xref: /openbmc/qemu/block/qcow2-cluster.c (revision bfb27e60)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include <zlib.h>
26 
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31 
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33                         bool exact_size)
34 {
35     BDRVQcowState *s = bs->opaque;
36     int new_l1_size2, ret, i;
37     uint64_t *new_l1_table;
38     int64_t old_l1_table_offset, old_l1_size;
39     int64_t new_l1_table_offset, new_l1_size;
40     uint8_t data[12];
41 
42     if (min_size <= s->l1_size)
43         return 0;
44 
45     /* Do a sanity check on min_size before trying to calculate new_l1_size
46      * (this prevents overflows during the while loop for the calculation of
47      * new_l1_size) */
48     if (min_size > INT_MAX / sizeof(uint64_t)) {
49         return -EFBIG;
50     }
51 
52     if (exact_size) {
53         new_l1_size = min_size;
54     } else {
55         /* Bump size up to reduce the number of times we have to grow */
56         new_l1_size = s->l1_size;
57         if (new_l1_size == 0) {
58             new_l1_size = 1;
59         }
60         while (min_size > new_l1_size) {
61             new_l1_size = (new_l1_size * 3 + 1) / 2;
62         }
63     }
64 
65     if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
66         return -EFBIG;
67     }
68 
69 #ifdef DEBUG_ALLOC2
70     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
71             s->l1_size, new_l1_size);
72 #endif
73 
74     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
75     new_l1_table = qemu_try_blockalign(bs->file,
76                                        align_offset(new_l1_size2, 512));
77     if (new_l1_table == NULL) {
78         return -ENOMEM;
79     }
80     memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
81 
82     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
83 
84     /* write new table (align to cluster) */
85     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
86     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
87     if (new_l1_table_offset < 0) {
88         qemu_vfree(new_l1_table);
89         return new_l1_table_offset;
90     }
91 
92     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
93     if (ret < 0) {
94         goto fail;
95     }
96 
97     /* the L1 position has not yet been updated, so these clusters must
98      * indeed be completely free */
99     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
100                                         new_l1_size2);
101     if (ret < 0) {
102         goto fail;
103     }
104 
105     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
106     for(i = 0; i < s->l1_size; i++)
107         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
108     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
109     if (ret < 0)
110         goto fail;
111     for(i = 0; i < s->l1_size; i++)
112         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
113 
114     /* set new table */
115     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
116     cpu_to_be32w((uint32_t*)data, new_l1_size);
117     stq_be_p(data + 4, new_l1_table_offset);
118     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
119     if (ret < 0) {
120         goto fail;
121     }
122     qemu_vfree(s->l1_table);
123     old_l1_table_offset = s->l1_table_offset;
124     s->l1_table_offset = new_l1_table_offset;
125     s->l1_table = new_l1_table;
126     old_l1_size = s->l1_size;
127     s->l1_size = new_l1_size;
128     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
129                         QCOW2_DISCARD_OTHER);
130     return 0;
131  fail:
132     qemu_vfree(new_l1_table);
133     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
134                         QCOW2_DISCARD_OTHER);
135     return ret;
136 }
137 
138 /*
139  * l2_load
140  *
141  * Loads a L2 table into memory. If the table is in the cache, the cache
142  * is used; otherwise the L2 table is loaded from the image file.
143  *
144  * Returns a pointer to the L2 table on success, or NULL if the read from
145  * the image file failed.
146  */
147 
148 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
149     uint64_t **l2_table)
150 {
151     BDRVQcowState *s = bs->opaque;
152     int ret;
153 
154     ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
155 
156     return ret;
157 }
158 
159 /*
160  * Writes one sector of the L1 table to the disk (can't update single entries
161  * and we really don't want bdrv_pread to perform a read-modify-write)
162  */
163 #define L1_ENTRIES_PER_SECTOR (512 / 8)
164 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
165 {
166     BDRVQcowState *s = bs->opaque;
167     uint64_t buf[L1_ENTRIES_PER_SECTOR];
168     int l1_start_index;
169     int i, ret;
170 
171     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
172     for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
173         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
174     }
175 
176     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
177             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
178     if (ret < 0) {
179         return ret;
180     }
181 
182     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
183     ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
184         buf, sizeof(buf));
185     if (ret < 0) {
186         return ret;
187     }
188 
189     return 0;
190 }
191 
192 /*
193  * l2_allocate
194  *
195  * Allocate a new l2 entry in the file. If l1_index points to an already
196  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
197  * table) copy the contents of the old L2 table into the newly allocated one.
198  * Otherwise the new table is initialized with zeros.
