xref: /openbmc/qemu/block/qcow2-cluster.c (revision d447a624)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "block/block-io.h"
29 #include "qapi/error.h"
30 #include "qcow2.h"
31 #include "qemu/bswap.h"
32 #include "qemu/memalign.h"
33 #include "trace.h"
34 
35 int coroutine_fn qcow2_shrink_l1_table(BlockDriverState *bs,
36                                        uint64_t exact_size)
37 {
38     BDRVQcow2State *s = bs->opaque;
39     int new_l1_size, i, ret;
40 
41     if (exact_size >= s->l1_size) {
42         return 0;
43     }
44 
45     new_l1_size = exact_size;
46 
47 #ifdef DEBUG_ALLOC2
48     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
49 #endif
50 
51     BLKDBG_CO_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
52     ret = bdrv_co_pwrite_zeroes(bs->file,
53                                 s->l1_table_offset + new_l1_size * L1E_SIZE,
54                                 (s->l1_size - new_l1_size) * L1E_SIZE, 0);
55     if (ret < 0) {
56         goto fail;
57     }
58 
59     ret = bdrv_co_flush(bs->file->bs);
60     if (ret < 0) {
61         goto fail;
62     }
63 
64     BLKDBG_CO_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
65     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
66         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
67             continue;
68         }
69         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
70                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
71         s->l1_table[i] = 0;
72     }
73     return 0;
74 
75 fail:
76     /*
77      * If the write in the l1_table failed the image may contain a partially
78      * overwritten l1_table. In this case it would be better to clear the
79      * l1_table in memory to avoid possible image corruption.
80      */
81     memset(s->l1_table + new_l1_size, 0,
82            (s->l1_size - new_l1_size) * L1E_SIZE);
83     return ret;
84 }
85 
86 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
87                         bool exact_size)
88 {
89     BDRVQcow2State *s = bs->opaque;
90     int new_l1_size2, ret, i;
91     uint64_t *new_l1_table;
92     int64_t old_l1_table_offset, old_l1_size;
93     int64_t new_l1_table_offset, new_l1_size;
94     uint8_t data[12];
95 
96     if (min_size <= s->l1_size)
97         return 0;
98 
99     /* Do a sanity check on min_size before trying to calculate new_l1_size
100      * (this prevents overflows during the while loop for the calculation of
101      * new_l1_size) */
102     if (min_size > INT_MAX / L1E_SIZE) {
103         return -EFBIG;
104     }
105 
106     if (exact_size) {
107         new_l1_size = min_size;
108     } else {
109         /* Bump size up to reduce the number of times we have to grow */
110         new_l1_size = s->l1_size;
111         if (new_l1_size == 0) {
112             new_l1_size = 1;
113         }
114         while (min_size > new_l1_size) {
115             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
116         }
117     }
118 
119     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
120     if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
121         return -EFBIG;
122     }
123 
124 #ifdef DEBUG_ALLOC2
125     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
126             s->l1_size, new_l1_size);
127 #endif
128 
129     new_l1_size2 = L1E_SIZE * new_l1_size;
130     new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
131     if (new_l1_table == NULL) {
132         return -ENOMEM;
133     }
134     memset(new_l1_table, 0, new_l1_size2);
135 
136     if (s->l1_size) {
137         memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
138     }
139 
140     /* write new table (align to cluster) */
141     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
142     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
143     if (new_l1_table_offset < 0) {
144         qemu_vfree(new_l1_table);
145         return new_l1_table_offset;
146     }
147 
148     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149     if (ret < 0) {
150         goto fail;
151     }
152 
153     /* the L1 position has not yet been updated, so these clusters must
154      * indeed be completely free */
155     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156                                         new_l1_size2, false);
157     if (ret < 0) {
158         goto fail;
159     }
160 
161     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
162     for(i = 0; i < s->l1_size; i++)
163         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
164     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_size2,
165                            new_l1_table, 0);
166     if (ret < 0)
167         goto fail;
168     for(i = 0; i < s->l1_size; i++)
169         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
170 
171     /* set new table */
172     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
173     stl_be_p(data, new_l1_size);
174     stq_be_p(data + 4, new_l1_table_offset);
175     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
176                            sizeof(data), data, 0);
177     if (ret < 0) {
178         goto fail;
179     }
180     qemu_vfree(s->l1_table);
181     old_l1_table_offset = s->l1_table_offset;
182     s->l1_table_offset = new_l1_table_offset;
183     s->l1_table = new_l1_table;
184     old_l1_size = s->l1_size;
185     s->l1_size = new_l1_size;
186     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
187                         QCOW2_DISCARD_OTHER);
188     return 0;
189  fail:
190     qemu_vfree(new_l1_table);
191     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192                         QCOW2_DISCARD_OTHER);
193     return ret;
194 }
195 
196 /*
197  * l2_load
198  *
199  * @bs: The BlockDriverState
200  * @offset: A guest offset, used to calculate what slice of the L2
201  *          table to load.
202  * @l2_offset: Offset to the L2 table in the image file.
203  * @l2_slice: Location to store the pointer to the L2 slice.
204  *
205  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206  * that are loaded by the qcow2 cache). If the slice is in the cache,
207  * the cache is used; otherwise the L2 slice is loaded from the image
208  * file.
209  */
210 static int l2_load(BlockDriverState *bs, uint64_t offset,
211                    uint64_t l2_offset, uint64_t **l2_slice)
212 {
213     BDRVQcow2State *s = bs->opaque;
214     int start_of_slice = l2_entry_size(s) *
215         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
216 
217     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
218                            (void **)l2_slice);
219 }
220 
221 /*
222  * Writes an L1 entry to disk (note that depending on the alignment
223  * requirements this function may write more that just one entry in
224  * order to prevent bdrv_pwrite from performing a read-modify-write)
225  */
226 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
227 {
228     BDRVQcow2State *s = bs->opaque;
229     int l1_start_index;
230     int i, ret;
231     int bufsize = MAX(L1E_SIZE,
232                       MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
233     int nentries = bufsize / L1E_SIZE;
234     g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
235 
236     if (buf == NULL) {
237         return -ENOMEM;
238     }
239 
240     l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
241     for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
242         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
243     }
244 
245     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
246             s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
247     if (ret < 0) {
248         return ret;
249     }
250 
251     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
252     ret = bdrv_pwrite_sync(bs->file,
253                            s->l1_table_offset + L1E_SIZE * l1_start_index,
254                            bufsize, buf, 0);
255     if (ret < 0) {
256         return ret;
257     }
258 
259     return 0;
260 }
261 
262 /*
263  * l2_allocate
264  *
265  * Allocate a new l2 entry in the file. If l1_index points to an already
266  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
267  * table) copy the contents of the old L2 table into the newly allocated one.
268  * Otherwise the new table is initialized with zeros.
269  *
270  */
271 
272 static int l2_allocate(BlockDriverState *bs, int l1_index)
273 {
274     BDRVQcow2State *s = bs->opaque;
275     uint64_t old_l2_offset;
276     uint64_t *l2_slice = NULL;
277     unsigned slice, slice_size2, n_slices;
278     int64_t l2_offset;
279     int ret;
280 
281     old_l2_offset = s->l1_table[l1_index];
282 
283     trace_qcow2_l2_allocate(bs, l1_index);
284 
285     /* allocate a new l2 entry */
286 
287     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
288     if (l2_offset < 0) {
289         ret = l2_offset;
290         goto fail;
291     }
292 
293     /* The offset must fit in the offset field of the L1 table entry */
294     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
295 
296     /* If we're allocating the table at offset 0 then something is wrong */
297     if (l2_offset == 0) {
298         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
299                                 "allocation of L2 table at offset 0");
300         ret = -EIO;
301         goto fail;
302     }
303 
304     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
305     if (ret < 0) {
306         goto fail;
307     }
308 
309     /* allocate a new entry in the l2 cache */
310 
311     slice_size2 = s->l2_slice_size * l2_entry_size(s);
312     n_slices = s->cluster_size / slice_size2;
313 
314     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
315     for (slice = 0; slice < n_slices; slice++) {
316         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
317                                     l2_offset + slice * slice_size2,
318                                     (void **) &l2_slice);
319         if (ret < 0) {
320             goto fail;
321         }
322 
323         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
324             /* if there was no old l2 table, clear the new slice */
325             memset(l2_slice, 0, slice_size2);
326         } else {
327             uint64_t *old_slice;
328             uint64_t old_l2_slice_offset =
329                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
330 
331             /* if there was an old l2 table, read a slice from the disk */
332             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
333             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
334                                   (void **) &old_slice);
335             if (ret < 0) {
336                 goto fail;
337             }
338 
339             memcpy(l2_slice, old_slice, slice_size2);
340 
341             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
342         }
343 
344         /* write the l2 slice to the file */
345         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
346 
347         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
348         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
349         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
350     }
351 
352     ret = qcow2_cache_flush(bs, s->l2_table_cache);
353     if (ret < 0) {
354         goto fail;
355     }
356 
357     /* update the L1 entry */
358     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
359     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
360     ret = qcow2_write_l1_entry(bs, l1_index);
361     if (ret < 0) {
362         goto fail;
363     }
364 
365     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
366     return 0;
367 
368 fail:
369     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
370     if (l2_slice != NULL) {
371         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
372     }
373     s->l1_table[l1_index] = old_l2_offset;
374     if (l2_offset > 0) {
375         qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
376                             QCOW2_DISCARD_ALWAYS);
377     }
378     return ret;
379 }
380 
381 /*
382  * For a given L2 entry, count the number of contiguous subclusters of
383  * the same type starting from @sc_from. Compressed clusters are
384  * treated as if they were divided into subclusters of size
385  * s->subcluster_size.
