1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include <zlib.h> 27 28 #include "qapi/error.h" 29 #include "qemu-common.h" 30 #include "qcow2.h" 31 #include "qemu/bswap.h" 32 #include "trace.h" 33 34 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size) 35 { 36 BDRVQcow2State *s = bs->opaque; 37 int new_l1_size, i, ret; 38 39 if (exact_size >= s->l1_size) { 40 return 0; 41 } 42 43 new_l1_size = exact_size; 44 45 #ifdef DEBUG_ALLOC2 46 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size); 47 #endif 48 49 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE); 50 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset + 51 new_l1_size * sizeof(uint64_t), 52 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0); 53 if (ret < 0) { 54 goto fail; 55 } 56 57 ret = bdrv_flush(bs->file->bs); 58 if (ret < 0) { 59 goto fail; 60 } 61 62 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS); 63 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) { 64 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) { 65 continue; 66 } 67 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK, 68 s->cluster_size, QCOW2_DISCARD_ALWAYS); 69 s->l1_table[i] = 0; 70 } 71 return 0; 72 73 fail: 74 /* 75 * If the write in the l1_table failed the image may contain a partially 76 * overwritten l1_table. In this case it would be better to clear the 77 * l1_table in memory to avoid possible image corruption. 78 */ 79 memset(s->l1_table + new_l1_size, 0, 80 (s->l1_size - new_l1_size) * sizeof(uint64_t)); 81 return ret; 82 } 83 84 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 85 bool exact_size) 86 { 87 BDRVQcow2State *s = bs->opaque; 88 int new_l1_size2, ret, i; 89 uint64_t *new_l1_table; 90 int64_t old_l1_table_offset, old_l1_size; 91 int64_t new_l1_table_offset, new_l1_size; 92 uint8_t data[12]; 93 94 if (min_size <= s->l1_size) 95 return 0; 96 97 /* Do a sanity check on min_size before trying to calculate new_l1_size 98 * (this prevents overflows during the while loop for the calculation of 99 * new_l1_size) */ 100 if (min_size > INT_MAX / sizeof(uint64_t)) { 101 return -EFBIG; 102 } 103 104 if (exact_size) { 105 new_l1_size = min_size; 106 } else { 107 /* Bump size up to reduce the number of times we have to grow */ 108 new_l1_size = s->l1_size; 109 if (new_l1_size == 0) { 110 new_l1_size = 1; 111 } 112 while (min_size > new_l1_size) { 113 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2); 114 } 115 } 116 117 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX); 118 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) { 119 return -EFBIG; 120 } 121 122 #ifdef DEBUG_ALLOC2 123 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 124 s->l1_size, new_l1_size); 125 #endif 126 127 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 128 new_l1_table = qemu_try_blockalign(bs->file->bs, 129 ROUND_UP(new_l1_size2, 512)); 130 if (new_l1_table == NULL) { 131 return -ENOMEM; 132 } 133 memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512)); 134 135 if (s->l1_size) { 136 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 137 } 138 139 /* write new table (align to cluster) */ 140 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 141 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 142 if (new_l1_table_offset < 0) { 143 qemu_vfree(new_l1_table); 144 return new_l1_table_offset; 145 } 146 147 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 148 if (ret < 0) { 149 goto fail; 150 } 151 152 /* the L1 position has not yet been updated, so these clusters must 153 * indeed be completely free */ 154 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 155 new_l1_size2, false); 156 if (ret < 0) { 157 goto fail; 158 } 159 160 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 161 for(i = 0; i < s->l1_size; i++) 162 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 163 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, 164 new_l1_table, new_l1_size2); 165 if (ret < 0) 166 goto fail; 167 for(i = 0; i < s->l1_size; i++) 168 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 169 170 /* set new table */ 171 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 172 stl_be_p(data, new_l1_size); 173 stq_be_p(data + 4, new_l1_table_offset); 174 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), 175 data, sizeof(data)); 176 if (ret < 0) { 177 goto fail; 178 } 179 qemu_vfree(s->l1_table); 180 old_l1_table_offset = s->l1_table_offset; 181 s->l1_table_offset = new_l1_table_offset; 182 s->l1_table = new_l1_table; 183 old_l1_size = s->l1_size; 184 s->l1_size = new_l1_size; 185 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 186 QCOW2_DISCARD_OTHER); 187 return 0; 188 fail: 189 qemu_vfree(new_l1_table); 190 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 191 QCOW2_DISCARD_OTHER); 192 return ret; 193 } 194 195 /* 196 * l2_load 197 * 198 * @bs: The BlockDriverState 199 * @offset: A guest offset, used to calculate what slice of the L2 200 * table to load. 201 * @l2_offset: Offset to the L2 table in the image file. 202 * @l2_slice: Location to store the pointer to the L2 slice. 203 * 204 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables 205 * that are loaded by the qcow2 cache). If the slice is in the cache, 206 * the cache is used; otherwise the L2 slice is loaded from the image 207 * file. 208 */ 209 static int l2_load(BlockDriverState *bs, uint64_t offset, 210 uint64_t l2_offset, uint64_t **l2_slice) 211 { 212 BDRVQcow2State *s = bs->opaque; 213 int start_of_slice = sizeof(uint64_t) * 214 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset)); 215 216 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice, 217 (void **)l2_slice); 218 } 219 220 /* 221 * Writes one sector of the L1 table to the disk (can't update single entries 222 * and we really don't want bdrv_pread to perform a read-modify-write) 223 */ 224 #define L1_ENTRIES_PER_SECTOR (512 / 8) 225 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 226 { 227 BDRVQcow2State *s = bs->opaque; 228 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; 229 int l1_start_index; 230 int i, ret; 231 232 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 233 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; 234 i++) 235 { 236 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 237 } 238 239 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 240 s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false); 241 if (ret < 0) { 242 return ret; 243 } 244 245 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 246 ret = bdrv_pwrite_sync(bs->file, 247 s->l1_table_offset + 8 * l1_start_index, 248 buf, sizeof(buf)); 249 if (ret < 0) { 250 return ret; 251 } 252 253 return 0; 254 } 255 256 /* 257 * l2_allocate 258 * 259 * Allocate a new l2 entry in the file. If l1_index points to an already 260 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 261 * table) copy the contents of the old L2 table into the newly allocated one. 262 * Otherwise the new table is initialized with zeros. 