199  *
200  */
201 
202 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
203 {
204     BDRVQcowState *s = bs->opaque;
205     uint64_t old_l2_offset;
206     uint64_t *l2_table = NULL;
207     int64_t l2_offset;
208     int ret;
209 
210     old_l2_offset = s->l1_table[l1_index];
211 
212     trace_qcow2_l2_allocate(bs, l1_index);
213 
214     /* allocate a new l2 entry */
215 
216     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
217     if (l2_offset < 0) {
218         ret = l2_offset;
219         goto fail;
220     }
221 
222     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
223     if (ret < 0) {
224         goto fail;
225     }
226 
227     /* allocate a new entry in the l2 cache */
228 
229     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
230     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
231     if (ret < 0) {
232         goto fail;
233     }
234 
235     l2_table = *table;
236 
237     if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
238         /* if there was no old l2 table, clear the new table */
239         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
240     } else {
241         uint64_t* old_table;
242 
243         /* if there was an old l2 table, read it from the disk */
244         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
245         ret = qcow2_cache_get(bs, s->l2_table_cache,
246             old_l2_offset & L1E_OFFSET_MASK,
247             (void**) &old_table);
248         if (ret < 0) {
249             goto fail;
250         }
251 
252         memcpy(l2_table, old_table, s->cluster_size);
253 
254         ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
255         if (ret < 0) {
256             goto fail;
257         }
258     }
259 
260     /* write the l2 table to the file */
261     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
262 
263     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
264     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
265     ret = qcow2_cache_flush(bs, s->l2_table_cache);
266     if (ret < 0) {
267         goto fail;
268     }
269 
270     /* update the L1 entry */
271     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
272     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
273     ret = qcow2_write_l1_entry(bs, l1_index);
274     if (ret < 0) {
275         goto fail;
276     }
277 
278     *table = l2_table;
279     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
280     return 0;
281 
282 fail:
283     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
284     if (l2_table != NULL) {
285         qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
286     }
287     s->l1_table[l1_index] = old_l2_offset;
288     if (l2_offset > 0) {
289         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
290                             QCOW2_DISCARD_ALWAYS);
291     }
292     return ret;
293 }
294 
295 /*
296  * Checks how many clusters in a given L2 table are contiguous in the image
297  * file. As soon as one of the flags in the bitmask stop_flags changes compared
298  * to the first cluster, the search is stopped and the cluster is not counted
299  * as contiguous. (This allows it, for example, to stop at the first compressed
300  * cluster which may require a different handling)
301  */
302 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
303         uint64_t *l2_table, uint64_t stop_flags)
304 {
305     int i;
306     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
307     uint64_t first_entry = be64_to_cpu(l2_table[0]);
308     uint64_t offset = first_entry & mask;
309 
310     if (!offset)
311         return 0;
312 
313     assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
314 
315     for (i = 0; i < nb_clusters; i++) {
316         uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
317         if (offset + (uint64_t) i * cluster_size != l2_entry) {
318             break;
319         }
320     }
321 
322 	return i;
323 }
324 
325 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
326 {
327     int i;
328 
329     for (i = 0; i < nb_clusters; i++) {
330         int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
331 
332         if (type != QCOW2_CLUSTER_UNALLOCATED) {
333             break;
334         }
335     }
336 
337     return i;
338 }
339 
340 /* The crypt function is compatible with the linux cryptoloop
341    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
342    supported */
343 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
344                            uint8_t *out_buf, const uint8_t *in_buf,
345                            int nb_sectors, int enc,
346                            const AES_KEY *key)
347 {
348     union {
349         uint64_t ll[2];
350         uint8_t b[16];
351     } ivec;
352     int i;
353 
354     for(i = 0; i < nb_sectors; i++) {
355         ivec.ll[0] = cpu_to_le64(sector_num);
356         ivec.ll[1] = 0;
357         AES_cbc_encrypt(in_buf, out_buf, 512, key,
358                         ivec.b, enc);
359         sector_num++;
360         in_buf += 512;
361         out_buf += 512;
362     }
363 }
364 
365 static int coroutine_fn copy_sectors(BlockDriverState *bs,
366                                      uint64_t start_sect,
367                                      uint64_t cluster_offset,
368                                      int n_start, int n_end)
369 {
370     BDRVQcowState *s = bs->opaque;
371     QEMUIOVector qiov;
372     struct iovec iov;
373     int n, ret;
374 
375     n = n_end - n_start;
376     if (n <= 0) {
377         return 0;
378     }
379 
380     iov.iov_len = n * BDRV_SECTOR_SIZE;
381     iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
382     if (iov.iov_base == NULL) {
383         return -ENOMEM;
384     }
385 
386     qemu_iovec_init_external(&qiov, &iov, 1);
387 
388     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
389 
390     if (!bs->drv) {
391         ret = -ENOMEDIUM;
392         goto out;
393     }
394 
395     /* Call .bdrv_co_readv() directly instead of using the public block-layer
396      * interface.  This avoids double I/O throttling and request tracking,
397      * which can lead to deadlock when block layer copy-on-read is enabled.
398      */
399     ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
400     if (ret < 0) {
401         goto out;
402     }
403 
404     if (s->crypt_method) {
405         qcow2_encrypt_sectors(s, start_sect + n_start,
406                         iov.iov_base, iov.iov_base, n, 1,
407                         &s->aes_encrypt_key);
408     }
409 
410     ret = qcow2_pre_write_overlap_check(bs, 0,
411             cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
412     if (ret < 0) {
413         goto out;
414     }
415 
416     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
417     ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
418     if (ret < 0) {
419         goto out;
420     }
421 
422     ret = 0;
423 out:
424     qemu_vfree(iov.iov_base);
425     return ret;
426 }
427 
428 
429 /*
430  * get_cluster_offset
431  *
432  * For a given offset of the disk image, find the cluster offset in
433  * qcow2 file. The offset is stored in *cluster_offset.
434  *
435  * on entry, *num is the number of contiguous sectors we'd like to
436  * access following offset.
437  *
438  * on exit, *num is the number of contiguous sectors we can read.
439  *
440  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
441  * cases.
442  */
443 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
444     int *num, uint64_t *cluster_offset)
445 {
446     BDRVQcowState *s = bs->opaque;
447     unsigned int l2_index;
448     uint64_t l1_index, l2_offset, *l2_table;
449     int l1_bits, c;
450     unsigned int index_in_cluster, nb_clusters;
451     uint64_t nb_available, nb_needed;
452     int ret;
453 
454     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
455     nb_needed = *num + index_in_cluster;
456 
457     l1_bits = s->l2_bits + s->cluster_bits;
458 
459     /* compute how many bytes there are between the offset and
460      * the end of the l1 entry
461      */
462 
463     nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
464 
465     /* compute the number of available sectors */
466 
467     nb_available = (nb_available >> 9) + index_in_cluster;
468 
469     if (nb_needed > nb_available) {
470         nb_needed = nb_available;
471     }
472 
473     *cluster_offset = 0;
474 
475     /* seek the the l2 offset in the l1 table */
476 
477     l1_index = offset >> l1_bits;
478     if (l1_index >= s->l1_size) {
479         ret = QCOW2_CLUSTER_UNALLOCATED;
480         goto out;
481     }
482 
483     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
484     if (!l2_offset) {
485         ret = QCOW2_CLUSTER_UNALLOCATED;
486         goto out;
487     }
488 
489     /* load the l2 table in memory */
490 
491     ret = l2_load(bs, l2_offset, &l2_table);
492     if (ret < 0) {
493         return ret;
494     }
495 
496     /* find the cluster offset for the given disk offset */
497 
498     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
499     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
500     nb_clusters = size_to_clusters(s, nb_needed << 9);
501 
502     ret = qcow2_get_cluster_type(*cluster_offset);
503     switch (ret) {
504     case QCOW2_CLUSTER_COMPRESSED:
505         /* Compressed clusters can only be processed one by one */
506         c = 1;
507         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
508         break;
509     case QCOW2_CLUSTER_ZERO:
510         if (s->qcow_version < 3) {
511             qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
512             return -EIO;
513         }
514         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
515                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
516         *cluster_offset = 0;
517         break;
518     case QCOW2_CLUSTER_UNALLOCATED:
519         /* how many empty clusters ? */
520         c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
521         *cluster_offset = 0;
522         break;
523     case QCOW2_CLUSTER_NORMAL:
524         /* how many allocated clusters ? */
525         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
526                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
527         *cluster_offset &= L2E_OFFSET_MASK;
528         break;
529     default:
530         abort();
531     }
532 
533     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
534 
535     nb_available = (c * s->cluster_sectors);
536 
537 out:
538     if (nb_available > nb_needed)
539         nb_available = nb_needed;
540 
541     *num = nb_available - index_in_cluster;
542 
543     return ret;
544 }
545 
546 /*
547  * get_cluster_table
548  *
549  * for a given disk offset, load (and allocate if needed)
550  * the l2 table.