386  *
387  * Return the number of contiguous subclusters and set @type to the
388  * subcluster type.
389  *
390  * If the L2 entry is invalid return -errno and set @type to
391  * QCOW2_SUBCLUSTER_INVALID.
392  */
393 static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
394                                            uint64_t l2_entry,
395                                            uint64_t l2_bitmap,
396                                            unsigned sc_from,
397                                            QCow2SubclusterType *type)
398 {
399     BDRVQcow2State *s = bs->opaque;
400     uint32_t val;
401 
402     *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
403 
404     if (*type == QCOW2_SUBCLUSTER_INVALID) {
405         return -EINVAL;
406     } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
407         return s->subclusters_per_cluster - sc_from;
408     }
409 
410     switch (*type) {
411     case QCOW2_SUBCLUSTER_NORMAL:
412         val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
413         return cto32(val) - sc_from;
414 
415     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
416     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
417         val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
418         return cto32(val) - sc_from;
419 
420     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
421     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
422         val = ((l2_bitmap >> 32) | l2_bitmap)
423             & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
424         return ctz32(val) - sc_from;
425 
426     default:
427         g_assert_not_reached();
428     }
429 }
430 
431 /*
432  * Return the number of contiguous subclusters of the exact same type
433  * in a given L2 slice, starting from cluster @l2_index, subcluster
434  * @sc_index. Allocated subclusters are required to be contiguous in
435  * the image file.
436  * At most @nb_clusters are checked (note that this means clusters,
437  * not subclusters).
438  * Compressed clusters are always processed one by one but for the
439  * purpose of this count they are treated as if they were divided into
440  * subclusters of size s->subcluster_size.
441  * On failure return -errno and update @l2_index to point to the
442  * invalid entry.
443  */
444 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
445                                         unsigned sc_index, uint64_t *l2_slice,
446                                         unsigned *l2_index)
447 {
448     BDRVQcow2State *s = bs->opaque;
449     int i, count = 0;
450     bool check_offset = false;
451     uint64_t expected_offset = 0;
452     QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
453 
454     assert(*l2_index + nb_clusters <= s->l2_slice_size);
455 
456     for (i = 0; i < nb_clusters; i++) {
457         unsigned first_sc = (i == 0) ? sc_index : 0;
458         uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
459         uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
460         int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
461                                                   first_sc, &type);
462         if (ret < 0) {
463             *l2_index += i; /* Point to the invalid entry */
464             return -EIO;
465         }
466         if (i == 0) {
467             if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
468                 /* Compressed clusters are always processed one by one */
469                 return ret;
470             }
471             expected_type = type;
472             expected_offset = l2_entry & L2E_OFFSET_MASK;
473             check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
474                             type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
475                             type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
476         } else if (type != expected_type) {
477             break;
478         } else if (check_offset) {
479             expected_offset += s->cluster_size;
480             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
481                 break;
482             }
483         }
484         count += ret;
485         /* Stop if there are type changes before the end of the cluster */
486         if (first_sc + ret < s->subclusters_per_cluster) {
487             break;
488         }
489     }
490 
491     return count;
492 }
493 
494 static int coroutine_fn GRAPH_RDLOCK
495 do_perform_cow_read(BlockDriverState *bs, uint64_t src_cluster_offset,
496                     unsigned offset_in_cluster, QEMUIOVector *qiov)
497 {
498     int ret;
499 
500     if (qiov->size == 0) {
501         return 0;
502     }
503 
504     BLKDBG_CO_EVENT(bs->file, BLKDBG_COW_READ);
505 
506     if (!bs->drv) {
507         return -ENOMEDIUM;
508     }
509 
510     /*
511      * We never deal with requests that don't satisfy
512      * bdrv_check_qiov_request(), and aligning requests to clusters never
513      * breaks this condition. So, do some assertions before calling
514      * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
515      */
516     assert(src_cluster_offset <= INT64_MAX);
517     assert(src_cluster_offset + offset_in_cluster <= INT64_MAX);
518     /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
519     assert((uint64_t)qiov->size <= INT64_MAX);
520     bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size,
521                             qiov, 0, &error_abort);
522     /*
523      * Call .bdrv_co_readv() directly instead of using the public block-layer
524      * interface.  This avoids double I/O throttling and request tracking,
525      * which can lead to deadlock when block layer copy-on-read is enabled.
526      */
527     ret = bs->drv->bdrv_co_preadv_part(bs,
528                                        src_cluster_offset + offset_in_cluster,
529                                        qiov->size, qiov, 0, 0);
530     if (ret < 0) {
531         return ret;
532     }
533 
534     return 0;
535 }
536 
537 static int coroutine_fn GRAPH_RDLOCK
538 do_perform_cow_write(BlockDriverState *bs, uint64_t cluster_offset,
539                      unsigned offset_in_cluster, QEMUIOVector *qiov)
540 {
541     BDRVQcow2State *s = bs->opaque;
542     int ret;
543 
544     if (qiov->size == 0) {
545         return 0;
546     }
547 
548     ret = qcow2_pre_write_overlap_check(bs, 0,
549             cluster_offset + offset_in_cluster, qiov->size, true);
550     if (ret < 0) {
551         return ret;
552     }
553 
554     BLKDBG_CO_EVENT(bs->file, BLKDBG_COW_WRITE);
555     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
556                           qiov->size, qiov, 0);
557     if (ret < 0) {
558         return ret;
559     }
560 
561     return 0;
562 }
563 
564 
565 /*
566  * get_host_offset
567  *
568  * For a given offset of the virtual disk find the equivalent host
569  * offset in the qcow2 file and store it in *host_offset. Neither
570  * offset needs to be aligned to a cluster boundary.
571  *
572  * If the cluster is unallocated then *host_offset will be 0.
573  * If the cluster is compressed then *host_offset will contain the l2 entry.
574  *
575  * On entry, *bytes is the maximum number of contiguous bytes starting at
576  * offset that we are interested in.
577  *
578  * On exit, *bytes is the number of bytes starting at offset that have the same
579  * subcluster type and (if applicable) are stored contiguously in the image
580  * file. The subcluster type is stored in *subcluster_type.
581  * Compressed clusters are always processed one by one.
582  *
583  * Returns 0 on success, -errno in error cases.
584  */
585 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
586                           unsigned int *bytes, uint64_t *host_offset,
587                           QCow2SubclusterType *subcluster_type)
588 {
589     BDRVQcow2State *s = bs->opaque;
590     unsigned int l2_index, sc_index;
591     uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
592     int sc;
593     unsigned int offset_in_cluster;
594     uint64_t bytes_available, bytes_needed, nb_clusters;
595     QCow2SubclusterType type;
596     int ret;
597 
598     offset_in_cluster = offset_into_cluster(s, offset);
599     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
600 
601     /* compute how many bytes there are between the start of the cluster
602      * containing offset and the end of the l2 slice that contains
603      * the entry pointing to it */
604     bytes_available =
605         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
606         << s->cluster_bits;
607 
608     if (bytes_needed > bytes_available) {
609         bytes_needed = bytes_available;
610     }
611 
612     *host_offset = 0;
613 
614     /* seek to the l2 offset in the l1 table */
615 
616     l1_index = offset_to_l1_index(s, offset);
617     if (l1_index >= s->l1_size) {
618         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
619         goto out;
620     }
621 
622     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
623     if (!l2_offset) {
624         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
625         goto out;
626     }
627 
628     if (offset_into_cluster(s, l2_offset)) {
629         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
630                                 " unaligned (L1 index: %#" PRIx64 ")",
631                                 l2_offset, l1_index);
632         return -EIO;
633     }
634 
635     /* load the l2 slice in memory */
636 
637     ret = l2_load(bs, offset, l2_offset, &l2_slice);
638     if (ret < 0) {
639         return ret;
640     }
641 
642     /* find the cluster offset for the given disk offset */
643 
644     l2_index = offset_to_l2_slice_index(s, offset);
645     sc_index = offset_to_sc_index(s, offset);
646     l2_entry = get_l2_entry(s, l2_slice, l2_index);
647     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
648 
649     nb_clusters = size_to_clusters(s, bytes_needed);
650     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
651      * integers; the minimum cluster size is 512, so this assertion is always
652      * true */
653     assert(nb_clusters <= INT_MAX);
654 
655     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
656     if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
657                                 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
658         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
659                                 " in pre-v3 image (L2 offset: %#" PRIx64
660                                 ", L2 index: %#x)", l2_offset, l2_index);
661         ret = -EIO;
662         goto fail;
663     }
664     switch (type) {
665     case QCOW2_SUBCLUSTER_INVALID:
666         break; /* This is handled by count_contiguous_subclusters() below */
667     case QCOW2_SUBCLUSTER_COMPRESSED:
668         if (has_data_file(bs)) {
669             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
670                                     "entry found in image with external data "
671                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
672                                     "%#x)", l2_offset, l2_index);
673             ret = -EIO;
674             goto fail;
675         }
676         *host_offset = l2_entry;
677         break;
678     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
679     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
680         break;
681     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
682     case QCOW2_SUBCLUSTER_NORMAL:
683     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
684         uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
685         *host_offset = host_cluster_offset + offset_in_cluster;
686         if (offset_into_cluster(s, host_cluster_offset)) {
687             qcow2_signal_corruption(bs, true, -1, -1,
688                                     "Cluster allocation offset %#"
689                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
690                                     ", L2 index: %#x)", host_cluster_offset,
691                                     l2_offset, l2_index);
692             ret = -EIO;
693             goto fail;
694         }
695         if (has_data_file(bs) && *host_offset != offset) {
696             qcow2_signal_corruption(bs, true, -1, -1,
697                                     "External data file host cluster offset %#"
698                                     PRIx64 " does not match guest cluster "
699                                     "offset: %#" PRIx64
700                                     ", L2 index: %#x)", host_cluster_offset,
701                                     offset - offset_in_cluster, l2_index);
702             ret = -EIO;
703             goto fail;
704         }
705         break;
706     }
707     default:
708         abort();
709     }
710 
711     sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
712                                       l2_slice, &l2_index);
713     if (sc < 0) {
714         qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
715                                 " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
716                                 l2_offset, l2_index);
717         ret = -EIO;
718         goto fail;
719     }
720     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
721 
722     bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
723 
724 out:
725     if (bytes_available > bytes_needed) {
726         bytes_available = bytes_needed;
727     }
728 
729     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
730      * subtracting offset_in_cluster will therefore definitely yield something
731      * not exceeding UINT_MAX */
732     assert(bytes_available - offset_in_cluster <= UINT_MAX);
733     *bytes = bytes_available - offset_in_cluster;
734 
735     *subcluster_type = type;
736 
737     return 0;
738 
739 fail:
740     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
741     return ret;
742 }
743 
744 /*
745  * get_cluster_table
746  *
747  * for a given disk offset, load (and allocate if needed)
748  * the appropriate slice of its l2 table.