263 * 264 */ 265 266 static int l2_allocate(BlockDriverState *bs, int l1_index) 267 { 268 BDRVQcow2State *s = bs->opaque; 269 uint64_t old_l2_offset; 270 uint64_t *l2_slice = NULL; 271 unsigned slice, slice_size2, n_slices; 272 int64_t l2_offset; 273 int ret; 274 275 old_l2_offset = s->l1_table[l1_index]; 276 277 trace_qcow2_l2_allocate(bs, l1_index); 278 279 /* allocate a new l2 entry */ 280 281 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 282 if (l2_offset < 0) { 283 ret = l2_offset; 284 goto fail; 285 } 286 287 /* The offset must fit in the offset field of the L1 table entry */ 288 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset); 289 290 /* If we're allocating the table at offset 0 then something is wrong */ 291 if (l2_offset == 0) { 292 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid " 293 "allocation of L2 table at offset 0"); 294 ret = -EIO; 295 goto fail; 296 } 297 298 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 299 if (ret < 0) { 300 goto fail; 301 } 302 303 /* allocate a new entry in the l2 cache */ 304 305 slice_size2 = s->l2_slice_size * sizeof(uint64_t); 306 n_slices = s->cluster_size / slice_size2; 307 308 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 309 for (slice = 0; slice < n_slices; slice++) { 310 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, 311 l2_offset + slice * slice_size2, 312 (void **) &l2_slice); 313 if (ret < 0) { 314 goto fail; 315 } 316 317 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 318 /* if there was no old l2 table, clear the new slice */ 319 memset(l2_slice, 0, slice_size2); 320 } else { 321 uint64_t *old_slice; 322 uint64_t old_l2_slice_offset = 323 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2; 324 325 /* if there was an old l2 table, read a slice from the disk */ 326 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 327 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset, 328 (void **) &old_slice); 329 if (ret < 0) { 330 goto fail; 331 } 332 333 memcpy(l2_slice, old_slice, slice_size2); 334 335 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice); 336 } 337 338 /* write the l2 slice to the file */ 339 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 340 341 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 342 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 343 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 344 } 345 346 ret = qcow2_cache_flush(bs, s->l2_table_cache); 347 if (ret < 0) { 348 goto fail; 349 } 350 351 /* update the L1 entry */ 352 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 353 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 354 ret = qcow2_write_l1_entry(bs, l1_index); 355 if (ret < 0) { 356 goto fail; 357 } 358 359 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 360 return 0; 361 362 fail: 363 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 364 if (l2_slice != NULL) { 365 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 366 } 367 s->l1_table[l1_index] = old_l2_offset; 368 if (l2_offset > 0) { 369 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 370 QCOW2_DISCARD_ALWAYS); 371 } 372 return ret; 373 } 374 375 /* 376 * Checks how many clusters in a given L2 slice are contiguous in the image 377 * file. As soon as one of the flags in the bitmask stop_flags changes compared 378 * to the first cluster, the search is stopped and the cluster is not counted 379 * as contiguous. (This allows it, for example, to stop at the first compressed 380 * cluster which may require a different handling) 381 */ 382 static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters, 383 int cluster_size, uint64_t *l2_slice, uint64_t stop_flags) 384 { 385 int i; 386 QCow2ClusterType first_cluster_type; 387 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 388 uint64_t first_entry = be64_to_cpu(l2_slice[0]); 389 uint64_t offset = first_entry & mask; 390 391 first_cluster_type = qcow2_get_cluster_type(bs, first_entry); 392 if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) { 393 return 0; 394 } 395 396 /* must be allocated */ 397 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL || 398 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC); 399 400 for (i = 0; i < nb_clusters; i++) { 401 uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask; 402 if (offset + (uint64_t) i * cluster_size != l2_entry) { 403 break; 404 } 405 } 406 407 return i; 408 } 409 410 /* 411 * Checks how many consecutive unallocated clusters in a given L2 412 * slice have the same cluster type. 413 */ 414 static int count_contiguous_clusters_unallocated(BlockDriverState *bs, 415 int nb_clusters, 416 uint64_t *l2_slice, 417 QCow2ClusterType wanted_type) 418 { 419 int i; 420 421 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN || 422 wanted_type == QCOW2_CLUSTER_UNALLOCATED); 423 for (i = 0; i < nb_clusters; i++) { 424 uint64_t entry = be64_to_cpu(l2_slice[i]); 425 QCow2ClusterType type = qcow2_get_cluster_type(bs, entry); 426 427 if (type != wanted_type) { 428 break; 429 } 430 } 431 432 return i; 433 } 434 435 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs, 436 uint64_t src_cluster_offset, 437 unsigned offset_in_cluster, 438 QEMUIOVector *qiov) 439 { 440 int ret; 441 442 if (qiov->size == 0) { 443 return 0; 444 } 445 446 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 447 448 if (!bs->drv) { 449 return -ENOMEDIUM; 450 } 451 452 /* Call .bdrv_co_readv() directly instead of using the public block-layer 453 * interface. This avoids double I/O throttling and request tracking, 454 * which can lead to deadlock when block layer copy-on-read is enabled. 455 */ 456 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster, 457 qiov->size, qiov, 0); 458 if (ret < 0) { 459 return ret; 460 } 461 462 return 0; 463 } 464 465 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs, 466 uint64_t src_cluster_offset, 467 uint64_t cluster_offset, 468 unsigned offset_in_cluster, 469 uint8_t *buffer, 470 unsigned bytes) 471 { 472 if (bytes && bs->encrypted) { 473 BDRVQcow2State *s = bs->opaque; 474 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0); 475 assert((bytes & ~BDRV_SECTOR_MASK) == 0); 476 assert(s->crypto); 477 if (qcow2_co_encrypt(bs, cluster_offset, 478 src_cluster_offset + offset_in_cluster, 479 buffer, bytes) < 0) { 480 return false; 481 } 482 } 483 return true; 484 } 485 486 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs, 487 uint64_t cluster_offset, 488 unsigned offset_in_cluster, 489 QEMUIOVector *qiov) 490 { 491 BDRVQcow2State *s = bs->opaque; 492 int ret; 493 494 if (qiov->size == 0) { 495 return 0; 496 } 497 498 ret = qcow2_pre_write_overlap_check(bs, 0, 499 cluster_offset + offset_in_cluster, qiov->size, true); 500 if (ret < 0) { 501 return ret; 502 } 503 504 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 505 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster, 506 qiov->size, qiov, 0); 507 if (ret < 0) { 508 return ret; 509 } 510 511 return 0; 512 } 513 514 515 /* 516 * get_cluster_offset 517 * 518 * For a given offset of the virtual disk, find the cluster type and offset in 519 * the qcow2 file. The offset is stored in *cluster_offset. 520 * 521 * On entry, *bytes is the maximum number of contiguous bytes starting at 522 * offset that we are interested in. 523 * 524 * On exit, *bytes is the number of bytes starting at offset that have the same 525 * cluster type and (if applicable) are stored contiguously in the image file. 526 * Compressed clusters are always returned one by one. 527 * 528 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 529 * cases. 