551  *
552  * the l2 table offset in the qcow2 file and the cluster index
553  * in the l2 table are given to the caller.
554  *
555  * Returns 0 on success, -errno in failure case
556  */
557 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
558                              uint64_t **new_l2_table,
559                              int *new_l2_index)
560 {
561     BDRVQcowState *s = bs->opaque;
562     unsigned int l2_index;
563     uint64_t l1_index, l2_offset;
564     uint64_t *l2_table = NULL;
565     int ret;
566 
567     /* seek the the l2 offset in the l1 table */
568 
569     l1_index = offset >> (s->l2_bits + s->cluster_bits);
570     if (l1_index >= s->l1_size) {
571         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
572         if (ret < 0) {
573             return ret;
574         }
575     }
576 
577     assert(l1_index < s->l1_size);
578     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
579 
580     /* seek the l2 table of the given l2 offset */
581 
582     if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
583         /* load the l2 table in memory */
584         ret = l2_load(bs, l2_offset, &l2_table);
585         if (ret < 0) {
586             return ret;
587         }
588     } else {
589         /* First allocate a new L2 table (and do COW if needed) */
590         ret = l2_allocate(bs, l1_index, &l2_table);
591         if (ret < 0) {
592             return ret;
593         }
594 
595         /* Then decrease the refcount of the old table */
596         if (l2_offset) {
597             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
598                                 QCOW2_DISCARD_OTHER);
599         }
600     }
601 
602     /* find the cluster offset for the given disk offset */
603 
604     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
605 
606     *new_l2_table = l2_table;
607     *new_l2_index = l2_index;
608 
609     return 0;
610 }
611 
612 /*
613  * alloc_compressed_cluster_offset
614  *
615  * For a given offset of the disk image, return cluster offset in
616  * qcow2 file.
617  *
618  * If the offset is not found, allocate a new compressed cluster.
619  *
620  * Return the cluster offset if successful,
621  * Return 0, otherwise.
622  *
623  */
624 
625 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
626                                                uint64_t offset,
627                                                int compressed_size)
628 {
629     BDRVQcowState *s = bs->opaque;
630     int l2_index, ret;
631     uint64_t *l2_table;
632     int64_t cluster_offset;
633     int nb_csectors;
634 
635     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
636     if (ret < 0) {
637         return 0;
638     }
639 
640     /* Compression can't overwrite anything. Fail if the cluster was already
641      * allocated. */
642     cluster_offset = be64_to_cpu(l2_table[l2_index]);
643     if (cluster_offset & L2E_OFFSET_MASK) {
644         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
645         return 0;
646     }
647 
648     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
649     if (cluster_offset < 0) {
650         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
651         return 0;
652     }
653 
654     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
655                   (cluster_offset >> 9);
656 
657     cluster_offset |= QCOW_OFLAG_COMPRESSED |
658                       ((uint64_t)nb_csectors << s->csize_shift);
659 
660     /* update L2 table */
661 
662     /* compressed clusters never have the copied flag */
663 
664     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
665     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
666     l2_table[l2_index] = cpu_to_be64(cluster_offset);
667     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
668     if (ret < 0) {
669         return 0;
670     }
671 
672     return cluster_offset;
673 }
674 
675 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
676 {
677     BDRVQcowState *s = bs->opaque;
678     int ret;
679 
680     if (r->nb_sectors == 0) {
681         return 0;
682     }
683 
684     qemu_co_mutex_unlock(&s->lock);
685     ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
686                        r->offset / BDRV_SECTOR_SIZE,
687                        r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
688     qemu_co_mutex_lock(&s->lock);
689 
690     if (ret < 0) {
691         return ret;
692     }
693 
694     /*
695      * Before we update the L2 table to actually point to the new cluster, we
696      * need to be sure that the refcounts have been increased and COW was
697      * handled.
698      */
699     qcow2_cache_depends_on_flush(s->l2_table_cache);
700 
701     return 0;
702 }
703 
704 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
705 {
706     BDRVQcowState *s = bs->opaque;
707     int i, j = 0, l2_index, ret;
708     uint64_t *old_cluster, *l2_table;
709     uint64_t cluster_offset = m->alloc_offset;
710 
711     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
712     assert(m->nb_clusters > 0);
713 
714     old_cluster = g_try_new(uint64_t, m->nb_clusters);
715     if (old_cluster == NULL) {
716         ret = -ENOMEM;
717         goto err;
718     }
719 
720     /* copy content of unmodified sectors */
721     ret = perform_cow(bs, m, &m->cow_start);
722     if (ret < 0) {
723         goto err;
724     }
725 
726     ret = perform_cow(bs, m, &m->cow_end);
727     if (ret < 0) {
728         goto err;
729     }
730 
731     /* Update L2 table. */
732     if (s->use_lazy_refcounts) {
733         qcow2_mark_dirty(bs);
734     }
735     if (qcow2_need_accurate_refcounts(s)) {
736         qcow2_cache_set_dependency(bs, s->l2_table_cache,
737                                    s->refcount_block_cache);
738     }
739 
740     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
741     if (ret < 0) {
742         goto err;
743     }
744     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
745 
746     assert(l2_index + m->nb_clusters <= s->l2_size);
747     for (i = 0; i < m->nb_clusters; i++) {
748         /* if two concurrent writes happen to the same unallocated cluster
749 	 * each write allocates separate cluster and writes data concurrently.
750 	 * The first one to complete updates l2 table with pointer to its
751 	 * cluster the second one has to do RMW (which is done above by
752 	 * copy_sectors()), update l2 table with its cluster pointer and free
753 	 * old cluster. This is what this loop does */
754         if(l2_table[l2_index + i] != 0)
755             old_cluster[j++] = l2_table[l2_index + i];
756 
757         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
758                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
759      }
760 
761 
762     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
763     if (ret < 0) {
764         goto err;
765     }
766 
767     /*
768      * If this was a COW, we need to decrease the refcount of the old cluster.