749  *
750  * the cluster index in the l2 slice is given to the caller.
751  *
752  * Returns 0 on success, -errno in failure case
753  */
754 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
755                              uint64_t **new_l2_slice,
756                              int *new_l2_index)
757 {
758     BDRVQcow2State *s = bs->opaque;
759     unsigned int l2_index;
760     uint64_t l1_index, l2_offset;
761     uint64_t *l2_slice = NULL;
762     int ret;
763 
764     /* seek to the l2 offset in the l1 table */
765 
766     l1_index = offset_to_l1_index(s, offset);
767     if (l1_index >= s->l1_size) {
768         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
769         if (ret < 0) {
770             return ret;
771         }
772     }
773 
774     assert(l1_index < s->l1_size);
775     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
776     if (offset_into_cluster(s, l2_offset)) {
777         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
778                                 " unaligned (L1 index: %#" PRIx64 ")",
779                                 l2_offset, l1_index);
780         return -EIO;
781     }
782 
783     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
784         /* First allocate a new L2 table (and do COW if needed) */
785         ret = l2_allocate(bs, l1_index);
786         if (ret < 0) {
787             return ret;
788         }
789 
790         /* Then decrease the refcount of the old table */
791         if (l2_offset) {
792             qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
793                                 QCOW2_DISCARD_OTHER);
794         }
795 
796         /* Get the offset of the newly-allocated l2 table */
797         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
798         assert(offset_into_cluster(s, l2_offset) == 0);
799     }
800 
801     /* load the l2 slice in memory */
802     ret = l2_load(bs, offset, l2_offset, &l2_slice);
803     if (ret < 0) {
804         return ret;
805     }
806 
807     /* find the cluster offset for the given disk offset */
808 
809     l2_index = offset_to_l2_slice_index(s, offset);
810 
811     *new_l2_slice = l2_slice;
812     *new_l2_index = l2_index;
813 
814     return 0;
815 }
816 
817 /*
818  * alloc_compressed_cluster_offset
819  *
820  * For a given offset on the virtual disk, allocate a new compressed cluster
821  * and put the host offset of the cluster into *host_offset. If a cluster is
822  * already allocated at the offset, return an error.
823  *
824  * Return 0 on success and -errno in error cases
825  */
826 int coroutine_fn GRAPH_RDLOCK
827 qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, uint64_t offset,
828                                       int compressed_size, uint64_t *host_offset)
829 {
830     BDRVQcow2State *s = bs->opaque;
831     int l2_index, ret;
832     uint64_t *l2_slice;
833     int64_t cluster_offset;
834     int nb_csectors;
835 
836     if (has_data_file(bs)) {
837         return 0;
838     }
839 
840     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
841     if (ret < 0) {
842         return ret;
843     }
844 
845     /* Compression can't overwrite anything. Fail if the cluster was already
846      * allocated. */
847     cluster_offset = get_l2_entry(s, l2_slice, l2_index);
848     if (cluster_offset & L2E_OFFSET_MASK) {
849         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
850         return -EIO;
851     }
852 
853     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
854     if (cluster_offset < 0) {
855         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
856         return cluster_offset;
857     }
858 
859     nb_csectors =
860         (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
861         (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
862 
863     /* The offset and size must fit in their fields of the L2 table entry */
864     assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
865     assert((nb_csectors & s->csize_mask) == nb_csectors);
866 
867     cluster_offset |= QCOW_OFLAG_COMPRESSED |
868                       ((uint64_t)nb_csectors << s->csize_shift);
869 
870     /* update L2 table */
871 
872     /* compressed clusters never have the copied flag */
873 
874     BLKDBG_CO_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
875     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
876     set_l2_entry(s, l2_slice, l2_index, cluster_offset);
877     if (has_subclusters(s)) {
878         set_l2_bitmap(s, l2_slice, l2_index, 0);
879     }
880     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
881 
882     *host_offset = cluster_offset & s->cluster_offset_mask;
883     return 0;
884 }
885 
886 static int coroutine_fn GRAPH_RDLOCK
887 perform_cow(BlockDriverState *bs, QCowL2Meta *m)
888 {
889     BDRVQcow2State *s = bs->opaque;
890     Qcow2COWRegion *start = &m->cow_start;
891     Qcow2COWRegion *end = &m->cow_end;
892     unsigned buffer_size;
893     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
894     bool merge_reads;
895     uint8_t *start_buffer, *end_buffer;
896     QEMUIOVector qiov;
897     int ret;
898 
899     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
900     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
901     assert(start->offset + start->nb_bytes <= end->offset);
902 
903     if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
904         return 0;
905     }
906 
907     /* If we have to read both the start and end COW regions and the
908      * middle region is not too large then perform just one read
909      * operation */
910     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
911     if (merge_reads) {
912         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
913     } else {
914         /* If we have to do two reads, add some padding in the middle
915          * if necessary to make sure that the end region is optimally
916          * aligned. */
917         size_t align = bdrv_opt_mem_align(bs);
918         assert(align > 0 && align <= UINT_MAX);
919         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
920                UINT_MAX - end->nb_bytes);
921         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
922     }
923 
924     /* Reserve a buffer large enough to store all the data that we're
925      * going to read */
926     start_buffer = qemu_try_blockalign(bs, buffer_size);
927     if (start_buffer == NULL) {
928         return -ENOMEM;
929     }
930     /* The part of the buffer where the end region is located */
931     end_buffer = start_buffer + buffer_size - end->nb_bytes;
932 
933     qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
934                                 qemu_iovec_subvec_niov(m->data_qiov,
935                                                        m->data_qiov_offset,
936                                                        data_bytes)
937                                 : 0));
938 
939     qemu_co_mutex_unlock(&s->lock);
940     /* First we read the existing data from both COW regions. We
941      * either read the whole region in one go, or the start and end
942      * regions separately. */
943     if (merge_reads) {
944         qemu_iovec_add(&qiov, start_buffer, buffer_size);
945         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
946     } else {
947         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
948         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
949         if (ret < 0) {
950             goto fail;
951         }
952 
953         qemu_iovec_reset(&qiov);
954         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
955         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
956     }
957     if (ret < 0) {
958         goto fail;
959     }
960 
961     /* Encrypt the data if necessary before writing it */
962     if (bs->encrypted) {
963         ret = qcow2_co_encrypt(bs,
964                                m->alloc_offset + start->offset,
965                                m->offset + start->offset,
966                                start_buffer, start->nb_bytes);
967         if (ret < 0) {
968             goto fail;
969         }
970 
971         ret = qcow2_co_encrypt(bs,
972                                m->alloc_offset + end->offset,
973                                m->offset + end->offset,
974                                end_buffer, end->nb_bytes);
975         if (ret < 0) {
976             goto fail;
977         }
978     }
979 
980     /* And now we can write everything. If we have the guest data we
981      * can write everything in one single operation */
982     if (m->data_qiov) {
983         qemu_iovec_reset(&qiov);
984         if (start->nb_bytes) {
985             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
986         }
987         qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
988         if (end->nb_bytes) {
989             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
990         }
991         /* NOTE: we have a write_aio blkdebug event here followed by
992          * a cow_write one in do_perform_cow_write(), but there's only
993          * one single I/O operation */
994         BLKDBG_CO_EVENT(bs->file, BLKDBG_WRITE_AIO);
995         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
996     } else {
997         /* If there's no guest data then write both COW regions separately */
998         qemu_iovec_reset(&qiov);
999         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
1000         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
1001         if (ret < 0) {
1002             goto fail;
1003         }
1004 
1005         qemu_iovec_reset(&qiov);
1006         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
1007         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
1008     }
1009 
1010 fail:
1011     qemu_co_mutex_lock(&s->lock);
1012 
1013     /*
1014      * Before we update the L2 table to actually point to the new cluster, we
1015      * need to be sure that the refcounts have been increased and COW was
1016      * handled.
