1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> 27 28 #include "qemu-common.h" 29 #include "block/block_int.h" 30 #include "block/qcow2.h" 31 #include "trace.h" 32 33 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 34 bool exact_size) 35 { 36 BDRVQcow2State *s = bs->opaque; 37 int new_l1_size2, ret, i; 38 uint64_t *new_l1_table; 39 int64_t old_l1_table_offset, old_l1_size; 40 int64_t new_l1_table_offset, new_l1_size; 41 uint8_t data[12]; 42 43 if (min_size <= s->l1_size) 44 return 0; 45 46 /* Do a sanity check on min_size before trying to calculate new_l1_size 47 * (this prevents overflows during the while loop for the calculation of 48 * new_l1_size) */ 49 if (min_size > INT_MAX / sizeof(uint64_t)) { 50 return -EFBIG; 51 } 52 53 if (exact_size) { 54 new_l1_size = min_size; 55 } else { 56 /* Bump size up to reduce the number of times we have to grow */ 57 new_l1_size = s->l1_size; 58 if (new_l1_size == 0) { 59 new_l1_size = 1; 60 } 61 while (min_size > new_l1_size) { 62 new_l1_size = (new_l1_size * 3 + 1) / 2; 63 } 64 } 65 66 if (new_l1_size > INT_MAX / sizeof(uint64_t)) { 67 return -EFBIG; 68 } 69 70 #ifdef DEBUG_ALLOC2 71 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 72 s->l1_size, new_l1_size); 73 #endif 74 75 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 76 new_l1_table = qemu_try_blockalign(bs->file->bs, 77 align_offset(new_l1_size2, 512)); 78 if (new_l1_table == NULL) { 79 return -ENOMEM; 80 } 81 memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); 82 83 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 84 85 /* write new table (align to cluster) */ 86 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 87 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 88 if (new_l1_table_offset < 0) { 89 qemu_vfree(new_l1_table); 90 return new_l1_table_offset; 91 } 92 93 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 94 if (ret < 0) { 95 goto fail; 96 } 97 98 /* the L1 position has not yet been updated, so these clusters must 99 * indeed be completely free */ 100 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 101 new_l1_size2); 102 if (ret < 0) { 103 goto fail; 104 } 105 106 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 107 for(i = 0; i < s->l1_size; i++) 108 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 109 ret = bdrv_pwrite_sync(bs->file->bs, new_l1_table_offset, 110 new_l1_table, new_l1_size2); 111 if (ret < 0) 112 goto fail; 113 for(i = 0; i < s->l1_size; i++) 114 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 115 116 /* set new table */ 117 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 118 cpu_to_be32w((uint32_t*)data, new_l1_size); 119 stq_be_p(data + 4, new_l1_table_offset); 120 ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, l1_size), 121 data, sizeof(data)); 122 if (ret < 0) { 123 goto fail; 124 } 125 qemu_vfree(s->l1_table); 126 old_l1_table_offset = s->l1_table_offset; 127 s->l1_table_offset = new_l1_table_offset; 128 s->l1_table = new_l1_table; 129 old_l1_size = s->l1_size; 130 s->l1_size = new_l1_size; 131 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 132 QCOW2_DISCARD_OTHER); 133 return 0; 134 fail: 135 qemu_vfree(new_l1_table); 136 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 137 QCOW2_DISCARD_OTHER); 138 return ret; 139 } 140 141 /* 142 * l2_load 143 * 144 * Loads a L2 table into memory. If the table is in the cache, the cache 145 * is used; otherwise the L2 table is loaded from the image file. 146 * 147 * Returns a pointer to the L2 table on success, or NULL if the read from 148 * the image file failed. 149 */ 150 151 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 152 uint64_t **l2_table) 153 { 154 BDRVQcow2State *s = bs->opaque; 155 int ret; 156 157 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 158 159 return ret; 160 } 161 162 /* 163 * Writes one sector of the L1 table to the disk (can't update single entries 164 * and we really don't want bdrv_pread to perform a read-modify-write) 165 */ 166 #define L1_ENTRIES_PER_SECTOR (512 / 8) 167 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 168 { 169 BDRVQcow2State *s = bs->opaque; 170 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; 171 int l1_start_index; 172 int i, ret; 173 174 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 175 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; 176 i++) 177 { 178 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 179 } 180 181 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 182 s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); 183 if (ret < 0) { 184 return ret; 185 } 186 187 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 188 ret = bdrv_pwrite_sync(bs->file->bs, 189 s->l1_table_offset + 8 * l1_start_index, 190 buf, sizeof(buf)); 191 if (ret < 0) { 192 return ret; 193 } 194 195 return 0; 196 } 197 198 /* 199 * l2_allocate 200 * 201 * Allocate a new l2 entry in the file. If l1_index points to an already 202 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 203 * table) copy the contents of the old L2 table into the newly allocated one. 204 * Otherwise the new table is initialized with zeros. 205 * 206 */ 207 208 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 209 { 210 BDRVQcow2State *s = bs->opaque; 211 uint64_t old_l2_offset; 212 uint64_t *l2_table = NULL; 213 int64_t l2_offset; 214 int ret; 215 216 old_l2_offset = s->l1_table[l1_index]; 217 218 trace_qcow2_l2_allocate(bs, l1_index); 219 220 /* allocate a new l2 entry */ 221 222 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 223 if (l2_offset < 0) { 224 ret = l2_offset; 225 goto fail; 226 } 227 228 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 229 if (ret < 0) { 230 goto fail; 231 } 232 233 /* allocate a new entry in the l2 cache */ 234 235 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 236 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 237 if (ret < 0) { 238 goto fail; 239 } 240 241 l2_table = *table; 242 243 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 244 /* if there was no old l2 table, clear the new table */ 245 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 246 } else { 247 uint64_t* old_table; 248 249 /* if there was an old l2 table, read it from the disk */ 250 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 251 ret = qcow2_cache_get(bs, s->l2_table_cache, 252 old_l2_offset & L1E_OFFSET_MASK, 253 (void**) &old_table); 254 if (ret < 0) { 255 goto fail; 256 } 257 258 memcpy(l2_table, old_table, s->cluster_size); 259 260 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table); 261 } 262 263 /* write the l2 table to the file */ 264 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 