769      * Also flush bs->file to get the right order for L2 and refcount update.
770      *
771      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
772      * clusters), the next write will reuse them anyway.
773      */
774     if (j != 0) {
775         for (i = 0; i < j; i++) {
776             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
777                                     QCOW2_DISCARD_NEVER);
778         }
779     }
780 
781     ret = 0;
782 err:
783     g_free(old_cluster);
784     return ret;
785  }
786 
787 /*
788  * Returns the number of contiguous clusters that can be used for an allocating
789  * write, but require COW to be performed (this includes yet unallocated space,
790  * which must copy from the backing file)
791  */
792 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
793     uint64_t *l2_table, int l2_index)
794 {
795     int i;
796 
797     for (i = 0; i < nb_clusters; i++) {
798         uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
799         int cluster_type = qcow2_get_cluster_type(l2_entry);
800 
801         switch(cluster_type) {
802         case QCOW2_CLUSTER_NORMAL:
803             if (l2_entry & QCOW_OFLAG_COPIED) {
804                 goto out;
805             }
806             break;
807         case QCOW2_CLUSTER_UNALLOCATED:
808         case QCOW2_CLUSTER_COMPRESSED:
809         case QCOW2_CLUSTER_ZERO:
810             break;
811         default:
812             abort();
813         }
814     }
815 
816 out:
817     assert(i <= nb_clusters);
818     return i;
819 }
820 
821 /*
822  * Check if there already is an AIO write request in flight which allocates
823  * the same cluster. In this case we need to wait until the previous
824  * request has completed and updated the L2 table accordingly.
825  *
826  * Returns:
827  *   0       if there was no dependency. *cur_bytes indicates the number of
828  *           bytes from guest_offset that can be read before the next
829  *           dependency must be processed (or the request is complete)
830  *
831  *   -EAGAIN if we had to wait for another request, previously gathered
832  *           information on cluster allocation may be invalid now. The caller
833  *           must start over anyway, so consider *cur_bytes undefined.
834  */
835 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
836     uint64_t *cur_bytes, QCowL2Meta **m)
837 {
838     BDRVQcowState *s = bs->opaque;
839     QCowL2Meta *old_alloc;
840     uint64_t bytes = *cur_bytes;
841 
842     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
843 
844         uint64_t start = guest_offset;
845         uint64_t end = start + bytes;
846         uint64_t old_start = l2meta_cow_start(old_alloc);
847         uint64_t old_end = l2meta_cow_end(old_alloc);
848 
849         if (end <= old_start || start >= old_end) {
850             /* No intersection */
851         } else {
852             if (start < old_start) {
853                 /* Stop at the start of a running allocation */
854                 bytes = old_start - start;
855             } else {
856                 bytes = 0;
857             }
858 
859             /* Stop if already an l2meta exists. After yielding, it wouldn't
860              * be valid any more, so we'd have to clean up the old L2Metas
861              * and deal with requests depending on them before starting to
862              * gather new ones. Not worth the trouble. */
863             if (bytes == 0 && *m) {
864                 *cur_bytes = 0;
865                 return 0;
866             }
867 
868             if (bytes == 0) {
869                 /* Wait for the dependency to complete. We need to recheck
870                  * the free/allocated clusters when we continue. */
871                 qemu_co_mutex_unlock(&s->lock);
872                 qemu_co_queue_wait(&old_alloc->dependent_requests);
873                 qemu_co_mutex_lock(&s->lock);
874                 return -EAGAIN;
875             }
876         }
877     }
878 
879     /* Make sure that existing clusters and new allocations are only used up to
880      * the next dependency if we shortened the request above */
881     *cur_bytes = bytes;
882 
883     return 0;
884 }
885 
886 /*
887  * Checks how many already allocated clusters that don't require a copy on
888  * write there are at the given guest_offset (up to *bytes). If
889  * *host_offset is not zero, only physically contiguous clusters beginning at
890  * this host offset are counted.
891  *
892  * Note that guest_offset may not be cluster aligned. In this case, the
893  * returned *host_offset points to exact byte referenced by guest_offset and
894  * therefore isn't cluster aligned as well.
895  *
896  * Returns:
897  *   0:     if no allocated clusters are available at the given offset.
898  *          *bytes is normally unchanged. It is set to 0 if the cluster
899  *          is allocated and doesn't need COW, but doesn't have the right
900  *          physical offset.
901  *
902  *   1:     if allocated clusters that don't require a COW are available at
903  *          the requested offset. *bytes may have decreased and describes
904  *          the length of the area that can be written to.
905  *
906  *  -errno: in error cases
907  */
908 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
909     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
910 {
911     BDRVQcowState *s = bs->opaque;
912     int l2_index;
913     uint64_t cluster_offset;
914     uint64_t *l2_table;
915     unsigned int nb_clusters;
916     unsigned int keep_clusters;
917     int ret, pret;
918 
919     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
920                               *bytes);
921 
922     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
923                                 == offset_into_cluster(s, *host_offset));
924 
925     /*
926      * Calculate the number of clusters to look for. We stop at L2 table
927      * boundaries to keep things simple.
928      */
929     nb_clusters =
930         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
931 
932     l2_index = offset_to_l2_index(s, guest_offset);
933     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
934 
935     /* Find L2 entry for the first involved cluster */
936     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
937     if (ret < 0) {
938         return ret;
939     }
940 
941     cluster_offset = be64_to_cpu(l2_table[l2_index]);
942 
943     /* Check how many clusters are already allocated and don't need COW */
944     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
945         && (cluster_offset & QCOW_OFLAG_COPIED))
946     {
947         /* If a specific host_offset is required, check it */
948         bool offset_matches =
949             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
950 
951         if (*host_offset != 0 && !offset_matches) {
952             *bytes = 0;
953             ret = 0;
954             goto out;
955         }
956 
957         /* We keep all QCOW_OFLAG_COPIED clusters */
958         keep_clusters =
959             count_contiguous_clusters(nb_clusters, s->cluster_size,
960                                       &l2_table[l2_index],
961                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
962         assert(keep_clusters <= nb_clusters);
963 
964         *bytes = MIN(*bytes,
965                  keep_clusters * s->cluster_size
966                  - offset_into_cluster(s, guest_offset));
967 
968         ret = 1;
969     } else {
970         ret = 0;
971     }
972 
973     /* Cleanup */
974 out:
975     pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
976     if (pret < 0) {
977         return pret;
978     }
979 
980     /* Only return a host offset if we actually made progress. Otherwise we
981      * would make requirements for handle_alloc() that it can't fulfill */
982     if (ret) {
983         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
984                      + offset_into_cluster(s, guest_offset);
985     }
986 
987     return ret;
988 }
989 
990 /*
991  * Allocates new clusters for the given guest_offset.