1017      */
1018     if (ret == 0) {
1019         qcow2_cache_depends_on_flush(s->l2_table_cache);
1020     }
1021 
1022     qemu_vfree(start_buffer);
1023     qemu_iovec_destroy(&qiov);
1024     return ret;
1025 }
1026 
1027 int coroutine_fn qcow2_alloc_cluster_link_l2(BlockDriverState *bs,
1028                                              QCowL2Meta *m)
1029 {
1030     BDRVQcow2State *s = bs->opaque;
1031     int i, j = 0, l2_index, ret;
1032     uint64_t *old_cluster, *l2_slice;
1033     uint64_t cluster_offset = m->alloc_offset;
1034 
1035     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1036     assert(m->nb_clusters > 0);
1037 
1038     old_cluster = g_try_new(uint64_t, m->nb_clusters);
1039     if (old_cluster == NULL) {
1040         ret = -ENOMEM;
1041         goto err;
1042     }
1043 
1044     /* copy content of unmodified sectors */
1045     ret = perform_cow(bs, m);
1046     if (ret < 0) {
1047         goto err;
1048     }
1049 
1050     /* Update L2 table. */
1051     if (s->use_lazy_refcounts) {
1052         qcow2_mark_dirty(bs);
1053     }
1054     if (qcow2_need_accurate_refcounts(s)) {
1055         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1056                                    s->refcount_block_cache);
1057     }
1058 
1059     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1060     if (ret < 0) {
1061         goto err;
1062     }
1063     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1064 
1065     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1066     assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1067            m->nb_clusters << s->cluster_bits);
1068     for (i = 0; i < m->nb_clusters; i++) {
1069         uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1070         /* if two concurrent writes happen to the same unallocated cluster
1071          * each write allocates separate cluster and writes data concurrently.
1072          * The first one to complete updates l2 table with pointer to its
1073          * cluster the second one has to do RMW (which is done above by
1074          * perform_cow()), update l2 table with its cluster pointer and free
1075          * old cluster. This is what this loop does */
1076         if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1077             old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1078         }
1079 
1080         /* The offset must fit in the offset field of the L2 table entry */
1081         assert((offset & L2E_OFFSET_MASK) == offset);
1082 
1083         set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1084 
1085         /* Update bitmap with the subclusters that were just written */
1086         if (has_subclusters(s) && !m->prealloc) {
1087             uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1088             unsigned written_from = m->cow_start.offset;
1089             unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1090             int first_sc, last_sc;
1091             /* Narrow written_from and written_to down to the current cluster */
1092             written_from = MAX(written_from, i << s->cluster_bits);
1093             written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
1094             assert(written_from < written_to);
1095             first_sc = offset_to_sc_index(s, written_from);
1096             last_sc  = offset_to_sc_index(s, written_to - 1);
1097             l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1098             l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1099             set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1100         }
1101      }
1102 
1103 
1104     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1105 
1106     /*
1107      * If this was a COW, we need to decrease the refcount of the old cluster.
1108      *
1109      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1110      * clusters), the next write will reuse them anyway.
1111      */
1112     if (!m->keep_old_clusters && j != 0) {
1113         for (i = 0; i < j; i++) {
1114             qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1115         }
1116     }
1117 
1118     ret = 0;
1119 err:
1120     g_free(old_cluster);
1121     return ret;
1122  }
1123 
1124 /**
1125  * Frees the allocated clusters because the request failed and they won't
1126  * actually be linked.
1127  */
1128 void coroutine_fn qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1129 {
1130     BDRVQcow2State *s = bs->opaque;
1131     if (!has_data_file(bs) && !m->keep_old_clusters) {
1132         qcow2_free_clusters(bs, m->alloc_offset,
1133                             m->nb_clusters << s->cluster_bits,
1134                             QCOW2_DISCARD_NEVER);
1135     }
1136 }
1137 
1138 /*
1139  * For a given write request, create a new QCowL2Meta structure, add
1140  * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1141  * request does not need copy-on-write or changes to the L2 metadata
1142  * then this function does nothing.
1143  *
1144  * @host_cluster_offset points to the beginning of the first cluster.
1145  *
1146  * @guest_offset and @bytes indicate the offset and length of the
1147  * request.
1148  *
1149  * @l2_slice contains the L2 entries of all clusters involved in this
1150  * write request.
1151  *
1152  * If @keep_old is true it means that the clusters were already
1153  * allocated and will be overwritten. If false then the clusters are
1154  * new and we have to decrease the reference count of the old ones.
1155  *
1156  * Returns 0 on success, -errno on failure.
1157  */
1158 static int coroutine_fn calculate_l2_meta(BlockDriverState *bs,
1159                                           uint64_t host_cluster_offset,
1160                                           uint64_t guest_offset, unsigned bytes,
1161                                           uint64_t *l2_slice, QCowL2Meta **m,
1162                                           bool keep_old)
1163 {
1164     BDRVQcow2State *s = bs->opaque;
1165     int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1166     uint64_t l2_entry, l2_bitmap;
1167     unsigned cow_start_from, cow_end_to;
1168     unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1169     unsigned cow_end_from = cow_start_to + bytes;
1170     unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1171     QCowL2Meta *old_m = *m;
1172     QCow2SubclusterType type;
1173     int i;
1174     bool skip_cow = keep_old;
1175 
1176     assert(nb_clusters <= s->l2_slice_size - l2_index);
1177 
1178     /* Check the type of all affected subclusters */
1179     for (i = 0; i < nb_clusters; i++) {
1180         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1181         l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1182         if (skip_cow) {
1183             unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1184             unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1185             int first_sc = offset_to_sc_index(s, write_from);
1186             int last_sc = offset_to_sc_index(s, write_to - 1);
1187             int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1188                                                       first_sc, &type);
1189             /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1190             if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1191                 skip_cow = false;
1192             }
1193         } else {
1194             /* If we can't skip the cow we can still look for invalid entries */
1195             type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1196         }
1197         if (type == QCOW2_SUBCLUSTER_INVALID) {
1198             int l1_index = offset_to_l1_index(s, guest_offset);
1199             uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1200             qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1201                                     "entry found (L2 offset: %#" PRIx64
1202                                     ", L2 index: %#x)",
1203                                     l2_offset, l2_index + i);
1204             return -EIO;
1205         }
1206     }
1207 
1208     if (skip_cow) {
1209         return 0;
1210     }
1211 
1212     /* Get the L2 entry of the first cluster */
1213     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1214     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1215     sc_index = offset_to_sc_index(s, guest_offset);
1216     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1217 
1218     if (!keep_old) {
1219         switch (type) {
1220         case QCOW2_SUBCLUSTER_COMPRESSED:
1221             cow_start_from = 0;
1222             break;
1223         case QCOW2_SUBCLUSTER_NORMAL:
1224         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1225         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1226             if (has_subclusters(s)) {
1227                 /* Skip all leading zero and unallocated subclusters */
1228                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1229                 cow_start_from =
1230                     MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1231             } else {
1232                 cow_start_from = 0;
1233             }
1234             break;
1235         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1236         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1237             cow_start_from = sc_index << s->subcluster_bits;
1238             break;
1239         default:
1240             g_assert_not_reached();
1241         }
1242     } else {
1243         switch (type) {
1244         case QCOW2_SUBCLUSTER_NORMAL:
1245             cow_start_from = cow_start_to;
1246             break;
1247         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1248         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1249             cow_start_from = sc_index << s->subcluster_bits;
1250             break;
1251         default:
1252             g_assert_not_reached();
1253         }
1254     }
1255 
1256     /* Get the L2 entry of the last cluster */
1257     l2_index += nb_clusters - 1;
1258     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1259     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1260     sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1261     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1262 
1263     if (!keep_old) {
1264         switch (type) {
1265         case QCOW2_SUBCLUSTER_COMPRESSED:
1266             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1267             break;
1268         case QCOW2_SUBCLUSTER_NORMAL:
1269         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1270         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1271             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1272             if (has_subclusters(s)) {
1273                 /* Skip all trailing zero and unallocated subclusters */
1274                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1275                 cow_end_to -=
1276                     MIN(s->subclusters_per_cluster - sc_index - 1,
1277                         clz32(alloc_bitmap)) << s->subcluster_bits;
1278             }
1279             break;
1280         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1281         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1282             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1283             break;
1284         default:
1285             g_assert_not_reached();
1286         }
1287     } else {
1288         switch (type) {
1289         case QCOW2_SUBCLUSTER_NORMAL:
1290             cow_end_to = cow_end_from;
1291             break;
1292         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1293         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1294             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1295             break;
1296         default:
1297             g_assert_not_reached();
1298         }
1299     }
1300 
1301     *m = g_malloc0(sizeof(**m));
1302     **m = (QCowL2Meta) {
1303         .next           = old_m,
1304 
1305         .alloc_offset   = host_cluster_offset,
1306         .offset         = start_of_cluster(s, guest_offset),
1307         .nb_clusters    = nb_clusters,
1308 
1309         .keep_old_clusters = keep_old,
1310 
1311         .cow_start = {
1312             .offset     = cow_start_from,
1313             .nb_bytes   = cow_start_to - cow_start_from,
1314         },
1315         .cow_end = {
1316             .offset     = cow_end_from,
1317             .nb_bytes   = cow_end_to - cow_end_from,
1318         },
1319     };
1320 
1321     qemu_co_queue_init(&(*m)->dependent_requests);
1322     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1323 
1324     return 0;
1325 }
1326 
1327 /*
1328  * Returns true if writing to the cluster pointed to by @l2_entry
1329  * requires a new allocation (that is, if the cluster is unallocated
1330  * or has refcount > 1 and therefore cannot be written in-place).