265 266 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 267 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 268 ret = qcow2_cache_flush(bs, s->l2_table_cache); 269 if (ret < 0) { 270 goto fail; 271 } 272 273 /* update the L1 entry */ 274 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 275 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 276 ret = qcow2_write_l1_entry(bs, l1_index); 277 if (ret < 0) { 278 goto fail; 279 } 280 281 *table = l2_table; 282 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 283 return 0; 284 285 fail: 286 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 287 if (l2_table != NULL) { 288 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 289 } 290 s->l1_table[l1_index] = old_l2_offset; 291 if (l2_offset > 0) { 292 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 293 QCOW2_DISCARD_ALWAYS); 294 } 295 return ret; 296 } 297 298 /* 299 * Checks how many clusters in a given L2 table are contiguous in the image 300 * file. As soon as one of the flags in the bitmask stop_flags changes compared 301 * to the first cluster, the search is stopped and the cluster is not counted 302 * as contiguous. (This allows it, for example, to stop at the first compressed 303 * cluster which may require a different handling) 304 */ 305 static int count_contiguous_clusters(int nb_clusters, int cluster_size, 306 uint64_t *l2_table, uint64_t stop_flags) 307 { 308 int i; 309 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 310 uint64_t first_entry = be64_to_cpu(l2_table[0]); 311 uint64_t offset = first_entry & mask; 312 313 if (!offset) 314 return 0; 315 316 assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL); 317 318 for (i = 0; i < nb_clusters; i++) { 319 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 320 if (offset + (uint64_t) i * cluster_size != l2_entry) { 321 break; 322 } 323 } 324 325 return i; 326 } 327 328 static int count_contiguous_clusters_by_type(int nb_clusters, 329 uint64_t *l2_table, 330 int wanted_type) 331 { 332 int i; 333 334 for (i = 0; i < nb_clusters; i++) { 335 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 336 337 if (type != wanted_type) { 338 break; 339 } 340 } 341 342 return i; 343 } 344 345 /* The crypt function is compatible with the linux cryptoloop 346 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 347 supported */ 348 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num, 349 uint8_t *out_buf, const uint8_t *in_buf, 350 int nb_sectors, bool enc, 351 Error **errp) 352 { 353 union { 354 uint64_t ll[2]; 355 uint8_t b[16]; 356 } ivec; 357 int i; 358 int ret; 359 360 for(i = 0; i < nb_sectors; i++) { 361 ivec.ll[0] = cpu_to_le64(sector_num); 362 ivec.ll[1] = 0; 363 if (qcrypto_cipher_setiv(s->cipher, 364 ivec.b, G_N_ELEMENTS(ivec.b), 365 errp) < 0) { 366 return -1; 367 } 368 if (enc) { 369 ret = qcrypto_cipher_encrypt(s->cipher, 370 in_buf, 371 out_buf, 372 512, 373 errp); 374 } else { 375 ret = qcrypto_cipher_decrypt(s->cipher, 376 in_buf, 377 out_buf, 378 512, 379 errp); 380 } 381 if (ret < 0) { 382 return -1; 383 } 384 sector_num++; 385 in_buf += 512; 386 out_buf += 512; 387 } 388 return 0; 389 } 390 391 static int coroutine_fn copy_sectors(BlockDriverState *bs, 392 uint64_t start_sect, 393 uint64_t cluster_offset, 394 int n_start, int n_end) 395 { 396 BDRVQcow2State *s = bs->opaque; 397 QEMUIOVector qiov; 398 struct iovec iov; 399 int n, ret; 400 401 n = n_end - n_start; 402 if (n <= 0) { 403 return 0; 404 } 405 406 iov.iov_len = n * BDRV_SECTOR_SIZE; 407 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); 408 if (iov.iov_base == NULL) { 409 return -ENOMEM; 410 } 411 412 qemu_iovec_init_external(&qiov, &iov, 1); 413 414 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 415 416 if (!bs->drv) { 417 ret = -ENOMEDIUM; 418 goto out; 419 } 420 421 /* Call .bdrv_co_readv() directly instead of using the public block-layer 422 * interface. This avoids double I/O throttling and request tracking, 423 * which can lead to deadlock when block layer copy-on-read is enabled. 424 */ 425 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 426 if (ret < 0) { 427 goto out; 428 } 429 430 if (bs->encrypted) { 431 Error *err = NULL; 432 assert(s->cipher); 433 if (qcow2_encrypt_sectors(s, start_sect + n_start, 434 iov.iov_base, iov.iov_base, n, 435 true, &err) < 0) { 436 ret = -EIO; 437 error_free(err); 438 goto out; 439 } 440 } 441 442 ret = qcow2_pre_write_overlap_check(bs, 0, 443 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); 444 if (ret < 0) { 445 goto out; 446 } 447 448 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 449 ret = bdrv_co_writev(bs->file->bs, (cluster_offset >> 9) + n_start, n, 450 &qiov); 451 if (ret < 0) { 452 goto out; 453 } 454 455 ret = 0; 456 out: 457 qemu_vfree(iov.iov_base); 458 return ret; 459 } 460 461 462 /* 463 * get_cluster_offset 464 * 465 * For a given offset of the disk image, find the cluster offset in 466 * qcow2 file. The offset is stored in *cluster_offset. 467 * 468 * on entry, *num is the number of contiguous sectors we'd like to 469 * access following offset. 470 * 471 * on exit, *num is the number of contiguous sectors we can read. 472 * 473 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 474 * cases. 475 */ 476 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 477 int *num, uint64_t *cluster_offset) 478 { 479 BDRVQcow2State *s = bs->opaque; 480 unsigned int l2_index; 481 uint64_t l1_index, l2_offset, *l2_table; 482 int l1_bits, c; 483 unsigned int index_in_cluster, nb_clusters; 484 uint64_t nb_available, nb_needed; 485 int ret; 486 487 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 488 nb_needed = *num + index_in_cluster; 489 490 l1_bits = s->l2_bits + s->cluster_bits; 491 492 /* compute how many bytes there are between the offset and 493 * the end of the l1 entry 494 */ 495 496 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 497 498 /* compute the number of available sectors */ 499 500 nb_available = (nb_available >> 9) + index_in_cluster; 501 502 if (nb_needed > nb_available) { 503 nb_needed = nb_available; 504 } 505 assert(nb_needed <= INT_MAX); 506 507 *cluster_offset = 0; 508 509 /* seek to the l2 offset in the l1 table */ 510 511 l1_index = offset >> l1_bits; 512 if (l1_index >= s->l1_size) { 513 ret = QCOW2_CLUSTER_UNALLOCATED; 514 goto out; 515 } 516 517 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 518 if (!l2_offset) { 519 ret = QCOW2_CLUSTER_UNALLOCATED; 520 goto out; 521 } 522 523 if (offset_into_cluster(s, l2_offset)) { 524 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 525 " unaligned (L1 index: %#" PRIx64 ")", 526 l2_offset, l1_index); 527 