1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block/block_int.h" 29 #include "block/qcow2.h" 30 #include "trace.h" 31 32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, 33 bool exact_size) 34 { 35 BDRVQcowState *s = bs->opaque; 36 int new_l1_size2, ret, i; 37 uint64_t *new_l1_table; 38 int64_t old_l1_table_offset, old_l1_size; 39 int64_t new_l1_table_offset, new_l1_size; 40 uint8_t data[12]; 41 42 if (min_size <= s->l1_size) 43 return 0; 44 45 /* Do a sanity check on min_size before trying to calculate new_l1_size 46 * (this prevents overflows during the while loop for the calculation of 47 * new_l1_size) */ 48 if (min_size > INT_MAX / sizeof(uint64_t)) { 49 return -EFBIG; 50 } 51 52 if (exact_size) { 53 new_l1_size = min_size; 54 } else { 55 /* Bump size up to reduce the number of times we have to grow */ 56 new_l1_size = s->l1_size; 57 if (new_l1_size == 0) { 58 new_l1_size = 1; 59 } 60 while (min_size > new_l1_size) { 61 new_l1_size = (new_l1_size * 3 + 1) / 2; 62 } 63 } 64 65 if (new_l1_size > INT_MAX / sizeof(uint64_t)) { 66 return -EFBIG; 67 } 68 69 #ifdef DEBUG_ALLOC2 70 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", 71 s->l1_size, new_l1_size); 72 #endif 73 74 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 75 new_l1_table = qemu_try_blockalign(bs->file, 76 align_offset(new_l1_size2, 512)); 77 if (new_l1_table == NULL) { 78 return -ENOMEM; 79 } 80 memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); 81 82 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 83 84 /* write new table (align to cluster) */ 85 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); 86 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 87 if (new_l1_table_offset < 0) { 88 qemu_vfree(new_l1_table); 89 return new_l1_table_offset; 90 } 91 92 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 93 if (ret < 0) { 94 goto fail; 95 } 96 97 /* the L1 position has not yet been updated, so these clusters must 98 * indeed be completely free */ 99 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, 100 new_l1_size2); 101 if (ret < 0) { 102 goto fail; 103 } 104 105 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); 106 for(i = 0; i < s->l1_size; i++) 107 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 108 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); 109 if (ret < 0) 110 goto fail; 111 for(i = 0; i < s->l1_size; i++) 112 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 113 114 /* set new table */ 115 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); 116 cpu_to_be32w((uint32_t*)data, new_l1_size); 117 stq_be_p(data + 4, new_l1_table_offset); 118 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); 119 if (ret < 0) { 120 goto fail; 121 } 122 qemu_vfree(s->l1_table); 123 old_l1_table_offset = s->l1_table_offset; 124 s->l1_table_offset = new_l1_table_offset; 125 s->l1_table = new_l1_table; 126 old_l1_size = s->l1_size; 127 s->l1_size = new_l1_size; 128 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), 129 QCOW2_DISCARD_OTHER); 130 return 0; 131 fail: 132 qemu_vfree(new_l1_table); 133 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, 134 QCOW2_DISCARD_OTHER); 135 return ret; 136 } 137 138 /* 139 * l2_load 140 * 141 * Loads a L2 table into memory. If the table is in the cache, the cache 142 * is used; otherwise the L2 table is loaded from the image file. 143 * 144 * Returns a pointer to the L2 table on success, or NULL if the read from 145 * the image file failed. 146 */ 147 148 static int l2_load(BlockDriverState *bs, uint64_t l2_offset, 149 uint64_t **l2_table) 150 { 151 BDRVQcowState *s = bs->opaque; 152 int ret; 153 154 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); 155 156 return ret; 157 } 158 159 /* 160 * Writes one sector of the L1 table to the disk (can't update single entries 161 * and we really don't want bdrv_pread to perform a read-modify-write) 162 */ 163 #define L1_ENTRIES_PER_SECTOR (512 / 8) 164 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) 165 { 166 BDRVQcowState *s = bs->opaque; 167 uint64_t buf[L1_ENTRIES_PER_SECTOR]; 168 int l1_start_index; 169 int i, ret; 170 171 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 172 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { 173 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 174 } 175 176 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, 177 s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); 178 if (ret < 0) { 179 return ret; 180 } 181 182 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); 183 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, 184 buf, sizeof(buf)); 185 if (ret < 0) { 186 return ret; 187 } 188 189 return 0; 190 } 191 192 /* 193 * l2_allocate 194 * 195 * Allocate a new l2 entry in the file. If l1_index points to an already 196 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 197 * table) copy the contents of the old L2 table into the newly allocated one. 198 * Otherwise the new table is initialized with zeros. 199 * 200 */ 201 202 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) 203 { 204 BDRVQcowState *s = bs->opaque; 205 uint64_t old_l2_offset; 206 uint64_t *l2_table = NULL; 207 int64_t l2_offset; 208 int ret; 209 210 old_l2_offset = s->l1_table[l1_index]; 211 212 trace_qcow2_l2_allocate(bs, l1_index); 213 214 /* allocate a new l2 entry */ 215 216 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 217 if (l2_offset < 0) { 218 ret = l2_offset; 219 goto fail; 220 } 221 222 ret = qcow2_cache_flush(bs, s->refcount_block_cache); 223 if (ret < 0) { 224 goto fail; 225 } 226 227 /* allocate a new entry in the l2 cache */ 228 229 trace_qcow2_l2_allocate_get_empty(bs, l1_index); 230 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); 231 if (ret < 0) { 232 goto fail; 233 } 234 235 l2_table = *table; 236 237 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { 238 /* if there was no old l2 table, clear the new table */ 239 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 240 } else { 241 uint64_t* old_table; 242 243 /* if there was an old l2 table, read it from the disk */ 244 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); 245 ret = qcow2_cache_get(bs, s->l2_table_cache, 246 old_l2_offset & L1E_OFFSET_MASK, 247 (void**) &old_table); 248 if (ret < 0) { 249 goto fail; 250 } 251 252 memcpy(l2_table, old_table, s->cluster_size); 253 254 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table); 255 if (ret < 0) { 256 goto fail; 257 } 258 } 259 260 /* write the l2 table