1331  */
1332 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1333 {
1334     switch (qcow2_get_cluster_type(bs, l2_entry)) {
1335     case QCOW2_CLUSTER_NORMAL:
1336     case QCOW2_CLUSTER_ZERO_ALLOC:
1337         if (l2_entry & QCOW_OFLAG_COPIED) {
1338             return false;
1339         }
1340         /* fallthrough */
1341     case QCOW2_CLUSTER_UNALLOCATED:
1342     case QCOW2_CLUSTER_COMPRESSED:
1343     case QCOW2_CLUSTER_ZERO_PLAIN:
1344         return true;
1345     default:
1346         abort();
1347     }
1348 }
1349 
1350 /*
1351  * Returns the number of contiguous clusters that can be written to
1352  * using one single write request, starting from @l2_index.
1353  * At most @nb_clusters are checked.
1354  *
1355  * If @new_alloc is true this counts clusters that are either
1356  * unallocated, or allocated but with refcount > 1 (so they need to be
1357  * newly allocated and COWed).
1358  *
1359  * If @new_alloc is false this counts clusters that are already
1360  * allocated and can be overwritten in-place (this includes clusters
1361  * of type QCOW2_CLUSTER_ZERO_ALLOC).
1362  */
1363 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1364                                        uint64_t *l2_slice, int l2_index,
1365                                        bool new_alloc)
1366 {
1367     BDRVQcow2State *s = bs->opaque;
1368     uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1369     uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1370     int i;
1371 
1372     for (i = 0; i < nb_clusters; i++) {
1373         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1374         if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1375             break;
1376         }
1377         if (!new_alloc) {
1378             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1379                 break;
1380             }
1381             expected_offset += s->cluster_size;
1382         }
1383     }
1384 
1385     assert(i <= nb_clusters);
1386     return i;
1387 }
1388 
1389 /*
1390  * Check if there already is an AIO write request in flight which allocates
1391  * the same cluster. In this case we need to wait until the previous
1392  * request has completed and updated the L2 table accordingly.
1393  *
1394  * Returns:
1395  *   0       if there was no dependency. *cur_bytes indicates the number of
1396  *           bytes from guest_offset that can be read before the next
1397  *           dependency must be processed (or the request is complete)
1398  *
1399  *   -EAGAIN if we had to wait for another request, previously gathered
1400  *           information on cluster allocation may be invalid now. The caller
1401  *           must start over anyway, so consider *cur_bytes undefined.
1402  */
1403 static int coroutine_fn handle_dependencies(BlockDriverState *bs,
1404                                             uint64_t guest_offset,
1405                                             uint64_t *cur_bytes, QCowL2Meta **m)
1406 {
1407     BDRVQcow2State *s = bs->opaque;
1408     QCowL2Meta *old_alloc;
1409     uint64_t bytes = *cur_bytes;
1410 
1411     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1412 
1413         uint64_t start = guest_offset;
1414         uint64_t end = start + bytes;
1415         uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1416         uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1417 
1418         if (end <= old_start || start >= old_end) {
1419             /* No intersection */
1420             continue;
1421         }
1422 
1423         if (old_alloc->keep_old_clusters &&
1424             (end <= l2meta_cow_start(old_alloc) ||
1425              start >= l2meta_cow_end(old_alloc)))
1426         {
1427             /*
1428              * Clusters intersect but COW areas don't. And cluster itself is
1429              * already allocated. So, there is no actual conflict.
1430              */
1431             continue;
1432         }
1433 
1434         /* Conflict */
1435 
1436         if (start < old_start) {
1437             /* Stop at the start of a running allocation */
1438             bytes = old_start - start;
1439         } else {
1440             bytes = 0;
1441         }
1442 
1443         /*
1444          * Stop if an l2meta already exists. After yielding, it wouldn't
1445          * be valid any more, so we'd have to clean up the old L2Metas
1446          * and deal with requests depending on them before starting to
1447          * gather new ones. Not worth the trouble.
1448          */
1449         if (bytes == 0 && *m) {
1450             *cur_bytes = 0;
1451             return 0;
1452         }
1453 
1454         if (bytes == 0) {
1455             /*
1456              * Wait for the dependency to complete. We need to recheck
1457              * the free/allocated clusters when we continue.
1458              */
1459             qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1460             return -EAGAIN;
1461         }
1462     }
1463 
1464     /* Make sure that existing clusters and new allocations are only used up to
1465      * the next dependency if we shortened the request above */
1466     *cur_bytes = bytes;
1467 
1468     return 0;
1469 }
1470 
1471 /*
1472  * Checks how many already allocated clusters that don't require a new
1473  * allocation there are at the given guest_offset (up to *bytes).
1474  * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1475  * beginning at this host offset are counted.
1476  *
1477  * Note that guest_offset may not be cluster aligned. In this case, the
1478  * returned *host_offset points to exact byte referenced by guest_offset and
1479  * therefore isn't cluster aligned as well.
1480  *
1481  * Returns:
1482  *   0:     if no allocated clusters are available at the given offset.
1483  *          *bytes is normally unchanged. It is set to 0 if the cluster
1484  *          is allocated and can be overwritten in-place but doesn't have
1485  *          the right physical offset.
1486  *
1487  *   1:     if allocated clusters that can be overwritten in place are
1488  *          available at the requested offset. *bytes may have decreased
1489  *          and describes the length of the area that can be written to.
1490  *
1491  *  -errno: in error cases
1492  */
1493 static int coroutine_fn handle_copied(BlockDriverState *bs,
1494     uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
1495     QCowL2Meta **m)
1496 {
1497     BDRVQcow2State *s = bs->opaque;
1498     int l2_index;
1499     uint64_t l2_entry, cluster_offset;
1500     uint64_t *l2_slice;
1501     uint64_t nb_clusters;
1502     unsigned int keep_clusters;
1503     int ret;
1504 
1505     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1506                               *bytes);
1507 
1508     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1509                                       == offset_into_cluster(s, *host_offset));
1510 
1511     /*
1512      * Calculate the number of clusters to look for. We stop at L2 slice
1513      * boundaries to keep things simple.
1514      */
1515     nb_clusters =
1516         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1517 
1518     l2_index = offset_to_l2_slice_index(s, guest_offset);
1519     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1520     /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1521     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1522 
1523     /* Find L2 entry for the first involved cluster */
1524     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1525     if (ret < 0) {
1526         return ret;
1527     }
1528 
1529     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1530     cluster_offset = l2_entry & L2E_OFFSET_MASK;
1531 
1532     if (!cluster_needs_new_alloc(bs, l2_entry)) {
1533         if (offset_into_cluster(s, cluster_offset)) {
1534             qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1535                                     "%#" PRIx64 " unaligned (guest offset: %#"
1536                                     PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1537                                     "Preallocated zero" : "Data",
1538                                     cluster_offset, guest_offset);
1539             ret = -EIO;
1540             goto out;
1541         }
1542 
1543         /* If a specific host_offset is required, check it */
1544         if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1545             *bytes = 0;
1546             ret = 0;
1547             goto out;
1548         }
1549 
1550         /* We keep all QCOW_OFLAG_COPIED clusters */
1551         keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1552                                                     l2_index, false);
1553         assert(keep_clusters <= nb_clusters);
1554 
1555         *bytes = MIN(*bytes,
1556                  keep_clusters * s->cluster_size
1557                  - offset_into_cluster(s, guest_offset));
1558         assert(*bytes != 0);
1559 
1560         ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1561                                 *bytes, l2_slice, m, true);
1562         if (ret < 0) {
1563             goto out;
1564         }
1565 
1566         ret = 1;
1567     } else {
1568         ret = 0;
1569     }
1570 
1571     /* Cleanup */
1572 out:
1573     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1574 
1575     /* Only return a host offset if we actually made progress. Otherwise we
1576      * would make requirements for handle_alloc() that it can't fulfill */
1577     if (ret > 0) {
1578         *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1579     }
1580 
1581     return ret;
1582 }
1583 
1584 /*
1585  * Allocates new clusters for the given guest_offset.
1586  *
1587  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1588  * contain the number of clusters that have been allocated and are contiguous
1589  * in the image file.
1590  *
1591  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1592  * at which the new clusters must start. *nb_clusters can be 0 on return in
1593  * this case if the cluster at host_offset is already in use. If *host_offset
1594  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1595  *
1596  * *host_offset is updated to contain the offset into the image file at which
1597  * the first allocated cluster starts.
1598  *
1599  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1600  * function has been waiting for another request and the allocation must be
1601  * restarted, but the whole request should not be failed.