return -EIO; 528 } 529 530 /* load the l2 table in memory */ 531 532 ret = l2_load(bs, l2_offset, &l2_table); 533 if (ret < 0) { 534 return ret; 535 } 536 537 /* find the cluster offset for the given disk offset */ 538 539 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 540 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 541 542 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */ 543 nb_clusters = size_to_clusters(s, nb_needed << 9); 544 545 ret = qcow2_get_cluster_type(*cluster_offset); 546 switch (ret) { 547 case QCOW2_CLUSTER_COMPRESSED: 548 /* Compressed clusters can only be processed one by one */ 549 c = 1; 550 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 551 break; 552 case QCOW2_CLUSTER_ZERO: 553 if (s->qcow_version < 3) { 554 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 555 " in pre-v3 image (L2 offset: %#" PRIx64 556 ", L2 index: %#x)", l2_offset, l2_index); 557 ret = -EIO; 558 goto fail; 559 } 560 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], 561 QCOW2_CLUSTER_ZERO); 562 *cluster_offset = 0; 563 break; 564 case QCOW2_CLUSTER_UNALLOCATED: 565 /* how many empty clusters ? */ 566 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], 567 QCOW2_CLUSTER_UNALLOCATED); 568 *cluster_offset = 0; 569 break; 570 case QCOW2_CLUSTER_NORMAL: 571 /* how many allocated clusters ? */ 572 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 573 &l2_table[l2_index], QCOW_OFLAG_ZERO); 574 *cluster_offset &= L2E_OFFSET_MASK; 575 if (offset_into_cluster(s, *cluster_offset)) { 576 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#" 577 PRIx64 " unaligned (L2 offset: %#" PRIx64 578 ", L2 index: %#x)", *cluster_offset, 579 l2_offset, l2_index); 580 ret = -EIO; 581 goto fail; 582 } 583 break; 584 default: 585 abort(); 586 } 587 588 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 589 590 nb_available = (c * s->cluster_sectors); 591 592 out: 593 if (nb_available > nb_needed) 594 nb_available = nb_needed; 595 596 *num = nb_available - index_in_cluster; 597 598 return ret; 599 600 fail: 601 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 602 return ret; 603 } 604 605 /* 606 * get_cluster_table 607 * 608 * for a given disk offset, load (and allocate if needed) 609 * the l2 table. 610 * 611 * the l2 table offset in the qcow2 file and the cluster index 612 * in the l2 table are given to the caller. 613 * 614 * Returns 0 on success, -errno in failure case 615 */ 616 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 617 uint64_t **new_l2_table, 618 int *new_l2_index) 619 { 620 BDRVQcow2State *s = bs->opaque; 621 unsigned int l2_index; 622 uint64_t l1_index, l2_offset; 623 uint64_t *l2_table = NULL; 624 int ret; 625 626 /* seek to the l2 offset in the l1 table */ 627 628 l1_index = offset >> (s->l2_bits + s->cluster_bits); 629 if (l1_index >= s->l1_size) { 630 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 631 if (ret < 0) { 632 return ret; 633 } 634 } 635 636 assert(l1_index < s->l1_size); 637 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 638 if (offset_into_cluster(s, l2_offset)) { 639 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 640 " unaligned (L1 index: %#" PRIx64 ")", 641 l2_offset, l1_index); 642 return -EIO; 643 } 644 645 /* seek the l2 table of the given l2 offset */ 646 647 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 648 /* load the l2 table in memory */ 649 ret = l2_load(bs, l2_offset, &l2_table); 650 if (ret < 0) { 651 return ret; 652 } 653 } else { 654 /* First allocate a new L2 table (and do COW if needed) */ 655 ret = l2_allocate(bs, l1_index, &l2_table); 656 if (ret < 0) { 657 return ret; 658 } 659 660 /* Then decrease the refcount of the old table */ 661 if (l2_offset) { 662 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 663 QCOW2_DISCARD_OTHER); 664 } 665 } 666 667 /* find the cluster offset for the given disk offset */ 668 669 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 670 671 *new_l2_table = l2_table; 672 *new_l2_index = l2_index; 673 674 return 0; 675 } 676 677 /* 678 * alloc_compressed_cluster_offset 679 * 680 * For a given offset of the disk image, return cluster offset in 681 * qcow2 file. 682 * 683 * If the offset is not found, allocate a new compressed cluster. 684 * 685 * Return the cluster offset if successful, 686 * Return 0, otherwise. 687 * 688 */ 689 690 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 691 uint64_t offset, 692 int compressed_size) 693 { 694 BDRVQcow2State *s = bs->opaque; 695 int l2_index, ret; 696 uint64_t *l2_table; 697 int64_t cluster_offset; 698 int nb_csectors; 699 700 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 701 if (ret < 0) { 702 return 0; 703 } 704 705 /* Compression can't overwrite anything. Fail if the cluster was already 706 * allocated. */ 707 cluster_offset = be64_to_cpu(l2_table[l2_index]); 708 if (cluster_offset & L2E_OFFSET_MASK) { 709 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 710 return 0; 711 } 712 713 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 714 if (cluster_offset < 0) { 715 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 716 return 0; 717 } 718 719 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 720 (cluster_offset >> 9); 721 722 cluster_offset |= QCOW_OFLAG_COMPRESSED | 723 ((uint64_t)nb_csectors << s->csize_shift); 724 725 /* update L2 table */ 726 727 /* compressed clusters never have the copied flag */ 728 729 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 730 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 731 l2_table[l2_index] = cpu_to_be64(cluster_offset); 732 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 733 734 return cluster_offset; 735 } 736 737 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 738 { 739 BDRVQcow2State *s = bs->opaque; 740 int ret; 741 742 if (r->nb_sectors == 0) { 743 return 0; 744 } 745 746 qemu_co_mutex_unlock(&s->lock); 747 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, 748 r->offset / BDRV_SECTOR_SIZE, 749 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); 750 qemu_co_mutex_lock(&s->lock); 751 752 if (ret < 0) { 753 return ret; 754 } 755 756 /* 757 * Before we update the L2 table to actually point to the new cluster, we 758 * need to be sure that the refcounts have been increased and COW was 759 * handled. 