to the file */ 261 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); 262 263 trace_qcow2_l2_allocate_write_l2(bs, l1_index); 264 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 265 ret = qcow2_cache_flush(bs, s->l2_table_cache); 266 if (ret < 0) { 267 goto fail; 268 } 269 270 /* update the L1 entry */ 271 trace_qcow2_l2_allocate_write_l1(bs, l1_index); 272 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 273 ret = qcow2_write_l1_entry(bs, l1_index); 274 if (ret < 0) { 275 goto fail; 276 } 277 278 *table = l2_table; 279 trace_qcow2_l2_allocate_done(bs, l1_index, 0); 280 return 0; 281 282 fail: 283 trace_qcow2_l2_allocate_done(bs, l1_index, ret); 284 if (l2_table != NULL) { 285 qcow2_cache_put(bs, s->l2_table_cache, (void**) table); 286 } 287 s->l1_table[l1_index] = old_l2_offset; 288 if (l2_offset > 0) { 289 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 290 QCOW2_DISCARD_ALWAYS); 291 } 292 return ret; 293 } 294 295 /* 296 * Checks how many clusters in a given L2 table are contiguous in the image 297 * file. As soon as one of the flags in the bitmask stop_flags changes compared 298 * to the first cluster, the search is stopped and the cluster is not counted 299 * as contiguous. (This allows it, for example, to stop at the first compressed 300 * cluster which may require a different handling) 301 */ 302 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, 303 uint64_t *l2_table, uint64_t stop_flags) 304 { 305 int i; 306 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; 307 uint64_t first_entry = be64_to_cpu(l2_table[0]); 308 uint64_t offset = first_entry & mask; 309 310 if (!offset) 311 return 0; 312 313 assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED); 314 315 for (i = 0; i < nb_clusters; i++) { 316 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; 317 if (offset + (uint64_t) i * cluster_size != l2_entry) { 318 break; 319 } 320 } 321 322 return i; 323 } 324 325 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) 326 { 327 int i; 328 329 for (i = 0; i < nb_clusters; i++) { 330 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); 331 332 if (type != QCOW2_CLUSTER_UNALLOCATED) { 333 break; 334 } 335 } 336 337 return i; 338 } 339 340 /* The crypt function is compatible with the linux cryptoloop 341 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 342 supported */ 343 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, 344 uint8_t *out_buf, const uint8_t *in_buf, 345 int nb_sectors, int enc, 346 const AES_KEY *key) 347 { 348 union { 349 uint64_t ll[2]; 350 uint8_t b[16]; 351 } ivec; 352 int i; 353 354 for(i = 0; i < nb_sectors; i++) { 355 ivec.ll[0] = cpu_to_le64(sector_num); 356 ivec.ll[1] = 0; 357 AES_cbc_encrypt(in_buf, out_buf, 512, key, 358 ivec.b, enc); 359 sector_num++; 360 in_buf += 512; 361 out_buf += 512; 362 } 363 } 364 365 static int coroutine_fn copy_sectors(BlockDriverState *bs, 366 uint64_t start_sect, 367 uint64_t cluster_offset, 368 int n_start, int n_end) 369 { 370 BDRVQcowState *s = bs->opaque; 371 QEMUIOVector qiov; 372 struct iovec iov; 373 int n, ret; 374 375 n = n_end - n_start; 376 if (n <= 0) { 377 return 0; 378 } 379 380 iov.iov_len = n * BDRV_SECTOR_SIZE; 381 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); 382 if (iov.iov_base == NULL) { 383 return -ENOMEM; 384 } 385 386 qemu_iovec_init_external(&qiov, &iov, 1); 387 388 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); 389 390 if (!bs->drv) { 391 ret = -ENOMEDIUM; 392 goto out; 393 } 394 395 /* Call .bdrv_co_readv() directly instead of using the public block-layer 396 * interface. This avoids double I/O throttling and request tracking, 397 * which can lead to deadlock when block layer copy-on-read is enabled. 398 */ 399 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); 400 if (ret < 0) { 401 goto out; 402 } 403 404 if (s->crypt_method) { 405 qcow2_encrypt_sectors(s, start_sect + n_start, 406 iov.iov_base, iov.iov_base, n, 1, 407 &s->aes_encrypt_key); 408 } 409 410 ret = qcow2_pre_write_overlap_check(bs, 0, 411 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); 412 if (ret < 0) { 413 goto out; 414 } 415 416 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); 417 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); 418 if (ret < 0) { 419 goto out; 420 } 421 422 ret = 0; 423 out: 424 qemu_vfree(iov.iov_base); 425 return ret; 426 } 427 428 429 /* 430 * get_cluster_offset 431 * 432 * For a given offset of the disk image, find the cluster offset in 433 * qcow2 file. The offset is stored in *cluster_offset. 434 * 435 * on entry, *num is the number of contiguous sectors we'd like to 436 * access following offset. 437 * 438 * on exit, *num is the number of contiguous sectors we can read. 439 * 440 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error 441 * cases. 442 */ 443 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 444 int *num, uint64_t *cluster_offset) 445 { 446 BDRVQcowState *s = bs->opaque; 447 unsigned int l2_index; 448 uint64_t l1_index, l2_offset, *l2_table; 449 int l1_bits, c; 450 unsigned int index_in_cluster, nb_clusters; 451 uint64_t nb_available, nb_needed; 452 int ret; 453 454 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 455 nb_needed = *num + index_in_cluster; 456 457 l1_bits = s->l2_bits + s->cluster_bits; 458 459 /* compute how many bytes there are between the offset and 460 * the end of the l1 entry 461 */ 462 463 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); 464 465 /* compute the number of available sectors */ 466 467 nb_available = (nb_available >> 9) + index_in_cluster; 468 469 if (nb_needed > nb_available) { 470 nb_needed = nb_available; 471 } 472 473 *cluster_offset = 0; 474 475 /* seek the the l2 offset in the l1 table */ 476 477 l1_index = offset >> l1_bits; 478 if (l1_index >= s->l1_size) { 479 ret = QCOW2_CLUSTER_UNALLOCATED; 480 goto out; 481 } 482 483 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 484 if (!l2_offset) { 485 ret = QCOW2_CLUSTER_UNALLOCATED; 486 goto out; 487 } 488 489 /* load the l2 table in memory */ 490 491 ret = l2_load(bs, l2_offset, &l2_table); 492 if (ret < 0) { 493 return ret; 494 } 495 496 /* find the cluster offset for the given disk offset */ 497 498 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 499 *cluster_offset = be64_to_cpu(l2_table[l2_index]); 500 nb_clusters = size_to_clusters(s, nb_needed << 9); 501 502 ret = qcow2_get_cluster_type(*cluster_offset); 503 switch (ret) { 504 case QCOW2_CLUSTER_COMPRESSED: 505 /* Compressed clusters can only be processed one by one */ 506 c = 1; 507 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; 508 break; 509 case QCOW2_CLUSTER_ZERO: 510 if (s->qcow_version < 3) { 511 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 512 return -EIO; 513 } 514 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 515 &l2_table[l2_index], QCOW_OFLAG_ZERO); 516 *cluster_offset = 0; 517 break; 518 case QCOW2_CLUSTER_UNALLOCATED: 519 /* how many empty clusters ? */ 520 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); 521 *cluster_offset = 0; 522 break; 523 case QCOW2_CLUSTER_NORMAL: 524 /* how many allocated clusters ? */ 525 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 526 &l2_table[l2_index], QCOW_OFLAG_ZERO); 527 *cluster_offset &= L2E_OFFSET_MASK; 528 break; 529 default: 530 abort(); 531 } 532 533 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 534 535 nb_available = (c * s->cluster_sectors); 536 537 out: 538 if (nb_available > nb_needed) 539 nb_available = nb_needed; 540 541 *num = nb_available - index_in_cluster; 542 543 return ret; 544 } 545 546 /* 547 * get_cluster_table 548 * 549 * for a given disk offset, load (and allocate if needed) 550 * the l2 table. 551 * 552 * the l2 table offset in the qcow2 file and the cluster index 553 * in the l2 table are given to the caller. 554 * 555 * Returns 0 on success, -errno in failure case 556 */ 557 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 558 uint64_t **new_l2_table, 559 int *new_l2_index) 560 { 561 BDRVQcowState *s = bs->opaque; 562 unsigned int l2_index; 563 uint64_t l1_index, l2_offset; 564 uint64_t *l2_table = NULL; 565 int ret; 566 567 /* seek the the l2 offset in the l1 table */ 568 569 l1_index = offset >> (s->l2_bits + s->cluster_bits); 570 if (l1_index >= s->l1_size) { 571 ret = qcow2_grow_l1_table(bs, l1_index + 1, false); 572 if (ret < 0) { 573 return ret; 574 } 575 } 576 577 assert(l1_index < s->l1_size); 578 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; 579 580 /* seek the l2 table of the given l2 offset */ 581 582 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { 583 /* load the l2 table in memory */ 584 ret = l2_load(bs, l2_offset, &l2_table); 585 if (ret < 0) { 586 return ret; 587 } 588 } else { 589 /* First allocate a new L2 table (and do COW if needed) */ 590 ret = l2_allocate(bs, l1_index, &l2_table); 591 if (ret < 0) { 592 return ret; 593 } 594 595 /* Then decrease the refcount of the old table */ 596 if (l2_offset) { 597 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), 598 QCOW2_DISCARD_OTHER); 599 } 600 } 601 602 /* find the cluster offset for the given disk offset */ 603 604 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 605 606 *new_l2_table = l2_table; 607 *new_l2_index = l2_index; 608 609 return 0; 610 } 611 612 /* 613 * alloc_compressed_cluster_offset 614 * 615 * For a given offset of the disk image, return cluster offset in 616 * qcow2 file. 617 * 618 * If the offset is not found, allocate a new compressed cluster. 619 * 620 * Return the cluster offset if successful, 621 * Return 0, otherwise. 622 * 623 */ 624 625 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 626 uint64_t offset, 627 int compressed_size) 628 { 629 BDRVQcowState *s = bs->opaque; 630 int l2_index, ret; 631 uint64_t *l2_table; 632 int64_t cluster_offset; 633 int nb_csectors; 634 635 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 636 if (ret < 0) { 637 return 0; 638 } 639 640 /* Compression can't overwrite anything. Fail if the cluster was already 641 * allocated. */ 642 cluster_offset = be64_to_cpu(l2_table[l2_index]); 643 if (cluster_offset & L2E_OFFSET_MASK) { 644 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 645 return 0; 646 } 647 648 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 649 if (cluster_offset < 0) { 650 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 651 return 0; 652 } 653 654 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 655 (cluster_offset >> 9); 656 657 cluster_offset |= QCOW_OFLAG_COMPRESSED | 658 ((uint64_t)nb_csectors << s->csize_shift); 659 660 /* update L2 table */ 661 662 /* compressed clusters never have the copied flag */ 663 664 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); 665 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 666 l2_table[l2_index] = cpu_to_be64(cluster_offset); 667 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 668 if (ret < 0) { 669 return 0; 670 } 671 672 return cluster_offset; 673 } 674 675 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) 676 { 677 BDRVQcowState *s = bs->opaque; 678 int ret; 679 680 if (r->nb_sectors == 0) { 681 return 0; 682 } 683 684 qemu_co_mutex_unlock(&s->lock); 685 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, 686 r->offset / BDRV_SECTOR_SIZE, 687 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); 688 qemu_co_mutex_lock(&s->lock); 689 690 if (ret < 0) { 691 return ret; 692 } 693 694 /* 695 * Before we update the L2 table to actually point to the new cluster, we 696 * need to be sure that the refcounts have been increased and COW was 697 * handled. 698 */ 699 qcow2_cache_depends_on_flush(s->l2_table_cache); 700 701 return 0; 702 } 703 704 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) 705 { 706 BDRVQcowState *s = bs->opaque; 707 int i, j = 0, l2_index, ret; 708 uint64_t *old_cluster, *l2_table; 709 uint64_t cluster_offset = m->alloc_offset; 710 711 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); 712 assert(m->nb_clusters > 0); 713 714 old_cluster = g_try_new(uint64_t, m->nb_clusters); 715 if (old_cluster == NULL) { 716 ret = -ENOMEM; 717 goto err; 718 } 719 720 /* copy content of unmodified sectors */ 721 ret = perform_cow(bs, m, &m->cow_start); 722 if (ret < 0) { 723 goto err; 724 } 725 726 ret = perform_cow(bs, m, &m->cow_end); 727 if (ret < 0) { 728 goto err; 729 } 730 731 /* Update L2 table. */ 732 if (s->use_lazy_refcounts) { 733 qcow2_mark_dirty(bs); 734 } 735 if (qcow2_need_accurate_refcounts(s)) { 736 qcow2_cache_set_dependency(bs, s->l2_table_cache, 737 s->refcount_block_cache); 738 } 739 740 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); 741 if (ret < 0) { 742 goto err; 743 } 744 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 745 746 assert(l2_index + m->nb_clusters <= s->l2_size); 747 for (i = 0; i < m->nb_clusters; i++) { 748 /* if two concurrent writes happen to the same unallocated cluster 749 * each write allocates separate cluster and writes data concurrently. 