
1894         }
1895 
1896         if (offset_into_cluster(s, l2_offset)) {
1897             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1898                                     PRIx64 " unaligned (L1 index: %#x)",
1899                                     l2_offset, i);
1900             ret = -EIO;
1901             goto fail;
1902         }
1903 
1904         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1905                                  &l2_refcount);
1906         if (ret < 0) {
1907             goto fail;
1908         }
1909 
1910         for (slice = 0; slice < n_slices; slice++) {
1911             uint64_t slice_offset = l2_offset + slice * slice_size2;
1912             bool l2_dirty = false;
1913             if (is_active_l1) {
1914                 /* get active L2 tables from cache */
1915                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1916                                       (void **)&l2_slice);
1917             } else {
1918                 /* load inactive L2 tables from disk */
1919                 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1920             }
1921             if (ret < 0) {
1922                 goto fail;
1923             }
1924 
1925             for (j = 0; j < s->l2_slice_size; j++) {
1926                 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1927                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1928                 QCow2ClusterType cluster_type =
1929                     qcow2_get_cluster_type(l2_entry);
1930 
1931                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1932                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1933                     continue;
1934                 }
1935 
1936                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1937                     if (!bs->backing) {
1938                         /* not backed; therefore we can simply deallocate the
1939                          * cluster */
1940                         l2_slice[j] = 0;
1941                         l2_dirty = true;
1942                         continue;
1943                     }
1944 
1945                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
1946                     if (offset < 0) {
1947                         ret = offset;
1948                         goto fail;
1949                     }
1950 
1951                     if (l2_refcount > 1) {
1952                         /* For shared L2 tables, set the refcount accordingly
1953                          * (it is already 1 and needs to be l2_refcount) */
1954                         ret = qcow2_update_cluster_refcount(
1955                             bs, offset >> s->cluster_bits,
1956                             refcount_diff(1, l2_refcount), false,
1957                             QCOW2_DISCARD_OTHER);
1958                         if (ret < 0) {
1959                             qcow2_free_clusters(bs, offset, s->cluster_size,
1960                                                 QCOW2_DISCARD_OTHER);
1961                             goto fail;
1962                         }
1963                     }
1964                 }
1965 
1966                 if (offset_into_cluster(s, offset)) {
1967                     int l2_index = slice * s->l2_slice_size + j;
1968                     qcow2_signal_corruption(
1969                         bs, true, -1, -1,
1970                         "Cluster allocation offset "
1971                         "%#" PRIx64 " unaligned (L2 offset: %#"
1972                         PRIx64 ", L2 index: %#x)", offset,
1973                         l2_offset, l2_index);
1974                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1975                         qcow2_free_clusters(bs, offset, s->cluster_size,
1976                                             QCOW2_DISCARD_ALWAYS);
1977                     }
1978                     ret = -EIO;
1979                     goto fail;
1980                 }
1981 
1982                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1983                                                     s->cluster_size);
1984                 if (ret < 0) {
1985                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1986                         qcow2_free_clusters(bs, offset, s->cluster_size,
1987                                             QCOW2_DISCARD_ALWAYS);
1988                     }
1989                     goto fail;
1990                 }
1991 
1992                 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1993                 if (ret < 0) {
1994                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1995                         qcow2_free_clusters(bs, offset, s->cluster_size,
1996                                             QCOW2_DISCARD_ALWAYS);
1997                     }
1998                     goto fail;
1999                 }
2000 
2001                 if (l2_refcount == 1) {
2002                     l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
2003                 } else {
2004                     l2_slice[j] = cpu_to_be64(offset);
2005                 }
2006                 l2_dirty = true;
2007             }
2008 
2009             if (is_active_l1) {
2010                 if (l2_dirty) {
2011                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2012                     qcow2_cache_depends_on_flush(s->l2_table_cache);
2013                 }
2014                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2015             } else {
2016                 if (l2_dirty) {
2017                     ret = qcow2_pre_write_overlap_check(
2018                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2019                         slice_offset, slice_size2);
2020                     if (ret < 0) {
2021                         goto fail;
2022                     }
2023 
2024                     ret = bdrv_pwrite(bs->file, slice_offset,
2025                                       l2_slice, slice_size2);
2026                     if (ret < 0) {
2027                         goto fail;
2028                     }
2029                 }
2030             }
2031         }
2032 
2033         (*visited_l1_entries)++;
2034         if (status_cb) {
2035             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2036         }
2037     }
2038 
2039     ret = 0;
2040 
2041 fail:
2042     if (l2_slice) {
2043         if (!is_active_l1) {
2044             qemu_vfree(l2_slice);
2045         } else {
2046             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2047         }
2048     }
2049     return ret;
2050 }
2051 
2052 /*
2053  * For backed images, expands all zero clusters on the image. For non-backed
2054  * images, deallocates all non-pre-allocated zero clusters (and claims the
2055  * allocation for pre-allocated ones). This is important for downgrading to a
2056  * qcow2 version which doesn't yet support metadata zero clusters.
2057  */
2058 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2059                                BlockDriverAmendStatusCB *status_cb,
2060                                void *cb_opaque)
2061 {
2062     BDRVQcow2State *s = bs->opaque;
2063     uint64_t *l1_table = NULL;
2064     int64_t l1_entries = 0, visited_l1_entries = 0;
2065     int ret;
2066     int i, j;
2067 
2068     if (status_cb) {
2069         l1_entries = s->l1_size;
2070         for (i = 0; i < s->nb_snapshots; i++) {
2071             l1_entries += s->snapshots[i].l1_size;
2072         }
2073     }
2074 
2075     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2076                                      &visited_l1_entries, l1_entries,
2077                                      status_cb, cb_opaque);
2078     if (ret < 0) {
2079         goto fail;
2080     }
2081 
2082     /* Inactive L1 tables may point to active L2 tables - therefore it is
2083      * necessary to flush the L2 table cache before trying to access the L2
2084      * tables pointed to by inactive L1 entries (else we might try to expand
2085      * zero clusters that have already been expanded); furthermore, it is also
2086      * necessary to empty the L2 table cache, since it may contain tables which
2087      * are now going to be modified directly on disk, bypassing the cache.
2088      * qcow2_cache_empty() does both for us. */
2089     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2090     if (ret < 0) {
2091         goto fail;
2092     }
2093 
2094     for (i = 0; i < s->nb_snapshots; i++) {
2095         int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
2096                                       sizeof(uint64_t), BDRV_SECTOR_SIZE);
2097 
2098         uint64_t *new_l1_table =
2099             g_try_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
2100 
2101         if (!new_l1_table) {
2102             ret = -ENOMEM;
2103             goto fail;
2104         }
2105 
2106         l1_table = new_l1_table;
2107 
2108         ret = bdrv_read(bs->file,
2109                         s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
2110                         (void *)l1_table, l1_sectors);
2111         if (ret < 0) {
2112             goto fail;
2113         }
2114 
2115         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2116             be64_to_cpus(&l1_table[j]);
2117         }
2118 
2119         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2120                                          &visited_l1_entries, l1_entries,
2121                                          status_cb, cb_opaque);
2122         if (ret < 0) {
2123             goto fail;
2124         }
2125     }
2126 
2127     ret = 0;
2128 
2129 fail:
2130     g_free(l1_table);
2131     return ret;
2132 }
2133