760 */ 761 qcow2_cache_depends_on_flush(s->l2_table_cache); 762 763 return 0; 764 } 765 766 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 767 { 768 BDRVQcow2State *s = bs->opaque; 769 int i, j = 0, l2_index, ret; 770 uint64_t *old_cluster, *l2_table; 771 uint64_t cluster_offset = m->alloc_offset; 772 773 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 774 assert(m->nb_clusters > 0); 775 776 old_cluster = g_try_new(uint64_t, m->nb_clusters); 777 if (old_cluster == NULL) { 778 ret = -ENOMEM; 779 goto err; 780 } 781 782 /* copy content of unmodified sectors */ 783 ret = perform_cow(bs, m, &m->cow_start); 784 if (ret < 0) { 785 goto err; 786 } 787 788 ret = perform_cow(bs, m, &m->cow_end); 789 if (ret < 0) { 790 goto err; 791 } 792 793 /* Update L2 table. */ 794 if (s->use_lazy_refcounts) { 795 qcow2_mark_dirty(bs); 796 } 797 if (qcow2_need_accurate_refcounts(s)) { 798 qcow2_cache_set_dependency(bs, s->l2_table_cache, 799 s->refcount_block_cache); 800 } 801 802 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 803 if (ret < 0) { 804 goto err; 805 } 806 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 807 808 assert(l2_index + m->nb_clusters <= s->l2_size); 809 for (i = 0; i < m->nb_clusters; i++) { 810 /* if two concurrent writes happen to the same unallocated cluster 811 * each write allocates separate cluster and writes data concurrently. 812 * The first one to complete updates l2 table with pointer to its 813 * cluster the second one has to do RMW (which is done above by 814 * copy_sectors()), update l2 table with its cluster pointer and free 815 * old cluster. This is what this loop does */ 816 if(l2_table[l2_index + i] != 0) 817 old_cluster[j++] = l2_table[l2_index + i]; 818 819 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 820 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 821 } 822 823 824 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 825 826 /* 827 * If this was a COW, we need to decrease the refcount of the old cluster. 828 * 829 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 830 * clusters), the next write will reuse them anyway. 831 */ 832 if (j != 0) { 833 for (i = 0; i < j; i++) { 834 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 835 QCOW2_DISCARD_NEVER); 836 } 837 } 838 839 ret = 0; 840 err: 841 g_free(old_cluster); 842 return ret; 843 } 844 845 /* 846 * Returns the number of contiguous clusters that can be used for an allocating 847 * write, but require COW to be performed (this includes yet unallocated space, 848 * which must copy from the backing file) 849 */ 850 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters, 851 uint64_t *l2_table, int l2_index) 852 { 853 int i; 854 855 for (i = 0; i < nb_clusters; i++) { 856 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 857 int cluster_type = qcow2_get_cluster_type(l2_entry); 858 859 switch(cluster_type) { 860 case QCOW2_CLUSTER_NORMAL: 861 if (l2_entry & QCOW_OFLAG_COPIED) { 862 goto out; 863 } 864 break; 865 case QCOW2_CLUSTER_UNALLOCATED: 866 case QCOW2_CLUSTER_COMPRESSED: 867 case QCOW2_CLUSTER_ZERO: 868 break; 869 default: 870 abort(); 871 } 872 } 873 874 out: 875 assert(i <= nb_clusters); 876 return i; 877 } 878 879 /* 880 * Check if there already is an AIO write request in flight which allocates 881 * the same cluster. In this case we need to wait until the previous 882 * request has completed and updated the L2 table accordingly. 883 * 884 * Returns: 885 * 0 if there was no dependency. *cur_bytes indicates the number of 886 * bytes from guest_offset that can be read before the next 887 * dependency must be processed (or the request is complete) 888 * 889 * -EAGAIN if we had to wait for another request, previously gathered 890 * information on cluster allocation may be invalid now. The caller 891 * must start over anyway, so consider *cur_bytes undefined. 892 */ 893 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 894 uint64_t *cur_bytes, QCowL2Meta **m) 895 { 896 BDRVQcow2State *s = bs->opaque; 897 QCowL2Meta *old_alloc; 898 uint64_t bytes = *cur_bytes; 899 900 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 901 902 uint64_t start = guest_offset; 903 uint64_t end = start + bytes; 904 uint64_t old_start = l2meta_cow_start(old_alloc); 905 uint64_t old_end = l2meta_cow_end(old_alloc); 906 907 if (end <= old_start || start >= old_end) { 908 /* No intersection */ 909 } else { 910 if (start < old_start) { 911 /* Stop at the start of a running allocation */ 912 bytes = old_start - start; 913 } else { 914 bytes = 0; 915 } 916 917 /* Stop if already an l2meta exists. After yielding, it wouldn't 918 * be valid any more, so we'd have to clean up the old L2Metas 919 * and deal with requests depending on them before starting to 920 * gather new ones. Not worth the trouble. */ 921 if (bytes == 0 && *m) { 922 *cur_bytes = 0; 923 return 0; 924 } 925 926 if (bytes == 0) { 927 /* Wait for the dependency to complete. We need to recheck 928 * the free/allocated clusters when we continue. */ 929 qemu_co_mutex_unlock(&s->lock); 930 qemu_co_queue_wait(&old_alloc->dependent_requests); 931 qemu_co_mutex_lock(&s->lock); 932 return -EAGAIN; 933 } 934 } 935 } 936 937 /* Make sure that existing clusters and new allocations are only used up to 938 * the next dependency if we shortened the request above */ 939 *cur_bytes = bytes; 940 941 return 0; 942 } 943 944 /* 945 * Checks how many already allocated clusters that don't require a copy on 946 * write there are at the given guest_offset (up to *bytes). If 947 * *host_offset is not zero, only physically contiguous clusters beginning at 948 * this host offset are counted. 949 * 950 * Note that guest_offset may not be cluster aligned. In this case, the 951 * returned *host_offset points to exact byte referenced by guest_offset and 952 * therefore isn't cluster aligned as well. 953 * 954 * Returns: 955 * 0: if no allocated clusters are available at the given offset. 956 * *bytes is normally unchanged. It is set to 0 if the cluster 957 * is allocated and doesn't need COW, but doesn't have the right 958 * physical offset. 959 * 960 * 1: if allocated clusters that don't require a COW are available at 961 * the requested offset. *bytes may have decreased and describes 962 * the length of the area that can be written to. 963 * 964 * -errno: in error cases 965 */ 966 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 967 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 968 { 969 BDRVQcow2State *s = bs->opaque; 970 int l2_index; 971 uint64_t cluster_offset; 972 uint64_t *l2_table; 973 uint64_t nb_clusters; 974 unsigned int keep_clusters; 975 int ret; 976 977 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 978 *bytes); 979 980 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 981 == offset_into_cluster(s, *host_offset)); 982 983 /* 984 * Calculate the number of clusters to look for. We stop at L2 table 985 * boundaries to keep things simple. 