992  *
993  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
994  * contain the number of clusters that have been allocated and are contiguous
995  * in the image file.
996  *
997  * If *host_offset is non-zero, it specifies the offset in the image file at
998  * which the new clusters must start. *nb_clusters can be 0 on return in this
999  * case if the cluster at host_offset is already in use. If *host_offset is
1000  * zero, the clusters can be allocated anywhere in the image file.
1001  *
1002  * *host_offset is updated to contain the offset into the image file at which
1003  * the first allocated cluster starts.
1004  *
1005  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1006  * function has been waiting for another request and the allocation must be
1007  * restarted, but the whole request should not be failed.
1008  */
1009 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1010     uint64_t *host_offset, unsigned int *nb_clusters)
1011 {
1012     BDRVQcowState *s = bs->opaque;
1013 
1014     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1015                                          *host_offset, *nb_clusters);
1016 
1017     /* Allocate new clusters */
1018     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1019     if (*host_offset == 0) {
1020         int64_t cluster_offset =
1021             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1022         if (cluster_offset < 0) {
1023             return cluster_offset;
1024         }
1025         *host_offset = cluster_offset;
1026         return 0;
1027     } else {
1028         int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1029         if (ret < 0) {
1030             return ret;
1031         }
1032         *nb_clusters = ret;
1033         return 0;
1034     }
1035 }
1036 
1037 /*
1038  * Allocates new clusters for an area that either is yet unallocated or needs a
1039  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1040  * the new allocation can match the specified host offset.
1041  *
1042  * Note that guest_offset may not be cluster aligned. In this case, the
1043  * returned *host_offset points to exact byte referenced by guest_offset and
1044  * therefore isn't cluster aligned as well.
1045  *
1046  * Returns:
1047  *   0:     if no clusters could be allocated. *bytes is set to 0,
1048  *          *host_offset is left unchanged.
1049  *
1050  *   1:     if new clusters were allocated. *bytes may be decreased if the
1051  *          new allocation doesn't cover all of the requested area.
1052  *          *host_offset is updated to contain the host offset of the first
1053  *          newly allocated cluster.
1054  *
1055  *  -errno: in error cases
1056  */
1057 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1058     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1059 {
1060     BDRVQcowState *s = bs->opaque;
1061     int l2_index;
1062     uint64_t *l2_table;
1063     uint64_t entry;
1064     unsigned int nb_clusters;
1065     int ret;
1066 
1067     uint64_t alloc_cluster_offset;
1068 
1069     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1070                              *bytes);
1071     assert(*bytes > 0);
1072 
1073     /*
1074      * Calculate the number of clusters to look for. We stop at L2 table
1075      * boundaries to keep things simple.
1076      */
1077     nb_clusters =
1078         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1079 
1080     l2_index = offset_to_l2_index(s, guest_offset);
1081     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1082 
1083     /* Find L2 entry for the first involved cluster */
1084     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1085     if (ret < 0) {
1086         return ret;
1087     }
1088 
1089     entry = be64_to_cpu(l2_table[l2_index]);
1090 
1091     /* For the moment, overwrite compressed clusters one by one */
1092     if (entry & QCOW_OFLAG_COMPRESSED) {
1093         nb_clusters = 1;
1094     } else {
1095         nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1096     }
1097 
1098     /* This function is only called when there were no non-COW clusters, so if
1099      * we can't find any unallocated or COW clusters either, something is
1100      * wrong with our code. */
1101     assert(nb_clusters > 0);
1102 
1103     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1104     if (ret < 0) {
1105         return ret;
1106     }
1107 
1108     /* Allocate, if necessary at a given offset in the image file */
1109     alloc_cluster_offset = start_of_cluster(s, *host_offset);
1110     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1111                                   &nb_clusters);
1112     if (ret < 0) {
1113         goto fail;
1114     }
1115 
1116     /* Can't extend contiguous allocation */
1117     if (nb_clusters == 0) {
1118         *bytes = 0;
1119         return 0;
1120     }
1121 
1122     /* !*host_offset would overwrite the image header and is reserved for "no
1123      * host offset preferred". If 0 was a valid host offset, it'd trigger the
1124      * following overlap check; do that now to avoid having an invalid value in
1125      * *host_offset. */
1126     if (!alloc_cluster_offset) {
1127         ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1128                                             nb_clusters * s->cluster_size);
1129         assert(ret < 0);
1130         goto fail;
1131     }
1132 
1133     /*
1134      * Save info needed for meta data update.
1135      *
1136      * requested_sectors: Number of sectors from the start of the first
1137      * newly allocated cluster to the end of the (possibly shortened
1138      * before) write request.
1139      *
1140      * avail_sectors: Number of sectors from the start of the first
1141      * newly allocated to the end of the last newly allocated cluster.
1142      *
1143      * nb_sectors: The number of sectors from the start of the first
1144      * newly allocated cluster to the end of the area that the write
1145      * request actually writes to (excluding COW at the end)
1146      */
1147     int requested_sectors =
1148         (*bytes + offset_into_cluster(s, guest_offset))
1149         >> BDRV_SECTOR_BITS;
1150     int avail_sectors = nb_clusters
1151                         << (s->cluster_bits - BDRV_SECTOR_BITS);
1152     int alloc_n_start = offset_into_cluster(s, guest_offset)
1153                         >> BDRV_SECTOR_BITS;
1154     int nb_sectors = MIN(requested_sectors, avail_sectors);
1155     QCowL2Meta *old_m = *m;
1156 
1157     *m = g_malloc0(sizeof(**m));
1158 
1159     **m = (QCowL2Meta) {
1160         .next           = old_m,
1161 
1162         .alloc_offset   = alloc_cluster_offset,
1163         .offset         = start_of_cluster(s, guest_offset),
1164         .nb_clusters    = nb_clusters,
1165         .nb_available   = nb_sectors,
1166 
1167         .cow_start = {
1168             .offset     = 0,
1169             .nb_sectors = alloc_n_start,
1170         },
1171         .cow_end = {
1172             .offset     = nb_sectors * BDRV_SECTOR_SIZE,
1173             .nb_sectors = avail_sectors - nb_sectors,
1174         },
1175     };
1176     qemu_co_queue_init(&(*m)->dependent_requests);
1177     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1178 
1179     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1180     *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1181                          - offset_into_cluster(s, guest_offset));
1182     assert(*bytes != 0);
1183 
1184     return 1;
1185 
1186 fail:
1187     if (*m && (*m)->nb_clusters > 0) {
1188         QLIST_REMOVE(*m, next_in_flight);
1189     }
1190     return ret;
1191 }
1192 
1193 /*
1194  * alloc_cluster_offset
1195  *
1196  * For a given offset on the virtual disk, find the cluster offset in qcow2
1197  * file. If the offset is not found, allocate a new cluster.