1602  */
1603 static int coroutine_fn do_alloc_cluster_offset(BlockDriverState *bs,
1604                                                 uint64_t guest_offset,
1605                                                 uint64_t *host_offset,
1606                                                 uint64_t *nb_clusters)
1607 {
1608     BDRVQcow2State *s = bs->opaque;
1609 
1610     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1611                                          *host_offset, *nb_clusters);
1612 
1613     if (has_data_file(bs)) {
1614         assert(*host_offset == INV_OFFSET ||
1615                *host_offset == start_of_cluster(s, guest_offset));
1616         *host_offset = start_of_cluster(s, guest_offset);
1617         return 0;
1618     }
1619 
1620     /* Allocate new clusters */
1621     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1622     if (*host_offset == INV_OFFSET) {
1623         int64_t cluster_offset =
1624             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1625         if (cluster_offset < 0) {
1626             return cluster_offset;
1627         }
1628         *host_offset = cluster_offset;
1629         return 0;
1630     } else {
1631         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1632         if (ret < 0) {
1633             return ret;
1634         }
1635         *nb_clusters = ret;
1636         return 0;
1637     }
1638 }
1639 
1640 /*
1641  * Allocates new clusters for an area that is either still unallocated or
1642  * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1643  * clusters are only allocated if the new allocation can match the specified
1644  * host offset.
1645  *
1646  * Note that guest_offset may not be cluster aligned. In this case, the
1647  * returned *host_offset points to exact byte referenced by guest_offset and
1648  * therefore isn't cluster aligned as well.
1649  *
1650  * Returns:
1651  *   0:     if no clusters could be allocated. *bytes is set to 0,
1652  *          *host_offset is left unchanged.
1653  *
1654  *   1:     if new clusters were allocated. *bytes may be decreased if the
1655  *          new allocation doesn't cover all of the requested area.
1656  *          *host_offset is updated to contain the host offset of the first
1657  *          newly allocated cluster.
1658  *
1659  *  -errno: in error cases
1660  */
1661 static int coroutine_fn handle_alloc(BlockDriverState *bs,
1662     uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
1663     QCowL2Meta **m)
1664 {
1665     BDRVQcow2State *s = bs->opaque;
1666     int l2_index;
1667     uint64_t *l2_slice;
1668     uint64_t nb_clusters;
1669     int ret;
1670 
1671     uint64_t alloc_cluster_offset;
1672 
1673     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1674                              *bytes);
1675     assert(*bytes > 0);
1676 
1677     /*
1678      * Calculate the number of clusters to look for. We stop at L2 slice
1679      * boundaries to keep things simple.
1680      */
1681     nb_clusters =
1682         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1683 
1684     l2_index = offset_to_l2_slice_index(s, guest_offset);
1685     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1686     /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1687     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1688 
1689     /* Find L2 entry for the first involved cluster */
1690     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1691     if (ret < 0) {
1692         return ret;
1693     }
1694 
1695     nb_clusters = count_single_write_clusters(bs, nb_clusters,
1696                                               l2_slice, l2_index, true);
1697 
1698     /* This function is only called when there were no non-COW clusters, so if
1699      * we can't find any unallocated or COW clusters either, something is
1700      * wrong with our code. */
1701     assert(nb_clusters > 0);
1702 
1703     /* Allocate at a given offset in the image file */
1704     alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1705         start_of_cluster(s, *host_offset);
1706     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1707                                   &nb_clusters);
1708     if (ret < 0) {
1709         goto out;
1710     }
1711 
1712     /* Can't extend contiguous allocation */
1713     if (nb_clusters == 0) {
1714         *bytes = 0;
1715         ret = 0;
1716         goto out;
1717     }
1718 
1719     assert(alloc_cluster_offset != INV_OFFSET);
1720 
1721     /*
1722      * Save info needed for meta data update.
1723      *
1724      * requested_bytes: Number of bytes from the start of the first
1725      * newly allocated cluster to the end of the (possibly shortened
1726      * before) write request.
1727      *
1728      * avail_bytes: Number of bytes from the start of the first
1729      * newly allocated to the end of the last newly allocated cluster.
1730      *
1731      * nb_bytes: The number of bytes from the start of the first
1732      * newly allocated cluster to the end of the area that the write
1733      * request actually writes to (excluding COW at the end)
1734      */
1735     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1736     int avail_bytes = nb_clusters << s->cluster_bits;
1737     int nb_bytes = MIN(requested_bytes, avail_bytes);
1738 
1739     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1740     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1741     assert(*bytes != 0);
1742 
1743     ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1744                             l2_slice, m, false);
1745     if (ret < 0) {
1746         goto out;
1747     }
1748 
1749     ret = 1;
1750 
1751 out:
1752     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1753     return ret;
1754 }
1755 
1756 /*
1757  * For a given area on the virtual disk defined by @offset and @bytes,
1758  * find the corresponding area on the qcow2 image, allocating new
1759  * clusters (or subclusters) if necessary. The result can span a
1760  * combination of allocated and previously unallocated clusters.
1761  *
1762  * Note that offset may not be cluster aligned. In this case, the returned
1763  * *host_offset points to exact byte referenced by offset and therefore
1764  * isn't cluster aligned as well.
1765  *
1766  * On return, @host_offset is set to the beginning of the requested
1767  * area. This area is guaranteed to be contiguous on the qcow2 file
1768  * but it can be smaller than initially requested. In this case @bytes
1769  * is updated with the actual size.
1770  *
1771  * If any clusters or subclusters were allocated then @m contains a
1772  * list with the information of all the affected regions. Note that
1773  * this can happen regardless of whether this function succeeds or
1774  * not. The caller is responsible for updating the L2 metadata of the
1775  * allocated clusters (on success) or freeing them (on failure), and
1776  * for clearing the contents of @m afterwards in both cases.
1777  *
1778  * If the request conflicts with another write request in flight, the coroutine
1779  * is queued and will be reentered when the dependency has completed.
1780  *
1781  * Return 0 on success and -errno in error cases
1782  */
1783 int coroutine_fn qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1784                                          unsigned int *bytes,
1785                                          uint64_t *host_offset,
1786                                          QCowL2Meta **m)
1787 {
1788     BDRVQcow2State *s = bs->opaque;
1789     uint64_t start, remaining;
1790     uint64_t cluster_offset;
1791     uint64_t cur_bytes;
1792     int ret;
1793 
1794     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1795 
1796 again:
1797     start = offset;
1798     remaining = *bytes;
1799     cluster_offset = INV_OFFSET;
1800     *host_offset = INV_OFFSET;
1801     cur_bytes = 0;
1802     *m = NULL;
1803 
1804     while (true) {
1805 
1806         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1807             *host_offset = cluster_offset;
1808         }
1809 
1810         assert(remaining >= cur_bytes);
1811 
1812         start           += cur_bytes;
1813         remaining       -= cur_bytes;
1814 
1815         if (cluster_offset != INV_OFFSET) {
1816             cluster_offset += cur_bytes;
1817         }
1818 
1819         if (remaining == 0) {
1820             break;
1821         }
1822 
1823         cur_bytes = remaining;
1824 
1825         /*
1826          * Now start gathering as many contiguous clusters as possible:
1827          *
1828          * 1. Check for overlaps with in-flight allocations
1829          *
1830          *      a) Overlap not in the first cluster -> shorten this request and
1831          *         let the caller handle the rest in its next loop iteration.
1832          *
1833          *      b) Real overlaps of two requests. Yield and restart the search
1834          *         for contiguous clusters (the situation could have changed
1835          *         while we were sleeping)
1836          *
1837          *      c) TODO: Request starts in the same cluster as the in-flight
1838          *         allocation ends. Shorten the COW of the in-fight allocation,
1839          *         set cluster_offset to write to the same cluster and set up
1840          *         the right synchronisation between the in-flight request and
1841          *         the new one.
1842          */
1843         ret = handle_dependencies(bs, start, &cur_bytes, m);
1844         if (ret == -EAGAIN) {
1845             /* Currently handle_dependencies() doesn't yield if we already had
1846              * an allocation. If it did, we would have to clean up the L2Meta
1847              * structs before starting over. */
1848             assert(*m == NULL);
1849             goto again;
1850         } else if (ret < 0) {
1851             return ret;
1852         } else if (cur_bytes == 0) {
1853             break;
1854         } else {
1855             /* handle_dependencies() may have decreased cur_bytes (shortened
1856              * the allocations below) so that the next dependency is processed
1857              * correctly during the next loop iteration. */
1858         }
1859 
1860         /*
1861          * 2. Count contiguous COPIED clusters.
1862          */
1863         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1864         if (ret < 0) {
1865             return ret;
1866         } else if (ret) {
1867             continue;
1868         } else if (cur_bytes == 0) {
1869             break;
1870         }
1871 
1872         /*
1873          * 3. If the request still hasn't completed, allocate new clusters,
1874          *    considering any cluster_offset of steps 1c or 2.
1875          */
1876         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1877         if (ret < 0) {
1878             return ret;
1879         } else if (ret) {
1880             continue;
1881         } else {
1882             assert(cur_bytes == 0);
1883             break;
1884         }
1885     }
1886 
1887     *bytes -= remaining;
1888     assert(*bytes > 0);
1889     assert(*host_offset != INV_OFFSET);
1890     assert(offset_into_cluster(s, *host_offset) ==
1891            offset_into_cluster(s, offset));
1892 
1893     return 0;
1894 }
1895 
1896 /*
1897  * This discards as many clusters of nb_clusters as possible at once (i.e.
1898  * all clusters in the same L2 slice) and returns the number of discarded
1899  * clusters.