750 * The first one to complete updates l2 table with pointer to its 751 * cluster the second one has to do RMW (which is done above by 752 * copy_sectors()), update l2 table with its cluster pointer and free 753 * old cluster. This is what this loop does */ 754 if(l2_table[l2_index + i] != 0) 755 old_cluster[j++] = l2_table[l2_index + i]; 756 757 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 758 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 759 } 760 761 762 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 763 if (ret < 0) { 764 goto err; 765 } 766 767 /* 768 * If this was a COW, we need to decrease the refcount of the old cluster. 769 * Also flush bs->file to get the right order for L2 and refcount update. 770 * 771 * Don't discard clusters that reach a refcount of 0 (e.g. compressed 772 * clusters), the next write will reuse them anyway. 773 */ 774 if (j != 0) { 775 for (i = 0; i < j; i++) { 776 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, 777 QCOW2_DISCARD_NEVER); 778 } 779 } 780 781 ret = 0; 782 err: 783 g_free(old_cluster); 784 return ret; 785 } 786 787 /* 788 * Returns the number of contiguous clusters that can be used for an allocating 789 * write, but require COW to be performed (this includes yet unallocated space, 790 * which must copy from the backing file) 791 */ 792 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, 793 uint64_t *l2_table, int l2_index) 794 { 795 int i; 796 797 for (i = 0; i < nb_clusters; i++) { 798 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); 799 int cluster_type = qcow2_get_cluster_type(l2_entry); 800 801 switch(cluster_type) { 802 case QCOW2_CLUSTER_NORMAL: 803 if (l2_entry & QCOW_OFLAG_COPIED) { 804 goto out; 805 } 806 break; 807 case QCOW2_CLUSTER_UNALLOCATED: 808 case QCOW2_CLUSTER_COMPRESSED: 809 case QCOW2_CLUSTER_ZERO: 810 break; 811 default: 812 abort(); 813 } 814 } 815 816 out: 817 assert(i <= nb_clusters); 818 return i; 819 } 820 821 /* 822 * Check if there already is an AIO write request in flight which allocates 823 * the same cluster. In this case we need to wait until the previous 824 * request has completed and updated the L2 table accordingly. 825 * 826 * Returns: 827 * 0 if there was no dependency. *cur_bytes indicates the number of 828 * bytes from guest_offset that can be read before the next 829 * dependency must be processed (or the request is complete) 830 * 831 * -EAGAIN if we had to wait for another request, previously gathered 832 * information on cluster allocation may be invalid now. The caller 833 * must start over anyway, so consider *cur_bytes undefined. 834 */ 835 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, 836 uint64_t *cur_bytes, QCowL2Meta **m) 837 { 838 BDRVQcowState *s = bs->opaque; 839 QCowL2Meta *old_alloc; 840 uint64_t bytes = *cur_bytes; 841 842 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { 843 844 uint64_t start = guest_offset; 845 uint64_t end = start + bytes; 846 uint64_t old_start = l2meta_cow_start(old_alloc); 847 uint64_t old_end = l2meta_cow_end(old_alloc); 848 849 if (end <= old_start || start >= old_end) { 850 /* No intersection */ 851 } else { 852 if (start < old_start) { 853 /* Stop at the start of a running allocation */ 854 bytes = old_start - start; 855 } else { 856 bytes = 0; 857 } 858 859 /* Stop if already an l2meta exists. After yielding, it wouldn't 860 * be valid any more, so we'd have to clean up the old L2Metas 861 * and deal with requests depending on them before starting to 862 * gather new ones. Not worth the trouble. */ 863 if (bytes == 0 && *m) { 864 *cur_bytes = 0; 865 return 0; 866 } 867 868 if (bytes == 0) { 869 /* Wait for the dependency to complete. We need to recheck 870 * the free/allocated clusters when we continue. */ 871 qemu_co_mutex_unlock(&s->lock); 872 qemu_co_queue_wait(&old_alloc->dependent_requests); 873 qemu_co_mutex_lock(&s->lock); 874 return -EAGAIN; 875 } 876 } 877 } 878 879 /* Make sure that existing clusters and new allocations are only used up to 880 * the next dependency if we shortened the request above */ 881 *cur_bytes = bytes; 882 883 return 0; 884 } 885 886 /* 887 * Checks how many already allocated clusters that don't require a copy on 888 * write there are at the given guest_offset (up to *bytes). If 889 * *host_offset is not zero, only physically contiguous clusters beginning at 890 * this host offset are counted. 891 * 892 * Note that guest_offset may not be cluster aligned. In this case, the 893 * returned *host_offset points to exact byte referenced by guest_offset and 894 * therefore isn't cluster aligned as well. 895 * 896 * Returns: 897 * 0: if no allocated clusters are available at the given offset. 898 * *bytes is normally unchanged. It is set to 0 if the cluster 899 * is allocated and doesn't need COW, but doesn't have the right 900 * physical offset. 901 * 902 * 1: if allocated clusters that don't require a COW are available at 903 * the requested offset. *bytes may have decreased and describes 904 * the length of the area that can be written to. 905 * 906 * -errno: in error cases 907 */ 908 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, 909 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 910 { 911 BDRVQcowState *s = bs->opaque; 912 int l2_index; 913 uint64_t cluster_offset; 914 uint64_t *l2_table; 915 unsigned int nb_clusters; 916 unsigned int keep_clusters; 917 int ret, pret; 918 919 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, 920 *bytes); 921 922 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) 923 == offset_into_cluster(s, *host_offset)); 924 925 /* 926 * Calculate the number of clusters to look for. We stop at L2 table 927 * boundaries to keep things simple. 