1198  *
1199  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1200  * other fields in m are meaningless.
1201  *
1202  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1203  * contiguous clusters that have been allocated. In this case, the other
1204  * fields of m are valid and contain information about the first allocated
1205  * cluster.
1206  *
1207  * If the request conflicts with another write request in flight, the coroutine
1208  * is queued and will be reentered when the dependency has completed.
1209  *
1210  * Return 0 on success and -errno in error cases
1211  */
1212 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1213     int *num, uint64_t *host_offset, QCowL2Meta **m)
1214 {
1215     BDRVQcowState *s = bs->opaque;
1216     uint64_t start, remaining;
1217     uint64_t cluster_offset;
1218     uint64_t cur_bytes;
1219     int ret;
1220 
1221     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
1222 
1223     assert((offset & ~BDRV_SECTOR_MASK) == 0);
1224 
1225 again:
1226     start = offset;
1227     remaining = *num << BDRV_SECTOR_BITS;
1228     cluster_offset = 0;
1229     *host_offset = 0;
1230     cur_bytes = 0;
1231     *m = NULL;
1232 
1233     while (true) {
1234 
1235         if (!*host_offset) {
1236             *host_offset = start_of_cluster(s, cluster_offset);
1237         }
1238 
1239         assert(remaining >= cur_bytes);
1240 
1241         start           += cur_bytes;
1242         remaining       -= cur_bytes;
1243         cluster_offset  += cur_bytes;
1244 
1245         if (remaining == 0) {
1246             break;
1247         }
1248 
1249         cur_bytes = remaining;
1250 
1251         /*
1252          * Now start gathering as many contiguous clusters as possible:
1253          *
1254          * 1. Check for overlaps with in-flight allocations
1255          *
1256          *      a) Overlap not in the first cluster -> shorten this request and
1257          *         let the caller handle the rest in its next loop iteration.
1258          *
1259          *      b) Real overlaps of two requests. Yield and restart the search
1260          *         for contiguous clusters (the situation could have changed
1261          *         while we were sleeping)
1262          *
1263          *      c) TODO: Request starts in the same cluster as the in-flight
1264          *         allocation ends. Shorten the COW of the in-fight allocation,
1265          *         set cluster_offset to write to the same cluster and set up
1266          *         the right synchronisation between the in-flight request and
1267          *         the new one.
1268          */
1269         ret = handle_dependencies(bs, start, &cur_bytes, m);
1270         if (ret == -EAGAIN) {
1271             /* Currently handle_dependencies() doesn't yield if we already had
1272              * an allocation. If it did, we would have to clean up the L2Meta
1273              * structs before starting over. */
1274             assert(*m == NULL);
1275             goto again;
1276         } else if (ret < 0) {
1277             return ret;
1278         } else if (cur_bytes == 0) {
1279             break;
1280         } else {
1281             /* handle_dependencies() may have decreased cur_bytes (shortened
1282              * the allocations below) so that the next dependency is processed
1283              * correctly during the next loop iteration. */
1284         }
1285 
1286         /*
1287          * 2. Count contiguous COPIED clusters.
1288          */
1289         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1290         if (ret < 0) {
1291             return ret;
1292         } else if (ret) {
1293             continue;
1294         } else if (cur_bytes == 0) {
1295             break;
1296         }
1297 
1298         /*
1299          * 3. If the request still hasn't completed, allocate new clusters,
1300          *    considering any cluster_offset of steps 1c or 2.
1301          */
1302         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1303         if (ret < 0) {
1304             return ret;
1305         } else if (ret) {
1306             continue;
1307         } else {
1308             assert(cur_bytes == 0);
1309             break;
1310         }
1311     }
1312 
1313     *num -= remaining >> BDRV_SECTOR_BITS;
1314     assert(*num > 0);
1315     assert(*host_offset != 0);
1316 
1317     return 0;
1318 }
1319 
1320 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1321                              const uint8_t *buf, int buf_size)
1322 {
1323     z_stream strm1, *strm = &strm1;
1324     int ret, out_len;
1325 
1326     memset(strm, 0, sizeof(*strm));
1327 
1328     strm->next_in = (uint8_t *)buf;
1329     strm->avail_in = buf_size;
1330     strm->next_out = out_buf;
1331     strm->avail_out = out_buf_size;
1332 
1333     ret = inflateInit2(strm, -12);
1334     if (ret != Z_OK)
1335         return -1;
1336     ret = inflate(strm, Z_FINISH);
1337     out_len = strm->next_out - out_buf;
1338     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1339         out_len != out_buf_size) {
1340         inflateEnd(strm);
1341         return -1;
1342     }
1343     inflateEnd(strm);
1344     return 0;
1345 }
1346 
1347 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1348 {
1349     BDRVQcowState *s = bs->opaque;
1350     int ret, csize, nb_csectors, sector_offset;
1351     uint64_t coffset;
1352 
1353     coffset = cluster_offset & s->cluster_offset_mask;
1354     if (s->cluster_cache_offset != coffset) {
1355         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1356         sector_offset = coffset & 511;
1357         csize = nb_csectors * 512 - sector_offset;
1358         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1359         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1360         if (ret < 0) {
1361             return ret;
1362         }
1363         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1364                               s->cluster_data + sector_offset, csize) < 0) {
1365             return -EIO;
1366         }
1367         s->cluster_cache_offset = coffset;
1368     }
1369     return 0;
1370 }
1371 
1372 /*
1373  * This discards as many clusters of nb_clusters as possible at once (i.e.
1374  * all clusters in the same L2 table) and returns the number of discarded
1375  * clusters.