530 */ 531 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 532 unsigned int *bytes, uint64_t *cluster_offset) 533 { 534 BDRVQcow2State *s = bs->opaque; 535 unsigned int l2_index; 536 uint64_t l1_index, l2_offset, *l2_slice; 537 int c; 538 unsigned int offset_in_cluster; 539 uint64_t bytes_available, bytes_needed, nb_clusters; 540 QCow2ClusterType type; 541 int ret; 542 543 offset_in_cluster = offset_into_cluster(s, offset); 544 bytes_needed = (uint64_t) *bytes + offset_in_cluster; 545 546 /* compute how many bytes there are between the start of the cluster 547 * containing offset and the end of the l2 slice that contains 548 * the entry pointing to it */ 549 bytes_available = 550 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset))) 551 << s->cluster_bits; 552 553 if (bytes_needed > bytes_available) { 554 bytes_needed = bytes_available; 555 } 556 557 *cluster_offset = 0; 558 559 /* seek to the l2 offset in the l1 table */ 560 561 l1_index = offset_to_l1_index(s, offset); 562 if (l1_index >= s->l1_size) { 563 type = QCOW2_CLUSTER_UNALLOCATED; 564 goto out; 565 } 566 567 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 568 if (!l2_offset) { 569 type = QCOW2_CLUSTER_UNALLOCATED; 570 goto out; 571 } 572 573 if (offset_into_cluster(s, l2_offset)) { 574 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 575 " unaligned (L1 index: %#" PRIx64 ")", 576 l2_offset, l1_index); 577 return -EIO; 578 } 579 580 /* load the l2 slice in memory */ 581 582 ret = l2_load(bs, offset, l2_offset, &l2_slice); 583 if (ret < 0) { 584 return ret; 585 } 586 587 /* find the cluster offset for the given disk offset */ 588 589 l2_index = offset_to_l2_slice_index(s, offset); 590 *cluster_offset = be64_to_cpu(l2_slice[l2_index]); 591 592 nb_clusters = size_to_clusters(s, bytes_needed); 593 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned 594 * integers; the minimum cluster size is 512, so this assertion is always 595 * true */ 596 assert(nb_clusters <= INT_MAX); 597 598 type = qcow2_get_cluster_type(bs, *cluster_offset); 599 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN || 600 type == QCOW2_CLUSTER_ZERO_ALLOC)) { 601 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" 602 " in pre-v3 image (L2 offset: %#" PRIx64 603 ", L2 index: %#x)", l2_offset, l2_index); 604 ret = -EIO; 605 goto fail; 606 } 607 switch (type) { 608 case QCOW2_CLUSTER_COMPRESSED: 609 if (has_data_file(bs)) { 610 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster " 611 "entry found in image with external data " 612 "file (L2 offset: %#" PRIx64 ", L2 index: " 613 "%#x)", l2_offset, l2_index); 614 ret = -EIO; 615 goto fail; 616 } 617 /* Compressed clusters can only be processed one by one */ 618 c = 1; 619 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 620 break; 621 case QCOW2_CLUSTER_ZERO_PLAIN: 622 case QCOW2_CLUSTER_UNALLOCATED: 623 /* how many empty clusters ? */ 624 c = count_contiguous_clusters_unallocated(bs, nb_clusters, 625 &l2_slice[l2_index], type); 626 *cluster_offset = 0; 627 break; 628 case QCOW2_CLUSTER_ZERO_ALLOC: 629 case QCOW2_CLUSTER_NORMAL: 630 /* how many allocated clusters ? */ 631 c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size, 632 &l2_slice[l2_index], QCOW_OFLAG_ZERO); 633 *cluster_offset &= L2E_OFFSET_MASK; 634 if (offset_into_cluster(s, *cluster_offset)) { 635 qcow2_signal_corruption(bs, true, -1, -1, 636 "Cluster allocation offset %#" 637 PRIx64 " unaligned (L2 offset: %#" PRIx64 638 ", L2 index: %#x)", *cluster_offset, 639 l2_offset, l2_index); 640 ret = -EIO; 641 goto fail; 642 } 643 if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster) 644 { 645 qcow2_signal_corruption(bs, true, -1, -1, 646 "External data file host cluster offset %#" 647 PRIx64 " does not match guest cluster " 648 "offset: %#" PRIx64 649 ", L2 index: %#x)", *cluster_offset, 650 offset - offset_in_cluster, l2_index); 651 ret = -EIO; 652 goto fail; 653 } 654 break; 655 default: 656 abort(); 657 } 658 659 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 660 661 bytes_available = (int64_t)c * s->cluster_size; 662 663 out: 664 if (bytes_available > bytes_needed) { 665 bytes_available = bytes_needed; 666 } 667 668 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster; 669 * subtracting offset_in_cluster will therefore definitely yield something 670 * not exceeding UINT_MAX */ 671 assert(bytes_available - offset_in_cluster <= UINT_MAX); 672 *bytes = bytes_available - offset_in_cluster; 673 674 return type; 675 676 fail: 677 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice); 678 return ret; 679 } 680 681 /* 682 * get_cluster_table 683 * 684 * for a given disk offset, load (and allocate if needed) 685 * the appropriate slice of its l2 table. 686 * 687 * the cluster index in the l2 slice is given to the caller. 688 * 689 * Returns 0 on success, -errno in failure case 690 */ 691 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 692 uint64_t **new_l2_slice, 693 int *new_l2_index) 694 { 695 BDRVQcow2State *s = bs->opaque; 696 unsigned int l2_index; 697 uint64_t l1_index, l2_offset; 698 uint64_t *l2_slice = NULL; 699 int ret; 700 701 /* seek to the l2 offset in the l1 table */ 702 703 l1_index = offset_to_l1_index(s, offset); 704 if (l1_index >= s->l1_size) { 705 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 706 if (ret < 0) { 707 return ret; 708 } 709 } 710 711 assert(l1_index < s->l1_size); 712 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 713 if (offset_into_cluster(s, l2_offset)) { 714 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 715 " unaligned (L1 index: %#" PRIx64 ")", 716 l2_offset, l1_index); 717 return -EIO; 718 } 719 720 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) { 721 /* First allocate a new L2 table (and do COW if needed) */ 722 ret = l2_allocate(bs, l1_index); 723 if (ret < 0) { 724 return ret; 725 } 726 727 /* Then decrease the refcount of the old table */ 728 if (l2_offset) { 729 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 730 QCOW2_DISCARD_OTHER); 731 } 732 733 /* Get the offset of the newly-allocated l2 table */ 734 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 735 assert(offset_into_cluster(s, l2_offset) == 0); 736 } 737 738 /* load the l2 slice in memory */ 739 ret = l2_load(bs, offset, l2_offset, &l2_slice); 740 if (ret < 0) { 741 return ret; 742 } 743 744 /* find the cluster offset for the given disk offset */ 745 746 l2_index = offset_to_l2_slice_index(s, offset); 747 748 *new_l2_slice = l2_slice; 749 *new_l2_index = l2_index; 750 751 return 0; 752 } 753 754 /* 755 * alloc_compressed_cluster_offset 756 * 757 * For a given offset on the virtual disk, allocate a new compressed cluster 758 * and put the host offset of the cluster into *host_offset. If a cluster is 759 * already allocated at the offset, return an error. 760 * 761 * Return 0 on success and -errno in error cases 762 */ 763 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 764 uint64_t offset, 765 int compressed_size, 766 uint64_t *host_offset) 767 { 768 BDRVQcow2State *s = bs->opaque; 769 int l2_index, ret; 770 uint64_t *l2_slice; 771 int64_t cluster_offset; 772 int nb_csectors; 773 774 if (has_data_file(bs)) { 775 return 0; 776 } 777 778 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 779 if (ret < 0) { 780 return ret; 781 } 782 783 /* Compression can't overwrite anything. Fail if the cluster was already 784 * allocated. */ 785 cluster_offset = be64_to_cpu(l2_slice[l2_index]); 786 if (cluster_offset & L2E_OFFSET_MASK) { 787 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 788 return -EIO; 789 } 790 791 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 792 if (cluster_offset < 0) { 793 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 794 return cluster_offset; 795 } 796 797 nb_csectors = 798 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE - 799 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE); 800 801 cluster_offset |= QCOW_OFLAG_COMPRESSED | 802 ((uint64_t)nb_csectors << s->csize_shift); 803 804 /* update L2 table */ 805 806 /* compressed clusters never have the copied flag */ 807 808 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 809 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 810 l2_slice[l2_index] = cpu_to_be64(cluster_offset); 811 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 812 813 *host_offset = cluster_offset & s->cluster_offset_mask; 814 return 0; 815 } 816 817 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m) 818 { 819 BDRVQcow2State *s = bs->opaque; 820 Qcow2COWRegion *start = &m->cow_start; 821 Qcow2COWRegion *end = &m->cow_end; 822 unsigned buffer_size; 823 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes); 824 bool merge_reads; 825 uint8_t *start_buffer, *end_buffer; 826 QEMUIOVector qiov; 827 int ret; 828 829 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes); 830 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes); 831 assert(start->offset + start->nb_bytes <= end->offset); 832 assert(!m->data_qiov || m->data_qiov->size == data_bytes); 833 834 