928 */ 929 nb_clusters = 930 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 931 932 l2_index = offset_to_l2_index(s, guest_offset); 933 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 934 935 /* Find L2 entry for the first involved cluster */ 936 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 937 if (ret < 0) { 938 return ret; 939 } 940 941 cluster_offset = be64_to_cpu(l2_table[l2_index]); 942 943 /* Check how many clusters are already allocated and don't need COW */ 944 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL 945 && (cluster_offset & QCOW_OFLAG_COPIED)) 946 { 947 /* If a specific host_offset is required, check it */ 948 bool offset_matches = 949 (cluster_offset & L2E_OFFSET_MASK) == *host_offset; 950 951 if (*host_offset != 0 && !offset_matches) { 952 *bytes = 0; 953 ret = 0; 954 goto out; 955 } 956 957 /* We keep all QCOW_OFLAG_COPIED clusters */ 958 keep_clusters = 959 count_contiguous_clusters(nb_clusters, s->cluster_size, 960 &l2_table[l2_index], 961 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); 962 assert(keep_clusters <= nb_clusters); 963 964 *bytes = MIN(*bytes, 965 keep_clusters * s->cluster_size 966 - offset_into_cluster(s, guest_offset)); 967 968 ret = 1; 969 } else { 970 ret = 0; 971 } 972 973 /* Cleanup */ 974 out: 975 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 976 if (pret < 0) { 977 return pret; 978 } 979 980 /* Only return a host offset if we actually made progress. Otherwise we 981 * would make requirements for handle_alloc() that it can't fulfill */ 982 if (ret) { 983 *host_offset = (cluster_offset & L2E_OFFSET_MASK) 984 + offset_into_cluster(s, guest_offset); 985 } 986 987 return ret; 988 } 989 990 /* 991 * Allocates new clusters for the given guest_offset. 992 * 993 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to 994 * contain the number of clusters that have been allocated and are contiguous 995 * in the image file. 996 * 997 * If *host_offset is non-zero, it specifies the offset in the image file at 998 * which the new clusters must start. *nb_clusters can be 0 on return in this 999 * case if the cluster at host_offset is already in use. If *host_offset is 1000 * zero, the clusters can be allocated anywhere in the image file. 1001 * 1002 * *host_offset is updated to contain the offset into the image file at which 1003 * the first allocated cluster starts. 1004 * 1005 * Return 0 on success and -errno in error cases. -EAGAIN means that the 1006 * function has been waiting for another request and the allocation must be 1007 * restarted, but the whole request should not be failed. 1008 */ 1009 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, 1010 uint64_t *host_offset, unsigned int *nb_clusters) 1011 { 1012 BDRVQcowState *s = bs->opaque; 1013 1014 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, 1015 *host_offset, *nb_clusters); 1016 1017 /* Allocate new clusters */ 1018 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); 1019 if (*host_offset == 0) { 1020 int64_t cluster_offset = 1021 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); 1022 if (cluster_offset < 0) { 1023 return cluster_offset; 1024 } 1025 *host_offset = cluster_offset; 1026 return 0; 1027 } else { 1028 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); 1029 if (ret < 0) { 1030 return ret; 1031 } 1032 *nb_clusters = ret; 1033 return 0; 1034 } 1035 } 1036 1037 /* 1038 * Allocates new clusters for an area that either is yet unallocated or needs a 1039 * copy on write. If *host_offset is non-zero, clusters are only allocated if 1040 * the new allocation can match the specified host offset. 1041 * 1042 * Note that guest_offset may not be cluster aligned. In this case, the 1043 * returned *host_offset points to exact byte referenced by guest_offset and 1044 * therefore isn't cluster aligned as well. 1045 * 1046 * Returns: 1047 * 0: if no clusters could be allocated. *bytes is set to 0, 1048 * *host_offset is left unchanged. 1049 * 1050 * 1: if new clusters were allocated. *bytes may be decreased if the 1051 * new allocation doesn't cover all of the requested area. 1052 * *host_offset is updated to contain the host offset of the first 1053 * newly allocated cluster. 1054 * 1055 * -errno: in error cases 1056 */ 1057 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, 1058 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) 1059 { 1060 BDRVQcowState *s = bs->opaque; 1061 int l2_index; 1062 uint64_t *l2_table; 1063 uint64_t entry; 1064 unsigned int nb_clusters; 1065 int ret; 1066 1067 uint64_t alloc_cluster_offset; 1068 1069 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, 1070 *bytes); 1071 assert(*bytes > 0); 1072 1073 /* 1074 * Calculate the number of clusters to look for. We stop at L2 table 1075 * boundaries to keep things simple. 1076 */ 1077 nb_clusters = 1078 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); 1079 1080 l2_index = offset_to_l2_index(s, guest_offset); 1081 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1082 1083 /* Find L2 entry for the first involved cluster */ 1084 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); 1085 if (ret < 0) { 1086 return ret; 1087 } 1088 1089 entry = be64_to_cpu(l2_table[l2_index]); 1090 1091 /* For the moment, overwrite compressed clusters one by one */ 1092 if (entry & QCOW_OFLAG_COMPRESSED) { 1093 nb_clusters = 1; 1094 } else { 1095 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); 1096 } 1097 1098 /* This function is only called when there were no non-COW clusters, so if 1099 * we can't find any unallocated or COW clusters either, something is 1100 * wrong with our code. */ 1101 assert(nb_clusters > 0); 1102 1103 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1104 if (ret < 0) { 1105 return ret; 1106 } 1107 1108 /* Allocate, if necessary at a given offset in the image file */ 1109 alloc_cluster_offset = start_of_cluster(s, *host_offset); 1110 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, 1111 &nb_clusters); 1112 if (ret < 0) { 1113 goto fail; 1114 } 1115 1116 /* Can't extend contiguous allocation */ 1117 if (nb_clusters == 0) { 1118 *bytes = 0; 1119 return 0; 1120 } 1121 1122 /* !*host_offset would overwrite the image header and is reserved for "no 1123 * host offset preferred". If 0 was a valid host offset, it'd trigger the 1124 * following overlap check; do that now to avoid having an invalid value in 1125 * *host_offset. */ 1126 if (!alloc_cluster_offset) { 1127 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, 1128 nb_clusters * s->cluster_size); 1129 assert(ret < 0); 1130 goto fail; 1131 } 1132 1133 /* 1134 * Save info needed for meta data update. 1135 * 1136 * requested_sectors: Number of sectors from the start of the first 1137 * newly allocated cluster to the end of the (possibly shortened 1138 * before) write request. 1139 * 1140 * avail_sectors: Number of sectors from the start of the first 1141 * newly allocated to the end of the last newly allocated cluster. 