986 */ 987 nb_clusters = 988 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 989 990 l2_index = offset_to_l2_index(s, guest_offset); 991 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 992 assert(nb_clusters <= INT_MAX); 993 994 /* Find L2 entry for the first involved cluster */ 995 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 996 if (ret < 0) { 997 return ret; 998 } 999 1000 cluster_offset = be64_to_cpu(l2_table[l2_index]); 1001 1002 /* Check how many clusters are already allocated and don't need COW */ 1003 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 1004 && (cluster_offset & QCOW_OFLAG_COPIED)) 1005 { 1006 /* If a specific host_offset is required, check it */ 1007 bool offset_matches = 1008 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 1009 1010 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { 1011 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1012 "%#llx unaligned (guest offset: %#" PRIx64 1013 ")", cluster_offset & L2E_OFFSET_MASK, 1014 guest_offset); 1015 ret = -EIO; 1016 goto out; 1017 } 1018 1019 if (*host_offset != 0 && !offset_matches) { 1020 *bytes = 0; 1021 ret = 0; 1022 goto out; 1023 } 1024 1025 /* We keep all QCOW_OFLAG_COPIED clusters */ 1026 keep_clusters = 1027 count_contiguous_clusters(nb_clusters, s->cluster_size, 1028 &l2_table[l2_index], 1029 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 1030 assert(keep_clusters <= nb_clusters); 1031 1032 *bytes = MIN(*bytes, 1033 keep_clusters * s->cluster_size 1034 - offset_into_cluster(s, guest_offset)); 1035 1036 ret = 1; 1037 } else { 1038 ret = 0; 1039 } 1040 1041 /* Cleanup */ 1042 out: 1043 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1044 1045 /* Only return a host offset if we actually made progress. Otherwise we 1046 * would make requirements for handle_alloc() that it can't fulfill */ 1047 if (ret > 0) { 1048 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 1049 + offset_into_cluster(s, guest_offset); 1050 } 1051 1052 return ret; 1053 } 1054 1055 /* 1056 * Allocates new clusters for the given guest_offset. 1057 * 1058 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1059 * contain the number of clusters that have been allocated and are contiguous 1060 * in the image file. 1061 * 1062 * If *host_offset is non-zero, it specifies the offset in the image file at 1063 * which the new clusters must start. *nb_clusters can be 0 on return in this 1064 * case if the cluster at host_offset is already in use. If *host_offset is 1065 * zero, the clusters can be allocated anywhere in the image file. 1066 * 1067 * *host_offset is updated to contain the offset into the image file at which 1068 * the first allocated cluster starts. 1069 * 1070 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1071 * function has been waiting for another request and the allocation must be 1072 * restarted, but the whole request should not be failed. 1073 */ 1074 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1075 uint64_t *host_offset, uint64_t *nb_clusters) 1076 { 1077 BDRVQcow2State *s = bs->opaque; 1078 1079 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1080 *host_offset, *nb_clusters); 1081 1082 /* Allocate new clusters */ 1083 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1084 if (*host_offset == 0) { 1085 int64_t cluster_offset = 1086 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1087 if (cluster_offset < 0) { 1088 return cluster_offset; 1089 } 1090 *host_offset = cluster_offset; 1091 return 0; 1092 } else { 1093 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1094 if (ret < 0) { 1095 return ret; 1096 } 1097 *nb_clusters = ret; 1098 return 0; 1099 } 1100 } 1101 1102 /* 1103 * Allocates new clusters for an area that either is yet unallocated or needs a 1104 * copy on write. If *host_offset is non-zero, clusters are only allocated if 1105 * the new allocation can match the specified host offset. 1106 * 1107 * Note that guest_offset may not be cluster aligned. In this case, the 1108 * returned *host_offset points to exact byte referenced by guest_offset and 1109 * therefore isn't cluster aligned as well. 1110 * 1111 * Returns: 1112 * 0: if no clusters could be allocated. *bytes is set to 0, 1113 * *host_offset is left unchanged. 1114 * 1115 * 1: if new clusters were allocated. *bytes may be decreased if the 1116 * new allocation doesn't cover all of the requested area. 1117 * *host_offset is updated to contain the host offset of the first 1118 * newly allocated cluster. 1119 * 1120 * -errno: in error cases 1121 */ 1122 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1123 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1124 { 1125 BDRVQcow2State *s = bs->opaque; 1126 int l2_index; 1127 uint64_t *l2_table; 1128 uint64_t entry; 1129 uint64_t nb_clusters; 1130 int ret; 1131 1132 uint64_t alloc_cluster_offset; 1133 1134 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1135 *bytes); 1136 assert(*bytes > 0); 1137 1138 /* 1139 * Calculate the number of clusters to look for. We stop at L2 table 1140 * boundaries to keep things simple. 1141 */ 1142 nb_clusters = 1143 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1144 1145 l2_index = offset_to_l2_index(s, guest_offset); 1146 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1147 assert(nb_clusters <= INT_MAX); 1148 1149 /* Find L2 entry for the first involved cluster */ 1150 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1151 if (ret < 0) { 1152 return ret; 1153 } 1154 1155 entry = be64_to_cpu(l2_table[l2_index]); 1156 1157 /* For the moment, overwrite compressed clusters one by one */ 1158 if (entry & QCOW_OFLAG_COMPRESSED) { 1159 nb_clusters = 1; 1160 } else { 1161 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1162 } 1163 1164 /* This function is only called when there were no non-COW clusters, so if 1165 * we can't find any unallocated or COW clusters either, something is 1166 * wrong with our code. */ 1167 assert(nb_clusters > 0); 1168 1169 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1170 1171 /* Allocate, if necessary at a given offset in the image file */ 1172 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1173 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1174 &nb_clusters); 1175 if (ret < 0) { 1176 goto fail; 1177 } 1178 1179 /* Can't extend contiguous allocation */ 1180 if (nb_clusters == 0) { 1181 *bytes = 0; 1182 return 0; 1183 } 1184 1185 /* !*host_offset would overwrite the image header and is reserved for "no 1186 * host offset preferred". If 0 was a valid host offset, it'd trigger the 1187 * following overlap check; do that now to avoid having an invalid value in 1188 * *host_offset. */ 1189 if (!alloc_cluster_offset) { 1190 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, 1191 nb_clusters * s->cluster_size); 1192 assert(ret < 0); 1193 goto fail; 1194 } 1195 1196 /* 1197 * Save info needed for meta data update. 