1376  */
1377 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1378     unsigned int nb_clusters, enum qcow2_discard_type type)
1379 {
1380     BDRVQcowState *s = bs->opaque;
1381     uint64_t *l2_table;
1382     int l2_index;
1383     int ret;
1384     int i;
1385 
1386     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1387     if (ret < 0) {
1388         return ret;
1389     }
1390 
1391     /* Limit nb_clusters to one L2 table */
1392     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1393 
1394     for (i = 0; i < nb_clusters; i++) {
1395         uint64_t old_l2_entry;
1396 
1397         old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1398 
1399         /*
1400          * Make sure that a discarded area reads back as zeroes for v3 images
1401          * (we cannot do it for v2 without actually writing a zero-filled
1402          * buffer). We can skip the operation if the cluster is already marked
1403          * as zero, or if it's unallocated and we don't have a backing file.
1404          *
1405          * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1406          * holding s->lock, so that doesn't work today.
1407          */
1408         switch (qcow2_get_cluster_type(old_l2_entry)) {
1409             case QCOW2_CLUSTER_UNALLOCATED:
1410                 if (!bs->backing_hd) {
1411                     continue;
1412                 }
1413                 break;
1414 
1415             case QCOW2_CLUSTER_ZERO:
1416                 continue;
1417 
1418             case QCOW2_CLUSTER_NORMAL:
1419             case QCOW2_CLUSTER_COMPRESSED:
1420                 break;
1421 
1422             default:
1423                 abort();
1424         }
1425 
1426         /* First remove L2 entries */
1427         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1428         if (s->qcow_version >= 3) {
1429             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1430         } else {
1431             l2_table[l2_index + i] = cpu_to_be64(0);
1432         }
1433 
1434         /* Then decrease the refcount */
1435         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1436     }
1437 
1438     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1439     if (ret < 0) {
1440         return ret;
1441     }
1442 
1443     return nb_clusters;
1444 }
1445 
1446 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1447     int nb_sectors, enum qcow2_discard_type type)
1448 {
1449     BDRVQcowState *s = bs->opaque;
1450     uint64_t end_offset;
1451     unsigned int nb_clusters;
1452     int ret;
1453 
1454     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1455 
1456     /* Round start up and end down */
1457     offset = align_offset(offset, s->cluster_size);
1458     end_offset = start_of_cluster(s, end_offset);
1459 
1460     if (offset > end_offset) {
1461         return 0;
1462     }
1463 
1464     nb_clusters = size_to_clusters(s, end_offset - offset);
1465 
1466     s->cache_discards = true;
1467 
1468     /* Each L2 table is handled by its own loop iteration */
1469     while (nb_clusters > 0) {
1470         ret = discard_single_l2(bs, offset, nb_clusters, type);
1471         if (ret < 0) {
1472             goto fail;
1473         }
1474 
1475         nb_clusters -= ret;
1476         offset += (ret * s->cluster_size);
1477     }
1478 
1479     ret = 0;
1480 fail:
1481     s->cache_discards = false;
1482     qcow2_process_discards(bs, ret);
1483 
1484     return ret;
1485 }
1486 
1487 /*
1488  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1489  * all clusters in the same L2 table) and returns the number of zeroed
1490  * clusters.
1491  */
1492 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1493     unsigned int nb_clusters)
1494 {
1495     BDRVQcowState *s = bs->opaque;
1496     uint64_t *l2_table;
1497     int l2_index;
1498     int ret;
1499     int i;
1500 
1501     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1502     if (ret < 0) {
1503         return ret;
1504     }
1505 
1506     /* Limit nb_clusters to one L2 table */
1507     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1508 
1509     for (i = 0; i < nb_clusters; i++) {
1510         uint64_t old_offset;
1511 
1512         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1513 
1514         /* Update L2 entries */
1515         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1516         if (old_offset & QCOW_OFLAG_COMPRESSED) {
1517             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1518             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1519         } else {
1520             l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1521         }
1522     }
1523 
1524     ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1525     if (ret < 0) {
1526         return ret;
1527     }
1528 
1529     return nb_clusters;
1530 }
1531 
1532 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1533 {
1534     BDRVQcowState *s = bs->opaque;
1535     unsigned int nb_clusters;
1536     int ret;
1537 
1538     /* The zero flag is only supported by version 3 and newer */
1539     if (s->qcow_version < 3) {
1540         return -ENOTSUP;
1541     }
1542 
1543     /* Each L2 table is handled by its own loop iteration */
1544     nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1545 
1546     s->cache_discards = true;
1547 
1548     while (nb_clusters > 0) {
1549         ret = zero_single_l2(bs, offset, nb_clusters);
1550         if (ret < 0) {
1551             goto fail;
1552         }
1553 
1554         nb_clusters -= ret;
1555         offset += (ret * s->cluster_size);
1556     }
1557 
1558     ret = 0;
1559 fail:
1560     s->cache_discards = false;
1561     qcow2_process_discards(bs, ret);
1562 
1563     return ret;
1564 }
1565 
1566 /*
1567  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1568  * non-backed non-pre-allocated zero clusters).
1569  *
1570  * expanded_clusters is a bitmap where every bit corresponds to one cluster in
1571  * the image file; a bit gets set if the corresponding cluster has been used for
1572  * zero expansion (i.e., has been filled with zeroes and is referenced from an
1573  * L2 table). nb_clusters contains the total cluster count of the image file,
1574  * i.e., the number of bits in expanded_clusters.