1142 * 1143 * nb_sectors: The number of sectors from the start of the first 1144 * newly allocated cluster to the end of the area that the write 1145 * request actually writes to (excluding COW at the end) 1146 */ 1147 int requested_sectors = 1148 (*bytes + offset_into_cluster(s, guest_offset)) 1149 >> BDRV_SECTOR_BITS; 1150 int avail_sectors = nb_clusters 1151 << (s->cluster_bits - BDRV_SECTOR_BITS); 1152 int alloc_n_start = offset_into_cluster(s, guest_offset) 1153 >> BDRV_SECTOR_BITS; 1154 int nb_sectors = MIN(requested_sectors, avail_sectors); 1155 QCowL2Meta *old_m = *m; 1156 1157 *m = g_malloc0(sizeof(**m)); 1158 1159 **m = (QCowL2Meta) { 1160 .next = old_m, 1161 1162 .alloc_offset = alloc_cluster_offset, 1163 .offset = start_of_cluster(s, guest_offset), 1164 .nb_clusters = nb_clusters, 1165 .nb_available = nb_sectors, 1166 1167 .cow_start = { 1168 .offset = 0, 1169 .nb_sectors = alloc_n_start, 1170 }, 1171 .cow_end = { 1172 .offset = nb_sectors * BDRV_SECTOR_SIZE, 1173 .nb_sectors = avail_sectors - nb_sectors, 1174 }, 1175 }; 1176 qemu_co_queue_init(&(*m)->dependent_requests); 1177 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); 1178 1179 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); 1180 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) 1181 - offset_into_cluster(s, guest_offset)); 1182 assert(*bytes != 0); 1183 1184 return 1; 1185 1186 fail: 1187 if (*m && (*m)->nb_clusters > 0) { 1188 QLIST_REMOVE(*m, next_in_flight); 1189 } 1190 return ret; 1191 } 1192 1193 /* 1194 * alloc_cluster_offset 1195 * 1196 * For a given offset on the virtual disk, find the cluster offset in qcow2 1197 * file. If the offset is not found, allocate a new cluster. 1198 * 1199 * If the cluster was already allocated, m->nb_clusters is set to 0 and 1200 * other fields in m are meaningless. 1201 * 1202 * If the cluster is newly allocated, m->nb_clusters is set to the number of 1203 * contiguous clusters that have been allocated. In this case, the other 1204 * fields of m are valid and contain information about the first allocated 1205 * cluster. 1206 * 1207 * If the request conflicts with another write request in flight, the coroutine 1208 * is queued and will be reentered when the dependency has completed. 1209 * 1210 * Return 0 on success and -errno in error cases 1211 */ 1212 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, 1213 int *num, uint64_t *host_offset, QCowL2Meta **m) 1214 { 1215 BDRVQcowState *s = bs->opaque; 1216 uint64_t start, remaining; 1217 uint64_t cluster_offset; 1218 uint64_t cur_bytes; 1219 int ret; 1220 1221 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num); 1222 1223 assert((offset & ~BDRV_SECTOR_MASK) == 0); 1224 1225 again: 1226 start = offset; 1227 remaining = *num << BDRV_SECTOR_BITS; 1228 cluster_offset = 0; 1229 *host_offset = 0; 1230 cur_bytes = 0; 1231 *m = NULL; 1232 1233 while (true) { 1234 1235 if (!*host_offset) { 1236 *host_offset = start_of_cluster(s, cluster_offset); 1237 } 1238 1239 assert(remaining >= cur_bytes); 1240 1241 start += cur_bytes; 1242 remaining -= cur_bytes; 1243 cluster_offset += cur_bytes; 1244 1245 if (remaining == 0) { 1246 break; 1247 } 1248 1249 cur_bytes = remaining; 1250 1251 /* 1252 * Now start gathering as many contiguous clusters as possible: 1253 * 1254 * 1. Check for overlaps with in-flight allocations 1255 * 1256 * a) Overlap not in the first cluster -> shorten this request and 1257 * let the caller handle the rest in its next loop iteration. 1258 * 1259 * b) Real overlaps of two requests. Yield and restart the search 1260 * for contiguous clusters (the situation could have changed 1261 * while we were sleeping) 1262 * 1263 * c) TODO: Request starts in the same cluster as the in-flight 1264 * allocation ends. Shorten the COW of the in-fight allocation, 1265 * set cluster_offset to write to the same cluster and set up 1266 * the right synchronisation between the in-flight request and 1267 * the new one. 1268 */ 1269 ret = handle_dependencies(bs, start, &cur_bytes, m); 1270 if (ret == -EAGAIN) { 1271 /* Currently handle_dependencies() doesn't yield if we already had 1272 * an allocation. If it did, we would have to clean up the L2Meta 1273 * structs before starting over. */ 1274 assert(*m == NULL); 1275 goto again; 1276 } else if (ret < 0) { 1277 return ret; 1278 } else if (cur_bytes == 0) { 1279 break; 1280 } else { 1281 /* handle_dependencies() may have decreased cur_bytes (shortened 1282 * the allocations below) so that the next dependency is processed 1283 * correctly during the next loop iteration. */ 1284 } 1285 1286 /* 1287 * 2. Count contiguous COPIED clusters. 1288 */ 1289 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); 1290 if (ret < 0) { 1291 return ret; 1292 } else if (ret) { 1293 continue; 1294 } else if (cur_bytes == 0) { 1295 break; 1296 } 1297 1298 /* 1299 * 3. If the request still hasn't completed, allocate new clusters, 1300 * considering any cluster_offset of steps 1c or 2. 1301 */ 1302 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); 1303 if (ret < 0) { 1304 return ret; 1305 } else if (ret) { 1306 continue; 1307 } else { 1308 assert(cur_bytes == 0); 1309 break; 1310 } 1311 } 1312 1313 *num -= remaining >> BDRV_SECTOR_BITS; 1314 assert(*num > 0); 1315 assert(*host_offset != 0); 1316 1317 return 0; 1318 } 1319 1320 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 1321 const uint8_t *buf, int buf_size) 1322 { 1323 z_stream strm1, *strm = &strm1; 1324 int ret, out_len; 1325 1326 memset(strm, 0, sizeof(*strm)); 1327 1328 strm->next_in = (uint8_t *)buf; 1329 strm->avail_in = buf_size; 1330 strm->next_out = out_buf; 1331 strm->avail_out = out_buf_size; 1332 1333 ret = inflateInit2(strm, -12); 1334 if (ret != Z_OK) 1335 return -1; 1336 ret = inflate(strm, Z_FINISH); 1337 out_len = strm->next_out - out_buf; 1338 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 1339 out_len != out_buf_size) { 1340 inflateEnd(strm); 1341 return -1; 1342 } 1343 inflateEnd(strm); 1344 return 0; 1345 } 1346 1347 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) 1348 { 1349 BDRVQcowState *s = bs->opaque; 1350 int ret, csize, nb_csectors, sector_offset; 1351 uint64_t coffset; 1352 1353 coffset = cluster_offset & s->cluster_offset_mask; 1354 if (s->cluster_cache_offset != coffset) { 1355 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 1356 sector_offset = coffset & 511; 1357 csize = nb_csectors * 512 - sector_offset; 1358 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); 1359 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); 1360 if (ret < 0) { 1361 return ret; 1362 } 1363 if (decompress_buffer(s->cluster_cache, s->cluster_size, 1364 s->cluster_data + sector_offset, csize) < 0) { 1365 return -EIO; 1366 } 1367 s->cluster_cache_offset = coffset; 1368 } 1369 return 0; 1370 } 1371 1372 /* 1373 * This discards as many clusters of nb_clusters as possible at once (i.e. 1374 * all clusters in the same L2 table) and returns the number of discarded 1375 * clusters. 