1198 * 1199 * requested_sectors: Number of sectors from the start of the first 1200 * newly allocated cluster to the end of the (possibly shortened 1201 * before) write request. 1202 * 1203 * avail_sectors: Number of sectors from the start of the first 1204 * newly allocated to the end of the last newly allocated cluster. 1205 * 1206 * nb_sectors: The number of sectors from the start of the first 1207 * newly allocated cluster to the end of the area that the write 1208 * request actually writes to (excluding COW at the end) 1209 */ 1210 int requested_sectors = 1211 (*bytes + offset_into_cluster(s, guest_offset)) 1212 >> BDRV_SECTOR_BITS; 1213 int avail_sectors = nb_clusters 1214 << (s->cluster_bits - BDRV_SECTOR_BITS); 1215 int alloc_n_start = offset_into_cluster(s, guest_offset) 1216 >> BDRV_SECTOR_BITS; 1217 int nb_sectors = MIN(requested_sectors, avail_sectors); 1218 QCowL2Meta *old_m = *m; 1219 1220 *m = g_malloc0(sizeof(**m)); 1221 1222 **m = (QCowL2Meta) { 1223 .next = old_m, 1224 1225 .alloc_offset = alloc_cluster_offset, 1226 .offset = start_of_cluster(s, guest_offset), 1227 .nb_clusters = nb_clusters, 1228 .nb_available = nb_sectors, 1229 1230 .cow_start = { 1231 .offset = 0, 1232 .nb_sectors = alloc_n_start, 1233 }, 1234 .cow_end = { 1235 .offset = nb_sectors * BDRV_SECTOR_SIZE, 1236 .nb_sectors = avail_sectors - nb_sectors, 1237 }, 1238 }; 1239 qemu_co_queue_init(&(*m)->dependent_requests); 1240 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1241 1242 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1243 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) 1244 - offset_into_cluster(s, guest_offset)); 1245 assert(*bytes != 0); 1246 1247 return 1; 1248 1249 fail: 1250 if (*m && (*m)->nb_clusters > 0) { 1251 QLIST_REMOVE(*m, next_in_flight); 1252 } 1253 return ret; 1254 } 1255 1256 /* 1257 * alloc_cluster_offset 1258 * 1259 * For a given offset on the virtual disk, find the cluster offset in qcow2 1260 * file. If the offset is not found, allocate a new cluster. 1261 * 1262 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1263 * other fields in m are meaningless. 1264 * 1265 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1266 * contiguous clusters that have been allocated. In this case, the other 1267 * fields of m are valid and contain information about the first allocated 1268 * cluster. 1269 * 1270 * If the request conflicts with another write request in flight, the coroutine 1271 * is queued and will be reentered when the dependency has completed. 1272 * 1273 * Return 0 on success and -errno in error cases 1274 */ 1275 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1276 int *num, uint64_t *host_offset, QCowL2Meta **m) 1277 { 1278 BDRVQcow2State *s = bs->opaque; 1279 uint64_t start, remaining; 1280 uint64_t cluster_offset; 1281 uint64_t cur_bytes; 1282 int ret; 1283 1284 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num); 1285 1286 assert((offset & ~BDRV_SECTOR_MASK) == 0); 1287 1288 again: 1289 start = offset; 1290 remaining = (uint64_t)*num << BDRV_SECTOR_BITS; 1291 cluster_offset = 0; 1292 *host_offset = 0; 1293 cur_bytes = 0; 1294 *m = NULL; 1295 1296 while (true) { 1297 1298 if (!*host_offset) { 1299 *host_offset = start_of_cluster(s, cluster_offset); 1300 } 1301 1302 assert(remaining >= cur_bytes); 1303 1304 start += cur_bytes; 1305 remaining -= cur_bytes; 1306 cluster_offset += cur_bytes; 1307 1308 if (remaining == 0) { 1309 break; 1310 } 1311 1312 cur_bytes = remaining; 1313 1314 /* 1315 * Now start gathering as many contiguous clusters as possible: 1316 * 1317 * 1. Check for overlaps with in-flight allocations 1318 * 1319 * a) Overlap not in the first cluster -> shorten this request and 1320 * let the caller handle the rest in its next loop iteration. 1321 * 1322 * b) Real overlaps of two requests. Yield and restart the search 1323 * for contiguous clusters (the situation could have changed 1324 * while we were sleeping) 1325 * 1326 * c) TODO: Request starts in the same cluster as the in-flight 1327 * allocation ends. Shorten the COW of the in-fight allocation, 1328 * set cluster_offset to write to the same cluster and set up 1329 * the right synchronisation between the in-flight request and 1330 * the new one. 1331 */ 1332 ret = handle_dependencies(bs, start, &cur_bytes, m); 1333 if (ret == -EAGAIN) { 1334 /* Currently handle_dependencies() doesn't yield if we already had 1335 * an allocation. If it did, we would have to clean up the L2Meta 1336 * structs before starting over. */ 1337 assert(*m == NULL); 1338 goto again; 1339 } else if (ret < 0) { 1340 return ret; 1341 } else if (cur_bytes == 0) { 1342 break; 1343 } else { 1344 /* handle_dependencies() may have decreased cur_bytes (shortened 1345 * the allocations below) so that the next dependency is processed 1346 * correctly during the next loop iteration. */ 1347 } 1348 1349 /* 1350 * 2. Count contiguous COPIED clusters. 1351 */ 1352 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1353 if (ret < 0) { 1354 return ret; 1355 } else if (ret) { 1356 continue; 1357 } else if (cur_bytes == 0) { 1358 break; 1359 } 1360 1361 /* 1362 * 3. If the request still hasn't completed, allocate new clusters, 1363 * considering any cluster_offset of steps 1c or 2. 1364 */ 1365 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1366 if (ret < 0) { 1367 return ret; 1368 } else if (ret) { 1369 continue; 1370 } else { 1371 assert(cur_bytes == 0); 1372 break; 1373 } 1374 } 1375 1376 *num -= remaining >> BDRV_SECTOR_BITS; 1377 assert(*num > 0); 1378 assert(*host_offset != 0); 1379 1380 return 0; 1381 } 1382 1383 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1384 const uint8_t *buf, int buf_size) 1385 { 1386 z_stream strm1, *strm = &strm1; 1387 int ret, out_len; 1388 1389 memset(strm, 0, sizeof(*strm)); 1390 1391 strm->next_in = (uint8_t *)buf; 1392 strm->avail_in = buf_size; 1393 strm->next_out = out_buf; 1394 strm->avail_out = out_buf_size; 1395 1396 ret = inflateInit2(strm, -12); 1397 if (ret != Z_OK) 1398 return -1; 1399 ret = inflate(strm, Z_FINISH); 1400 out_len = strm->next_out - out_buf; 1401 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1402 out_len != out_buf_size) { 1403 inflateEnd(strm); 1404 return -1; 1405 } 1406 inflateEnd(strm); 1407 return 0; 1408 } 1409 1410 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1411 { 1412 BDRVQcow2State *s = bs->opaque; 1413 int ret, csize, nb_csectors, sector_offset; 1414 uint64_t coffset; 1415 1416 coffset = cluster_offset & s->cluster_offset_mask; 1417 if (s->cluster_cache_offset != coffset) { 1418 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1419 sector_offset = coffset & 511; 1420 csize = nb_csectors * 512 - sector_offset; 1421 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1422 ret = bdrv_read(bs->file->bs, coffset >> 9, s->cluster_data, 1423 nb_csectors); 1424 if (ret < 0) { 1425 return ret; 1426 } 1427 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1428 s->cluster_data + sector_offset, csize) < 0) { 1429 return -EIO; 1430 } 1431 s->cluster_cache_offset = coffset; 1432 } 1433 return 0; 1434 } 1435 1436 /* 1437 * This discards as many clusters of nb_clusters as possible at once (i.e. 1438 * all clusters in the same L2 table) and returns the number of discarded 1439 * clusters. 