1575  */
1576 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1577                                       int l1_size, uint8_t **expanded_clusters,
1578                                       uint64_t *nb_clusters)
1579 {
1580     BDRVQcowState *s = bs->opaque;
1581     bool is_active_l1 = (l1_table == s->l1_table);
1582     uint64_t *l2_table = NULL;
1583     int ret;
1584     int i, j;
1585 
1586     if (!is_active_l1) {
1587         /* inactive L2 tables require a buffer to be stored in when loading
1588          * them from disk */
1589         l2_table = qemu_try_blockalign(bs->file, s->cluster_size);
1590         if (l2_table == NULL) {
1591             return -ENOMEM;
1592         }
1593     }
1594 
1595     for (i = 0; i < l1_size; i++) {
1596         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1597         bool l2_dirty = false;
1598 
1599         if (!l2_offset) {
1600             /* unallocated */
1601             continue;
1602         }
1603 
1604         if (is_active_l1) {
1605             /* get active L2 tables from cache */
1606             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1607                     (void **)&l2_table);
1608         } else {
1609             /* load inactive L2 tables from disk */
1610             ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1611                     (void *)l2_table, s->cluster_sectors);
1612         }
1613         if (ret < 0) {
1614             goto fail;
1615         }
1616 
1617         for (j = 0; j < s->l2_size; j++) {
1618             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1619             int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index;
1620             int cluster_type = qcow2_get_cluster_type(l2_entry);
1621             bool preallocated = offset != 0;
1622 
1623             if (cluster_type == QCOW2_CLUSTER_NORMAL) {
1624                 cluster_index = offset >> s->cluster_bits;
1625                 assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1626                 if ((*expanded_clusters)[cluster_index / 8] &
1627                     (1 << (cluster_index % 8))) {
1628                     /* Probably a shared L2 table; this cluster was a zero
1629                      * cluster which has been expanded, its refcount
1630                      * therefore most likely requires an update. */
1631                     ret = qcow2_update_cluster_refcount(bs, cluster_index, 1,
1632                                                         QCOW2_DISCARD_NEVER);
1633                     if (ret < 0) {
1634                         goto fail;
1635                     }
1636                     /* Since we just increased the refcount, the COPIED flag may
1637                      * no longer be set. */
1638                     l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED);
1639                     l2_dirty = true;
1640                 }
1641                 continue;
1642             }
1643             else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) {
1644                 continue;
1645             }
1646 
1647             if (!preallocated) {
1648                 if (!bs->backing_hd) {
1649                     /* not backed; therefore we can simply deallocate the
1650                      * cluster */
1651                     l2_table[j] = 0;
1652                     l2_dirty = true;
1653                     continue;
1654                 }
1655 
1656                 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1657                 if (offset < 0) {
1658                     ret = offset;
1659                     goto fail;
1660                 }
1661             }
1662 
1663             ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1664             if (ret < 0) {
1665                 if (!preallocated) {
1666                     qcow2_free_clusters(bs, offset, s->cluster_size,
1667                                         QCOW2_DISCARD_ALWAYS);
1668                 }
1669                 goto fail;
1670             }
1671 
1672             ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
1673                                     s->cluster_sectors, 0);
1674             if (ret < 0) {
1675                 if (!preallocated) {
1676                     qcow2_free_clusters(bs, offset, s->cluster_size,
1677                                         QCOW2_DISCARD_ALWAYS);
1678                 }
1679                 goto fail;
1680             }
1681 
1682             l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1683             l2_dirty = true;
1684 
1685             cluster_index = offset >> s->cluster_bits;
1686 
1687             if (cluster_index >= *nb_clusters) {
1688                 uint64_t old_bitmap_size = (*nb_clusters + 7) / 8;
1689                 uint64_t new_bitmap_size;
1690                 /* The offset may lie beyond the old end of the underlying image
1691                  * file for growable files only */
1692                 assert(bs->file->growable);
1693                 *nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1694                                                 BDRV_SECTOR_SIZE);
1695                 new_bitmap_size = (*nb_clusters + 7) / 8;
1696                 *expanded_clusters = g_realloc(*expanded_clusters,
1697                                                new_bitmap_size);
1698                 /* clear the newly allocated space */
1699                 memset(&(*expanded_clusters)[old_bitmap_size], 0,
1700                        new_bitmap_size - old_bitmap_size);
1701             }
1702 
1703             assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1704             (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8);
1705         }
1706 
1707         if (is_active_l1) {
1708             if (l2_dirty) {
1709                 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1710                 qcow2_cache_depends_on_flush(s->l2_table_cache);
1711             }
1712             ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1713             if (ret < 0) {
1714                 l2_table = NULL;
1715                 goto fail;
1716             }
1717         } else {
1718             if (l2_dirty) {
1719                 ret = qcow2_pre_write_overlap_check(bs,
1720                         QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1721                         s->cluster_size);
1722                 if (ret < 0) {
1723                     goto fail;
1724                 }
1725 
1726                 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1727                         (void *)l2_table, s->cluster_sectors);
1728                 if (ret < 0) {
1729                     goto fail;
1730                 }
1731             }
1732         }
1733     }
1734 
1735     ret = 0;
1736 
1737 fail:
1738     if (l2_table) {
1739         if (!is_active_l1) {
1740             qemu_vfree(l2_table);
1741         } else {
1742             if (ret < 0) {
1743                 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1744             } else {
1745                 ret = qcow2_cache_put(bs, s->l2_table_cache,
1746                         (void **)&l2_table);
1747             }
1748         }
1749     }
1750     return ret;
1751 }
1752 
1753 /*
1754  * For backed images, expands all zero clusters on the image. For non-backed
1755  * images, deallocates all non-pre-allocated zero clusters (and claims the
1756  * allocation for pre-allocated ones). This is important for downgrading to a
1757  * qcow2 version which doesn't yet support metadata zero clusters.
1758  */
1759 int qcow2_expand_zero_clusters(BlockDriverState *bs)
1760 {
1761     BDRVQcowState *s = bs->opaque;
1762     uint64_t *l1_table = NULL;
1763     uint64_t nb_clusters;
1764     uint8_t *expanded_clusters;
1765     int ret;
1766     int i, j;
1767 
1768     nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1769                                    BDRV_SECTOR_SIZE);
1770     expanded_clusters = g_try_malloc0((nb_clusters + 7) / 8);
1771     if (expanded_clusters == NULL) {
1772         ret = -ENOMEM;
1773         goto fail;
1774     }
1775 
1776     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1777                                      &expanded_clusters, &nb_clusters);
1778     if (ret < 0) {
1779         goto fail;
1780     }
1781 
1782     /* Inactive L1 tables may point to active L2 tables - therefore it is
1783      * necessary to flush the L2 table cache before trying to access the L2
1784      * tables pointed to by inactive L1 entries (else we might try to expand
1785      * zero clusters that have already been expanded); furthermore, it is also
1786      * necessary to empty the L2 table cache, since it may contain tables which
1787      * are now going to be modified directly on disk, bypassing the cache.
1788      * qcow2_cache_empty() does both for us. */
1789     ret = qcow2_cache_empty(bs, s->l2_table_cache);
1790     if (ret < 0) {
1791         goto fail;
1792     }
1793 
1794     for (i = 0; i < s->nb_snapshots; i++) {
1795         int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1796                 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1797 
1798         l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1799 
1800         ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1801                 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1802         if (ret < 0) {
1803             goto fail;
1804         }
1805 
1806         for (j = 0; j < s->snapshots[i].l1_size; j++) {
1807             be64_to_cpus(&l1_table[j]);
1808         }
1809 
1810         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1811                                          &expanded_clusters, &nb_clusters);
1812         if (ret < 0) {
1813             goto fail;
1814         }
1815     }
1816 
1817     ret = 0;
1818 
1819 fail:
1820     g_free(expanded_clusters);
1821     g_free(l1_table);
1822     return ret;
1823 }
1824