1900  */
1901 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1902                                uint64_t nb_clusters,
1903                                enum qcow2_discard_type type, bool full_discard)
1904 {
1905     BDRVQcow2State *s = bs->opaque;
1906     uint64_t *l2_slice;
1907     int l2_index;
1908     int ret;
1909     int i;
1910 
1911     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1912     if (ret < 0) {
1913         return ret;
1914     }
1915 
1916     /* Limit nb_clusters to one L2 slice */
1917     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1918     assert(nb_clusters <= INT_MAX);
1919 
1920     for (i = 0; i < nb_clusters; i++) {
1921         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1922         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1923         uint64_t new_l2_entry = old_l2_entry;
1924         uint64_t new_l2_bitmap = old_l2_bitmap;
1925         QCow2ClusterType cluster_type =
1926             qcow2_get_cluster_type(bs, old_l2_entry);
1927         bool keep_reference = (cluster_type != QCOW2_CLUSTER_COMPRESSED) &&
1928                               !full_discard &&
1929                               (s->discard_no_unref &&
1930                                type == QCOW2_DISCARD_REQUEST);
1931 
1932         /*
1933          * If full_discard is true, the cluster should not read back as zeroes,
1934          * but rather fall through to the backing file.
1935          *
1936          * If full_discard is false, make sure that a discarded area reads back
1937          * as zeroes for v3 images (we cannot do it for v2 without actually
1938          * writing a zero-filled buffer). We can skip the operation if the
1939          * cluster is already marked as zero, or if it's unallocated and we
1940          * don't have a backing file.
1941          *
1942          * TODO We might want to use bdrv_block_status(bs) here, but we're
1943          * holding s->lock, so that doesn't work today.
1944          */
1945         if (full_discard) {
1946             new_l2_entry = new_l2_bitmap = 0;
1947         } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1948             if (has_subclusters(s)) {
1949                 if (keep_reference) {
1950                     new_l2_entry = old_l2_entry;
1951                 } else {
1952                     new_l2_entry = 0;
1953                 }
1954                 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1955             } else {
1956                 if (s->qcow_version >= 3) {
1957                     if (keep_reference) {
1958                         new_l2_entry |= QCOW_OFLAG_ZERO;
1959                     } else {
1960                         new_l2_entry = QCOW_OFLAG_ZERO;
1961                     }
1962                 } else {
1963                     new_l2_entry = 0;
1964                 }
1965             }
1966         }
1967 
1968         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1969             continue;
1970         }
1971 
1972         /* First remove L2 entries */
1973         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1974         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1975         if (has_subclusters(s)) {
1976             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1977         }
1978         if (!keep_reference) {
1979             /* Then decrease the refcount */
1980             qcow2_free_any_cluster(bs, old_l2_entry, type);
1981         } else if (s->discard_passthrough[type] &&
1982                    (cluster_type == QCOW2_CLUSTER_NORMAL ||
1983                     cluster_type == QCOW2_CLUSTER_ZERO_ALLOC)) {
1984             /* If we keep the reference, pass on the discard still */
1985             bdrv_pdiscard(s->data_file, old_l2_entry & L2E_OFFSET_MASK,
1986                           s->cluster_size);
1987        }
1988     }
1989 
1990     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1991 
1992     return nb_clusters;
1993 }
1994 
1995 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1996                           uint64_t bytes, enum qcow2_discard_type type,
1997                           bool full_discard)
1998 {
1999     BDRVQcow2State *s = bs->opaque;
2000     uint64_t end_offset = offset + bytes;
2001     uint64_t nb_clusters;
2002     int64_t cleared;
2003     int ret;
2004 
2005     /* Caller must pass aligned values, except at image end */
2006     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
2007     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
2008            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
2009 
2010     nb_clusters = size_to_clusters(s, bytes);
2011 
2012     s->cache_discards = true;
2013 
2014     /* Each L2 slice is handled by its own loop iteration */
2015     while (nb_clusters > 0) {
2016         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
2017                                       full_discard);
2018         if (cleared < 0) {
2019             ret = cleared;
2020             goto fail;
2021         }
2022 
2023         nb_clusters -= cleared;
2024         offset += (cleared * s->cluster_size);
2025     }
2026 
2027     ret = 0;
2028 fail:
2029     s->cache_discards = false;
2030     qcow2_process_discards(bs, ret);
2031 
2032     return ret;
2033 }
2034 
2035 /*
2036  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2037  * all clusters in the same L2 slice) and returns the number of zeroed
2038  * clusters.
2039  */
2040 static int coroutine_fn
2041 zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
2042                  uint64_t nb_clusters, int flags)
2043 {
2044     BDRVQcow2State *s = bs->opaque;
2045     uint64_t *l2_slice;
2046     int l2_index;
2047     int ret;
2048     int i;
2049 
2050     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2051     if (ret < 0) {
2052         return ret;
2053     }
2054 
2055     /* Limit nb_clusters to one L2 slice */
2056     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
2057     assert(nb_clusters <= INT_MAX);
2058 
2059     for (i = 0; i < nb_clusters; i++) {
2060         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
2061         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
2062         QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
2063         bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
2064             ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2065         uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2066         uint64_t new_l2_bitmap = old_l2_bitmap;
2067 
2068         if (has_subclusters(s)) {
2069             new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2070         } else {
2071             new_l2_entry |= QCOW_OFLAG_ZERO;
2072         }
2073 
2074         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2075             continue;
2076         }
2077 
2078         /* First update L2 entries */
2079         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2080         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2081         if (has_subclusters(s)) {
2082             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2083         }
2084 
2085         /* Then decrease the refcount */
2086         if (unmap) {
2087             qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2088         }
2089     }
2090 
2091     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2092 
2093     return nb_clusters;
2094 }
2095 
2096 static int coroutine_fn
2097 zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2098                     unsigned nb_subclusters)
2099 {
2100     BDRVQcow2State *s = bs->opaque;
2101     uint64_t *l2_slice;
2102     uint64_t old_l2_bitmap, l2_bitmap;
2103     int l2_index, ret, sc = offset_to_sc_index(s, offset);
2104 
2105     /* For full clusters use zero_in_l2_slice() instead */
2106     assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2107     assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2108     assert(offset_into_subcluster(s, offset) == 0);
2109 
2110     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2111     if (ret < 0) {
2112         return ret;
2113     }
2114 
2115     switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2116     case QCOW2_CLUSTER_COMPRESSED:
2117         ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2118         goto out;
2119     case QCOW2_CLUSTER_NORMAL:
2120     case QCOW2_CLUSTER_UNALLOCATED:
2121         break;
2122     default:
2123         g_assert_not_reached();
2124     }
2125 
2126     old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2127 
2128     l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2129     l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2130 
2131     if (old_l2_bitmap != l2_bitmap) {
2132         set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2133         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2134     }
2135 
2136     ret = 0;
2137 out:
2138     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2139 
2140     return ret;
2141 }
2142 
2143 int coroutine_fn qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2144                                           uint64_t bytes, int flags)
2145 {
2146     BDRVQcow2State *s = bs->opaque;
2147     uint64_t end_offset = offset + bytes;
2148     uint64_t nb_clusters;
2149     unsigned head, tail;
2150     int64_t cleared;
2151     int ret;
2152 
2153     /* If we have to stay in sync with an external data file, zero out
2154      * s->data_file first. */
2155     if (data_file_is_raw(bs)) {
2156         assert(has_data_file(bs));
2157         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2158         if (ret < 0) {
2159             return ret;
2160         }
2161     }
2162 
2163     /* Caller must pass aligned values, except at image end */
2164     assert(offset_into_subcluster(s, offset) == 0);
2165     assert(offset_into_subcluster(s, end_offset) == 0 ||
2166            end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2167 
2168     /*
2169      * The zero flag is only supported by version 3 and newer. However, if we
2170      * have no backing file, we can resort to discard in version 2.
2171      */
2172     if (s->qcow_version < 3) {
2173         if (!bs->backing) {
2174             return qcow2_cluster_discard(bs, offset, bytes,
2175                                          QCOW2_DISCARD_REQUEST, false);
2176         }
2177         return -ENOTSUP;
2178     }
2179 
2180     head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2181     offset += head;
2182 
2183     tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2184         end_offset - MAX(offset, start_of_cluster(s, end_offset));
2185     end_offset -= tail;
2186 
2187     s->cache_discards = true;
2188 
2189     if (head) {
2190         ret = zero_l2_subclusters(bs, offset - head,
2191                                   size_to_subclusters(s, head));
2192         if (ret < 0) {
2193             goto fail;
2194         }
2195     }
2196 
2197     /* Each L2 slice is handled by its own loop iteration */
2198     nb_clusters = size_to_clusters(s, end_offset - offset);
2199 
2200     while (nb_clusters > 0) {
2201         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2202         if (cleared < 0) {
2203             ret = cleared;
2204             goto fail;
2205         }
2206 
2207         nb_clusters -= cleared;
2208         offset += (cleared * s->cluster_size);
2209     }
2210 
2211     if (tail) {
2212         ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2213         if (ret < 0) {
2214             goto fail;
2215         }
2216     }
2217 
2218     ret = 0;
2219 fail:
2220     s->cache_discards = false;
2221     qcow2_process_discards(bs, ret);
2222 
2223     return ret;
2224 }
2225 
2226 /*
2227  * Expands all zero clusters in a specific L1 table (or deallocates them, for
2228  * non-backed non-pre-allocated zero clusters).
2229  *
2230  * l1_entries and *visited_l1_entries are used to keep track of progress for
2231  * status_cb(). l1_entries contains the total number of L1 entries and
2232  * *visited_l1_entries counts all visited L1 entries.