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) { 835 return 0; 836 } 837 838 /* If we have to read both the start and end COW regions and the 839 * middle region is not too large then perform just one read 840 * operation */ 841 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384; 842 if (merge_reads) { 843 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes; 844 } else { 845 /* If we have to do two reads, add some padding in the middle 846 * if necessary to make sure that the end region is optimally 847 * aligned. */ 848 size_t align = bdrv_opt_mem_align(bs); 849 assert(align > 0 && align <= UINT_MAX); 850 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <= 851 UINT_MAX - end->nb_bytes); 852 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes; 853 } 854 855 /* Reserve a buffer large enough to store all the data that we're 856 * going to read */ 857 start_buffer = qemu_try_blockalign(bs, buffer_size); 858 if (start_buffer == NULL) { 859 return -ENOMEM; 860 } 861 /* The part of the buffer where the end region is located */ 862 end_buffer = start_buffer + buffer_size - end->nb_bytes; 863 864 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0)); 865 866 qemu_co_mutex_unlock(&s->lock); 867 /* First we read the existing data from both COW regions. We 868 * either read the whole region in one go, or the start and end 869 * regions separately. */ 870 if (merge_reads) { 871 qemu_iovec_add(&qiov, start_buffer, buffer_size); 872 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 873 } else { 874 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 875 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov); 876 if (ret < 0) { 877 goto fail; 878 } 879 880 qemu_iovec_reset(&qiov); 881 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 882 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov); 883 } 884 if (ret < 0) { 885 goto fail; 886 } 887 888 /* Encrypt the data if necessary before writing it */ 889 if (bs->encrypted) { 890 if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset, 891 start->offset, start_buffer, 892 start->nb_bytes) || 893 !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset, 894 end->offset, end_buffer, end->nb_bytes)) { 895 ret = -EIO; 896 goto fail; 897 } 898 } 899 900 /* And now we can write everything. If we have the guest data we 901 * can write everything in one single operation */ 902 if (m->data_qiov) { 903 qemu_iovec_reset(&qiov); 904 if (start->nb_bytes) { 905 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 906 } 907 qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes); 908 if (end->nb_bytes) { 909 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 910 } 911 /* NOTE: we have a write_aio blkdebug event here followed by 912 * a cow_write one in do_perform_cow_write(), but there's only 913 * one single I/O operation */ 914 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO); 915 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 916 } else { 917 /* If there's no guest data then write both COW regions separately */ 918 qemu_iovec_reset(&qiov); 919 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes); 920 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov); 921 if (ret < 0) { 922 goto fail; 923 } 924 925 qemu_iovec_reset(&qiov); 926 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes); 927 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov); 928 } 929 930 fail: 931 qemu_co_mutex_lock(&s->lock); 932 933 /* 934 * Before we update the L2 table to actually point to the new cluster, we 935 * need to be sure that the refcounts have been increased and COW was 936 * handled. 937 */ 938 if (ret == 0) { 939 qcow2_cache_depends_on_flush(s->l2_table_cache); 940 } 941 942 qemu_vfree(start_buffer); 943 qemu_iovec_destroy(&qiov); 944 return ret; 945 } 946 947 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 948 { 949 BDRVQcow2State *s = bs->opaque; 950 int i, j = 0, l2_index, ret; 951 uint64_t *old_cluster, *l2_slice; 952 uint64_t cluster_offset = m->alloc_offset; 953 954 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 955 assert(m->nb_clusters > 0); 956 957 old_cluster = g_try_new(uint64_t, m->nb_clusters); 958 if (old_cluster == NULL) { 959 ret = -ENOMEM; 960 goto err; 961 } 962 963 /* copy content of unmodified sectors */ 964 ret = perform_cow(bs, m); 965 if (ret < 0) { 966 goto err; 967 } 968 969 /* Update L2 table. */ 970 if (s->use_lazy_refcounts) { 971 qcow2_mark_dirty(bs); 972 } 973 if (qcow2_need_accurate_refcounts(s)) { 974 qcow2_cache_set_dependency(bs, s->l2_table_cache, 975 s->refcount_block_cache); 976 } 977 978 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index); 979 if (ret < 0) { 980 goto err; 981 } 982 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 983 984 assert(l2_index + m->nb_clusters <= s->l2_slice_size); 985 for (i = 0; i < m->nb_clusters; i++) { 986 /* if two concurrent writes happen to the same unallocated cluster 987 * each write allocates separate cluster and writes data concurrently. 988 * The first one to complete updates l2 table with pointer to its 989 * cluster the second one has to do RMW (which is done above by 990 * perform_cow()), update l2 table with its cluster pointer and free 991 * old cluster. This is what this loop does */ 992 if (l2_slice[l2_index + i] != 0) { 993 old_cluster[j++] = l2_slice[l2_index + i]; 994 } 995 996 l2_slice[l2_index + i] = cpu_to_be64((cluster_offset + 997 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 998 } 999 1000 1001 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1002 1003 /* 1004 * If this was a COW, we need to decrease the refcount of the old cluster. 1005 * 1006 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 1007 * clusters), the next write will reuse them anyway. 1008 */ 1009 if (!m->keep_old_clusters && j != 0) { 1010 for (i = 0; i < j; i++) { 1011 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 1012 QCOW2_DISCARD_NEVER); 1013 } 1014 } 1015 1016 ret = 0; 1017 err: 1018 g_free(old_cluster); 1019 return ret; 1020 } 1021 1022 /** 1023 * Frees the allocated clusters because the request failed and they won't 1024 * actually be linked. 1025 */ 1026 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m) 1027 { 1028 BDRVQcow2State *s = bs->opaque; 1029 qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits, 1030 QCOW2_DISCARD_NEVER); 1031 } 1032 1033 /* 1034 * Returns the number of contiguous clusters that can be used for an allocating 1035 * write, but require COW to be performed (this includes yet unallocated space, 1036 * which must copy from the backing file) 1037 */ 1038 static int count_cow_clusters(BlockDriverState *bs, int nb_clusters, 1039 uint64_t *l2_slice, int l2_index) 1040 { 1041 int i; 1042 1043 for (i = 0; i < nb_clusters; i++) { 1044 uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]); 1045 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry); 1046 1047 switch(cluster_type) { 1048 case QCOW2_CLUSTER_NORMAL: 1049 if (l2_entry & QCOW_OFLAG_COPIED) { 1050 goto out; 1051 } 1052 break; 1053 case QCOW2_CLUSTER_UNALLOCATED: 1054 case QCOW2_CLUSTER_COMPRESSED: 1055 case QCOW2_CLUSTER_ZERO_PLAIN: 1056 case QCOW2_CLUSTER_ZERO_ALLOC: 1057 break; 1058 default: 1059 abort(); 1060 } 1061 } 1062 1063 out: 1064 assert(i <= nb_clusters); 1065 return i; 1066 } 1067 1068 /* 1069 * Check if there already is an AIO write request in flight which allocates 1070 * the same cluster. In this case we need to wait until the previous 1071 * request has completed and updated the L2 table accordingly. 1072 * 1073 * Returns: 1074 * 0 if there was no dependency. *cur_bytes indicates the number of 1075 * bytes from guest_offset that can be read before the next 1076 * dependency must be processed (or the request is complete) 1077 * 1078 * -EAGAIN if we had to wait for another request, previously gathered 1079 * information on cluster allocation may be invalid now. The caller 1080 * must start over anyway, so consider *cur_bytes undefined. 