1440 */ 1441 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1442 uint64_t nb_clusters, enum qcow2_discard_type type, 1443 bool full_discard) 1444 { 1445 BDRVQcow2State *s = bs->opaque; 1446 uint64_t *l2_table; 1447 int l2_index; 1448 int ret; 1449 int i; 1450 1451 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1452 if (ret < 0) { 1453 return ret; 1454 } 1455 1456 /* Limit nb_clusters to one L2 table */ 1457 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1458 assert(nb_clusters <= INT_MAX); 1459 1460 for (i = 0; i < nb_clusters; i++) { 1461 uint64_t old_l2_entry; 1462 1463 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); 1464 1465 /* 1466 * If full_discard is false, make sure that a discarded area reads back 1467 * as zeroes for v3 images (we cannot do it for v2 without actually 1468 * writing a zero-filled buffer). We can skip the operation if the 1469 * cluster is already marked as zero, or if it's unallocated and we 1470 * don't have a backing file. 1471 * 1472 * TODO We might want to use bdrv_get_block_status(bs) here, but we're 1473 * holding s->lock, so that doesn't work today. 1474 * 1475 * If full_discard is true, the sector should not read back as zeroes, 1476 * but rather fall through to the backing file. 1477 */ 1478 switch (qcow2_get_cluster_type(old_l2_entry)) { 1479 case QCOW2_CLUSTER_UNALLOCATED: 1480 if (full_discard || !bs->backing) { 1481 continue; 1482 } 1483 break; 1484 1485 case QCOW2_CLUSTER_ZERO: 1486 if (!full_discard) { 1487 continue; 1488 } 1489 break; 1490 1491 case QCOW2_CLUSTER_NORMAL: 1492 case QCOW2_CLUSTER_COMPRESSED: 1493 break; 1494 1495 default: 1496 abort(); 1497 } 1498 1499 /* First remove L2 entries */ 1500 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1501 if (!full_discard && s->qcow_version >= 3) { 1502 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1503 } else { 1504 l2_table[l2_index + i] = cpu_to_be64(0); 1505 } 1506 1507 /* Then decrease the refcount */ 1508 qcow2_free_any_clusters(bs, old_l2_entry, 1, type); 1509 } 1510 1511 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1512 1513 return nb_clusters; 1514 } 1515 1516 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1517 int nb_sectors, enum qcow2_discard_type type, bool full_discard) 1518 { 1519 BDRVQcow2State *s = bs->opaque; 1520 uint64_t end_offset; 1521 uint64_t nb_clusters; 1522 int ret; 1523 1524 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1525 1526 /* Round start up and end down */ 1527 offset = align_offset(offset, s->cluster_size); 1528 end_offset = start_of_cluster(s, end_offset); 1529 1530 if (offset > end_offset) { 1531 return 0; 1532 } 1533 1534 nb_clusters = size_to_clusters(s, end_offset - offset); 1535 1536 s->cache_discards = true; 1537 1538 /* Each L2 table is handled by its own loop iteration */ 1539 while (nb_clusters > 0) { 1540 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard); 1541 if (ret < 0) { 1542 goto fail; 1543 } 1544 1545 nb_clusters -= ret; 1546 offset += (ret * s->cluster_size); 1547 } 1548 1549 ret = 0; 1550 fail: 1551 s->cache_discards = false; 1552 qcow2_process_discards(bs, ret); 1553 1554 return ret; 1555 } 1556 1557 /* 1558 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1559 * all clusters in the same L2 table) and returns the number of zeroed 1560 * clusters. 1561 */ 1562 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1563 uint64_t nb_clusters) 1564 { 1565 BDRVQcow2State *s = bs->opaque; 1566 uint64_t *l2_table; 1567 int l2_index; 1568 int ret; 1569 int i; 1570 1571 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1572 if (ret < 0) { 1573 return ret; 1574 } 1575 1576 /* Limit nb_clusters to one L2 table */ 1577 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1578 assert(nb_clusters <= INT_MAX); 1579 1580 for (i = 0; i < nb_clusters; i++) { 1581 uint64_t old_offset; 1582 1583 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1584 1585 /* Update L2 entries */ 1586 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1587 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1588 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1589 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1590 } else { 1591 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1592 } 1593 } 1594 1595 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1596 1597 return nb_clusters; 1598 } 1599 1600 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1601 { 1602 BDRVQcow2State *s = bs->opaque; 1603 uint64_t nb_clusters; 1604 int ret; 1605 1606 /* The zero flag is only supported by version 3 and newer */ 1607 if (s->qcow_version < 3) { 1608 return -ENOTSUP; 1609 } 1610 1611 /* Each L2 table is handled by its own loop iteration */ 1612 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1613 1614 s->cache_discards = true; 1615 1616 while (nb_clusters > 0) { 1617 ret = zero_single_l2(bs, offset, nb_clusters); 1618 if (ret < 0) { 1619 goto fail; 1620 } 1621 1622 nb_clusters -= ret; 1623 offset += (ret * s->cluster_size); 1624 } 1625 1626 ret = 0; 1627 fail: 1628 s->cache_discards = false; 1629 qcow2_process_discards(bs, ret); 1630 1631 return ret; 1632 } 1633 1634 /* 1635 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1636 * non-backed non-pre-allocated zero clusters). 1637 * 1638 * l1_entries and *visited_l1_entries are used to keep track of progress for 1639 * status_cb(). l1_entries contains the total number of L1 entries and 1640 * *visited_l1_entries counts all visited L1 entries. 