2233  */
2234 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2235                                       int l1_size, int64_t *visited_l1_entries,
2236                                       int64_t l1_entries,
2237                                       BlockDriverAmendStatusCB *status_cb,
2238                                       void *cb_opaque)
2239 {
2240     BDRVQcow2State *s = bs->opaque;
2241     bool is_active_l1 = (l1_table == s->l1_table);
2242     uint64_t *l2_slice = NULL;
2243     unsigned slice, slice_size2, n_slices;
2244     int ret;
2245     int i, j;
2246 
2247     /* qcow2_downgrade() is not allowed in images with subclusters */
2248     assert(!has_subclusters(s));
2249 
2250     slice_size2 = s->l2_slice_size * l2_entry_size(s);
2251     n_slices = s->cluster_size / slice_size2;
2252 
2253     if (!is_active_l1) {
2254         /* inactive L2 tables require a buffer to be stored in when loading
2255          * them from disk */
2256         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2257         if (l2_slice == NULL) {
2258             return -ENOMEM;
2259         }
2260     }
2261 
2262     for (i = 0; i < l1_size; i++) {
2263         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2264         uint64_t l2_refcount;
2265 
2266         if (!l2_offset) {
2267             /* unallocated */
2268             (*visited_l1_entries)++;
2269             if (status_cb) {
2270                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2271             }
2272             continue;
2273         }
2274 
2275         if (offset_into_cluster(s, l2_offset)) {
2276             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2277                                     PRIx64 " unaligned (L1 index: %#x)",
2278                                     l2_offset, i);
2279             ret = -EIO;
2280             goto fail;
2281         }
2282 
2283         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2284                                  &l2_refcount);
2285         if (ret < 0) {
2286             goto fail;
2287         }
2288 
2289         for (slice = 0; slice < n_slices; slice++) {
2290             uint64_t slice_offset = l2_offset + slice * slice_size2;
2291             bool l2_dirty = false;
2292             if (is_active_l1) {
2293                 /* get active L2 tables from cache */
2294                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2295                                       (void **)&l2_slice);
2296             } else {
2297                 /* load inactive L2 tables from disk */
2298                 ret = bdrv_pread(bs->file, slice_offset, slice_size2,
2299                                  l2_slice, 0);
2300             }
2301             if (ret < 0) {
2302                 goto fail;
2303             }
2304 
2305             for (j = 0; j < s->l2_slice_size; j++) {
2306                 uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2307                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
2308                 QCow2ClusterType cluster_type =
2309                     qcow2_get_cluster_type(bs, l2_entry);
2310 
2311                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2312                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2313                     continue;
2314                 }
2315 
2316                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2317                     if (!bs->backing) {
2318                         /*
2319                          * not backed; therefore we can simply deallocate the
2320                          * cluster. No need to call set_l2_bitmap(), this
2321                          * function doesn't support images with subclusters.
2322                          */
2323                         set_l2_entry(s, l2_slice, j, 0);
2324                         l2_dirty = true;
2325                         continue;
2326                     }
2327 
2328                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
2329                     if (offset < 0) {
2330                         ret = offset;
2331                         goto fail;
2332                     }
2333 
2334                     /* The offset must fit in the offset field */
2335                     assert((offset & L2E_OFFSET_MASK) == offset);
2336 
2337                     if (l2_refcount > 1) {
2338                         /* For shared L2 tables, set the refcount accordingly
2339                          * (it is already 1 and needs to be l2_refcount) */
2340                         ret = qcow2_update_cluster_refcount(
2341                             bs, offset >> s->cluster_bits,
2342                             refcount_diff(1, l2_refcount), false,
2343                             QCOW2_DISCARD_OTHER);
2344                         if (ret < 0) {
2345                             qcow2_free_clusters(bs, offset, s->cluster_size,
2346                                                 QCOW2_DISCARD_OTHER);
2347                             goto fail;
2348                         }
2349                     }
2350                 }
2351 
2352                 if (offset_into_cluster(s, offset)) {
2353                     int l2_index = slice * s->l2_slice_size + j;
2354                     qcow2_signal_corruption(
2355                         bs, true, -1, -1,
2356                         "Cluster allocation offset "
2357                         "%#" PRIx64 " unaligned (L2 offset: %#"
2358                         PRIx64 ", L2 index: %#x)", offset,
2359                         l2_offset, l2_index);
2360                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2361                         qcow2_free_clusters(bs, offset, s->cluster_size,
2362                                             QCOW2_DISCARD_ALWAYS);
2363                     }
2364                     ret = -EIO;
2365                     goto fail;
2366                 }
2367 
2368                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2369                                                     s->cluster_size, true);
2370                 if (ret < 0) {
2371                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2372                         qcow2_free_clusters(bs, offset, s->cluster_size,
2373                                             QCOW2_DISCARD_ALWAYS);
2374                     }
2375                     goto fail;
2376                 }
2377 
2378                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
2379                                          s->cluster_size, 0);
2380                 if (ret < 0) {
2381                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2382                         qcow2_free_clusters(bs, offset, s->cluster_size,
2383                                             QCOW2_DISCARD_ALWAYS);
2384                     }
2385                     goto fail;
2386                 }
2387 
2388                 if (l2_refcount == 1) {
2389                     set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2390                 } else {
2391                     set_l2_entry(s, l2_slice, j, offset);
2392                 }
2393                 /*
2394                  * No need to call set_l2_bitmap() after set_l2_entry() because
2395                  * this function doesn't support images with subclusters.
2396                  */
2397                 l2_dirty = true;
2398             }
2399 
2400             if (is_active_l1) {
2401                 if (l2_dirty) {
2402                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2403                     qcow2_cache_depends_on_flush(s->l2_table_cache);
2404                 }
2405                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2406             } else {
2407                 if (l2_dirty) {
2408                     ret = qcow2_pre_write_overlap_check(
2409                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2410                         slice_offset, slice_size2, false);
2411                     if (ret < 0) {
2412                         goto fail;
2413                     }
2414 
2415                     ret = bdrv_pwrite(bs->file, slice_offset, slice_size2,
2416                                       l2_slice, 0);
2417                     if (ret < 0) {
2418                         goto fail;
2419                     }
2420                 }
2421             }
2422         }
2423 
2424         (*visited_l1_entries)++;
2425         if (status_cb) {
2426             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2427         }
2428     }
2429 
2430     ret = 0;
2431 
2432 fail:
2433     if (l2_slice) {
2434         if (!is_active_l1) {
2435             qemu_vfree(l2_slice);
2436         } else {
2437             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2438         }
2439     }
2440     return ret;
2441 }
2442 
2443 /*
2444  * For backed images, expands all zero clusters on the image. For non-backed
2445  * images, deallocates all non-pre-allocated zero clusters (and claims the
2446  * allocation for pre-allocated ones). This is important for downgrading to a
2447  * qcow2 version which doesn't yet support metadata zero clusters.
2448  */
2449 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2450                                BlockDriverAmendStatusCB *status_cb,
2451                                void *cb_opaque)
2452 {
2453     BDRVQcow2State *s = bs->opaque;
2454     uint64_t *l1_table = NULL;
2455     int64_t l1_entries = 0, visited_l1_entries = 0;
2456     int ret;
2457     int i, j;
2458 
2459     if (status_cb) {
2460         l1_entries = s->l1_size;
2461         for (i = 0; i < s->nb_snapshots; i++) {
2462             l1_entries += s->snapshots[i].l1_size;
2463         }
2464     }
2465 
2466     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2467                                      &visited_l1_entries, l1_entries,
2468                                      status_cb, cb_opaque);
2469     if (ret < 0) {
2470         goto fail;
2471     }
2472 
2473     /* Inactive L1 tables may point to active L2 tables - therefore it is
2474      * necessary to flush the L2 table cache before trying to access the L2
2475      * tables pointed to by inactive L1 entries (else we might try to expand
2476      * zero clusters that have already been expanded); furthermore, it is also
2477      * necessary to empty the L2 table cache, since it may contain tables which
2478      * are now going to be modified directly on disk, bypassing the cache.
2479      * qcow2_cache_empty() does both for us. */
2480     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2481     if (ret < 0) {
2482         goto fail;
2483     }
2484 
2485     for (i = 0; i < s->nb_snapshots; i++) {
2486         int l1_size2;
2487         uint64_t *new_l1_table;
2488         Error *local_err = NULL;
2489 
2490         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2491                                    s->snapshots[i].l1_size, L1E_SIZE,
2492                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2493                                    &local_err);
2494         if (ret < 0) {
2495             error_report_err(local_err);
2496             goto fail;
2497         }
2498 
2499         l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2500         new_l1_table = g_try_realloc(l1_table, l1_size2);
2501 
2502         if (!new_l1_table) {
2503             ret = -ENOMEM;
2504             goto fail;
2505         }
2506 
2507         l1_table = new_l1_table;
2508 
2509         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, l1_size2,
2510                          l1_table, 0);
2511         if (ret < 0) {
2512             goto fail;
2513         }
2514 
2515         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2516             be64_to_cpus(&l1_table[j]);
2517         }
2518 
2519         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2520                                          &visited_l1_entries, l1_entries,
2521                                          status_cb, cb_opaque);
2522         if (ret < 0) {
2523             goto fail;
2524         }
2525     }
2526 
2527     ret = 0;
2528 
2529 fail:
2530     g_free(l1_table);
2531     return ret;
2532 }
2533 
2534 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
2535                                      uint64_t *coffset, int *csize)
2536 {
2537     BDRVQcow2State *s = bs->opaque;
2538     int nb_csectors;
2539 
2540     assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
2541 
2542     *coffset = l2_entry & s->cluster_offset_mask;
2543 
2544     nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
2545     *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
2546         (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));
2547 }
2548