1081 */ 1082 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 1083 uint64_t *cur_bytes, QCowL2Meta **m) 1084 { 1085 BDRVQcow2State *s = bs->opaque; 1086 QCowL2Meta *old_alloc; 1087 uint64_t bytes = *cur_bytes; 1088 1089 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 1090 1091 uint64_t start = guest_offset; 1092 uint64_t end = start + bytes; 1093 uint64_t old_start = l2meta_cow_start(old_alloc); 1094 uint64_t old_end = l2meta_cow_end(old_alloc); 1095 1096 if (end <= old_start || start >= old_end) { 1097 /* No intersection */ 1098 } else { 1099 if (start < old_start) { 1100 /* Stop at the start of a running allocation */ 1101 bytes = old_start - start; 1102 } else { 1103 bytes = 0; 1104 } 1105 1106 /* Stop if already an l2meta exists. After yielding, it wouldn't 1107 * be valid any more, so we'd have to clean up the old L2Metas 1108 * and deal with requests depending on them before starting to 1109 * gather new ones. Not worth the trouble. */ 1110 if (bytes == 0 && *m) { 1111 *cur_bytes = 0; 1112 return 0; 1113 } 1114 1115 if (bytes == 0) { 1116 /* Wait for the dependency to complete. We need to recheck 1117 * the free/allocated clusters when we continue. */ 1118 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock); 1119 return -EAGAIN; 1120 } 1121 } 1122 } 1123 1124 /* Make sure that existing clusters and new allocations are only used up to 1125 * the next dependency if we shortened the request above */ 1126 *cur_bytes = bytes; 1127 1128 return 0; 1129 } 1130 1131 /* 1132 * Checks how many already allocated clusters that don't require a copy on 1133 * write there are at the given guest_offset (up to *bytes). If *host_offset is 1134 * not INV_OFFSET, only physically contiguous clusters beginning at this host 1135 * offset are counted. 1136 * 1137 * Note that guest_offset may not be cluster aligned. In this case, the 1138 * returned *host_offset points to exact byte referenced by guest_offset and 1139 * therefore isn't cluster aligned as well. 1140 * 1141 * Returns: 1142 * 0: if no allocated clusters are available at the given offset. 1143 * *bytes is normally unchanged. It is set to 0 if the cluster 1144 * is allocated and doesn't need COW, but doesn't have the right 1145 * physical offset. 1146 * 1147 * 1: if allocated clusters that don't require a COW are available at 1148 * the requested offset. *bytes may have decreased and describes 1149 * the length of the area that can be written to. 1150 * 1151 * -errno: in error cases 1152 */ 1153 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 1154 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1155 { 1156 BDRVQcow2State *s = bs->opaque; 1157 int l2_index; 1158 uint64_t cluster_offset; 1159 uint64_t *l2_slice; 1160 uint64_t nb_clusters; 1161 unsigned int keep_clusters; 1162 int ret; 1163 1164 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 1165 *bytes); 1166 1167 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset) 1168 == offset_into_cluster(s, *host_offset)); 1169 1170 /* 1171 * Calculate the number of clusters to look for. We stop at L2 slice 1172 * boundaries to keep things simple. 1173 */ 1174 nb_clusters = 1175 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1176 1177 l2_index = offset_to_l2_slice_index(s, guest_offset); 1178 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1179 assert(nb_clusters <= INT_MAX); 1180 1181 /* Find L2 entry for the first involved cluster */ 1182 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1183 if (ret < 0) { 1184 return ret; 1185 } 1186 1187 cluster_offset = be64_to_cpu(l2_slice[l2_index]); 1188 1189 /* Check how many clusters are already allocated and don't need COW */ 1190 if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL 1191 && (cluster_offset & QCOW_OFLAG_COPIED)) 1192 { 1193 /* If a specific host_offset is required, check it */ 1194 bool offset_matches = 1195 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 1196 1197 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { 1198 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " 1199 "%#llx unaligned (guest offset: %#" PRIx64 1200 ")", cluster_offset & L2E_OFFSET_MASK, 1201 guest_offset); 1202 ret = -EIO; 1203 goto out; 1204 } 1205 1206 if (*host_offset != INV_OFFSET && !offset_matches) { 1207 *bytes = 0; 1208 ret = 0; 1209 goto out; 1210 } 1211 1212 /* We keep all QCOW_OFLAG_COPIED clusters */ 1213 keep_clusters = 1214 count_contiguous_clusters(bs, nb_clusters, s->cluster_size, 1215 &l2_slice[l2_index], 1216 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 1217 assert(keep_clusters <= nb_clusters); 1218 1219 *bytes = MIN(*bytes, 1220 keep_clusters * s->cluster_size 1221 - offset_into_cluster(s, guest_offset)); 1222 1223 ret = 1; 1224 } else { 1225 ret = 0; 1226 } 1227 1228 /* Cleanup */ 1229 out: 1230 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1231 1232 /* Only return a host offset if we actually made progress. Otherwise we 1233 * would make requirements for handle_alloc() that it can't fulfill */ 1234 if (ret > 0) { 1235 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 1236 + offset_into_cluster(s, guest_offset); 1237 } 1238 1239 return ret; 1240 } 1241 1242 /* 1243 * Allocates new clusters for the given guest_offset. 1244 * 1245 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 1246 * contain the number of clusters that have been allocated and are contiguous 1247 * in the image file. 1248 * 1249 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file 1250 * at which the new clusters must start. *nb_clusters can be 0 on return in 1251 * this case if the cluster at host_offset is already in use. If *host_offset 1252 * is INV_OFFSET, the clusters can be allocated anywhere in the image file. 1253 * 1254 * *host_offset is updated to contain the offset into the image file at which 1255 * the first allocated cluster starts. 1256 * 1257 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1258 * function has been waiting for another request and the allocation must be 1259 * restarted, but the whole request should not be failed. 1260 */ 1261 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1262 uint64_t *host_offset, uint64_t *nb_clusters) 1263 { 1264 BDRVQcow2State *s = bs->opaque; 1265 1266 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1267 *host_offset, *nb_clusters); 1268 1269 if (has_data_file(bs)) { 1270 assert(*host_offset == INV_OFFSET || 1271 *host_offset == start_of_cluster(s, guest_offset)); 1272 *host_offset = start_of_cluster(s, guest_offset); 1273 return 0; 1274 } 1275 1276 /* Allocate new clusters */ 1277 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1278 if (*host_offset == INV_OFFSET) { 1279 int64_t cluster_offset = 1280 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1281 if (cluster_offset < 0) { 1282 return cluster_offset; 1283 } 1284 *host_offset = cluster_offset; 1285 return 0; 1286 } else { 1287 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1288 if (ret < 0) { 1289 return ret; 1290 } 1291 *nb_clusters = ret; 1292 return 0; 1293 } 1294 } 1295 1296 /* 1297 * Allocates new clusters for an area that either is yet unallocated or needs a 1298 * copy on write. If *host_offset is not INV_OFFSET, clusters are only 1299 * allocated if the new allocation can match the specified host offset. 1300 * 1301 * Note that guest_offset may not be cluster aligned. In this case, the 1302 * returned *host_offset points to exact byte referenced by guest_offset and 1303 * therefore isn't cluster aligned as well. 1304 * 1305 * Returns: 1306 * 0: if no clusters could be allocated. *bytes is set to 0, 1307 * *host_offset is left unchanged. 1308 * 1309 * 1: if new clusters were allocated. *bytes may be decreased if the 1310 * new allocation doesn't cover all of the requested area. 1311 * *host_offset is updated to contain the host offset of the first 1312 * newly allocated cluster. 