1641 */ 1642 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1643 int l1_size, int64_t *visited_l1_entries, 1644 int64_t l1_entries, 1645 BlockDriverAmendStatusCB *status_cb, 1646 void *cb_opaque) 1647 { 1648 BDRVQcow2State *s = bs->opaque; 1649 bool is_active_l1 = (l1_table == s->l1_table); 1650 uint64_t *l2_table = NULL; 1651 int ret; 1652 int i, j; 1653 1654 if (!is_active_l1) { 1655 /* inactive L2 tables require a buffer to be stored in when loading 1656 * them from disk */ 1657 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size); 1658 if (l2_table == NULL) { 1659 return -ENOMEM; 1660 } 1661 } 1662 1663 for (i = 0; i < l1_size; i++) { 1664 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1665 bool l2_dirty = false; 1666 uint64_t l2_refcount; 1667 1668 if (!l2_offset) { 1669 /* unallocated */ 1670 (*visited_l1_entries)++; 1671 if (status_cb) { 1672 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 1673 } 1674 continue; 1675 } 1676 1677 if (offset_into_cluster(s, l2_offset)) { 1678 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1679 PRIx64 " unaligned (L1 index: %#x)", 1680 l2_offset, i); 1681 ret = -EIO; 1682 goto fail; 1683 } 1684 1685 if (is_active_l1) { 1686 /* get active L2 tables from cache */ 1687 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1688 (void **)&l2_table); 1689 } else { 1690 /* load inactive L2 tables from disk */ 1691 ret = bdrv_read(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, 1692 (void *)l2_table, s->cluster_sectors); 1693 } 1694 if (ret < 0) { 1695 goto fail; 1696 } 1697 1698 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1699 &l2_refcount); 1700 if (ret < 0) { 1701 goto fail; 1702 } 1703 1704 for (j = 0; j < s->l2_size; j++) { 1705 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1706 int64_t offset = l2_entry & L2E_OFFSET_MASK; 1707 int cluster_type = qcow2_get_cluster_type(l2_entry); 1708 bool preallocated = offset != 0; 1709 1710 if (cluster_type != QCOW2_CLUSTER_ZERO) { 1711 continue; 1712 } 1713 1714 if (!preallocated) { 1715 if (!bs->backing) { 1716 /* not backed; therefore we can simply deallocate the 1717 * cluster */ 1718 l2_table[j] = 0; 1719 l2_dirty = true; 1720 continue; 1721 } 1722 1723 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1724 if (offset < 0) { 1725 ret = offset; 1726 goto fail; 1727 } 1728 1729 if (l2_refcount > 1) { 1730 /* For shared L2 tables, set the refcount accordingly (it is 1731 * already 1 and needs to be l2_refcount) */ 1732 ret = qcow2_update_cluster_refcount(bs, 1733 offset >> s->cluster_bits, 1734 refcount_diff(1, l2_refcount), false, 1735 QCOW2_DISCARD_OTHER); 1736 if (ret < 0) { 1737 qcow2_free_clusters(bs, offset, s->cluster_size, 1738 QCOW2_DISCARD_OTHER); 1739 goto fail; 1740 } 1741 } 1742 } 1743 1744 if (offset_into_cluster(s, offset)) { 1745 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1746 "%#" PRIx64 " unaligned (L2 offset: %#" 1747 PRIx64 ", L2 index: %#x)", offset, 1748 l2_offset, j); 1749 if (!preallocated) { 1750 qcow2_free_clusters(bs, offset, s->cluster_size, 1751 QCOW2_DISCARD_ALWAYS); 1752 } 1753 ret = -EIO; 1754 goto fail; 1755 } 1756 1757 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 1758 if (ret < 0) { 1759 if (!preallocated) { 1760 qcow2_free_clusters(bs, offset, s->cluster_size, 1761 QCOW2_DISCARD_ALWAYS); 1762 } 1763 goto fail; 1764 } 1765 1766 ret = bdrv_write_zeroes(bs->file->bs, offset / BDRV_SECTOR_SIZE, 1767 s->cluster_sectors, 0); 1768 if (ret < 0) { 1769 if (!preallocated) { 1770 qcow2_free_clusters(bs, offset, s->cluster_size, 1771 QCOW2_DISCARD_ALWAYS); 1772 } 1773 goto fail; 1774 } 1775 1776 if (l2_refcount == 1) { 1777 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1778 } else { 1779 l2_table[j] = cpu_to_be64(offset); 1780 } 1781 l2_dirty = true; 1782 } 1783 1784 if (is_active_l1) { 1785 if (l2_dirty) { 1786 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); 1787 qcow2_cache_depends_on_flush(s->l2_table_cache); 1788 } 1789 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1790 } else { 1791 if (l2_dirty) { 1792 ret = qcow2_pre_write_overlap_check(bs, 1793 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, 1794 s->cluster_size); 1795 if (ret < 0) { 1796 goto fail; 1797 } 1798 1799 ret = bdrv_write(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, 1800 (void *)l2_table, s->cluster_sectors); 1801 if (ret < 0) { 1802 goto fail; 1803 } 1804 } 1805 } 1806 1807 (*visited_l1_entries)++; 1808 if (status_cb) { 1809 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 1810 } 1811 } 1812 1813 ret = 0; 1814 1815 fail: 1816 if (l2_table) { 1817 if (!is_active_l1) { 1818 qemu_vfree(l2_table); 1819 } else { 1820 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); 1821 } 1822 } 1823 return ret; 1824 } 1825 1826 /* 1827 * For backed images, expands all zero clusters on the image. For non-backed 1828 * images, deallocates all non-pre-allocated zero clusters (and claims the 1829 * allocation for pre-allocated ones). This is important for downgrading to a 1830 * qcow2 version which doesn't yet support metadata zero clusters. 1831 */ 1832 int qcow2_expand_zero_clusters(BlockDriverState *bs, 1833 BlockDriverAmendStatusCB *status_cb, 1834 void *cb_opaque) 1835 { 1836 BDRVQcow2State *s = bs->opaque; 1837 uint64_t *l1_table = NULL; 1838 int64_t l1_entries = 0, visited_l1_entries = 0; 1839 int ret; 1840 int i, j; 1841 1842 if (status_cb) { 1843 l1_entries = s->l1_size; 1844 for (i = 0; i < s->nb_snapshots; i++) { 1845 l1_entries += s->snapshots[i].l1_size; 1846 } 1847 } 1848 1849 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 1850 &visited_l1_entries, l1_entries, 1851 status_cb, cb_opaque); 1852 if (ret < 0) { 1853 goto fail; 1854 } 1855 1856 /* Inactive L1 tables may point to active L2 tables - therefore it is 1857 * necessary to flush the L2 table cache before trying to access the L2 1858 * tables pointed to by inactive L1 entries (else we might try to expand 1859 * zero clusters that have already been expanded); furthermore, it is also 1860 * necessary to empty the L2 table cache, since it may contain tables which 1861 * are now going to be modified directly on disk, bypassing the cache. 1862 * qcow2_cache_empty() does both for us. */ 1863 ret = qcow2_cache_empty(bs, s->l2_table_cache); 1864 if (ret < 0) { 1865 goto fail; 1866 } 1867 1868 for (i = 0; i < s->nb_snapshots; i++) { 1869 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) + 1870 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE; 1871 1872 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); 1873 1874 ret = bdrv_read(bs->file->bs, 1875 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE, 1876 (void *)l1_table, l1_sectors); 1877 if (ret < 0) { 1878 goto fail; 1879 } 1880 1881 for (j = 0; j < s->snapshots[i].l1_size; j++) { 1882 be64_to_cpus(&l1_table[j]); 1883 } 1884 1885 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 1886 &visited_l1_entries, l1_entries, 1887 status_cb, cb_opaque); 1888 if (ret < 0) { 1889 goto fail; 1890 } 1891 } 1892 1893 ret = 0; 1894 1895 fail: 1896 g_free(l1_table); 1897 return ret; 1898 } 1899