1376 */ 1377 static int discard_single_l2(BlockDriverState *bs, uint64_t offset, 1378 unsigned int nb_clusters, enum qcow2_discard_type type) 1379 { 1380 BDRVQcowState *s = bs->opaque; 1381 uint64_t *l2_table; 1382 int l2_index; 1383 int ret; 1384 int i; 1385 1386 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1387 if (ret < 0) { 1388 return ret; 1389 } 1390 1391 /* Limit nb_clusters to one L2 table */ 1392 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1393 1394 for (i = 0; i < nb_clusters; i++) { 1395 uint64_t old_l2_entry; 1396 1397 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); 1398 1399 /* 1400 * Make sure that a discarded area reads back as zeroes for v3 images 1401 * (we cannot do it for v2 without actually writing a zero-filled 1402 * buffer). We can skip the operation if the cluster is already marked 1403 * as zero, or if it's unallocated and we don't have a backing file. 1404 * 1405 * TODO We might want to use bdrv_get_block_status(bs) here, but we're 1406 * holding s->lock, so that doesn't work today. 1407 */ 1408 switch (qcow2_get_cluster_type(old_l2_entry)) { 1409 case QCOW2_CLUSTER_UNALLOCATED: 1410 if (!bs->backing_hd) { 1411 continue; 1412 } 1413 break; 1414 1415 case QCOW2_CLUSTER_ZERO: 1416 continue; 1417 1418 case QCOW2_CLUSTER_NORMAL: 1419 case QCOW2_CLUSTER_COMPRESSED: 1420 break; 1421 1422 default: 1423 abort(); 1424 } 1425 1426 /* First remove L2 entries */ 1427 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1428 if (s->qcow_version >= 3) { 1429 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1430 } else { 1431 l2_table[l2_index + i] = cpu_to_be64(0); 1432 } 1433 1434 /* Then decrease the refcount */ 1435 qcow2_free_any_clusters(bs, old_l2_entry, 1, type); 1436 } 1437 1438 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1439 if (ret < 0) { 1440 return ret; 1441 } 1442 1443 return nb_clusters; 1444 } 1445 1446 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, 1447 int nb_sectors, enum qcow2_discard_type type) 1448 { 1449 BDRVQcowState *s = bs->opaque; 1450 uint64_t end_offset; 1451 unsigned int nb_clusters; 1452 int ret; 1453 1454 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); 1455 1456 /* Round start up and end down */ 1457 offset = align_offset(offset, s->cluster_size); 1458 end_offset = start_of_cluster(s, end_offset); 1459 1460 if (offset > end_offset) { 1461 return 0; 1462 } 1463 1464 nb_clusters = size_to_clusters(s, end_offset - offset); 1465 1466 s->cache_discards = true; 1467 1468 /* Each L2 table is handled by its own loop iteration */ 1469 while (nb_clusters > 0) { 1470 ret = discard_single_l2(bs, offset, nb_clusters, type); 1471 if (ret < 0) { 1472 goto fail; 1473 } 1474 1475 nb_clusters -= ret; 1476 offset += (ret * s->cluster_size); 1477 } 1478 1479 ret = 0; 1480 fail: 1481 s->cache_discards = false; 1482 qcow2_process_discards(bs, ret); 1483 1484 return ret; 1485 } 1486 1487 /* 1488 * This zeroes as many clusters of nb_clusters as possible at once (i.e. 1489 * all clusters in the same L2 table) and returns the number of zeroed 1490 * clusters. 1491 */ 1492 static int zero_single_l2(BlockDriverState *bs, uint64_t offset, 1493 unsigned int nb_clusters) 1494 { 1495 BDRVQcowState *s = bs->opaque; 1496 uint64_t *l2_table; 1497 int l2_index; 1498 int ret; 1499 int i; 1500 1501 ret = get_cluster_table(bs, offset, &l2_table, &l2_index); 1502 if (ret < 0) { 1503 return ret; 1504 } 1505 1506 /* Limit nb_clusters to one L2 table */ 1507 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 1508 1509 for (i = 0; i < nb_clusters; i++) { 1510 uint64_t old_offset; 1511 1512 old_offset = be64_to_cpu(l2_table[l2_index + i]); 1513 1514 /* Update L2 entries */ 1515 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1516 if (old_offset & QCOW_OFLAG_COMPRESSED) { 1517 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); 1518 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); 1519 } else { 1520 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); 1521 } 1522 } 1523 1524 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); 1525 if (ret < 0) { 1526 return ret; 1527 } 1528 1529 return nb_clusters; 1530 } 1531 1532 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) 1533 { 1534 BDRVQcowState *s = bs->opaque; 1535 unsigned int nb_clusters; 1536 int ret; 1537 1538 /* The zero flag is only supported by version 3 and newer */ 1539 if (s->qcow_version < 3) { 1540 return -ENOTSUP; 1541 } 1542 1543 /* Each L2 table is handled by its own loop iteration */ 1544 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); 1545 1546 s->cache_discards = true; 1547 1548 while (nb_clusters > 0) { 1549 ret = zero_single_l2(bs, offset, nb_clusters); 1550 if (ret < 0) { 1551 goto fail; 1552 } 1553 1554 nb_clusters -= ret; 1555 offset += (ret * s->cluster_size); 1556 } 1557 1558 ret = 0; 1559 fail: 1560 s->cache_discards = false; 1561 qcow2_process_discards(bs, ret); 1562 1563 return ret; 1564 } 1565 1566 /* 1567 * Expands all zero clusters in a specific L1 table (or deallocates them, for 1568 * non-backed non-pre-allocated zero clusters). 1569 * 1570 * expanded_clusters is a bitmap where every bit corresponds to one cluster in 1571 * the image file; a bit gets set if the corresponding cluster has been used for 1572 * zero expansion (i.e., has been filled with zeroes and is referenced from an 1573 * L2 table). nb_clusters contains the total cluster count of the image file, 1574 * i.e., the number of bits in expanded_clusters. 