1313 * 1314 * -errno: in error cases 1315 */ 1316 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1317 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1318 { 1319 BDRVQcow2State *s = bs->opaque; 1320 int l2_index; 1321 uint64_t *l2_slice; 1322 uint64_t entry; 1323 uint64_t nb_clusters; 1324 int ret; 1325 bool keep_old_clusters = false; 1326 1327 uint64_t alloc_cluster_offset = INV_OFFSET; 1328 1329 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1330 *bytes); 1331 assert(*bytes > 0); 1332 1333 /* 1334 * Calculate the number of clusters to look for. We stop at L2 slice 1335 * boundaries to keep things simple. 1336 */ 1337 nb_clusters = 1338 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1339 1340 l2_index = offset_to_l2_slice_index(s, guest_offset); 1341 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1342 assert(nb_clusters <= INT_MAX); 1343 1344 /* Find L2 entry for the first involved cluster */ 1345 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index); 1346 if (ret < 0) { 1347 return ret; 1348 } 1349 1350 entry = be64_to_cpu(l2_slice[l2_index]); 1351 1352 /* For the moment, overwrite compressed clusters one by one */ 1353 if (entry & QCOW_OFLAG_COMPRESSED) { 1354 nb_clusters = 1; 1355 } else { 1356 nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index); 1357 } 1358 1359 /* This function is only called when there were no non-COW clusters, so if 1360 * we can't find any unallocated or COW clusters either, something is 1361 * wrong with our code. */ 1362 assert(nb_clusters > 0); 1363 1364 if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC && 1365 (entry & QCOW_OFLAG_COPIED) && 1366 (*host_offset == INV_OFFSET || 1367 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK))) 1368 { 1369 int preallocated_nb_clusters; 1370 1371 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) { 1372 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero " 1373 "cluster offset %#llx unaligned (guest " 1374 "offset: %#" PRIx64 ")", 1375 entry & L2E_OFFSET_MASK, guest_offset); 1376 ret = -EIO; 1377 goto fail; 1378 } 1379 1380 /* Try to reuse preallocated zero clusters; contiguous normal clusters 1381 * would be fine, too, but count_cow_clusters() above has limited 1382 * nb_clusters already to a range of COW clusters */ 1383 preallocated_nb_clusters = 1384 count_contiguous_clusters(bs, nb_clusters, s->cluster_size, 1385 &l2_slice[l2_index], QCOW_OFLAG_COPIED); 1386 assert(preallocated_nb_clusters > 0); 1387 1388 nb_clusters = preallocated_nb_clusters; 1389 alloc_cluster_offset = entry & L2E_OFFSET_MASK; 1390 1391 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2() 1392 * should not free them. */ 1393 keep_old_clusters = true; 1394 } 1395 1396 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1397 1398 if (alloc_cluster_offset == INV_OFFSET) { 1399 /* Allocate, if necessary at a given offset in the image file */ 1400 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET : 1401 start_of_cluster(s, *host_offset); 1402 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1403 &nb_clusters); 1404 if (ret < 0) { 1405 goto fail; 1406 } 1407 1408 /* Can't extend contiguous allocation */ 1409 if (nb_clusters == 0) { 1410 *bytes = 0; 1411 return 0; 1412 } 1413 1414 assert(alloc_cluster_offset != INV_OFFSET); 1415 } 1416 1417 /* 1418 * Save info needed for meta data update. 1419 * 1420 * requested_bytes: Number of bytes from the start of the first 1421 * newly allocated cluster to the end of the (possibly shortened 1422 * before) write request. 1423 * 1424 * avail_bytes: Number of bytes from the start of the first 1425 * newly allocated to the end of the last newly allocated cluster. 1426 * 1427 * nb_bytes: The number of bytes from the start of the first 1428 * newly allocated cluster to the end of the area that the write 1429 * request actually writes to (excluding COW at the end) 1430 */ 1431 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset); 1432 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits); 1433 int nb_bytes = MIN(requested_bytes, avail_bytes); 1434 QCowL2Meta *old_m = *m; 1435 1436 *m = g_malloc0(sizeof(**m)); 1437 1438 **m = (QCowL2Meta) { 1439 .next = old_m, 1440 1441 .alloc_offset = alloc_cluster_offset, 1442 .offset = start_of_cluster(s, guest_offset), 1443 .nb_clusters = nb_clusters, 1444 1445 .keep_old_clusters = keep_old_clusters, 1446 1447 .cow_start = { 1448 .offset = 0, 1449 .nb_bytes = offset_into_cluster(s, guest_offset), 1450 }, 1451 .cow_end = { 1452 .offset = nb_bytes, 1453 .nb_bytes = avail_bytes - nb_bytes, 1454 }, 1455 }; 1456 qemu_co_queue_init(&(*m)->dependent_requests); 1457 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1458 1459 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1460 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset)); 1461 assert(*bytes != 0); 1462 1463 return 1; 1464 1465 fail: 1466 if (*m && (*m)->nb_clusters > 0) { 1467 QLIST_REMOVE(*m, next_in_flight); 1468 } 1469 return ret; 1470 } 1471 1472 /* 1473 * alloc_cluster_offset 1474 * 1475 * For a given offset on the virtual disk, find the cluster offset in qcow2 1476 * file. If the offset is not found, allocate a new cluster. 1477 * 1478 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1479 * other fields in m are meaningless. 1480 * 1481 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1482 * contiguous clusters that have been allocated. In this case, the other 1483 * fields of m are valid and contain information about the first allocated 1484 * cluster. 1485 * 1486 * If the request conflicts with another write request in flight, the coroutine 1487 * is queued and will be reentered when the dependency has completed. 1488 * 1489 * Return 0 on success and -errno in error cases 1490 */ 1491 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1492 unsigned int *bytes, uint64_t *host_offset, 1493 QCowL2Meta **m) 1494 { 1495 BDRVQcow2State *s = bs->opaque; 1496 uint64_t start, remaining; 1497 uint64_t cluster_offset; 1498 uint64_t cur_bytes; 1499 int ret; 1500 1501 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes); 1502 1503 again: 1504 start = offset; 1505 remaining = *bytes; 1506 cluster_offset = INV_OFFSET; 1507 *host_offset = INV_OFFSET; 1508 cur_bytes = 0; 1509 *m = NULL; 1510 1511 while (true) { 1512 1513 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) { 1514 *host_offset = start_of_cluster(s, cluster_offset); 1515 } 1516 1517 assert(remaining >= cur_bytes); 1518 1519 start += cur_bytes; 1520 remaining -= cur_bytes; 1521 1522 if (cluster_offset != INV_OFFSET) { 1523 cluster_offset += cur_bytes; 1524 } 1525 1526 if (remaining == 0) { 1527 break; 1528 } 1529 1530 cur_bytes = remaining; 1531 1532 /* 1533 * Now start gathering as many contiguous clusters as possible: 1534 * 1535 * 1. Check for overlaps with in-flight allocations 1536 * 1537 * a) Overlap not in the first cluster -> shorten this request and 1538 * let the caller handle the rest in its next loop iteration. 1539 * 1540 * b) Real overlaps of two requests. Yield and restart the search 1541 * for contiguous clusters (the situation could have changed 1542 * while we were sleeping) 1543 * 1544 * c) TODO: Request starts in the same cluster as the in-flight 1545 * allocation ends. Shorten the COW of the in-fight allocation, 1546 * set cluster_offset to write to the same cluster and set up 1547 * the right synchronisation between the in-flight request and 1548 * the new one. 1549 */ 1550 ret = handle_dependencies(bs, start, &cur_bytes, m); 1551 if (ret == -EAGAIN) { 1552 /* Currently handle_dependencies() doesn't yield if we already had 1553 * an allocation. If it did, we would have to clean up the L2Meta 1554 * structs before starting over. */ 1555 assert(*m == NULL); 1556 goto again; 1557 } else if (ret < 0) { 1558 return ret; 1559 } else if (cur_bytes == 0) { 1560 break; 1561 } else { 1562 /* handle_dependencies() may have decreased cur_bytes (shortened 1563 * the allocations below) so that the next dependency is processed 1564 * correctly during the next loop iteration. */ 1565 } 1566 1567 /* 1568 * 2. Count contiguous COPIED clusters. 1569 */ 1570 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1571 if (ret < 0) { 1572 return ret; 1573 } else if (ret) { 1574 continue; 1575 } else if (cur_bytes == 0) { 1576 break; 1577 } 1578 1579 /* 1580 * 3. If the request still hasn't completed, allocate new clusters, 1581 * considering any cluster_offset of steps 1c or 2. 1582 */ 1583 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1584 if (ret < 0) { 1585 return ret; 1586 } else if (ret) { 1587 continue; 1588 } else { 1589 assert(cur_bytes == 0); 1590 break; 1591 } 1592 } 1593 1594 *bytes -= remaining; 1595 assert(*bytes > 0); 1596 assert(*host_offset != INV_OFFSET); 1597 1598 return 0; 1599 } 1600 1601 /* 1602 * This discards as many clusters of nb_clusters as possible at once (i.e. 1603 * all clusters in the same L2 slice) and returns the number of discarded 1604 * clusters. 1605 */ 1606 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset, 1607 uint64_t nb_clusters, 1608 enum qcow2_discard_type type, bool full_discard) 1609 { 1610 BDRVQcow2State *s = bs->opaque; 1611 uint64_t *l2_slice; 1612 int l2_index; 1613 int ret; 1614 int i; 1615 1616 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 1617 if (ret < 0) { 1618 return ret; 1619 } 1620 1621 /* Limit nb_clusters to one L2 slice */ 1622 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1623 assert(nb_clusters <= INT_MAX); 1624 1625 for (i = 0; i < nb_clusters; i++) { 1626 uint64_t old_l2_entry; 1627 1628 old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]); 1629 1630 /* 1631 * If full_discard is false, make sure that a discarded area reads back 1632 * as zeroes for v3 images (we cannot do it for v2 without actually 1633 * writing a zero-filled buffer). We can skip the operation if the 1634 * cluster is already marked as zero, or if it's unallocated and we 1635 * don't have a backing file. 1636 * 1637 * TODO We might want to use bdrv_block_status(bs) here, but we're 1638 * holding s->lock, so that doesn't work today. 1639 * 1640 * If full_discard is true, the sector should not read back as zeroes, 1641 * but rather fall through to the backing file. 1642 */ 1643 switch (qcow2_get_cluster_type(bs, old_l2_entry)) { 1644 case QCOW2_CLUSTER_UNALLOCATED: 1645 if (full_discard || !bs->backing) { 1646 continue; 1647 } 1648 break; 1649 1650 case QCOW2_CLUSTER_ZERO_PLAIN: 1651 if (!full_discard) { 1652 continue; 1653 } 1654 break; 1655 1656 case QCOW2_CLUSTER_ZERO_ALLOC: 1657 case QCOW2_CLUSTER_NORMAL: 1658 case QCOW2_CLUSTER_COMPRESSED: 1659 break; 1660 1661 default: 1662 abort(); 1663 } 1664 1665 /* First remove L2 entries */ 1666 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1667 if (!full_discard && s->qcow_version >= 3) { 1668 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1669 } else { 1670 l2_slice[l2_index + i] = cpu_to_be64(0); 1671 } 1672 1673 /* Then decrease the refcount */ 1674 qcow2_free_any_clusters(bs, old_l2_entry, 1, type); 1675 } 1676 1677 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1678 1679 return nb_clusters; 1680 } 1681 1682 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset, 1683 uint64_t bytes, enum qcow2_discard_type type, 1684 bool full_discard) 1685 { 1686 BDRVQcow2State *s = bs->opaque; 1687 uint64_t end_offset = offset + bytes; 1688 uint64_t nb_clusters; 1689 int64_t cleared; 1690 int ret; 1691 1692 /* Caller must pass aligned values, except at image end */ 1693 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 1694 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || 1695 end_offset == bs->total_sectors << BDRV_SECTOR_BITS); 1696 1697 nb_clusters = size_to_clusters(s, bytes); 1698 1699 s->cache_discards = true; 1700 1701 /* Each L2 slice is handled by its own loop iteration */ 1702 while (nb_clusters > 0) { 1703 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type, 1704 full_discard); 1705 if (cleared < 0) { 1706 ret = cleared; 1707 goto fail; 1708 } 1709 1710 nb_clusters -= cleared; 1711 offset += (cleared * s->cluster_size); 1712 } 1713 1714 ret = 0; 1715 fail: 1716 s->cache_discards = false; 1717 qcow2_process_discards(bs, ret); 1718 1719 return ret; 1720 } 1721 1722 /* 1723 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1724 * all clusters in the same L2 slice) and returns the number of zeroed 1725 * clusters. 1726 */ 1727 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset, 1728 uint64_t nb_clusters, int flags) 1729 { 1730 BDRVQcow2State *s = bs->opaque; 1731 uint64_t *l2_slice; 1732 int l2_index; 1733 int ret; 1734 int i; 1735 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP); 1736 1737 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index); 1738 if (ret < 0) { 1739 return ret; 1740 } 1741 1742 /* Limit nb_clusters to one L2 slice */ 1743 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index); 1744 assert(nb_clusters <= INT_MAX); 1745 1746 for (i = 0; i < nb_clusters; i++) { 1747 uint64_t old_offset; 1748 QCow2ClusterType cluster_type; 1749 1750 old_offset = be64_to_cpu(l2_slice[l2_index + i]); 1751 1752 /* 1753 * Minimize L2 changes if the cluster already reads back as 1754 * zeroes with correct allocation. 1755 */ 1756 cluster_type = qcow2_get_cluster_type(bs, old_offset); 1757 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN || 1758 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) { 1759 continue; 1760 } 1761 1762 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1763 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) { 1764 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1765 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1766 } else { 1767 l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1768 } 1769 } 1770 1771 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1772 1773 return nb_clusters; 1774 } 1775 1776 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset, 1777 uint64_t bytes, int flags) 1778 { 1779 BDRVQcow2State *s = bs->opaque; 1780 uint64_t end_offset = offset + bytes; 1781 uint64_t nb_clusters; 1782 int64_t cleared; 1783 int ret; 1784 1785 /* If we have to stay in sync with an external data file, zero out 1786 * s->data_file first. */ 1787 if (data_file_is_raw(bs)) { 1788 assert(has_data_file(bs)); 1789 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags); 1790 if (ret < 0) { 1791 return ret; 1792 } 1793 } 1794 1795 /* Caller must pass aligned values, except at image end */ 1796 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 1797 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) || 1798 end_offset == bs->total_sectors << BDRV_SECTOR_BITS); 1799 1800 /* The zero flag is only supported by version 3 and newer */ 1801 if (s->qcow_version < 3) { 1802 return -ENOTSUP; 1803 } 1804 1805 /* Each L2 slice is handled by its own loop iteration */ 1806 nb_clusters = size_to_clusters(s, bytes); 1807 1808 s->cache_discards = true; 1809 1810 while (nb_clusters > 0) { 1811 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags); 1812 if (cleared < 0) { 1813 ret = cleared; 1814 goto fail; 1815 } 1816 1817 nb_clusters -= cleared; 1818 offset += (cleared * s->cluster_size); 1819 } 1820 1821 ret = 0; 1822 fail: 1823 s->cache_discards = false; 1824 qcow2_process_discards(bs, ret); 1825 1826 return ret; 1827 } 1828 1829 /* 1830 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1831 * non-backed non-pre-allocated zero clusters). 1832 * 1833 * l1_entries and *visited_l1_entries are used to keep track of progress for 1834 * status_cb(). l1_entries contains the total number of L1 entries and 1835 * *visited_l1_entries counts all visited L1 entries. 