1575 */ 1576 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, 1577 int l1_size, uint8_t **expanded_clusters, 1578 uint64_t *nb_clusters) 1579 { 1580 BDRVQcowState *s = bs->opaque; 1581 bool is_active_l1 = (l1_table == s->l1_table); 1582 uint64_t *l2_table = NULL; 1583 int ret; 1584 int i, j; 1585 1586 if (!is_active_l1) { 1587 /* inactive L2 tables require a buffer to be stored in when loading 1588 * them from disk */ 1589 l2_table = qemu_try_blockalign(bs->file, s->cluster_size); 1590 if (l2_table == NULL) { 1591 return -ENOMEM; 1592 } 1593 } 1594 1595 for (i = 0; i < l1_size; i++) { 1596 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; 1597 bool l2_dirty = false; 1598 1599 if (!l2_offset) { 1600 /* unallocated */ 1601 continue; 1602 } 1603 1604 if (is_active_l1) { 1605 /* get active L2 tables from cache */ 1606 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, 1607 (void **)&l2_table); 1608 } else { 1609 /* load inactive L2 tables from disk */ 1610 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1611 (void *)l2_table, s->cluster_sectors); 1612 } 1613 if (ret < 0) { 1614 goto fail; 1615 } 1616 1617 for (j = 0; j < s->l2_size; j++) { 1618 uint64_t l2_entry = be64_to_cpu(l2_table[j]); 1619 int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index; 1620 int cluster_type = qcow2_get_cluster_type(l2_entry); 1621 bool preallocated = offset != 0; 1622 1623 if (cluster_type == QCOW2_CLUSTER_NORMAL) { 1624 cluster_index = offset >> s->cluster_bits; 1625 assert((cluster_index >= 0) && (cluster_index < *nb_clusters)); 1626 if ((*expanded_clusters)[cluster_index / 8] & 1627 (1 << (cluster_index % 8))) { 1628 /* Probably a shared L2 table; this cluster was a zero 1629 * cluster which has been expanded, its refcount 1630 * therefore most likely requires an update. */ 1631 ret = qcow2_update_cluster_refcount(bs, cluster_index, 1, 1632 QCOW2_DISCARD_NEVER); 1633 if (ret < 0) { 1634 goto fail; 1635 } 1636 /* Since we just increased the refcount, the COPIED flag may 1637 * no longer be set. */ 1638 l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED); 1639 l2_dirty = true; 1640 } 1641 continue; 1642 } 1643 else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) { 1644 continue; 1645 } 1646 1647 if (!preallocated) { 1648 if (!bs->backing_hd) { 1649 /* not backed; therefore we can simply deallocate the 1650 * cluster */ 1651 l2_table[j] = 0; 1652 l2_dirty = true; 1653 continue; 1654 } 1655 1656 offset = qcow2_alloc_clusters(bs, s->cluster_size); 1657 if (offset < 0) { 1658 ret = offset; 1659 goto fail; 1660 } 1661 } 1662 1663 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); 1664 if (ret < 0) { 1665 if (!preallocated) { 1666 qcow2_free_clusters(bs, offset, s->cluster_size, 1667 QCOW2_DISCARD_ALWAYS); 1668 } 1669 goto fail; 1670 } 1671 1672 ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE, 1673 s->cluster_sectors, 0); 1674 if (ret < 0) { 1675 if (!preallocated) { 1676 qcow2_free_clusters(bs, offset, s->cluster_size, 1677 QCOW2_DISCARD_ALWAYS); 1678 } 1679 goto fail; 1680 } 1681 1682 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); 1683 l2_dirty = true; 1684 1685 cluster_index = offset >> s->cluster_bits; 1686 1687 if (cluster_index >= *nb_clusters) { 1688 uint64_t old_bitmap_size = (*nb_clusters + 7) / 8; 1689 uint64_t new_bitmap_size; 1690 /* The offset may lie beyond the old end of the underlying image 1691 * file for growable files only */ 1692 assert(bs->file->growable); 1693 *nb_clusters = size_to_clusters(s, bs->file->total_sectors * 1694 BDRV_SECTOR_SIZE); 1695 new_bitmap_size = (*nb_clusters + 7) / 8; 1696 *expanded_clusters = g_realloc(*expanded_clusters, 1697 new_bitmap_size); 1698 /* clear the newly allocated space */ 1699 memset(&(*expanded_clusters)[old_bitmap_size], 0, 1700 new_bitmap_size - old_bitmap_size); 1701 } 1702 1703 assert((cluster_index >= 0) && (cluster_index < *nb_clusters)); 1704 (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8); 1705 } 1706 1707 if (is_active_l1) { 1708 if (l2_dirty) { 1709 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); 1710 qcow2_cache_depends_on_flush(s->l2_table_cache); 1711 } 1712 ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 1713 if (ret < 0) { 1714 l2_table = NULL; 1715 goto fail; 1716 } 1717 } else { 1718 if (l2_dirty) { 1719 ret = qcow2_pre_write_overlap_check(bs, 1720 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, 1721 s->cluster_size); 1722 if (ret < 0) { 1723 goto fail; 1724 } 1725 1726 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE, 1727 (void *)l2_table, s->cluster_sectors); 1728 if (ret < 0) { 1729 goto fail; 1730 } 1731 } 1732 } 1733 } 1734 1735 ret = 0; 1736 1737 fail: 1738 if (l2_table) { 1739 if (!is_active_l1) { 1740 qemu_vfree(l2_table); 1741 } else { 1742 if (ret < 0) { 1743 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); 1744 } else { 1745 ret = qcow2_cache_put(bs, s->l2_table_cache, 1746 (void **)&l2_table); 1747 } 1748 } 1749 } 1750 return ret; 1751 } 1752 1753 /* 1754 * For backed images, expands all zero clusters on the image. For non-backed 1755 * images, deallocates all non-pre-allocated zero clusters (and claims the 1756 * allocation for pre-allocated ones). This is important for downgrading to a 1757 * qcow2 version which doesn't yet support metadata zero clusters. 1758 */ 1759 int qcow2_expand_zero_clusters(BlockDriverState *bs) 1760 { 1761 BDRVQcowState *s = bs->opaque; 1762 uint64_t *l1_table = NULL; 1763 uint64_t nb_clusters; 1764 uint8_t *expanded_clusters; 1765 int ret; 1766 int i, j; 1767 1768 nb_clusters = size_to_clusters(s, bs->file->total_sectors * 1769 BDRV_SECTOR_SIZE); 1770 expanded_clusters = g_try_malloc0((nb_clusters + 7) / 8); 1771 if (expanded_clusters == NULL) { 1772 ret = -ENOMEM; 1773 goto fail; 1774 } 1775 1776 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, 1777 &expanded_clusters, &nb_clusters); 1778 if (ret < 0) { 1779 goto fail; 1780 } 1781 1782 /* Inactive L1 tables may point to active L2 tables - therefore it is 1783 * necessary to flush the L2 table cache before trying to access the L2 1784 * tables pointed to by inactive L1 entries (else we might try to expand 1785 * zero clusters that have already been expanded); furthermore, it is also 1786 * necessary to empty the L2 table cache, since it may contain tables which 1787 * are now going to be modified directly on disk, bypassing the cache. 1788 * qcow2_cache_empty() does both for us. */ 1789 ret = qcow2_cache_empty(bs, s->l2_table_cache); 1790 if (ret < 0) { 1791 goto fail; 1792 } 1793 1794 for (i = 0; i < s->nb_snapshots; i++) { 1795 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) + 1796 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE; 1797 1798 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); 1799 1800 ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset / 1801 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors); 1802 if (ret < 0) { 1803 goto fail; 1804 } 1805 1806 for (j = 0; j < s->snapshots[i].l1_size; j++) { 1807 be64_to_cpus(&l1_table[j]); 1808 } 1809 1810 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, 1811 &expanded_clusters, &nb_clusters); 1812 if (ret < 0) { 1813 goto fail; 1814 } 1815 } 1816 1817 ret = 0; 1818 1819 fail: 1820 g_free(expanded_clusters); 1821 g_free(l1_table); 1822 return ret; 1823 } 1824