1836 */ 1837 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1838 int l1_size, int64_t *visited_l1_entries, 1839 int64_t l1_entries, 1840 BlockDriverAmendStatusCB *status_cb, 1841 void *cb_opaque) 1842 { 1843 BDRVQcow2State *s = bs->opaque; 1844 bool is_active_l1 = (l1_table == s->l1_table); 1845 uint64_t *l2_slice = NULL; 1846 unsigned slice, slice_size2, n_slices; 1847 int ret; 1848 int i, j; 1849 1850 slice_size2 = s->l2_slice_size * sizeof(uint64_t); 1851 n_slices = s->cluster_size / slice_size2; 1852 1853 if (!is_active_l1) { 1854 /* inactive L2 tables require a buffer to be stored in when loading 1855 * them from disk */ 1856 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2); 1857 if (l2_slice == NULL) { 1858 return -ENOMEM; 1859 } 1860 } 1861 1862 for (i = 0; i < l1_size; i++) { 1863 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1864 uint64_t l2_refcount; 1865 1866 if (!l2_offset) { 1867 /* unallocated */ 1868 (*visited_l1_entries)++; 1869 if (status_cb) { 1870 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 1871 } 1872 continue; 1873 } 1874 1875 if (offset_into_cluster(s, l2_offset)) { 1876 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" 1877 PRIx64 " unaligned (L1 index: %#x)", 1878 l2_offset, i); 1879 ret = -EIO; 1880 goto fail; 1881 } 1882 1883 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, 1884 &l2_refcount); 1885 if (ret < 0) { 1886 goto fail; 1887 } 1888 1889 for (slice = 0; slice < n_slices; slice++) { 1890 uint64_t slice_offset = l2_offset + slice * slice_size2; 1891 bool l2_dirty = false; 1892 if (is_active_l1) { 1893 /* get active L2 tables from cache */ 1894 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset, 1895 (void **)&l2_slice); 1896 } else { 1897 /* load inactive L2 tables from disk */ 1898 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2); 1899 } 1900 if (ret < 0) { 1901 goto fail; 1902 } 1903 1904 for (j = 0; j < s->l2_slice_size; j++) { 1905 uint64_t l2_entry = be64_to_cpu(l2_slice[j]); 1906 int64_t offset = l2_entry & L2E_OFFSET_MASK; 1907 QCow2ClusterType cluster_type = 1908 qcow2_get_cluster_type(bs, l2_entry); 1909 1910 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN && 1911 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) { 1912 continue; 1913 } 1914 1915 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1916 if (!bs->backing) { 1917 /* not backed; therefore we can simply deallocate the 1918 * cluster */ 1919 l2_slice[j] = 0; 1920 l2_dirty = true; 1921 continue; 1922 } 1923 1924 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1925 if (offset < 0) { 1926 ret = offset; 1927 goto fail; 1928 } 1929 1930 if (l2_refcount > 1) { 1931 /* For shared L2 tables, set the refcount accordingly 1932 * (it is already 1 and needs to be l2_refcount) */ 1933 ret = qcow2_update_cluster_refcount( 1934 bs, offset >> s->cluster_bits, 1935 refcount_diff(1, l2_refcount), false, 1936 QCOW2_DISCARD_OTHER); 1937 if (ret < 0) { 1938 qcow2_free_clusters(bs, offset, s->cluster_size, 1939 QCOW2_DISCARD_OTHER); 1940 goto fail; 1941 } 1942 } 1943 } 1944 1945 if (offset_into_cluster(s, offset)) { 1946 int l2_index = slice * s->l2_slice_size + j; 1947 qcow2_signal_corruption( 1948 bs, true, -1, -1, 1949 "Cluster allocation offset " 1950 "%#" PRIx64 " unaligned (L2 offset: %#" 1951 PRIx64 ", L2 index: %#x)", offset, 1952 l2_offset, l2_index); 1953 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1954 qcow2_free_clusters(bs, offset, s->cluster_size, 1955 QCOW2_DISCARD_ALWAYS); 1956 } 1957 ret = -EIO; 1958 goto fail; 1959 } 1960 1961 ret = qcow2_pre_write_overlap_check(bs, 0, offset, 1962 s->cluster_size, true); 1963 if (ret < 0) { 1964 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1965 qcow2_free_clusters(bs, offset, s->cluster_size, 1966 QCOW2_DISCARD_ALWAYS); 1967 } 1968 goto fail; 1969 } 1970 1971 ret = bdrv_pwrite_zeroes(s->data_file, offset, 1972 s->cluster_size, 0); 1973 if (ret < 0) { 1974 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) { 1975 qcow2_free_clusters(bs, offset, s->cluster_size, 1976 QCOW2_DISCARD_ALWAYS); 1977 } 1978 goto fail; 1979 } 1980 1981 if (l2_refcount == 1) { 1982 l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1983 } else { 1984 l2_slice[j] = cpu_to_be64(offset); 1985 } 1986 l2_dirty = true; 1987 } 1988 1989 if (is_active_l1) { 1990 if (l2_dirty) { 1991 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice); 1992 qcow2_cache_depends_on_flush(s->l2_table_cache); 1993 } 1994 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 1995 } else { 1996 if (l2_dirty) { 1997 ret = qcow2_pre_write_overlap_check( 1998 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, 1999 slice_offset, slice_size2, false); 2000 if (ret < 0) { 2001 goto fail; 2002 } 2003 2004 ret = bdrv_pwrite(bs->file, slice_offset, 2005 l2_slice, slice_size2); 2006 if (ret < 0) { 2007 goto fail; 2008 } 2009 } 2010 } 2011 } 2012 2013 (*visited_l1_entries)++; 2014 if (status_cb) { 2015 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); 2016 } 2017 } 2018 2019 ret = 0; 2020 2021 fail: 2022 if (l2_slice) { 2023 if (!is_active_l1) { 2024 qemu_vfree(l2_slice); 2025 } else { 2026 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice); 2027 } 2028 } 2029 return ret; 2030 } 2031 2032 /* 2033 * For backed images, expands all zero clusters on the image. For non-backed 2034 * images, deallocates all non-pre-allocated zero clusters (and claims the 2035 * allocation for pre-allocated ones). This is important for downgrading to a 2036 * qcow2 version which doesn't yet support metadata zero clusters. 2037 */ 2038 int qcow2_expand_zero_clusters(BlockDriverState *bs, 2039 BlockDriverAmendStatusCB *status_cb, 2040 void *cb_opaque) 2041 { 2042 BDRVQcow2State *s = bs->opaque; 2043 uint64_t *l1_table = NULL; 2044 int64_t l1_entries = 0, visited_l1_entries = 0; 2045 int ret; 2046 int i, j; 2047 2048 if (status_cb) { 2049 l1_entries = s->l1_size; 2050 for (i = 0; i < s->nb_snapshots; i++) { 2051 l1_entries += s->snapshots[i].l1_size; 2052 } 2053 } 2054 2055 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 2056 &visited_l1_entries, l1_entries, 2057 status_cb, cb_opaque); 2058 if (ret < 0) { 2059 goto fail; 2060 } 2061 2062 /* Inactive L1 tables may point to active L2 tables - therefore it is 2063 * necessary to flush the L2 table cache before trying to access the L2 2064 * tables pointed to by inactive L1 entries (else we might try to expand 2065 * zero clusters that have already been expanded); furthermore, it is also 2066 * necessary to empty the L2 table cache, since it may contain tables which 2067 * are now going to be modified directly on disk, bypassing the cache. 2068 * qcow2_cache_empty() does both for us. */ 2069 ret = qcow2_cache_empty(bs, s->l2_table_cache); 2070 if (ret < 0) { 2071 goto fail; 2072 } 2073 2074 for (i = 0; i < s->nb_snapshots; i++) { 2075 int l1_size2; 2076 uint64_t *new_l1_table; 2077 Error *local_err = NULL; 2078 2079 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset, 2080 s->snapshots[i].l1_size, sizeof(uint64_t), 2081 QCOW_MAX_L1_SIZE, "Snapshot L1 table", 2082 &local_err); 2083 if (ret < 0) { 2084 error_report_err(local_err); 2085 goto fail; 2086 } 2087 2088 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t); 2089 new_l1_table = g_try_realloc(l1_table, l1_size2); 2090 2091 if (!new_l1_table) { 2092 ret = -ENOMEM; 2093 goto fail; 2094 } 2095 2096 l1_table = new_l1_table; 2097 2098 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, 2099 l1_table, l1_size2); 2100 if (ret < 0) { 2101 goto fail; 2102 } 2103 2104 for (j = 0; j < s->snapshots[i].l1_size; j++) { 2105 be64_to_cpus(&l1_table[j]); 2106 } 2107 2108 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 2109 &visited_l1_entries, l1_entries, 2110 status_cb, cb_opaque); 2111 if (ret < 0) { 2112 goto fail; 2113 } 2114 } 2115 2116 ret = 0; 2117 2118 fail: 2119 g_free(l1_table); 2120 return ret; 2121 } 2122